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ABSTRACT

The purpose of this study is to highlight the application of sparse logistic regression
models in dealing with prediction of tumour pathological subtypes based on lung
cancer patients’ genomic information. We consider sparse logistic regression models
to deal with the high dimensionality and correlation between genomic regions. In a
hierarchical likelihood (HL) method, it is assumed that the random effects follow a
normal distribution and its variance is assumed to follow a gamma distribution. This
formulation considers ridge and lasso penalties as special cases. We extend the HL
penalty to include a ridge penalty (called ‘HLnet’) in a similar principle of the elastic
net penalty, which is constructed from lasso penalty. The results indicate that the
HL penalty creates more sparse estimates than lasso penalty with comparable pre-
diction performance, while HLnet and elastic net penalties have the best prediction
performance in real data. We illustrate the methods in a lung cancer study.

KEYWORDS

Tumour; Lung cancer; Pathological subtype; Logistic regression; Sparse solution;
Hierarchical likelihood;

1. Introduction

Copy number alterations (CNA) are structural variation in the human genome, in
which some regions exhibit more (‘gains’) or less (‘losses’) number of copies than the
normal two copies. These structural variations are common to be found in cancer pa-
tients. Our main interest in this study is to investigate statistical models to predict
two different subtypes in lung cancer: squamous carcinoma (SC) and adenocarcinoma
(AC)[20]. In the context of cancer patients’ care and well-being management, identi-
fication of the correct pathological subtype is critical as the treatment administered
to them depends on the subtype [2, 4]. Each tumour subtype has different patterns
of CNA because the underlying process of their development is different due to the
origin of cancer [13]. Therefore, the information contained in CNA is important for
prediction of the tumour subtypes.
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CNA can be estimated using different technologies, such as array competitive ge-
nomic hybridization (aCGH) and next-generation sequencing (NGS), the latter of
which was used in our motivating dataset (Section 2.1). A CNA dataset typically has
some characteristics that can be considered as a challenge from statistical modelling
view point. The first one is that the number of genomic regions (variables) far exceeds
the number of patients (observations). Secondly, the data exhibit ‘blocks’ of correla-
tion between genomic regions, because CNA’s tend to occur in segments. With such a
large number of genomic regions, not all of them are informative in the discriminating
the two tumour subtypes. For example, in leukemia, Forero-Castro et al. [7] identified
that some regions in chromosomes 1, 14, and 15 are important in the identification of
cancer subtypes. Brennan et al. [3] identified some regions in chromosomes 4, 7, and
12 to be informative to distinguish subtypes in glioblastoma (a type of brain cancer).
It is therefore of our interest to develop a model to predict tumour pathological sub-
types using the CNA data, while at the same time identify important regions that
discriminate the two subtypes.

For this purpose, we consider logistic regression model with a sparse solution. The
term ‘sparse’ refers to the case where some of the model parameters are zero esti-
mated, while the other parameters are estimated to be away from zero. In effect, a
variable selection is embedded in the model, since the contribution of some variables
for prediction is negated. Tibshirani[22] proposed a penalised regression model with an
L1 penalty called lasso. Zou and Hastie[25] identified that the lasso method can have
some drawbacks, especially when the data are correlated. Lasso model tends to pick
up just one variable (to have non-zero estimate) among the correlated variables. To
deal with this challenge, Zou and Hastie[25] introduced the elastic net penalty (‘Enet
penalty’), in which the lasso penalty is extended by incorporating ridge penalty[10].

Lee and Oh[17] recently proposed a general formulation of random effects model. In a
hierarchical likelihood (HL) formulation, the model parameters are assumed to follow
a normal distribution, and its variance is assumed to follow a gamma distribution.
This formulation creates a penalty function (‘HL penalty’) that can produce a sparse
solution. Furthermore, since the lasso penalty is a special case in this formulation, we
consider the HL penalty as an alternative to the lasso penalty. We further extend the
HL penalty to incorporate a ridge penalty, similar to the extension of lasso penalty
to the elastic net penalty, and call it HLnet (hierarchical likelihood-net) penalty. We
apply these methods in a real CNA dataset on lung cancer patients and simulated
datasets. The results indicate that the methods produce sparse solutions, with HL
penalty create a more sparse solution than lasso penalty. A cross validation on real
dataset also indicates that the extension of ridge penalty on the HL penalty improves
the model performance by lowering classification error.

We outline the paper as follows. Section 2 describes the methodology involved; Sec-
tion 3 presents the results and Section 4 contains discussions and concluding remarks.

2. Methodology

2.1. Dataset

The dataset in our study comes from 76 lung cancer patients from Leeds Teach-
ing Hospital (UK), comprising of two groups: squamous carcinoma (38 patients) and
adenocarcinoma (38 patients). Details on biological sample preparation, DNA extrac-
tion and sequence preparation are described by Wood et al.[23]. DNA samples are
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sequenced using Illumina GAIIx sequencer to produce short DNA sequences. These
short sequences, usually called ‘reads’, were aligned using the software package bwa
suite version 0.5.9-r16 [18] against assembly hg19 of the human reference genome. We
only consider reads that could be uniquely mapped to the human reference genome
with quality score ≥ 37.

The copy number alteration (CNA) data from each lung tumour is calculated by
‘depth of coverage’ from their sequences, which basically counts the number of short
DNA sequences that are mapped to a fixed-size genomic region (‘window’). For this
purpose, the optimal window size for this group of samples is estimated using NG-

Soptwin package to be 150 kbp [8]. The sequence data from 76 cancer patients are not
directly comparable because inevitably the tumour samples are contaminated with
normal cells by different degrees. To deal with this problem, we performed a normali-
sation using the CNAnorm package [9] to obtain CNA estimates. An example of CNA
estimates is presented in Figure 1 for patient LS93, where CNA is estimated as smooth
segmented lines [11].

LS93
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Figure 1. CNA estimates from one patient (LS93) as smoothed segmented line (solid line) from normalised
ratio (grey points). Vertical solid lines separate different chromosomes. The horizontal axis corresponds to the

genomic location. I.e. the CNA estimates are ordered from the first to the last position in each chromosome.

In the dataset that we analyse, we have CNA estimates from 17,571 genomic regions.
The CNA estimates from the patients (‘profiles’) are then summarised in a matrix of
size 76 by 17,571 after exclusion of sex chromosomes and the centromere regions that
contain many missing values. The columns of the matrix are ordered based on the
genomic locations. One of the characteristics of the data is the presence of correlation
‘blocks’ as shown in Figure 2. The figure shows the correlation in chromosomes 1 and
chromosome 2.

2.2. Sparse logistic regression

Let y be a vector of the tumour subtype, where yi = 1 if the i-th tumour is of squamous
carcinoma (SC) subtype and yi = 0 if it is of adeno carcinoma (AC), for i = 1, 2, . . . , n.
Let X be a n × p matrix of fixed predictors that contains the column for intercept.
In general, any important clinical predictors can be included in X. However, in our
application, it is currently associated with a fixed intercept, i.e. X is a vector of ones.
Let β be a p-vector of fixed parameters associated with X. The CNA data matrix
is denoted as Z of size n × q with a q-vector of random parameters b, b ≡ {bj},
j = 1, 2, . . . , q. We assume that each yi follows a Binomial distribution with mean µi,
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Figure 2. Correlations between genomic regions in the CNA dataset across 76 lung cancer patients, in
chromosomes 1 (1,469 windows) and chromosome 2 (1,561 windows). The centromere regions that contain
missing values have been excluded. In the whole genome (excluding sex chromosomes), the correlations range
from -0.47 to 0.999, with mean(median) of absolute correlation to be 0.28(0.27). Bright colours indicate high
positive correlation.

or yi ∼ Bin(1, µi). We model the mean µi, in vector notation, as

h(µ) = Xβ + Zb, (1)

where h(·) is a logit link function that applies element wise, µ ≡ {µi}, i = 1, 2, . . . , n,
and we assume that b follows a distribution, which will be described below. The term
Xβ in the above equation can be replaced by β0 in our current specific application
because it is just a fixed intercept. However, we keep the above formulation in the
equation for other general applications.

The formulation of the above model (1) follows that of generalised linear models
with random effects [15]. In a general context, the random effects b are usually assumed
to follow a normal distribution with mean zero and variance D(θ), or b ∼ N(0, D(θ)),
where D(θ) ≡ θIq for a tuning parameter θ and Iq is the identity matrix of size q.
However, it is well know that this assumption on b will produce a ridge estimate, which
is not a sparse solution.

To obtain a sparse solution, Tibshirani [22] proposed a lasso penalty, which is equiv-
alent to assuming a Laplace distribution on the random effects. One main drawback
of the lasso model is that the when dealing with a block of correlated variables, which
is common in our data, lasso will pick one variable to have non zero estimate in that
block [25]. To address this problem, Zou and Hastie [25] proposed elastic-net model,
which is equivalent to assuming a mixture distribution of normal and Laplace distri-
bution on the random effects b. This assumption produces a sparse solution with some
‘grouping effect’ on correlated variables [25].

In this study, we consider the random effects proposed by Lee and Oh [17], as an
alternative to the lasso and elastic-net models, to produce sparse solution in the above
model. Lee and Oh [17] proposed that the random effects b is assumed to follow a
normal distribution such that

bj |uj ∼ N(0, ujθ) (2)

where θ is a tuning parameter with θ = 2σ2, and uj is assumed to follow gamma
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distribution with parameter w

pw(u) =

(
1

w

) 1

w 1

Γ
(
1
w

)u 1

w

−1 exp
(
− u

w

)

and E(u) = 1 and Var(u) = w.
To use the hierarchical likelihood approach [15, 16], Lee and Oh [17] reformulated

the above model (2) by noting that it can be written as

bj =
√
τje, (3)

where τj = 2σ2uj and e follows a standard normal distribution, i.e. e ∼ N(0, 1). This
means log(τj) = log 2σ2 + vj where vj = log uj .

Following [17], the joint log likelihood of the parameters in the logistic regression
(1) can then be expressed as hierarchical likelihood [15, 16]

ℓ(β, θ, b) = log p(y|b) + log p(b), (4)

where

• log p(y|b) is the log likelihood of the logistic regression model (1)

log p(y|b) =
n∑

i=1

{yi logµi + (1− yi) log(1− µi)},

with µi =
(
1 + exp{−(XT

i β + ZT
i b)}

)
−1

, and Xi and Zi are respectively the i-th
row of X and Z,

• log p(b) is the hierarchical log likelihood of the random effects from the definition
in Eq. (2) and defined as

log p(b) =

q∑

j=1

log p(bj |uj) +
q∑

j=1

log p(log uj) (5)

where

log p(bj |uj) = −1

2

{
log

(
4πσ2

)
+ log uj +

b2j
2σ2uj

}

and, by noting that vj = log uj ,

log p(vj) = log p(log uj) = − log(w)

w
− log Γ

(
1

w

)
+

log uj
w

− uj
w
.
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2.3. Parameter estimation

Given (w, θ), the estimation of the parameters β and b is done using the profile h-
likelihood [15–17]

ℓp(β, θ, b) = log p(y|b)|u=û + log p(b)|u=û . (6)

Lee and Oh [17] showed that, under the above formulation, u is estimated as a solution
to dℓ/du = 0 and given by

ûj = û(bj) = w {(2/w − 1) + κj} /4, (7)

where κj =
√

4b2j/(wσ
2) + (2/w − 1)2.

In the above formulation, w is not estimated and, given b, the relationship between
û and w in Eq. (7) is fixed. Therefore, there are only two parameters (β, b) and one
tuning parameter θ (note that σ2 = θ/2) to estimate. The type of penalty, hence
solution obtained, is characterised by the choice of w. For w = 0 (in limit terms), we
have [17]

log p(b)|w=0 ∝ 1/(2θ)

q∑

j=1

b2j (8)

which gives the ridge penalty. For w = 2, we have [17]

log p(b)|w=2 ∝ 1/
√
θ

q∑

j=1

|bj | (9)

which gives the lasso penalty. The penalty function that we refer to in the above
formulation (HL penalty) is log p(b) when w = 30 as suggested by Lee and Oh [17].
The shape of the penalty functions are presented in Figure 3. Relative to the lasso
penalty (L1, w = 2), the HL penalty (w = 30) shows a sharp upside-down spike
around zero and quickly spread evenly as b is away from zero. This shape of penalty
is expected to produce a very sparse solution because the spike around zero that is
more prominent than the lasso penalty, while at the same time only allow estimates
that are considered ‘large enough’.

The parameter estimation is done within iterative weighted least squares (IWLS)
[15, 16, 19]. The estimation of β and b is performed at a fixed θ, and then θ is estimated
through cross validation or Akaike’s information criterion (AIC, described below). We
denote λ = 1/θ, and W = diag(1/ûj). At fixed θ, we differentiate the profile likelihood
ℓp(β, θ, b) (Eq. (6)) with regard to each of β and b to obtain the mixed model equations
[16, 19]

(
XTΣ−1X XTΣ−1Z
ZTΣ−1X ZTΣ−1Z + λW

)(
β
b

)
=

(
XTΣ−1Y
ZTΣ−1Y

)

where Y is a working vector with elements

Yi = XT
i β + ZT

i b+
yi − µi

µi(1− µi)
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0

Figure 3. The shape of penalty function log p(b) under the hierarchical likelihood[17], when w = 0 (in limit

terms) that produces ridge penalty, w = 2 that produces lasso (L1) penalty, and w = 30 (‘HL penalty’) for a
particular fixed θ.

and Σ is a diagonal matrix with Σii = µi(1− µi).

At fixed θ and using starting values of β̂ and b̂, we estimate β and b by iterating

β̂ = (XTΣ−1X)−1XTΣ−1(Y − Zb̂) (10)

and

b̂ = (ZTΣ−1Z + λW )−1ZTΣ−1(Y −Xβ̂) (11)

where β, b, and µ are evaluated at the current values. In the above estimation of b, the
value of uj in the diagonal of W can go to zero in the iteration when the corresponding
estimate of bj is close to zero. It is important to note that, when the estimate of bj is
going close to zero in the iteration, the corresponding uj in the diagonal of W is also
going to zero. To avoid failure in the matrix inversion, we add a small constant 10−8

to each uj . This means that the estimate bj is considered zero when their magnitude
is less than, say, 10−5 or 10−4.

The estimation of λ ≡ 1/θ can be done by performing a cross-validation (see Section
2.5) on different values of λ and choose the one that minimise classification error.
Alternatively, by calculating AIC=−2 log p(y|b) + 2df where

df = trace
{
(ZTΣ−1Z + λW )−1ZTΣ−1Z

}

across different value of λ’s and select the one that minimises AIC[19].

2.4. Extension

A simple and natural extension to the above model are by incorporating the ridge
penalty to the HL penalty. Zou and Hastie[25] incorporate both the lasso penalty (9)
and ridge penalty (8) in the model likelihood to create the so called ‘elastic net’ that
(from the formulation of Lee and Oh[17]) can be written as

log p
enet

(b) ∝ 0.5 log p(b)|w=2 + 0.5 log p(b)|w=0

7



following Eq. (8) and (9). Their proposal was motivated by the drawback of lasso
penalty in the context of correlated data: the solution will pick up a variable in a
‘block’ of correlated variables and it does not care which one. By incorporating the
ridge penalty, they expect that the ‘grouping effect’ [25] of the ridge penalty will
improve this situation.

Similarly, we can extend further the HL penalty to incorporate ridge penalty with
equal weight in dealing with correlated data. In this case the penalty function becomes

log p
HLnet

(b) ∝ 0.5 log p(b)|w=30 + 0.5 log p(b)|w=0 (12)

where the first term corresponds to the HL penalty and the second one to the ridge
penalty (8). For simplicity, we refer the above Eq. (12) as ‘HLnet’ penalty. As described
above, the HL penalty is expected to produce a very sparse solution given the shape
of the penalty function. The incorporation of the ridge penalty in the HLnet penalty
(12) is expected to benefit from its ‘grouping effect’ [25] in the solution when dealing
with correlated data such as our genomic dataset. This extension can be considered as
assuming a type of mixture distribution on random effects b as described further in the
Supplementary Material, along with some description on the parameter estimation. In
the above formulation, the weight for each penalty is set to be 0.5 by default, although
in practice this is specified by user. The motivation to consider the weight of 0.5 is
described further in the Supplementary Material.

2.5. Cross validation

We consider cross-validation (CV) as an alternative in estimating λ and as a method to
estimate the model performance in terms of classification error in prediction based on
‘new samples’. From n observations in the data, we randomly split them into training
set of size nt and validation set of size nv (nt + nv = n) such that

y :=




yt
· · ·
yv


 , X :=




Xt

· · ·
Xv


 , Z :=




Zt

· · ·
Zv


 .

The training set serves as the set by which we estimate the model parameters β̂t and
b̂t. The estimates are then used in the validation set to obtain model prediction

ŷv = I
(
h−1

{
Xvβ̂t + Zv b̂t

}
≥ 0.5

)
, (13)

where I(·) equals one (squamouscarcinoma) if the expression inside the brackets is
true, and zero (adenocarcinoma) otherwise.

Given the predicted group labels ŷv, we calculate the classification error in the
validation set by comparing it with the observed group labels yv. Let us denote
yv = (yv1 yv2 . . . yvnv

)T and, from (13) ŷv = (ŷv1 ŷv2 . . . ŷvnv
)T , we define the clas-

sification error as

CE =
1

nv

nv∑

k=1

I(yvk 6= ŷvk). (14)

In practice, we performed a five-fold cross validation and the classification error is
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calculated in the validation sets across the five folds. This is done for each model that
we consider in this study, and the optimal λ (in each model) is estimated as the one
that minimises the (five-fold) classification error.

2.6. Simulation study

To understand the working characteristics of the model, we consider a simulation study
under the following setting. To mimic the real CNA data, we generate a matrix of CNA
data Z of size n = 100× 1000 = q as Z ∼ MVN(0,Ψ) where MVN is the multivariate
normal distribution density and Ψ is 1000× 1000 covariance matrix. For a known K,
it is defined as

Ψ =




Ψ11 Ψ12 0 · · · 0
Ψ21 Ψ22 Ψ23 · · · 0
0 Ψ32 Ψ33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ΨKK



. (15)

For k = 1, 2, . . . ,K, Ψkk is of size K ′ ×K ′, K ′ = (1000/K), and is defined as

Ψkk =




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1




with ρ = 0.9. For k = 1, 2, . . . ,K − 1, we define Ψk(k+1) = Ψ(k+1)k of size K ′ ×K ′ as

Ψk(k+1) = Ψ(k+1)k =




r r · · · r
r r · · · r
...

...
. . .

...
r r · · · r


 .

In this simulation study, we consider two different values of r. The first one is r = 0,
which means that the covariance matrix in Equation (15) is a block diagonal matrix
with independent blocks. The second one is r = 0.4, which means that the blocks are
moderately correlated. The latter setting, i.e. correlated diagonal blocks, is closer to
the characteristics that we see in the real data (Figure 2).

In the simulation setting, K is set to be 200, 100, and 50, corresponding to have
a correlation block Ψkk of size K ′=5, 10, and 20 respectively. To get the simulated
subtype, we set the true β to be zero (although we still allow an intercept to be fitted
in the estimation), and the true random effects b to be set in two different scenarios:

• Scenario A bj is set equal to 1 for the first K ′ variables, -1 for the second K ′

variables, and zero everywhere else, or

b = ( 1, 1, . . . , 1︸ ︷︷ ︸
First K′ variables

, −1,−1, . . . ,−1︸ ︷︷ ︸
Second K′ variables

, 0, 0 . . . , 0)T .

9



In this setting, the truly associated variables corresponds to the first two seg-
ments of correlated variables in the simulated data.

• Scenario B bj is set equal to 1 for the first variable within the first K ′ variables,
-1 for the first variable within the second K ′ variables, and zero everywhere else,
or

b = ( 1, 0, . . . , 0︸ ︷︷ ︸
First K′ variables

, −1, 0, . . . , 0︸ ︷︷ ︸
Second K′ variables

, 0, 0 . . . , 0)T .

In this setting, the truly associated variables are only a ‘singleton’ in each of the
first two segments of correlated variables in the simulated data.

To summarise, we fit five different models in this simulation study: lasso (L1), HL,
ridge, elastic net (enet), and HLnet. The ridge model is included in this simulation
as a benchmark of non-sparse model. Each model is fitted to simulated data under
each of combination of settings: (1) the size of the segments (K ′) is 5, 10, and 20, (2)
the configuration of truly associated variables (scenarios A and B above), and (3) the
status of the diagonal blocks in the covariance matrix (whether they are independent
or correlated). Hence 12 dataset settings for each model. The models are fitted on
100 simulated datasets for each simulated data setting using their respective tuning
parameter estimates (using AIC), and from each of them we calculate (1) classification
error from cross validation, and (2) sensitivity and specificity of sparse solution. In
the latter, we are interested in the proportion of truly non-zero parameters that are
estimated as non-zero (sensitivity) and in the proportion of truly zero parameters that
are estimated as zero (specificity).

The high correlation structures that we impose on the simulated data make the sim-
ulation very challenging. In such challenging circumstance, the two different scenarios
(A and B) represents two different extreme situations: scenario A indicates that the
true effects cover the whole correlation block while scenario B indicates that the true
effect is only on one variable within a correlation block. Combined with high correla-
tion within the data, identifying the one true effect within the correlation block will be
extremely difficult since the other variables within the block are almost equally good.

3. Results

3.1. Simulated data

In this section, we present the results of the simulation study. Figure 4 shows the
classification errors for simulated data across different models and simulation scenarios,
when the diagonal blocks of the data covariance matrix are independent. Similarly,
Figure 5 shows the corresponding classification errors when the diagonal blocks of the
data covariance matrix are moderately correlated.

Under scenario A in Figure 4, the classification errors of logistic regression models
with lasso penalty (L1) are significantly lower than those with HL and HLnet penalties,
across different block sizes (K ′). The classification errors of those with HL penalty are
not significanty different that those with HLnet penalty. Under scenario B, we find
that there are no significant differences of classification errors between those models
with L1, HL, and HLnet penalties, except when the block size is 5. In this case, the
errors for the HLnet model is significantly lower than those of L1 and HL penalties.

When we consider logistic regression model with elastic net penalty (Enet) in Figure

10
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Figure 4. Classification error (in percent) of logistic regression models with lasso penalty (L1), HL penalty

(HL), ridge penalty (R), elastic net penalty (Enet), and HLnet penalty (HLnet) from 100 simulated data under
different simulation settings when the diagonal blocks of the data covariance matrix are independent. Details
of the simulation settings are described in the main text Section 2.6.

4, the classification error is as high as that with ridge penalty. Although the sparsity
is imposed in the Enet model with the lasso penalty, the figure suggests that the
performance of the model is comparable to that with ridge penalty. Only when the
HLnet penalty is considered (ridge and HL penalties), the model performance improves
substantially and becomes closer to the performance of L1 and HL models. The same
conclusion can be drawn for Figure 5.

In Figure 5 where the diagonal blocks of the data covariance matrix are moderately
correlated, the classification of errors of the L1 models are also significantly lower than
those of HL and HLnet models in scenario A across different block sizes. The errors for
HL model and HLnet model, on the other hand, are comparable. However, in scenario
B, a different conlusion can be drawn. The errors for HL models are significantly lower
than those of L1 models across different block sizes. Relative to errors from L1 models,
those from the HLnet models are lower when the bock size is 5, equal when the block
size is 10, and higher when the block size is 20.

The sensitivity and specificity of the random effects estimates are presented in Table
1 for the different models in the simulation. Sensitivity refers to the proportion of truly
non-zero random effects that are estimated to be non zero, while specificity refers
to the proportion of truly zero random effects that are zero estimated. Overall, the
sensitivities and specificities of the models are similar between different correlation
structure in the data. Within scenario A, in which the true effects cover the whole
correlation block of the data, the sensitivity of L1 and HL models tend to decrease
as the block size increases. However, the sensitivity for the Enet and HLnet models
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Figure 5. Classification error (in percent) of logistic regression models with lasso penalty (L1), HL penalty

(HL), ridge penalty (R), elastic net penalty (Enet), and HLnet penalty (HLnet) from 100 simulated data under
different simulation settings when the diagonal blocks of the data covariance matrix are moderately correlated.
Details of the simulation settings are described in the main text Section 2.6.

Block Methods Independent block Correlated block
Size (penalty) Scenario A Scenario B Scenario A Scenario B

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

5

L1 0.930 0.918 1.000 0.908 0.929 0.910 1.000 0.901
HL 0.354 0.996 0.980 0.997 0.398 0.995 0.995 0.996
Enet 0.932 0.875 0.935 0.907 0.612 0.900 0.520 0.912
HLnet 0.998 0.883 1.000 0.873 1.000 0.799 1.000 0.825

10

L1 0.783 0.930 1.000 0.912 0.774 0.922 1.000 0.908
HL 0.186 0.996 0.940 0.996 0.219 0.995 0.985 0.996
Enet 1.000 0.413 1.000 0.363 1.000 0.324 1.000 0.277
HLnet 0.994 0.816 1.000 0.803 0.999 0.702 1.000 0.669

20

L1 0.563 0.944 1.000 0.925 0.572 0.941 1.000 0.922
HL 0.099 0.996 0.865 0.996 0.111 0.996 0.985 0.997
Enet 1.000 0.353 1.000 0.272 1.000 0.308 1.000 0.236
HLnet 0.999 0.707 1.000 0.610 0.998 0.603 1.000 0.491

Table 1. Sensitivity and specificity of the different logistic regression models with lasso penalty (L1), HL
penalty (HL), elastic net penalty (Enet), and HLnet penalty (HLnet) from 100 simulated data across different
simulation settings. The settings are described in the main text Section 2.6. The results of model with ridge
penalty are not included as it does not produce sparse solution (i.e. sensitivity of one and specificity of zero).

tend to be stable and high. Within scenario B, all of the models tend to have a stable
and high sensitivity as the block size increases. The sensitivity of the model with lasso
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penalty (L1) is substantially higher than that of HL penalty. On the other side, the
specificity of model with L1 penalty, albeit comparable, is slightly lower than that with
HL penalty. Therefore, we can conclude that the model with HL penalty produces a
more sparse solution than that with L1 penalty.

While the sensitivity of L1 model remains relatively high when it is extended to
Enet penalty, the sensitivity of HLnet model increases substantially in scenario A.
Unfortunately, this is at the cost of specificity, as expected. The incorporation of ridge
penalty in the Enet and HLnet penalty increases the number of non-zero estimates.
Given the high correlation structure in the simulated data, it is very easy for the other
variables within a block to have non-zero estimates when one of the variable has non-
zero estimate. It is also interesting to note that, as the correlation block size increases,
the sensitivity of L1 and HL models decreases substantially compared to those of
Enet and HLnet models, while the specificity approximately remains the same. For
scenario B, where the true effect is only in one variable within a block of correlated
variables, the sensitivity of the sparse methods (L1, HL, enet, and HLnet penalties)
are consistently high for different block sizes. The specificity of those methods is also
similar to that in Scenario A.

3.2. Lung cancer data
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Figure 6. Illustration of the AIC across different log(λ) in the logistic regression models with HL and HLnet

penalties.

We now discuss the results of fitting the models to the lung cancer data. The
estimation of λ via AIC is illustrated in Figure 6, with HL and HLnet penalties as
example. The figure shows AIC at different values of λ’s evaluated and the optimal λ’s
for the HL and HLnet models are obtained at exp(3) (≈ 20.1) and exp(5.5) (≈ 244.7),
respectively.

The random effects estimates b̂ for the different models are presented in Figure 7,
at their respective optimal λ’s. The figure indicates that the logistic regression models
with lasso (L1) and HL penalties produce sparse solutions. The model based on L1
penalty produces 319 non-zero estimates (approximately 1.8% out of 17,571 genomic
regions), while those based on the HL penalty produces only 10 non-zero estimates.
Seven non-zero estimates are common for the two methods. This indicates that the HL
penalty produces very sparse solution, relative to that of L1 penalty. The estimates of
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the model with lasso penalty creates 29 groups. A group here is defined as consecutive
variables with non-zero estimates. As the variables correspond to physical locations
in the genome, then the groups correspond to consecutive regions in the genome. On
the other hand, being very sparse, the estimates from HL penalty come from single
regions.

Figure 7 also shows the estimates of the model with elastic net (Enet) and HLnet
penalties. The estimates from the model with HLnet penalty are still sparse, with
eight non-zero estimates. In terms of number of non-zero estimates, this is less than
that from HL penalty. However, these non-zero estimates (under HLnet penalty) are
associated with four groups (consecutive variables) of genomic regions. On the other
hand, the Enet penalty has produced 1,231 zero-estimates (approx. 7%) and the other
93% estimates are non-zero. The expected sparse solution of the estimates is not fully
achieve, indicating that the solution is closer to the ridge penalty (at optimal λ based
on AIC).

To investigate the predictive ability of the models, we consider five-fold cross val-
idation and calculate the classification error at different values of λ. The results of
the cross validation are presented in Figures 8. Overall, the models with elastic net
and HLnet penalties have the lowest classification error. One thing to note is that
the models with L1 and HL penalties has classification error that is very dependent
on the estimate of λ, which those with Enet and HLnet penalties have relatively low
classification error at a broad range of λ.
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Figure 7. Estimates of the random effects, b̂, in the logistic regression with lasso (L1), HL, elastic net (Enet),
HLnet, and ridge penalties (at their respective optimal λ based on AIC).
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Figure 8. Classification errors (in percent) of logistic regressions with lasso (L1), HL, elastic net (Enet),

HLnet, and ridge penalties in a five-fold cross validation of the lung cancer dataset.

4. Discussion and concluding remarks

In the context of personalised medicine of lung cancer patients, a main objective in
the statistical modelling is accurate prediction of tumours’ subtypes[14]. This type
of modelling often involves analysis of high-dimensional data and sparse solution is
desired in general due to its variable selection effect that makes it easier to identify
important variables responsible for prediction[1, 5]. We have considered the application
of HL penalty as an alternative to the lasso (L1) penalty for prediction based on
genomic data as both models are specific cases of the model formulation by Lee and
Oh[17].

We recognise that this formulation has some advantages. The first one is that the es-
timation of the parameters can be done using iterative weighted least squares (IWLS).
This is relatively easy to implement compared to, for example, the lars algorithm[6],
gradient descent[24], or Gibbs sampling[21]. Secondly, incorporation of other suitable
penalty function can be taken into account in IWLS. An immediate extension is the
incorporation of ridge penalty as described above to create HLnet penalty. Another
example is the incorporation of penalty function from Cauchy distribution that, with a
smoother matrix, creates a smooth estimate of b[12]. Further extension to incorporate
dependencies between genomic regions is currently our active research and beyond the
scope of this manuscript.
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Analysis on the real and simulated data indicate that the HL penalty creates a
more sparse solution than L1 penalty. Our simulation study indicates that when the
true effects cover the whole correlation block of the data, then the model with HL
penalty has less sensitivity than L1. Only when the true effects are sparse as well,
the sensitivity of HL penalty improves. This indication also translates to the aspect
of prediction performance. Models with lasso and HL penalties have comparable pre-
diction performance between them at their optimal λ. Only in the simulation study,
the model with HL penalty has a slight advantage than that with lasso penalty when
the true effects are very sparse.

Further improvement in prediction performance comes when we consider elastic
net and HLnet penalties. The incorporation of ridge penalty improves considerably
the sensitivity of HL penalty in the simulation study. In the real data, although the
prediction performances of elastic net and HLnet models are the best, the HLnet
penalty remains producing very sparse estimates while elastic net solution is closer
to the ridge estimates. Therefore, the use of elastic net and HLnet in the prediction
based on genomic data is recommended, with HLnet to be preferred when (very) sparse
solution is desired.

Acknowledgements
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