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Abstract   The use of artificial intelligence (AI) in healthcare is one of the fastest 

growing industries worldwide.  AI is already used to deliver services as diverse 

as symptom checking, skin cancer screening, and recognition of sepsis.  But is it 

safe to use AI in patient care?  However, the evidence base is narrow and limited, 

frequently restricted to small studies considering the performance of AI applica-

tions at isolated tasks.  In this paper we argue that greater consideration should 

be given to how the AI will be integrated into clinical processes and health ser-

vices, because it is at this level that human factors challenges are likely to arise.  

We use the example of autonomous infusion pumps in intensive care to analyse 

the human factors challenges of using AI for patient care.  We outline potential 

strategies to address these challenges, and we discuss how such strategies and 

approaches could be applied more broadly to AI technologies used in other do-

mains.

1 Introduction 

Expectations for the use of artificial intelligence (AI) in healthcare are high.  In 

the UK, as well as world-wide, politicians and policy makers are quick to high-

light the potential health and economic benefits that the widespread adoption of 

AI can bring.  This is underpinned by the establishment of new dedicated bodies, 

such as NHSX1 in the UK and significant government funding to facilitate and 

speed up the development and adoption of AI in health services.  AI is a major 

disrupter to health systems, and it will transform the way healthcare is delivered 

and accessed by patients (Coiera, 2018).   

Examples of the use of AI in healthcare include machine learning algorithms 

that rely on pattern recognition, classification and prediction.  For example, deep 

learning is particularly well suited to the interpretation of radiological images 

                                                           
1 https://www.nhsx.nhs.uk/ 
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because of the complexity and richness of the data (Saria et al., 2018).  Deep 

neural networks (DNN) have been used to interpret head CT scans (Chilamkurthy 

et al., 2018), to identify skin cancer (Haenssle et al., 2018) and to recognise dia-

betes (Avram et al., 2019).  AI-driven chatbots are another popular application 

domain, e.g. patient-facing symptom checkers (Semigran et al., 2015) or artificial 

agents delivering cognitive behavioural therapy to mental health patients (Fitz-

patrick et al., 2017).  

Evaluation studies of such AI algorithms have produced encouraging results.  

The evaluation of a bedside computer vision algorithm to identify and monitor 

behaviours of clinicians, such as hand washing, suggests that the algorithm can 

achieve 95% accuracy (Yeung et al., 2018).  Skin cancer detection using algo-

rithms might outperform dermatologists at this task (Esteva et al., 2017).  Simi-

larly, the developers of a DNN to detect diabetic retinopathy2 found their algo-

rithm achieved over 95% accuracy on two test sets (Gulshan et al., 2016).  For 

the management of sepsis, the evaluation carried out by the developers of an al-

gorithm trained by reinforcement learning found that on average patient mortality 

was lower when clinicians’ management decisions matched those suggested by 

the AI (Komorowski et al., 2018).       

However, looking across these studies, the focus of the evaluation is usually 

on the performance of the AI on a narrowly defined task.  The evaluation is typ-

ically undertaken by the developers, and independent evaluation remains the ex-

ception.  For example, the above evaluation of AI sepsis management has been 

criticised because the algorithm seemingly “learned” not to treat very ill patients 
– a strategy that fits with the training reward function, but is hardly suitable in a 

real clinical environment (Jeter et al., 2019).  Sample sizes are often small, and 

prospective trials are infrequent.  As a result, the evidence base to date about the 

actual performance of AI in real-world settings remains weak (Yu and Kohane, 

2019).   

There is relatively little evidence about the safety of using AI for patient care, 

and we argue that this is, in part, due to the focus on performance of the algo-

rithms.  The real challenges for the adoption of AI will arise when algorithms are 

integrated into clinical systems to deliver a service in collaboration with clini-

cians as well as other technology (Sujan et al., 2019d).  It is at this clinical system 

level, where teams consisting of healthcare professionals and AI systems coop-

erate and collaborate to provide a service, that human factors challenges will 

come to the fore (Sujan et al., 2019b).   

In this paper we analyse the human factors challenges of using AI for patient 

care as part of a clinical system, and we identify potential strategies for address-

ing these.  The next section describes the scenario of autonomous infusion pumps 

in intensive care, which we use to illustrate the concepts.  In section 3 we analyse 

                                                           
2 Diabetic retinopathy is a condition of the eye that can affect people with diabetes.  It is a 

leading cause of sight loss and blindness in the UK.   
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the scenario for human factors challenges and develop example strategies for 

dealing with them.  In Section 4 we discuss how the identified strategies could 

be applied more broadly to AI systems used in other domains.  We conclude the 

paper with a summary and outlook.           

2 Scenario: Autonomous Infusion Pumps in Intensive Care 

As a reference case we use a scenario developed within the Safety Assurance of 

Autonomous Intravenous Medication Management Systems (SAM) project 

(Sujan et al., 2019a).  The SAM project3 is funded under the Assuring Autonomy 

International Programme (AAIP)4, and it is a collaboration between Human Re-

liability Associates (a human factors and safety consultancy), NHS Digital (an 

arms-length body of the Department of Health), and clinicians based at Royal 

Derby Hospital.  The project explores safety assurance strategies for novel, 

highly-automated or autonomous infusion pumps within the intensive care set-

ting.  Figure 1 provides an illustration of the intensive care setting.     

 

 
Fig. 1. Simulated patient in intensive care.  The patient is on a ventilator.  The stack of infu-

sion pumps is on the left, next to the screen that charts the patient's data. 

 
The motivation for considering the use of AI for intravenous medication man-

agement is twofold: to reduce medication errors, and to improve efficiency and 

                                                           
3 http://www.humanreliability.com/casestudies/sam_project/ 
4 https://www.york.ac.uk/assuring-autonomy/ 
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effectiveness.  Medication errors are a significant problem for the National Health 

Service (NHS), and health systems world-wide.  A 2018 report estimates that as 

many as 237 million medication errors occur in England every year, and that 

these cause over 700 deaths (Elliott et al., 2018).  Intravenous medication prepa-

ration and administration are particularly vulnerable activities, and therefore such 

infusion errors represent a considerable burden to patients and the health system 

(McLeod et al., 2013, Furniss et al., 2019).   

In order to reason about the capabilities of automated and autonomous infu-

sion pumps we took inspiration from the automotive domain, where a 6-level 

taxonomy of driver-vehicle control was developed by the Society of Automotive 

Engineers (SAE), which ranges from no automation (level 0) through to full au-

tomation (level 5).  We used this approach and developed analogous levels of 

automation for infusion pumps, as shown in figure 2.  Level 2 represents current 

smart pump capabilities, where the pump is able to undertake a number of auto-

mated checks, e.g. drug and patient identification.  At level 5, which represents 

the scenario of future AI technology considered in this paper, an autonomous 

infusion pump is able to take clinical guidelines (e.g. for insulin administration) 

as a starting point, but has the ability to learn and modify these based on contin-

uous monitoring of the patient’s physiological response to the drug.  We consider 
the reference scenario described in Table  1.   

 
Table 1. Reference Scenario 

Reference Scenario: L5 Infusion Pump 

The patient is a 68-year old type II diabetic with sepsis secondary to pneumonia.  The 

patient’s blood sugars require insulin control via IV actrapid insulin infusion.  Patient iden-

tity, nurse identity, prescription and syringe formulation checks are all done by barcode.  If 

checks match, the pump automatically programmes itself to start the infusion, displays 

medication identity and selects hard and soft programme infusion rate limits without fur-

ther or final human confirmation.  The pump controls the IV infusion rate of insulin in 

response to continuously measured blood sugar from a central venous sampling device. 

Within the programmed limits it is able to “learn” the patient’s actual insulin requirements 
and formulate an individualised protocol for the infusion rate based on the sugar readings 

to optimise sugars control through pre-emptive changes in infusion rates. 
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Fig. 2. Levels of Automation - Infusion Pumps 
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3 Human Factors Analysis 

We undertook a human factors analysis of the reference scenario in order to iden-

tify human factors challenges that might impact on safe and effective care.  The 

focus of the analysis was the clinical system, which includes consideration of 

how clinicians interact with the AI infusion pump, other tools and systems that 

might communicate with the infusion pump and clinicians, the impact on team-

work and the organisation of work, and the impact on communication with pa-

tients and patient experience.  This socio-technical unit of analysis is shown in 

figure 3. 

 

 
Fig. 3. Socio-technical system unit of analysis 

 
As part of the analysis we undertook a task analysis of the current process as 

baseline.  This was mapped using the Hierarchical Task Analysis (HTA) ap-

proach (Stanton, 2006).  We undertook a human failure analysis using the Sys-

tematic Human Error Reduction and Prediction Approach (SHERPA) methodol-

ogy (Embrey, 1986).  We then mapped the future state that incorporates the au-

tonomous infusion pump.  The process map is shown in figure 5 in the appendix.  

The analysis involved a clinical team consisting of a consultant anaesthetist, an 

intensive care nurse and a pharmacist.  We also interviewed 10 further clinicians 

about their views on the potential impact of using autonomous infusion pumps in 

intensive care.  

The human factors analysis identified a number of human factors challenges 

that need to be considered and addressed in order to provide assurance that the 

AI can be integrated safely into a clinical system, and that the overall service is 

safe.  An overview of the human factors challenges is given in table 2.  The table 

contextualises the identified human factors challenges within the autonomous in-

fusion pump example.      
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Table 2. Human factors challenges 

HF 

Challenge 

Description Example 

Handover The autonomous system needs 

to be able to recognise its own 

performance boundaries, pro-

ject into the future clinical sce-

narios that will be beyond its 

performance boundaries, and 

identify suitable ways to hand 

over control to the clinician.   

Handover includes considera-

tion of: (a) when to hand over; 

(b) whom to hand over to; (c) 

what to hand over; and (d) how 

to hand over.   

The patient’s blood sugar levels do not re-
spond sufficiently to the insulin given by the 

autonomous infusion pump.  The pump pre-

dicts and recognises that it will not be able 

to control the patient’s blood sugar.  The 
pump triggers an alert on the electronic 

health record, raises an audible alarm, and 

requests the nurse to take over.  The nurse 

can review the reason for the alert, the his-

tory of the pump’s insulin management, and 
its projection into the future, and act accord-

ingly.     

Perfor-

mance 

Variability 

Clinicians need to manage com-

peting organisational priorities 

and operational demands.  They 

use their experience and judge-

ment to make trade-offs based 

on the requirements of a spe-

cific situation.  The autono-

mous system needs to support 

rather than constrain this per-

formance variability and adap-

tive capacity.   

The nurse realises that insulin has not yet 

been prescribed for the patient even though 

they will likely need it.  The nurse goes and 

finds the doctor, explains the situation, and 

the doctor issues a verbal medication order 

and will follow this up with the written pre-

scription later (performance variability).  

The autonomous system requires an elec-

tronic medication order, but allows for a 

manual override.  The autonomous system 

sends reminders to the doctor with a request 

for completing the electronic medication or-

der.   

Automa-

tion bias 

When a system works well 

most of the time, clinicians start 

to rely on it.  In some situa-

tions, this can lead to overreli-

ance, for example when the sys-

tem takes an inappropriate ac-

tion but the clinician does not 

recognise this because they 

trust the system.   

Due to sepsis the patient requires tighter 

control of blood sugar levels than usual.  

The autonomous system has managed suc-

cessfully septic patients before but, in this 

instance, fails to recognise the need for 

tighter glycaemic control.  The autonomous 

system provides clinician interpretable justi-

fication and explanation of its decisions, and 

the clinician, who has received training on 

potentially inappropriate behaviours of the 

autonomous system, is able to spot the dis-

crepancy and act accordingly.   
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Supervi-

sion 

Clinicians are both users and 

supervisors of the autonomous 

system.  They need to under-

stand not only how to operate 

the autonomous system (e.g. 

loading a syringe), but also how 

to recognise potential failure 

modes or deviations from ap-

propriate behaviour or changes 

in the environment that might 

move the autonomous system 

outside of its design envelope.   

The autonomous infusion pump is operating 

on the sliding scale algorithm for adminis-

tering insulin.  It classifies the patient’s re-
sponse to the current insulin infusion as re-

quiring transition to another scale with 70%, 

as opposed to 30% for staying within the 

current scale.  The autonomous system initi-

ates and the transition, and activates an “un-
certainty marker” to alert the clinician.   

  

3.1 Handover 

Handover between clinicians has long been recognised as a safety-critical and 

particularly vulnerable activity (Sujan et al., 2015b).  Handover is not simply the 

transfer of information from a sender to a more or less passive receiver, but in-

volves collaboration, negotiation and coordination (Sujan et al., 2015c).  The in-

troduction of AI and autonomous systems complicates handover even further, as 

the AI needs to identify appropriate trigger points for handover, it needs to deter-

mine the appropriate person or persons to hand over to and understand their in-

formation needs, and it needs to use adequate communication channels for the 

handover.  Such trigger points could be the self-detection of an internal fault or 

the recognition of situations outside of the system’s design envelope.  For exam-
ple, should the autonomous infusion pump wait to raise an alert until it fails to 

control the patient’s blood sugar levels or should it communicate its potential 
failure much sooner to allow clinicians to prepare for taking back control?  

Should it just raise an alert or should it communicate a history of its actions and 

a prognosis of the patient’s physiological development?  Should it sound an au-
dible alarm so that the nurse can pick this up, or should it send a text message to 

doctors not close to the bedside?   

All of these considerations are human factors concerns, and a look at the wider 

human factors body of knowledge can provide insight into potential approaches 

for designing adequate handover strategies.  For example, the autonomous infu-

sion pump would ideally initiate a form of graceful handover, where the trigger 

points are determined considering human performance characteristics as well as 

the specific clinical scenario.  The design of the infusion pump should consider 

the information needs of different types of stakeholders that allows them to build 

an adequate situation awareness (Endsley, 1995).  Alarm prioritisation and alarm 
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management are further strategies that have been developed in control room op-

erations to prevent operator overload (e.g. EEMUA 191 Alarm Systems5), and 

these should also inform the way the handover between the autonomous infusion 

pump and clinicians is designed.       

3.2 Performance Variability 

Within the resilience engineering (RE) community performance variability is re-

garded as an asset that enables complex systems to deal with disturbances, con-

flicting goals, and unforeseen situations (Hollnagel et al., 2006).  People contin-

uously adapt their behaviour and make trade-offs, often based on some form of 

subjective risk assessment, and in this way they are able to cope with competing 

demands, uncertainty, and everyday disturbances such as staff shortages and 

peaks in demand (Sujan et al., 2015a).  This work-as-done (WAD) is necessarily 

different from work-as-imagined (WAI) by people who design and manage sys-

tems (Hollnagel, 2015).      

Our human factors analysis provided several examples of such everyday local 

adaptations.  For example, nurses would sometimes administer drugs without a 

prescription and then chase the doctor to issue a prescription later.  They do this 

depending on the perceived risk category of the drug, the urgency of administer-

ing the drug, the availability of the doctor, and their own workflows.  This vio-

lates the protocol, which requires that a prescription is issued prior to administra-

tion of any drug, but it enables smoother functioning of the intensive care unit as 

a whole, and it can adapt better to patient needs.   
Safety assurance of new technology focuses frequently only on the failure 

modes of the technology and the associated risks.  However, from a Safety-II 

perspective it is equally as important to consider the impact on the resilience abil-

ities of the (clinical) system, i.e. the impact on the ability to anticipate, to adapt, 

to monitor, and to learn (Hollnagel, 2014). 

In the autonomous infusion pump scenario, it is easy to envisage how the static 

implementation of procedures and protocols might disrupt existing workflows 

and, in this way, create the need for other workarounds. The design of the infu-

sion pump should consider WAD, e.g. with data collected through observations, 

interviews and task analysis.  There is also a need to look beyond the immediate 

impact on human – machine (i.e. clinician – infusion pump) interaction, towards 

the potential impact the introduction of technology has on human – human rela-

tionships.  Building and maintaining such relationships is an important aspect of 

                                                           
5 Standard available for a fee from the Engineering Equipment and Materials User Association 

(EEMUA): https://www.eemua.org/Products/Publications/Print/EEMUA-Publication-

191.aspx.   
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resilient health care (Sujan et al., 2019c).  The introduction of technology should 

not prevent opportunities for building relationships and trust among clinicians.          

3.3 Automation Bias  

Automation bias describes the phenomenon that people tend to trust and then start 

to rely on automation uncritically (Parasuraman and Riley, 1997).  An interesting 

recent study in the automotive domain found that even with training and specific 

instruction on the limitations of an autonomous vehicle, study participant drivers 

came to rely on the autonomous car within a week, and were spending most of 

their time on their smartphones or reading  (Burnett et al., 2019).  Examples of 

automation bias have also been found in healthcare, for example in mammogra-

phy reading, where the introduction of a computer algorithm can decrease the 

performance of radiologists for certain difficult cases, where the algorithm pro-

vided incorrect classification (Alberdi et al., 2004, Lyell and Coiera, 2016). 

Many, if not most, AI systems will be advertised as having ultra-high reliabil-

ity, and it is to be expected that in due course clinicians will come to rely on these 

systems.  However, the studies on automation bias suggest that the reliability fig-

ures by themselves do not allow prediction of what will happen in clinical use, 

when the clinician is confronted with a potentially inaccurate system output.  It 

is important that clinicians are informed not only about the accuracy of algo-

rithms, but also about their potential weaknesses and what to look out for.   

Guarding against automation bias is not easy.  While studies have suggested a 

number of strategies such as explainability and transparency of decision making, 

clear accountability and adaptive interfaces and task allocation, the evidence base 

for these is far from clear (Goddard et al., 2012).  Different people might have 

different mental models and assumptions of the autonomous infusion system, 

which might be partial and even contradictory, because the behaviour may be too 

complex for anyone to understand what is going on.  Technology developers, 

healthcare providers and clinicians need to have an awareness of this challenge, 

and find solutions that work in their specific setting so that users can build a good 

picture of the behaviour of the autonomous system in a way they can compre-

hend.     

3.4 Supervision 

With current infusion pumps (at L2 in our model of automation) clinicians are 

users of the infusion pump, i.e. they need to know how to load and program the 
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infusion pump.  Failure modes of the infusion pump are fairly limited and rea-

sonably well understood.  The training provided to clinicians is about the func-

tionality of the infusion pump and how to use it, e.g. how to navigate the inter-

face.   

The situation changes dramatically when we move to L5, because at this level 

the infusion pump becomes an autonomous system capable of taking decisions 

independently.  The clinician needs to understand not only how to use the infu-

sion pump, but also what potential weaknesses are and how the safe envelope is 

defined, maintained or breached.  Clinicians need to be able to make sense of the 

pump’s actions and provide clinically-based checks.  In this sense, the role of the 

clinician changes from user of a passive pump to that of supervisor of an auton-

omous system.  Consideration needs to be given to how clinicians can fulfil this 

role, and what kind of novel training needs might arise.  It is even conceivable 

that a new role is created, e.g. that of an AI nurse specialist, who is specifically 

trained in managing AI and autonomous systems within their care setting.   

4 Cross-Domain Discussion 

This paper has identified a number of key human factors challenges through con-

sideration of automation and autonomy in healthcare. Although the specific is-

sues highlighted relate to the introduction of autonomous infusion pumps, the 

general challenges are not unique to this application and domain, and are likely 

to be more broadly applicable. In this section we discuss the generalisability of a 

number of the challenges presented through consideration of examples in other 

domains where the level of autonomy of systems is also increasing. We believe 

that there is great benefit that can be gained through sharing knowledge between 

domains on how to address these challenges. 

4.1 Handover 

The problems associated with handover from autonomous operation to a human 

operator are well known in other domains and have been widely studied. None 

more so than in the automotive domain where recent high-profile incidents have 

highlighted concerns around the use of so-called safety drivers. Current self-driv-

ing cars are only capable of driving autonomously under limited conditions such 

as defined geographical areas, types of roads or specified scenarios and environ-

mental conditions. This means that the vehicle must hand back control to a human 

driver if the required conditions are not met, or if the car is in a situation that it 



320      Mark Sujan, Dominic Furniss, Richard Hawkins and Ibrahim Habli 

 

cannot resolve safely. Studies such as (Gold et al., 2013) have shown that, de-

pending on the complexity of the situation at handover, it can take up to 8 seconds 

for a driver to take back full control of the vehicle, particularly if they are dis-

tracted at the time of handover. When driving on a motorway, 8 seconds may 

correspond to over 200 metres travelled. It does not seem unreasonable to take 

the high-end of this estimate. Given that the handover to a safety driver will often 

occur because the vehicle is in a difficult or dangerous state it is likely that the 

situation is complex. The ability of drivers who are not actively engaged in driv-

ing the vehicle to avoid distraction is also challenging, as discussed in (Merat et 

al., 2014). This is an area of active research, but there are certainly strongly held 

views, such as by Waymo (Waymo, 2018) that ultimately human drivers should 

be removed, as they cannot be relied upon to react quickly enough to ensure 

safety. This view has been given additional weight by accidents such as that in 

Tempe, Arizona in March 2018 (National Transportation Safety Board, 2018), 

where for various reasons the safety driver was unable to intervene quickly 

enough to prevent a fatality. 

Human factors strategies such as graceful handover, situational awareness and 

designing with consideration of performance influencing factors, can also be seen 

to be crucial for ensuring safe handover in autonomous driving, and are also more 

broadly applicable to other domains. 

4.2 Automation bias and impact on working practices 

Aircraft have been highly automated for a long time, prompting research to in-

vestigate what the consequences of this might be on pilots’ ability to fly the air-

craft manually if the automated systems fail. This has been particularly motivated 

by a number of crashes that may have involved some element of de-skilling on 

the part of the pilots, such as Colgan Flight 3407 in 2009 when 50 people died 

when the pilots were found to have done the opposite of what they were trained 

to do when the aircraft entered an aerodynamic stall (National Transportation 

Safety Board, 2009), see figure 4 for an image of the crash site (Clarence Centre, 

New York). The paradox is that it would seem that although automation has made 

it increasingly unlikely that airline pilots will face critical problems during flight, 

it is also perhaps making it less likely they will be able to cope if such problems 

do arise. 
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Fig. 4. Crash site of Colgan Flight 3407 in 2009  

(copyright: Bureau of Aircraft Accident Archives) 

 
A study from 2014 (Casner et al., 2014) set out to understand how the prolonged 

use of cockpit automation has been affecting pilots’ manual flying skills. They 

did this through experiments on 16 Boeing 747-400 airline pilots in a simulator, 

where they systematically varied the level of automation used to fly routine and 

non-routine flight scenarios. What they found was that pilots’ instrument scan-

ning and manual control skills to be mostly intact, even when pilots reported that 

they were infrequently practiced. However, when pilots were asked to manually 

perform the cognitive tasks needed for manual flight (e.g., tracking the aircraft’s 
position without the use of a map display, deciding which navigational steps 

come next, recognizing instrument system failures), more frequent and signifi-

cant problems were observed, and this seemed to depend on the degree to which 

pilots remain actively engaged in supervising the automation. Such observations 

in a domain where the use of high levels of automation are long established 

clearly bring knowledge that may be important for domains such as healthcare 

where high levels of autonomy are novel. 

4.3 Supervision 

In the maritime domain there are ambitious plans for autonomous operation of 

ships. For example, Rolls-Royce plan to operate a fleet of unmanned ships across 
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the world using a small number of operators in shore-based control centres 

(SCCs), which could be located thousands of miles away6. Unmanned shipping 

does not mean removing humans completely from operations, but moving them 

to a role more focussed on monitoring and supervision, requiring entirely new 

kinds of work roles, tasks, tools, training and environments. Crucially, to assure 

safety, people may need to be able to take some level of control over the ship at 

any time. Many of the issues relating to supervision for autonomous medical sys-

tems are therefore relevant here. 

One of the big challenges of such a shift to SCCs is the loss of direct ship-

sense. An investigation conducted in (Man et al., 2016) highlighted how critical 

ship-sense is in ship manoeuvring. They consider how operators in a remote op-

erating centre will be able to effectively perceive the ship’s movements and 
manoeuver the ship without ship-sense since there will be no physical connection 

between the human and the vessel, and no directly perceived information from 

the ship’s environment. In (Wahlström et al., 2015), an overview of the human 

factors challenges that might concern future monitoring and control of unmanned 

ships from SCCs is presented. They identify the challenges through consideration 

of autonomous and remote operation across a number of domains including avi-

ation, forestry, subway systems, space and military operations, and contrast these 

to the maritime context. The most prominent issues they identify include infor-

mation overload, boredom, mishaps during changeovers and handoffs, lack of 

feel of the vessel, constant reorientation to new tasks, delays in control and mon-

itoring, and the need for human understanding in local knowledge and object dif-

ferentiation (e.g., in differentiating between help-seekers and pirates). 

5 Conclusion 

There is significant enthusiasm for the use of artificial intelligence in healthcare 

as well as in other industries, and there is no shortage of promise by technology 

developers of how AI can transform overstretched health services and improve 

patient care.  There is also political will to support the development of new tech-

nologies with funding and by opening up relatively closed health systems such 

as the NHS.  On the one hand this is good news, because these developments 

recognise the great potential that AI technologies undoubtedly bring.  On the 

other hand, from a safety assurance perspective there is cause for concern because 

the evidence base on whether and how the introduction of such technologies 

might impact on patient safety is very thin.  Largely, evaluation studies to date 

have considered performance of AI on specific tasks, but have neglected the 

                                                           
6 Rolls Royce video available at: 

 https://www.youtube.com/watch?time_continue=1&v=vg0A9Ve7SxE  

https://www.youtube.com/watch?time_continue=1&v=vg0A9Ve7SxE
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wider impact on clinical systems.  One way forward might be to look not at al-

gorithms in isolation, but rather consider the services AI systems are contributing 

to, and how the introduction of novel technologies will change the ways in which 

services are provided.        

Standards and guidance exist, which could form a starting point for more rig-

orous safety assurance of AI technologies, such as established standards for risk 

management of medical devices (ISO 14971) and health information technology 

(NHS Digital clinical safety standards).  However, these standards focus predom-

inantly on technical aspects and do not cover human factors and service issues.  

In addition, many of the technology developers entering the AI healthcare market 

do not come from a safety-critical system engineering background and might be 

largely unfamiliar with existing guidance and best practice.    

There is an opportunity for national bodies such as the Chartered Institute of 

Ergonomics and Human Factors (CIEHF) and the newly established NHSX to 

raise awareness of human factors and safety challenges for the use of AI in 

healthcare, and to develop and disseminate appropriate guidance.  Funding 

should be made available not only for the development of AI technologies, but 

also for their rigours evaluation to ensure we understand from the outset how AI 

will impact on patient care and patient safety, and how potential hazards and hu-

man factors challenges can be addressed.   
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Appendix 

 

 
 

Fig. 5. Process map of infusion process with L5 autonomous infusion pump 
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