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Abstract 
In a fundamental contribution, Prescott and Townsend (1984) [PT] have shown that the 
existence and efficiency properties of Walrasian equilibria extend to economies with moral 
hazard, when agents' trades are observable (exclusive contracts can be implemented). More 
recently, Bennardo and Chiappori (2003) [BC] have argued that Walrasian equilibria may 
(robustly) fail to exist when the class of moral hazard economies considered by Prescott 
and Townsend is generalized to allow for the presence of aggregate, in addition to 
idiosyncratic, uncertainty and for preferences which are nonseparable in consumption and 
effort. We re-examine here the existence and efficiency properties of Walrasian equilibria 
in the moral hazard economy considered by Bennardo and Chiappori. We show that 
Walrasian equilibria always exist in such economy and are incentive efficient, so the results 
of Prescott and Townsend continue to hold in the more general set-up considered by 
Bennardo and Chiappori. 
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1 The Environment

Our notation is slightly adapted so as to be closer to the one in PT. There is a continuum of ex

ante identical individuals with measure one and a single consumption good. Individuals are subject

to both aggregate and idiosyncratic risk. Specifically, there are two aggregate states, s = H,L, and

two idiosyncratic states, σ = 1, 2. The individual’s endowment ωσs depends on the realization of

both s and σ. Without loss of generality ωσs is assumed to be higher in aggregate state s = H than

in s = L for each realization of the idiosyncratic state σ: ωσH > ωσL. Likewise, ω
σ
s is higher when the

idiosyncratic state σ = 1 is realized, no matter what is the aggregate state s : ω1s > ω2s. Idiosyncratic

shocks are independently and identically distributed across all agents, and are independent of the

aggregate shock. The probability πs of aggregate state s is exogenous. On the other hand, the

probability of idiosyncratic state σ depends on the level of effort of the individual. Effort can be

high or low; the set of effort levels is then E ≡ {el, eh} and we assume that effort is undertaken
by the individual prior to the realization of uncertainty (both aggregate and idiosyncratic). Let

πeσ denote the probability of idiosyncratic state σ when the agent exerts effort e ∈ E; we assume

that 0 < πel1 < πeh1 < 1. In words, the probability that the high-endowment idiosyncratic state is

realized is higher when effort is high. The realization of the aggregate and idiosyncratic states is

public, but the individual choice of effort is not.

Individuals have von Neumann-Morgernstern preferences described by the Bernoulli utility func-

tion u : <+ × E → <. The utility of consumption c when effort e is undertaken, ue(c) ≡ u(c, e),

is twice continuously differentiable, strictly increasing, and strictly concave with limc→0 u0e(c) =∞
and limc→∞ u0e(c) = 0. Effort is costly, so uel(c) > ueh(c) for all c ∈ C.

Following PT, as well as BC, we assume that the set of possible consumption levels in any state

is given by a finite subset of <+, denoted by C. Let Z be then the set of possible state-contingent

net trades of an individual. It is convenient to write Z = ZH × ZL, where Zs is the set of possible

net trades in aggregate state s

Zs =
©
( z1s , z

2
s) ∈ <2 : zσs + ωσs ∈ C, σ = 1, 2

ª
.

Elements of Z are then denoted z = (zH , zL).
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2 The General Equilibrium Model

Commodities. The commodities traded in the model are insurance contracts. An insurance

contract specifies an effort level e ∈ E and a vector of state-contingent net trades z ∈ Z. This

specification is allowed to be random. The commodity space L is so the set of measures on E ×Z.

Since the set E×Z is finite, L is isomorphic to the Euclidean space of dimension n, where n is the

cardinality of E × Z :1

L =M(E × Z) = <n.

An insurance contract x is described as a probability measure on E × Z; i.e., a vector x =

{x(e, z)}(e,z)∈E×Z ∈ P (E × Z) where

P (E × Z) ≡ {x ∈ L+ :
X

(e,z)∈E×Z
x(e, z) = 1}.

Here, x(e, z) represents the probability that the contract specifies effort e and net trade z.

For a given contract x, let xe ∈ P (E) denote the marginal probability distribution with respect

to e. This marginal distribution describes the probability that the contract specifies high and

low effort. Also, let xz/e ∈ P (Z) denote the conditional distribution of z for a given effort e;

this specifies a random vector of state-contingent net trades assigned when effort e is specified.

Intuitively, the specification of the contract can be interpreted as follows. First, the lottery xe

prescribes an effort level. For any realization e of this lottery, a second lottery xz/e specifies the

level of net trades in every state. Both lotteries are realized prior to the realization of the aggregate

and idiosyncratic states. Since the effort undertaken by an individual is his private information, the

specification of an effort level has to be understood only as a prescription, which to be effective must

satisfy appropriate incentive compatibility constraints. It is also convenient to define the marginal

probability distribution with respect to (e, zs), which we denote by xs ∈ P (E×Zs); this determines

the (random) effort level together with the (random) level of net trades in each idiosyncratic state

when aggregate state s is realized.

The expected utility of an individual who exerts effort e and receives a net trade z is

v (e, z) ≡
X

s=H,L

πs
X
σ=1,2

πeσue(ω
σ
s + zσs ).

1An equivalent (though slightly more involved) analysis can be carried out when C is an infinite set (e.g., C = R+),

and M(E × Z) is then endowed with the weak-star topology (see for instance Jerez (2005)). The results presented

here extend to that case.
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The expected utility from a contract x is then given by the scalar product

v · x =
X

(e,z)∈E×Z
v (e, z)x(e, z). (1)

Admissible Trades. Since trades are assumed to be observable, any restriction on trades can be

imposed. Following PT, the set of contracts available for trade to any individual (in short, with

some abuse of language, her consumption set) is the set of contracts that satisfy the incentive

compatible (IC) constraints:

X̄ = {x ∈ P (E × Z) :
X
z∈Z

v (e, z)xz/e(z) ≥
Z
Z
v
¡
e0, z

¢
xz/e0(z), e 6= e0; e, e0 ∈ E}.

The IC constraints require that, whenever contract x prescribes effort e, the implied conditional

probability distribution xz/e is such that individuals prefer to conform to the effort prescription e

rather than deviating to e0.

Prices. Prices are linear on the agents’ consumption set, i.e. they are linear in probabilities. A

price system is then an element of the linear space L : p = {p(e, z)}(e,z)∈E×Z ∈ L. The cost of a

commodity bundle x ∈ L is given by the scalar product

p · x =
X

(e,z)∈E×Z
p (e, z)x (e, z) . (2)

Resource constraints. The economy is subject to two resource constraints, one for each aggregate

state s. These constraints ensure that aggregate consumption in each state s does not exceed the

aggregate endowment in that state. We will look at symmetric allocations, where all individuals

trade the same contract x. By the Law of Large Numbers, when all individuals exert effort e, the

fraction of individuals who end up in idiosyncratic state σ is πeσ. Hence, the total (per capita) use

of resources in state s when all individuals exert effort e and receive the net trade vector zs is

rs (e, zs) ≡
X
σ

πeσz
σ
s , s = H,L.

Under contract x ∈ X, the total use of resources in state s is then given by the scalar product

rs · xs =
X

(e,zs)∈E×Zs
rs (e, zs)xs(e, zs), (3)

where, as we have noted, xs is the marginal probability distribution of x with respect to (e, zs).

A contract (or symmetric allocation) x satisfies the resource constraints if the total net use of

resources is non-positive in both aggregate states:

rs · xs ≤ 0, s = H,L. (4)
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3 Incentive Efficient Allocations

A (symmetric) allocation x is feasible if x ∈ X̄ and x satisfies the aggregate resource constraints

(4). An allocation x is then incentive efficient if it maximizes the individual expected utility in the

set of feasible allocations:

max
x∈X̄

v · x s.t rs · xs ≤ 0, s = H,L. (5)

The objective function in problem (5) is linear (and thus continuous) and the feasible set is a

non-empty,2 closed and bounded subset of the Euclidean space. Therefore, an optimal solution to

the problem always exists. Also, it is easy to check that the feasible set is convex (in words, if

contracts x and x0 satisfy the incentive compatibility and resource constraints, so does any convex

combination of these contracts).

4 Competitive equilibria

Following PT as well as BC, we introduce intermediation firms who supply contracts to consumers.

Each firm is characterized by a technology:

Y = {y ∈ L : rs · ys ≤ 0, s = H,L} , (6)

where ys denotes the projection of the measure y on the set E × Zs. The specification in (6) says

that a firm can offer any set of contracts, given by probability distributions over effort levels and

net trades in every state, subject to the only constraint that the total net payments required by the

contracts offered are self-financing. The Law of Large Numbers is applied to the set of contracts

offered by a firm, allowing to write the self-financing constraint in expected terms in each aggregate

state. Positive (resp. negative) components of y constitute commitments for the firm to pay (rights

to receive) resources in a given state s, σ, given e.

Since Y displays constant returns to scale, profits will be zero in equilibrium and there is no

loss of generality in assuming that there is a single firm in the market.

Definition A competitive equilibrium is a triple (x∗, y∗; p∗) ∈ L3 such that: (i) x∗ maximizes v · x
over the set {x ∈ X̄ : p∗ · x ≤ 0}; (ii) y∗ maximizes p∗ · y over the set Y ; and (iii) markets clear,
or x∗ = y∗.

2The allocation where individuals exert low effort with probability one and consume their expected endowment

in each aggregate state s is clearly always feasible.
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Condition (i) requires that contract x∗ gives every individual the highest utility among all

budget feasible contracts lying in his consumption set. Condition (ii) says that y∗ is a solution

of the firm’s problem, consisting in the choice of a vector y lying in the set Y that maximizes

profits. The market clearing condition (iii) says that aggregate demand by consumers for insurance

contracts equals aggregate supply by the firm.

5 Efficiency and Existence of Equilibrium

In this section, we show that a competitive equilibria always exists (in contrast with Proposition 5

of BC).

Theorem 1 In the economy under consideration, a competitive equilibrium always exists. In

particular, any (symmetric) incentive efficient allocation can be supported as a competitive equi-

librium.

Proof: Let ps (e, zs) denote the projection of p(e, z) on the set E×Zs, so that p(e, z) = pH(e, zH)+

pL(e, zL). It is immediate to verify (see also Lemma 3 in BC) that the constant returns to scale

nature of the firms’ technology Y implies that equilibrium prices satisfy the following property:

ps (e, zs) = βsrs (e, zs) , (7)

for some βs ≥ 0, for each s = H,L; i.e., in each state s the price of (e, zs) must either be actuarially

fair, and be proportional to the expected use of resources at zs when agents exert effort e, or be

zero.

To make the comparison with BC easier, the rest of proof relies on a constructive argument:

for any possible solution xE of the planner’s problem (5), we will find prices satisfying (7) which

support xE as a competitive equilibrium.

Since preferences are monotone, at xE the resource constraint must bind in at least one state s.

It is easy to see why: suppose both constraints were slack. Let xl be a contract specifying low effort

and an arbitrarily high level of net trades with probability one (regardless of the realization of s

and σ). Contract xl is incentive compatible (xl ∈ X̄) and strictly preferred to xE by the individual,

and hence so is any convex combination of xE and xl : xα = (1−α)xE +αxl with α ∈ (0, 1]. Also,
if α is sufficiently small, xα satisfies the resource constraints (4). But then xE cannot be a solution

to (5).
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Consider then the case where at xE the resource constraint does not bind in one aggregate state,

in particular in s = H. This is the case analyzed in Proposition 5 of BC.3 We will show that the

following prices, given by (7) with βH = 0 and βL = 1, support x
E as a competitive equilibrium:

p∗H(e, zH) = 0 for all e ∈ E, zH ∈ ZH , (8)

p∗L(e, zL) = rL(e, zL) for all e ∈ E, zL ∈ ZL. (9)

The intuition is simple. The price associated to state s is the shadow cost of resources in s at an

incentive-efficient allocation. Because the resource constraint in state s = H is slack, the shadow

cost is zero in this state for any pair (e, zH). On the other hand, the resource constraint in state

s = L is binding, so in this state the shadow cost is positive and proportional (in fact can be set

equal) to the expected use of resources associated to any pair (e, zL). In sum, prices are zero in

state s = H and actuarially fair in state s = L.

When consumers face the price system in (8)-(9), the consumer’s problem becomes:

max
x∈X̄

v · x s.t p∗ · x = rL · xL ≤ 0. (10)

We show next that xE is a solution to this problem (so that condition (i) of the definition of a

competitive equilibrium is satisfied). Since the resource constraint in state s = H does not bind

in the planner’s problem (5), xE is a local maximum of the same problem when this constraint is

omitted. And, because the objective function is linear and the feasible set is convex in (10), a local

maximum is also a global maximum by the local-global theorem (Intriligator (1971), p. 75).

Substituting the values in (8)-(9) for p∗ in the expression of the firm’s profits gives

p∗ · y = rL · yL,

so (6) implies p∗ · y ≤ 0 for all y ∈ Y . The market clearing condition (iii) requires then y∗ = xE.

Since the resource constraint for s = L binds in the planner’s problem,

p∗ · y∗ = rL · xEL = 0.
3BC derive some sufficient conditions for xE to have this property and show that there is an open set of economies

which satisfy them. Intuitively, if consumption and leisure are complements and the marginal utility of consumption

decreases fast enough with effort, there is a limit to the level of consumption such that agents are still willing to

provide high effort. Hence, when the aggregate endowment in s = H is high enough, part of the aggregate endowment

will not be consumed in that state.
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Thus y∗ is an optimal production plan for the firm. The firm’s optimization condition (ii) then

also holds, which completes the proof of the claim that a competitive equilibrium exists in the case

under consideration, supporting the efficient allocation xE .

It remains so to examine the case where both resource constraints bind at xE. The allocation

can now be decentralized with the following prices:

p∗H(e, zH) = βELrL(e, zL) for all e ∈ E, zH ∈ ZH (11)

p∗L(e, zL) = βEHrL(e, zL) for all e ∈ E, zL ∈ ZL, (12)

where βEL and βEH are the shadow prices of the resource constraints at the solution of the planner’s

problem (5). One can again show that at such prices xE solves the consumer’s problem. Since xE,

βEL and βEH solve the first order conditions of the planner’s problem, xE also solves the first order

conditions of the consumer’s problem at the prices in (11)-(12) when the Lagrange multiplier of the

budget constraint equals one. The reason is that, at the above values, the Lagrangean functions

of the two problems have the same form. The rest of the argument is identical to the one of the

previous case. ¥

Remark 1 In equilibrium aggregate consumption is lower than the aggregate endowment in state

s = H (i.e. there are resources not utilized in the high-endowment state). However, there is no

incentive compatible and budget feasible contract that provides the consumer a higher utility than

at xE by allowing her to consume additional resources when s = H is realized. This claim is in

contrast with the one in the proof of Lemma 4 in BC. The authors argue that, if the price associated

to net trades in state H were zero regardless of the effort level, the consumer could do better by

buying a different contract x0 where x0H specifies low effort and a very high level of net trades (and

hence of consumption) with probability one, whatever the idiosyncratic outcome. Since x0 is clearly

not feasible, BC concluded that p∗H(e, zH) could not be zero at an equilibrium; the nonexistence

result in Proposition 5 then relies on such claim. But this misses an important point. Namely,

that effort is chosen before the realization of the aggregate state, so if x0H specifies low effort with

probability one so must x0L. While a contract specifying low effort with probability one can provide

a very high level of consumption if the high-endowment state s = H is realized, consumption in

the low-endowment state s = L may have to be rather low. The consumer in fact needs to pay a

positive price for the consumption goods received in state L, and the price can be quite high - and

the value of the endowment quite low - in s = L when the consumer exerts low effort.
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Formally, if (as claimed by BC) x0 is feasible for the consumer it must induce agents to exert

low effort (incentive compatibility has to hold) and the budget constraint must be satisfied:

p∗ · x0 = p∗H · x0H + p∗L · x0L = rL · x0L ≤ 0.

Since x0 is strictly preferred to xE by the consumer, so is any convex combination of xE and

x0 : xβ = (1 − β)xE + βx0 with β ∈ (0, 1]. For any β, xβ satisfies the incentive compatibility

constraints and the resource constraints in state L. Also, since at xE the resource constraint in

s = H is slack, if β is sufficiently small, the same is true at xβ. But this would contradict the fact

that xE is a solution to (5).
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