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Introduction

This dissertation is composed of three research papers on the Eco-

nomics of Innovation. The central theme of the dissertation is the anal-

ysis of innovation incentives and their relation with market structure,

intellectual property rights and technology sharing.

The first two chapters study the recent concern that strong intellec-

tual property rights may restrict the access to research inputs needed

to perform innovation. This problem has been dubbed the “Tragedy

of the Anticommons”, and may be particularly acute in the case of

complex sequential innovations (innovations that require several prior

inventions to be developed).

Chapter 1 presents a model of sequential innovation in which an

innovator uses n patented inputs in R&D to invent a new product and

the value of innovations is private information of the innovator. Sub-

stitutability between the inputs used in research goes from 0 (perfect

complements) to ∞ (perfect substitutes).

The model shows that an increase in the complexity of innovation

(measured by the number of inputs needed in research) will decrease

the probability of innovation if the research inputs are complements,

and will increase it if the inputs are substitutes. The probability of

innovation will always be suboptimal, even in the case of substitutive

inputs. Moreover, this probability will go to zero as complexity goes

to infinity for highly complementary inputs.

A proposed solution to the Tragedy of the Anticommons has been

the creation of Patent Pools (agreements between patent holders on the

licensing terms of their inventions). The model shows that Patent Pools

can increase innovation only if they are composed by complementary

inventions.

Finally, the paper presents a policy analysis, and shows that the

strength of patent policy (measured by patent length or breadth) should
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decrease with complexity if the inputs are complements and increase

with complexity if the inputs are substitutes.

Chapter 1 complements the literature of sequential innovation and

links it to the literatures of complementary monopoly and patent pools,

by analyzing what happens when a given innovation depends not only

on one, but on several prior inventions. Moreover, since the model

has been carefully micro-founded, it allows to explain the economic

intuition behind previous results for the first time. However, the model

in Chapter 1 is static, when the nature of sequential innovation is truly

dynamic: old inventions were once new ideas, and current new ideas

are the stepping stones of future innovations.

With this in mind, Chapter 2 presents a dynamic extension of the

first chapter. There is a sequence of innovations, and each innovation

builds upon all prior inventions. The value of innovations is private

information of the innovator.

Developing a dynamic model is important for several reasons. First,

it will eliminate any bias stemming from the asymmetric treatment of

old and new ideas. Second, patent policy will affect not only current

but also future innovative activity. Third, it allows to analyze the prob-

lem of assigning resources to enabling innovations with low commercial

value (basic research).

The paper analyzes innovation in three cases: patents, no-patents

and patent pools. With patents, each innovator has to pay licensing

fees to previous innovators. In equilibrium, the probability of inno-

vation decreases as the sequence progresses, converging to zero in the

limit. Without patents, the probability of innovation is constant and

higher than in the patents case, unless the degree of appropriability of

the innovation is very low. A patent pool increases the probability of

innovation, in comparison with the patents case, and dynamic incen-

tives imply a higher probability of innovation than in the static case,

which strengthens previous results in the literature. The paper also

shows that innovation is suboptimal in the three cases analyzed, and

presents an extension for patents of finite length.

Chapter 3 analyzes the trade-off between collaboration and secrecy

in industries where open source and proprietary firms co-exist. Accord-

ing to the traditional view in the Economics of Innovation, monopoly
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is necessary for innovation. Knowledge is a public good, so free-riding

will lead to an under-provision of ideas. Moreover, innovation requires

a fixed cost investment, and innovators will not be able to cover this

cost under competition, given that profits would go to zero. These

problems may be diminished if the innovator has a temporary monop-

oly over the use of the idea. On one hand, ideas become excludable,

which reduces free-riding incentives. On the other hand, monopoly

rents allow the innovator to afford the cost of innovation.

Open source appears counter to this knowledge. Innovators choose

to disclose their innovations, so they are voluntarily renouncing their

monopolistic advantage. Moreover, open source goods are subject to

free-riding, which should lead to low quality products. However, what

we observe in most cases is open source goods of high quality, suc-

cessfully competing with proprietary goods. How does open source

overcome these free-riding incentives?

I present a model in which ex-ante symmetric firms decide whether

to be open source or proprietary and their investment in R&D. Firms

sell packages composed of a primary good (like software) and a com-

plementary private good. The only difference between both kinds of

firms is that open source firms share their technological advances on the

primary good, while proprietary firms keep their innovations private.

The motivations of individual developers have been analyzed in the

literature, but we know less of the motivations of for-profit firms. To

my knowledge, this is the first paper to include competition between

for-profit open source and proprietary firms, and where the decision to

become open source is endogenous. This paper also contributes to the

literature of cooperation in R&D.

The most important finding is the existence of forces leading to

an asymmetric market structure, even though all the firms are ex-

ante symmetric. This market structure is characterized by a few large

proprietary firms and many small open source firms, which is consistent

with observations of recent surveys.

The model and the results are important for a variety of reasons.

First, endogenizing the participation decision is crucial for understand-

ing the motivations of commercial firms to participate in open source

projects. Second, the model shows under what conditions open source
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can overcome free-riding and produce a good of high quality, even with-

out coordination of individual efforts. Third, the model shows that in

equilibrium there are forces leading to an asymmetric market struc-

ture. Finally, the model allows for a welfare comparison of different

equilibria.
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Resumen

Esta tesis está compuesta por tres estudios en el campo de la

Economı́a de la Innovación. El tema central es el análisis de los in-

centivos para innovar y su relación con la estructura de mercado, los

derechos de propiedad intelectual y la cooperación en investigación.

Los dos primeros caṕıtulos estudian la reciente preocupación de que

fuertes derechos de propiedad intelectual puedan restringir el acceso a

insumos utilizados en I+D. Este problema ha sido llamado la “Tragedia

de los Anticomunes” (Tragedy of the Anticommons), y puede ser par-

ticularmente grave en el caso de innovaciones secuenciales complejas

(innovaciones que están basadas en varias invenciones previas).

El Caṕıtulo 1 presenta un modelo de innovación secuencial en el

que un innovador utiliza n insumos patentados en I+D para inven-

tar un nuevo producto, y el valor de las innovaciones es información

privada del innovador. La substituibilidad entre los insumos va de 0

(complementos perfectos) a ∞ (substitutos perfectos).

El modelo muestra que un aumento en la complejidad de la inno-

vación (medida por el número de insumos utilizados en I+D) reduce

la probabilidad de innovación si los insumos son complementarios, y la

aumenta si los insumos son substitutos. La probabilidad de innovación

siempre será subóptima, incluso en el caso de que los insumos sean

substitutos, y convergerá a cero cuando la complejidad vaya a infinito

para insumos altamente complementarios.

Una posible solución para la Tragedia de los Anticomunes es la

creación de consorcios de patentes (patent pools), los cuales son acuer-

dos entre los dueños de patentes para licenciar conjuntamente sus in-

venciones. El modelo muestra que los consorcios de patentes pueden

aumentar la probabilidad de innovación sólo si están compuestos por

patentes complementarias.

Por último, el caṕıtulo presenta un análisis de poĺıtica de patentes,

y muestra que la dureza de las patentes (medida a través de la duración
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o amplitud de las patentes) debeŕıa disminuir con la complejidad de la

innovación si los insumos utilizados en I+D son complementarios, y

aumentar si los insumos son substitutos.

El aporte principal del Caṕıtulo 1 es el de complementar la liter-

atura de innovación secuencial, y vincularla con la literatura de mo-

nopolio complementario y de consorcios de patentes, al analizar lo que

ocurre cuando una innovación está basada en varias innovaciones an-

teriores, y no sólo una. Por otra parte, dado que el modelo ha sido

cuidadosamente micro-fundado, permite explicar por primera vez la

intuición económica detrás de resultados anteriormente expuestos. Sin

embargo, el modelo en el Caṕıtulo 1 es estático, cuando la naturaleza de

la innovación secuencial es verdaderamente dinámica: los inventos an-

teriores fueron alguna vez nuevas ideas, y las nuevas ideas constituyen

la base de futuras innovaciones.

Con esto en mente, el Caṕıtulo 2 presenta una extensión dinámica

del primer caṕıtulo. Hay una secuencia de innovaciones, donde cada

innovación se basa en todas las invenciones previas, y el valor de las

innovaciones es información privada del innovador.

El desarrollo de un modelo dinámico es importante por varias ra-

zones. En primer lugar, permite eliminar cualquier sesgo derivado del

tratamiento asimétrico de las ideas nuevas y las antiguas. En segundo

lugar, la poĺıtica de patentes afectará no sólo a la innovación actual,

sino también a las futuras innovaciones. En tercer lugar, el modelo

permite analizar el problema de como asignar recursos para proteger a

las innovaciones con bajo valor comercial (investigación básica).

El art́ıculo analiza la innovación en tres casos: patentes, no-patentes

y consorcios de patentes. Con patentes, cada innovador tiene que pa-

gar licencias a los innovadores anteriores. En equilibrio, la probabilidad

de innovación disminuye a medida que avanza la secuencia de innova-

ciones, y converge a cero en el ĺımite. Sin patentes, la probabilidad

de innovación es constante y mayor que en el caso de las patentes, a

menos de que el grado de apropiación de la innovación sea muy bajo.

Un consorcio de patentes aumenta la probabilidad de innovación, en

comparación con el caso de las patentes, y los incentivos dinámicos im-

plican una mayor probabilidad de innovación que en el caso estático, lo

que refuerza resultados anteriores en la literatura. El art́ıculo también
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muestra que la innovación es subóptima en los tres casos analizados, y

presenta una extensión para el caso de patentes de duración finita.

El Caṕıtulo 3 analiza el conflicto entre colaborar en investigación

o mantener las innovaciones en secreto, en industrias donde coexis-

ten empresas de tipo open source (software libre) y propietarias. De

acuerdo al punto de vista tradicional en la Economı́a de la Innovación,

el monopolio es necesario para la innovación. El conocimiento es un

bien público, y por lo tanto el free-riding dará lugar a una generación

subóptima de ideas. Por otra parte, la innovación requiere la inversión

de un costo fijo y los innovadores no serán capaces de cubrir este costo

en competencia, dado que los beneficios iŕıan a cero. Estos problemas

podŕıan verse disminuidos si se concede al innovador un monopolio

temporal sobre el uso de la idea. Por un lado, las ideas se convertiŕıan

en bienes excluibles, lo que reduciŕıa el free-riding. Por otra parte, los

ingresos del monopolio permitiŕıan al innovador afrontar el costo de la

innovación.

El fenómeno open source parece contradecir este punto de vista. En

open source, los innovadores revelan sus innovaciones a sus competi-

dores, por lo que renuncian voluntariamente a sus ventajas monopo-

ĺısticas. Por otra parte, open source está sujeto a free-riding, lo que

debeŕıa dar lugar a productos de baja calidad. Sin embargo, lo que

observamos en la mayoŕıa de los casos es que los productos open source

tienen alta calidad y que compiten con éxito con los productos propi-

etarios. ¿De qué manera logran superarse los incentivos a hacer free-

riding en open source?

En el Caṕıtulo 3, presento un modelo en el que empresas ex-ante

simétricas deciden entre ser open source o propietarias, y su inversión

en I+D. Todas las empresas venden paquetes compuestos por un buen

primario (como el software) y un bien privado complementario. La

única diferencia entre ambos tipos de empresas es que las open source

comparten sus avances tecnológicos en el bien primario, mientras que

las empresas propietarias mantienen sus innovaciones en secreto.

Las motivaciones de los programadores individuales para participar

en open source han sido extensamente analizadas en la literatura, pero

sabemos menos de las motivaciones de las empresas con fines de lucro.

Este es el primer art́ıculo donde se incluye competencia directa entre
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empresas comerciales de tipo open source y propietario, y en el que la

decisión de ser de un tipo u otro endógena. Asimismo, este art́ıculo

contribuye a la literatura de cooperación en I+D.

El resultado más importante es la existencia de fuerzas tendientes

a generar una estructura de mercado asimétrica, a pesar de que todas

las empresas son ex-ante simétricas. Esta estructura de mercado está

caracterizada por unas pocas empresas propietarias de gran tamaño y

muchas open source de menor tamaño, lo que coincide con los hallazgos

de encuestas recientes.

El modelo y los resultados son importantes por varias razones.

En primer lugar, hacer endógena la decisión de participación en open

source es crucial para comprender las motivaciones de las empresas

comerciales. En segundo lugar, el modelo muestra en qué condiciones

el open source puede superar el free-riding y producir un bien de alta

calidad, incluso sin una coordinación de los esfuerzos individuales. En

tercer lugar, se muestra la existencia de fuerzas tendientes a generar

una estructura de mercado asimétrica. Por último, el modelo permite

una comparación de bienestar social de los distintos equilibrios.

xx



CHAPTER 1

Anticommons in Sequential Innovation1

Abstract. When innovation is sequential, the development of
new products depends on the access to previous discoveries. As
a consequence the patent system affects both the revenues and the
cost of the innovator. We construct a model of sequential inno-
vation in which an innovator uses n patented inputs in R&D to
invent a new product. We ask: (i) what is the net effect of patents
on innovation as technologies become more complex (n increases)?
(ii) are patent pools welfare enhancing? (iii) what is the optimal
response of patent policy as technological complexity increases?
The answers to these questions depend on the degree of comple-
mentarity between the inputs used in research.

1. Introduction.

Knowledge builds upon previous knowledge. This is true for most

innovations nowadays, especially in hi-tech industries like molecular

biology, plant biotechnology, semiconductors and software. In some

cases, the innovation consists of an improvement of an older version of

the same good. In other cases, the research leading to the discovery of

the new good depends on the access to research tools, techniques and

inputs which are previous innovations themselves.

In any case, innovation activity will in general depend on the access

to previous innovations. Depending on the structure of the patent

system, many of these inventions will be protected by patents. This

means that patents affect not only the revenues of the innovator, but

also the cost of performing an innovation.

Recent concern has arisen on the possibility that patents (or other

kinds of Intellectual Property) can restrict access to research inputs,

hindering innovation as a consequence. The innovator and the owners

1This chapter is based on Llanes and Trento (2007).
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of patents on previous inventions share the revenues of the innova-

tion. As the number of inputs needed in research increases, the in-

novator faces a patent thicket and is threatened by the possibility of

hold-up, namely the risk that a useful innovation is not developed be-

cause of lack of agreement with the patent holders. This problem has

been dubbed the tragedy of the anticommons (Heller 1998, Heller and

Eisenberg 1998). When too many agents have exclusion rights over

the use of a common resource, this resource tends to be underutilized,

in clear duality with the tragedy of the commons in which too many

agents hold rights of use and the resource tends to be overused.

This problem may be particularly acute in biomedical research,

where there is a deep controversy over the patenting of gene fragments

and research tools. Take for example the case of the MSP1 antigen

(Plasmodium Falciparum Merozoite Specific Protein 1), widely recog-

nized as the most promising candidate for an anti-malarial vaccine. A

study of the Commission on Intellectual Property Rights (2002) found

more than 39 patent families covering DNA fragments, methods for

processing fragments, production systems, vaccine delivery systems,

etc. As a consequence, a potential innovator willing to commercialize

a vaccine based on MSP1 must get prior permission from the owners

of these property rights.

Anticommons can arise in biotechnology as well. A good example is

Golden Rice, which required payment of up to 40 licenses, depending on

the country of commercialization (Graff, Cullen, Bradford, Zilberman,

and Bennett 2003).

As a final example, consider the case of software patents, which

cover mathematical algorithms and techniques. Software programs

have become so complex that any single program may use thousands

of algorithms (Garfinkel, Stallman, and Kapor 1991), possibly infring-

ing a large number of patents. This explains the expected increase in

patent litigation in this sector in the next years (think of Microsoft vs.

the programmers and users of Linux), and the formation of a Patent

Commons by firms involved in the Open Source community (IBM, HP,

Novel, Sun, etc.).

We address these issues by constructing a model of sequential inno-

vation in which an innovator uses n patented inputs to develop a new
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invention. Substitutability between the inputs goes from zero (per-

fect complements) to infinity (perfect substitutes) and the input sellers

compete in prices but do not know the exact value of the innovation

for the innovator.

We study how the probability of performing the innovation changes

as technologies become more complex (n increases) and find that it de-

creases when the inputs are market complements and increases when

they are market substitutes. Therefore, we prove that the anticom-

mons hypothesis may hold when inputs are essential and not easy to

substitute.

Then we analyze the limiting economy when n → ∞. We show

that the probability of innovation is always less than socially optimal

unless the inputs are perfect substitutes. Moreover, the probability of

innovation goes to zero when the elasticity of substitution is below a

threshold level which is higher than 1.

We also analyze the creation of a patent pool as a possible solution

to the tragedy of the anticommons. A patent pool is a cooperative

agreement among patent holders, through which they agree on the

licensing terms of a subset of their patents. The USPTO (US Patents

and Trademarks Office) itself has recommended the creation of patent

pools to ease the access to biotechnology research tools (Clark, Piccolo,

Stanton, and Tyson 2000). We find that a patent pool reduces the cost

of innovation if the inputs are complements and increases it if the inputs

are substitutes. The reason is that when the inputs are complements,

an increase in the price of one of them decreases the profit of the rest

of firms. The pool takes this effect into account when maximizing total

profits, and therefore will set a lower price for the inputs.

Finally, we find that the optimal degree of patent protection is de-

creasing in n if the inputs are highly complementary (i.e. have low

substitutability) and increasing in n in the opposite case. This sur-

prising result contrasts with the increase in the strength of Intellectual

Property Rights on research tools in the last two decades, and can be

related to an extended belief that patents are good for innovation and

the rent-seeking activities of agents with vested interests.

1.1. Related literature. This paper is related to the literatures

of sequential innovation, complementary monopoly and patent pools.

3



However, the focus of this paper is different. We analyze the effects of

patents on the pricing of research inputs and examine the consequences

of an increase in the complexity of innovation (measured by n) on

the probability that a new good is introduced and the optimal patent

policy.

There is an extended literature on Sequential Innovation (Scotchmer

1991, Green and Scotchmer 1995, Chang 1995, Scotchmer 1996), which

is mainly concerned with the optimal division of profits between succes-

sive innovators. Generally, in these models, there are two innovations

which have to be introduced sequentially (the second innovation can-

not be introduced until the first one has), and the objective is to find

the patent policy that maximizes the incentives to invest in both in-

novations. In this paper we generalize these models by assuming that

any innovation is based on n of previous innovations, as in Boldrin and

Levine (2005).

In this sense our paper is more related to the literature on comple-

mentary monopoly initiated by Cournot (1838). Cournot modeled a

competitive producer of brass who must buy zinc and copper from two

separate monopolists (zinc and copper are perfect complements), and

showed that (i) the price of the inputs is higher than the price that a

single provider would set, (ii) the total cost of the inputs is increasing

in the number of inputs, (iii) in the limit, as n → ∞ the cost of the

inputs is such that the demand for the final good is zero.

Cournot’s theory of complementary monopoly has been later ex-

tended in various directions. Bergstrom (1978) allows for a more gen-

eral technology and studies the behavior of the factor market in depth.

He is concerned with analyzing the duality between price and quantity

competition and assumes a zero marginal cost of the inputs. Our model

is similar to Bergstrom’s, but we focus on a different problem (sequen-

tial innovation) and assume a positive marginal cost. As we will show,

Bergstrom’s assumption of zero marginal cost is not trivial, as the re-

sults depend both quantitatively and qualitatively on this assumption.

Chari and Jones (2000) relate complementary monopoly to the exter-

nality problem. They show that, because agents play strategically,

the market outcome in economies with complementarities is inefficient.

This is true even if property rights are fully assigned. They also show
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that the most inefficient outcomes result from economies with a large

number of agents, which is related to the case when the probability of

innovation goes to zero as n→∞ in our model.

Cournot’s theory has been also used by the literature on patent

pools. Shapiro (2001) was the first to suggest that patent pools may be

anticompetitive when they are formed by substitute patents, and pro-

competitive when formed by complementary patents. Lerner and Tirole

(2004) build a model to generalize Shapiro’s results. They base their

definition of substitutability on the shape of the payoff function of the

innovator and prove that the higher the substitutability among patents,

the higher the probability that the patent pool is anticompetitive.

With respect to this literature on patent pools, our paper provides

two contributions. First, in addition to showing that patent pools re-

duce the price of the inputs when they are complements, we also show

that the pool price is independent on the number of inputs, and there-

fore patent pools can potentially prevent the tragedy of the anticom-

mons from happening. Second, we base our definition of complements

and substitutes on the traditional cross-price derivatives, which allows

us to be more precise in determining the effects of patent pools on

innovation and to explain the economic intuition behind the results.

2. The model.

There are n research inputs (x1, ..., xn) and a potential innovator

who may use the n inputs in R&D in order to invent a new good. The

n inputs have already been invented and are ready to be produced.

We make this assumption in order to concentrate on the effects of the

pricing of old ideas on innovation activity (read Section 4 for further

details). The structure of Intellectual Property Rights is such that each

input is protected by a patent, granting its owner a monopoly over it.

Each patent is owned by a different patentee and thus each of the n

inputs is supplied by a different producer. Given that the inputs are

imperfect substitutes of each other, the factor market is a differentiated

goods oligopoly. The input sellers compete in prices and the value of

the innovation is private information of the innovator.
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2.1. Technology. The innovator can perform R&D to invent a

new final good according to the following CES technology:

(1.1) y = A

(
n∑
i=1

xi
ρ

) 1
ρ

,

where y is a measure of the R&D effort, A is a scale parameter, xi is

the amount of input i used, n is the number of inputs and ρ ∈ (−∞, 1]

is a technological parameter related to the substitutability between the

inputs.

The innovator faces an indivisibility problem, meaning that a min-

imum amount of R&D effort is required to invent a new good. When

the R&D effort is below that threshold level there is no innovation.

Without loss of generality we can set the threshold level at 1, so that

the indicator function for the innovation is:

I =

{
1 if y ≥ 1,

0 otherwise.

The above CES specification is a simple and general way to in-

troduce substitutability and complementarity between the inputs used

in research. In our model, ideas have economic value because they

are embodied in physical objects (Romer 1990, Boldrin and Levine

2002, 2005b). The innovator uses these physical objects to innovate,

not the abstract ideas. Accordingly, the input decision is not discrete

(to use the idea or not), but rather continuous (the research inputs

can be used in variable amounts). The qualitative results of the paper

would still hold if input decisions were discrete, but there would be a

significative loss in tractability (read Section 5.5).

A good example of our research technology is the case of computer

programs used in research labs. The lab has to pay a license fee for each

copy of the program used in the innovation process, and may alter the

number of copies it uses depending on their price. Other good exam-

ples are old ideas which provide component parts for a new product. In

the early radio industry, for example, according to Edwin Armstrong

(inventor of FM radio) “it was absolutely impossible to manufacture

any kind of workable apparatus without using practically all of the in-

ventions which were then known”, like the high-frequency alternator,
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high-frequency transmission arc, magnetic amplifier, the crystal detec-

tor, diode and triode valves, directional aerial, etc. Similar examples

can be found in semiconductors, electronics, and other industries.

We set the scale parameter A in (1.1) equal to n(ρ−1)/ρ in order to

eliminate any returns from specialization or division of labor. Usually

CES production functions exhibit a property called increasing returns

to specialization (or love for variety in the case of utility functions).

Following an argument similar to Romer (1987), suppose that the pro-

duction function is y = (
∑n

i=1 xi
ρ)

1/ρ
, and let X be the total quantity

of inputs used in production. Because of symmetry, all inputs will be

used in the same quantity in the equilibrium, so xi = X/n for all i, and

output will be equal to y = n(1−ρ)/ρX. There are positive returns to

specialization because an increase in n holding X constant causes out-

put to increase. We eliminate this effect by introducing A = n(ρ−1)/ρ

in the production function.

The complexity of the innovation is measured by n. More complex

technologies use a larger number of components or require more re-

search tools in order to be developed. Each input is produced with a

constant marginal cost of ε > 0. We assume that the resources used

to produce inputs are sold in a competitive market, so that the private

and the social cost of producing inputs coincide. The assumption of no

returns to specialization guarantees that the social cost of performing

the innovation does not change as technologies become more complex.

In other words, there is no technological advantage or disadvantage

from increases in n.

2.2. Value of the innovation and structure of the infor-

mation. The social value of the innovation, v, is the total surplus

generated by the new product. To focus on the factor market, we will

assume that the innovator is a perfect price discriminator in the final

goods market. This means that the private value for the innovator

coincides with the social value of the innovation.

The value of the innovation is private information of the innova-

tor. This may be because the innovator has better information about

the characteristics of the new product or about the valuation of the

consumers. The sellers of inputs only know that v has a cumulative

distribution F (v). Therefore F (v) is the probability that the innovation
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has a return less or equal to v. In Section 5 we show that the assump-

tions of perfect price discrimination and asymmetric information can

be relaxed without altering the results.

The hazard function is defined as h(v) = f(v)/(1 − F (v)), where

f(v) is the density function corresponding to F (v). In order to guar-

antee the quasi-concavity of the maximization problem of the input

producers, the following assumption will hold throughout the paper:

Assumption 1.1 (Nondecreasing hazard function). h(v) > 0 and

h′(v) ≥ 0 on a support [v, v̄], and h(v) = 0 outside of this support.

This assumption on the hazard function is very general, and holds

for most continuous distribution functions. We will analyze the mean-

ing of the hazard function in Section 3.1. Notice that we are not re-

stricting v nor v̄ to be finite.

An important assumption is that the distribution of values of the

innovation does not change with n. This assumption, together with

the absence of returns to specialization in the R&D technology imply

the following lemma:

Lemma 1.1. The probability that an invention is socially optimal

does not depend on its complexity.

Proof. The probability that an innovation is socially optimal is

the probability that its social value is larger or equal than its social

cost. The social cost of an innovation coincides with the resources used

to produce it. Therefore, the probability that an innovation is socially

optimal is Prob (v −
∑n

i=1 ε xi ≥ 0). Because of the symmetry in the

innovation technology, xi = 1/n, so this probability becomes 1−F (ε),

which depends on the distribution of social values of the innovation

and the marginal cost of the inputs but not on the number of inputs

used in R&D.

In this paper, we are interested in studying the effects of increasing

technological complexity on the probability of innovation. Lemma 1.1

assures that a change in n affects this probability only through a change

in the number of inputs used in research, but not through a change in

the social value or cost of the innovation. In other words, we want

to compare innovations with different n but the same net social value.
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In Section 5 we relax these assumptions by letting the value of the

innovation be a function of n and allowing returns to specialization in

the R&D technology. We find that the main results of the paper are

not significantly affected by a change in these assumptions.

2.3. Market interaction. The players of the game are the n in-

put sellers and the innovator. A strategy for input seller i is a choice

of price for her input. A strategy for the innovator is a function

g : Rn
+ × v → Rn

+, namely a demand xi for each input, as a func-

tion of the price of all the inputs and the realization of the value of the

innovation.

The timing of the game is as follows: (i) the input producers simul-

taneously set the price of their inputs, (ii) Nature extracts a value v

from the distribution F (v), and (iii) given prices, the innovator calcu-

lates the input mix that minimizes the cost of innovation and decides

whether to innovate or not.

The equilibrium concept we use is Symmetric Subgame Perfect

Equilibrium (SSPE). A set of strategies {pi}ni=1, g is a SSPE if it is

a Nash equilibrium of every subgame of the original game, and pi = p

for all i.

The payoff for input producer i is xi (pi−ε) and the payoff of the

innovator is I v −
∑n

i=1 pi xi.

2.3.1. Innovator’s Problem. Given input prices {pi}ni=1, the innova-

tor solves the following Cost Minimization Problem (CMP):

c = min
n∑
i=1

pixi

s.t. n−
1−ρ
ρ

(
n∑
i=1

xi
ρ

) 1
ρ

≥ 1.

The solution to this problem is the set of conditional factor demands

xi and the minimum cost of innovation c. Given c, the innovator will

perform the innovation (I = 1) if v ≥ c.

2.3.2. Input Seller’s Problem. When setting the price the sellers of

inputs do not know the realization of v. They only know that given

{pi}ni=1 the probability that v ≥ c (the probability of innovation) is

1−F (c). Therefore, the expected demand of input firm i is E(xi) =
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(1−F (c))xi, and its Profit Maximization Problem (PMP) is:

max
pi

Πi = (1− F (c))xi(pi − ε),

where both c and xi come from the CMP of the innovator.

3. Equilibrium.

In this section we solve recursively for the SSPE. Therefore, we

begin by solving the Innovator’s Problem (second stage of the game).

The demands are those of a typical CES production function.

Proposition 1.1 (Solution of the Innovator’s Problem). The con-

ditional demand of input i and the cost of innovation are:

xi = I n−
1

1−σ p−σi

(
n∑
i=1

pi
1−σ

) σ
1−σ

,

c = n−
1

1−σ

(
n∑
i=1

pi
1−σ

) 1
1−σ

,

where σ = 1/(1− ρ) is the elasticity of substitution between the inputs.

The innovator will introduce the new good (I=1) if v ≥ c.

The restrictions on ρ imply that the elasticity of substitution σ goes

from 0 (perfect complements) to ∞ (perfect substitutes).

Given xi and c, the symmetric equilibrium price p solves

p = argmax
pi≥ε

(1− F (c)) xi (pi − ε) ,

where c = n−
1

1−σ
(
p1−σ
i + (n− 1)p1−σ) 1

1−σ and xi = n−1 p−σi cσ. It is

useful to notice that in the symmetric equilibrium (pi = p for all i),

c = p and xi = 1/n for all i. Also, p ≥ ε in equilibrium because

otherwise firms would be making negative profits and would find it

profitable to deviate by setting a higher price.

Because of the nature of Nash equilibria, for any value of n, ε, and

σ < ∞ there exists equilibria where p is so high that the probability

of innovation is zero (i.e. profits are zero for all input sellers) but

any deviation by a single input seller is not enough to make it positive.

However, these are trivial equilibria coming from the definition of Nash

equilibria without any intrinsic economic value. We are interested in
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the existence of equilibria with a positive probability of innovation

(p < v̄).

The following proposition characterizes the solution of the first

stage of the game (the Input Seller’s Problem).

Proposition 1.2. A SSPE with positive probability of innovation

(p < v̄) exists and is unique. The equilibrium price solves

(p− ε)h(p) = n− σ (n− 1) (p− ε)/p.

The conditional input demand is x = 1/n, the cost of innovation is

c = p and the probability of innovation is 1− F (p).

Proof. The firm wants to maximize (1 − F (c))xi (pi − ε). The

derivative with respect to price is:

D(pi) = −f(c)
∂c

∂pi
xi (pi − ε) + (1− F (c))

(
∂xi
∂pi

(pi − ε) + xi

)
.

By Shepard’s Lemma ∂c/∂pi = xi, and by symmetry c = p, xi = 1/n

and ∂xi/∂pi = −(n − 1)σ/(n2 p). Therefore, the first order condition

becomes:

D(p) = −f(p)
p− ε
n2

+ (1− F (p))

(
−σ (n− 1) (p− ε)

n2 p
+

1

n

)
.

Now we prove that the solution cannot be ε nor v̄ for n <∞. p = ε

cannot be the equilibrium because D(ε) = (1 − F (ε))/n > 0. Also,

p = v̄ cannot be the equilibrium both if v̄ is finite or infinite. If v̄ <∞,

then D(v̄) = −f(v̄)
(
v̄−ε
n

)
< 0. On the other hand, limp→∞D(p) =

−∞ < 0. Therefore, the solution must satisfy D(p) = 0. Multiplying

D(p) by −n2/(1− F (p)) we get:

(1.2) h(p) (p− ε) + σ (n− 1)
p− ε
p
− n = 0.

We can be sure that equation (1.2) has exactly one solution because it

is continuously increasing in p by Assumption 1.1, is negative when

p = ε and is positive when p → v̄ (Assumption 1.1 implies that

limp→v̄ h(p) p = ∞ for finite or infinite v̄). Therefore, the solution

exists and is unique. Rearranging terms in equation (1.2) we get the

desired result.

Example. We will find it useful to illustrate the results with the

help on an example based on the uniform distribution. This example
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has the advantage of providing an explicit solution for the equilibrium

price. Specifically, assume that the value of the innovation, v, is uni-

formly distributed between 0 and 1. This means that F (v) = v and

h(v) = 1/(1− v). The equilibrium price is:

(1.3) p =
a+

√
a2 + 4σ ε (n−1) b

2 b
,

where a = n+ ε− σ(n− 1)(1 + ε) and b = 1 + n(1− σ) + σ. The cost

of innovation is equal to the price and the probability of innovation is

simply 1− p.

3.1. The meaning of the First Order Condition. It interest-

ing to analyze the meaning of the optimality condition. In the tradi-

tional case, when there is no uncertainty, the PMP is simply to maxi-

mize xi (pi − ε). In this case, the optimal price solves:

pi − ε
pi

=
1

ηxi
,

where ηxi is the price elasticity of the demand for inputs (in absolute

value) and (pi−ε)/pi is the Lerner index, which measures the gain over

marginal cost as a proportion of price.

In our case, the PMP is to maximize (1 − F (c))xi (pi − ε), so the

optimal price solves:

pi − ε
pi

=
1

ηxi + h(c) pixi
,

where h(c) is the hazard function.

Therefore, our model adds an specific term related with the proba-

bility of selling the inputs. The hazard function is h(c) = −∂(1−F (c))
∂c

1
(1−F (c)

,

so it measures the proportional decrease in the probability of selling

the inputs when total cost increases. We can interpret 1 − F (c) as a

demand for final good and c as its price (read Section 5). Then, if

we multiply the hazard function by c, we get the elasticity of the final

demand in absolute value (ηD = h(c)c).

This means that the optimal price in Proposition 1.2 solves:

pi − ε
pi

=
1

ηxi + ηD
pixi
c

,

so our additional term is equal to the price-elasticity of final demand

times the share of input i in total expenditure. Notice that this result
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is very general, since we are not assuming any specific demand function

for the inputs, nor any distribution for the values of the innovation.

3.2. Elasticity of substitution. The price of the inputs and the

cost of innovation in equilibrium depend on the elasticity of substitu-

tion, the complexity of the innovation and the marginal cost of the

inputs. In the following subsections we will analyze the comparative

statics of the above equilibrium.

Proposition 1.3. The cost of innovation is decreasing in σ.

Proof. Equation (1.2) provides an implicit function of p in terms

of σ. We can calculate ∂c/∂σ using the implicit function theorem

(remember that p=c in the symmetric equilibrium):

∂c

∂σ
= − (n− 1)(p− ε)/p

h(p) + h′(p) (p− ε) + σ (n− 1)ε/p2

It is easy to see that this derivative is always negative (the numerator

and the denominator are positive). The result follows.

Figure 1 depicts the cost of innovation (i.e. the price of the inputs)

as a function of σ for the uniform distribution and for n = 10 and

ε = 0.1.

Figure 1. Cost of innovation as a function of σ.

The cost of innovation is monotonically decreasing in σ because of

increased competition as the inputs become more substitutable. As

σ → ∞ price converges to marginal cost ε, which is the standard

Bertrand price competition result with homogeneous goods.
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3.3. Complements and Substitutes. We will classify inputs in

market complements and substitutes according to the sign of the cross-

price derivative of expected demand which, in this setting, is equivalent

to analyzing the cross-price derivative of expected profit. This classifi-

cation is equivalent to the one used in game theory, where the actions of

two agents are said to be complements (substitutes) when an increase

in the action of one of them implies a decrease (increase) in the payoff

of the other agent. In our model, the actions are prices and the payoff

is expected profit. Notice that this is an equilibrium definition since it

is based on the best response of the innovator.

Definition 1.1 (Market complements and substitutes). Input j is

a market complement (substitute) of input i if ∂E(xi)
∂pj

< 0
(
∂E(xi)
∂pj

> 0
)

.

An increase in the price of input j has two effects on the expected

demand of input i. On one hand, the conditional demand of input

i increases (substitution effect). On the other hand, the probability

of innovation decreases because the inputs are more expensive to the

innovator (innovation effect). The sign of the cross-price derivative de-

pends on which of the two effects is stronger. The cross-price derivative

is:
∂E(xi)

∂pj
= (1− F (c))

∂xi
∂pj

+
∂(1− F (c))

∂pj
xi.

The first effect is related to the standard substitution effect of con-

sumer demand theory. Remember that the Cost Minimization Problem

is equivalent to the Expenditure Minimization Problem and in this case

there are no wealth effects of price changes (the conditional factor de-

mands are equivalent to Hicksian demands). In principle, the derivative

∂xi/∂pj could be positive, negative or zero. However, the property of

negative semidefiniteness of the matrix of cross-price derivatives (which

implies that every input must at least have one technical substitute),

together with the symmetry of the production function, implies that

this derivative is non-negative. The inputs will be technical substi-

tutes (∂xi/∂pj > 0) except in the case of perfect complements, where

∂xi/∂pj = 0.

The second effect is due to the fact that the demand for innovations

is downward sloping. The cost of the inputs used in research affects the

profitability of innovation. Therefore, an increase in the price of any
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input will lower the probability of innovation. This effect is negative,

except in the case of perfect substitutes, when it is zero.

Now that our definition of complementarity and substitutability is

clear, we can be precise in our exposition. In what follows when we

say that inputs are complements or substitutes, we mean that they are

market complements or substitutes. We will see that the distinction

between complements and substitutes is crucial for the predictions of

the model.

The following lemma shows the value of σ that makes the cross-price

derivative equal to zero.

Lemma 1.2. The cross-price derivative ∂E(xi)/∂pj is zero in the

symmetric equilibrium if and only if σ = σ∗, where σ∗ is the argument

that solves h
(

σ
σ−1

ε
)

= σ − 1.

Proof. The cross-price derivative is:

∂E(xi)

∂pj
= (1− F (c))

∂xi
∂pj
− f(c)xi.

By Shepard’s Lemma, ∂c/∂pj = xj. Imposing symmetry, xi = xj =

1/n and ∂xi/∂pj = σ/(n2 p). Rearranging terms we get:

∂E(xi)

∂pj
=

1

n (1− F (p))

(
σ

p
− h(p)

)
.

This will be zero in the symmetric equilibrium only when h(p) = σ/p.

Introducing this into the first order condition (1.2) and rearranging we

get (p − ε)/p = σ−1 or p = σε/(σ − 1). Plugging this value of p in

h(p) = σ/p we get the desired result.

The following proposition classifies inputs in complements and sub-

stitutes according to Definition 1.1. It is interesting to see that this

distinction depends on the values of σ and ε, but not on the value of

n.

Proposition 1.4. In the symmetric equilibrium, inputs are com-

plements when σ < σ∗ and substitutes when σ > σ∗.

Proof. We know from Lemma 1.2 that the cross-price derivative

is zero when σ = σ∗ and that its sign depends on σ/p − h(p). The

latter expression is increasing in σ because p is decreasing in σ from
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Proposition 1.3 and h is non-decreasing in p from Assumption 1.1. The

result follows.

Interestingly, the value of σ which divides inputs in complements

and substitutes has to be larger or equal than 1. To see this, suppose

that σ∗ < 1. This means that h(εσ∗/(σ∗ − 1)) < 0, which is not

possible. In the case of the uniform distribution, for example, inputs

are complements when σ < (1 + ε)/(1 − ε) and substitutes when σ >

(1 + ε)/(1− ε).

3.4. Patent Pools. Until now, the research inputs were priced

non-cooperatively. In this subsection we analyze what happens when

all inputs are priced cooperatively, either by a collective institution such

as a patent pool or by a single patent holder (monopolist) that owns all

the patents. Proposition 1.5 shows the equilibrium price in this case.

The difference with the previous case is that now the patent holder

maximizes joint-profits and therefore takes into account the cross-price

effects between expected demands.

Proposition 1.5 (Patent Pool). The equilibrium price when all the

inputs are priced cooperatively, p∗, is the argument that solves h(p)(p−
ε) = 1.

Proof. Given the symmetric input demands, the pool wants to

sell a symmetric bundle. Therefore xi = 1/n and pi = p for all i and

the pool wants to maximize total profits n (1−F (p)) (p− ε). The first

order condition is n(−f(p) (p− ε) + 1−F (p)) = 0. Rearranging terms

we get the desired result.

Notice that p∗ depends only on the functional form of h and the

value of ε, but not on the values of σ or n. The following proposition

compares the cost of innovation when the inputs are priced individually,

c, with that of a patent pool, p∗.

Proposition 1.6. The cost of innovation when the inputs are priced

non-cooperatively, c, is equal to that of a patent pool, p∗, when the

cross-price derivative is zero (σ = σ∗), it is larger when the inputs are

complements (σ < σ∗) and it is smaller when the inputs are substitutes

(σ > σ∗).

16



Proof. We know from the proof of Lemma 1.2 that when σ = σ∗,

the cross-price derivative is zero and σ = p h(p). Replacing this in (1.2)

and rearranging we get h(p)(p−ε) = 1, which is the cooperative result.

Given that p is decreasing in σ, whereas p∗ is independent of σ, p > p∗

when σ < σ∗ and p < p∗ when σ > σ∗.

The difference between cooperative and non-cooperative pricing is

that in the first case the firms take into account the effect of an increase

in the price of one input on the demand for the rest. When σ = σ∗ this

effect is zero so the price of the pool coincides with that of the non-

cooperative equilibrium. When σ < σ∗ the effect is negative, so the

pool knows that an increase in price will decrease the demand for the

rest and will set a price smaller than the uncoordinated input sellers.

The opposite happens when σ > σ∗.

In the case of the uniform distribution, the pool price is p∗ = (1 +

ε)/2. Figure 2 compares this price with the non-cooperative price for

ε = 0.1 and n = 5.

Figure 2. Cooperative and non-cooperative pricing.

3.5. Increasing complexity. Proposition 1.7 shows that the sign

of the effect of an increase in the complexity of the innovation (n)

depends on whether the inputs are complements or substitutes.

Proposition 1.7. The cost of innovation increases as innovation

becomes more complex if the inputs are complements (σ < σ∗) and

decreases if the inputs are substitutes (σ > σ∗).

Proof. We are looking for the effect of a unit increase in n, but it

will suffice to determine the sign of ∂c/∂n. Equation (1.2) provides an
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implicit function of c in terms of n. Therefore, we can calculate ∂c/∂n

using the implicit function theorem:

∂c

∂n
=

1− σ (p− ε)/p
h′(p) (p− ε) + h(p) + σ(n− 1)ε/p2

We know that the denominator is always positive. Therefore, the sign

of this derivative depends on the sign of the numerator.

From equation (1.2) we get the following relation in equilibrium

σ (p−ε)/p = (n−h(p) (p−ε))/(n−1). Introducing this in the numerator

and operating, it becomes (h(p) (p − ε) − 1)/(n − 1). We know that

h(p) (p− ε) = 1 when σ = σ∗ from the proof of Proposition 1.6. Given

that h(p) (p− ε) is increasing in p, it is decreasing in σ. Therefore, the

numerator is positive when σ < σ∗ and it is negative when σ > σ∗.

The result follows.

The probability of innovation is simply 1− F (c), so it moves in an

opposite direction to the cost:

dPr

dn
= −f(c)

dc

dn
.

As before, the effect on the probability of innovation of an increase in

the complexity of innovation depends on the substitutability between

the inputs. If inputs are complements, then the probability decreases

as n increases. If inputs are substitutes, then the probability increases

as n increases.

Figure 3 shows what happens in the uniform distribution example

as the complexity of the innovation increases from n = 5 to n = 15,

for ε = 0.1. The cost schedules cross when σ = 1.22, which is exactly

σ∗ = (1 + ε)/(1− ε). This means that the cost of innovation increases

if the inputs have low substitutability and decreases in case of high

substitutability.

Proposition 1.7 is the most important result of the paper. It says

that patents are very harmful when innovation is sequential and the

research inputs are essential or difficult to substitute, but do not pose

an important problem when inputs are easily replaceable.

Figure 4a shows cost as a function of n for complementary inputs

and ε = 0.1 in the case of the uniform distribution. As innovation

becomes more complex, the cost of innovation increases and converges

to 1 when n → ∞. This means that the probability of innovation
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Figure 3. Effects of an increase in the complexity of
innovation.

decreases with n and converges to 0. Convergence is faster when σ gets

closer to zero. When the substitutability between the inputs is very

low (σ close to zero), the probability of innovation is very small even

for simple innovations (low n).

Figure 4b shows that the conclusions change when the research

inputs are substitutes. In this case the cost of innovation decreases

when the complexity of innovation increases (i.e. the probability of

innovation increases with n).

(a) Complements. (b) Substitutes.

Figure 4. Cost of innovation as a function of n.

3.6. The Tragedy of the Anticommons Revisited. The model

presented in this paper gives a formal treatment to the tragedy of the

anticommons (Heller 1998, Heller and Eisenberg 1998). An anticom-

mon arises when multiple owners have the right to exclude each other

from using a scarce resource, causing its inefficient under-utilization.

19



This problem is symmetric to the tragedy of the commons, where mul-

tiple owners have the right to use a scarce resource, but nobody has

exclusion rights and resources tend to be overused.

In our model, the scarce resource is the net social value of the

innovation (v − ε) to be shared between the innovator and the patent

holders. Each patent holder decides the selling price of her input. It

is interesting to notice that when σ ≤ 1 all the inputs are essential to

perform the innovation so all the input sellers can potentially impede

the innovation by setting a high price.

We show in Proposition 1.6 that when the inputs are market com-

plements the cost of gathering all the inputs with fragmented property

rights is larger than what it would be if there was a sole owner of all

the inputs or the inputs were priced cooperatively by a collective in-

stitution like a patent pool. Moreover, according to Proposition 1.7,

this problem gets worse as technologies become more complex, requir-

ing more and more inputs in order to be developed. These results hold

not only for perfect complementarity between the inputs, but whenever

the elasticity of substitution is not sufficiently large to compensate the

negative effect of price changes on the probability of innovation.

The result in Proposition 1.6 is consistent with the findings of

Shapiro (2001) and Lerner and Tirole (2004). The difference is that

since we use the standard definition of complements and substitutes,

we can be more precise in explaining the reasons why the cost of gath-

ering a bundle of patents increases or decreases with the formation of

the pool. It all depends on the relation between input demands. If the

joint profit of the rest of firms decreases with an increase in the price

of one firm (the input is a complement of the rest of inputs), a pool

will consider it optimal to set a lower price when taking this effect into

account. The opposite happens when the inputs are substitutes.

3.7. High complexity and Monopolistic Competition. It is

interesting to analyze the equilibrium of the economy when n → ∞
for two reasons. First, n → ∞ represents innovations that are highly

complex and therefore require a large number of inputs to be developed.

The innovator faces a patent thicket and has to gather inputs from

many patentees. We know how the probability of innovation changes

as n increases, but it is interesting to determine in what cases it will go
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to 0 or 1− F (ε). Second, in this limiting economy there is an infinite

number of input sellers, so the effect of a price change by a single firm

has a infinitesimal impact on the cost of innovation, and the market

becomes monopolistically competitive.

Proposition 1.8 characterizes equilibria with positive probability of

innovation (p < v̄). In this case there are values of σ for which there is

no equilibrium with positive probability of innovation.

Proposition 1.8. A SSPE with p < v̄ exists only when σ > σ̂

where σ̂ = v̄
v̄−ε . The equilibrium price and cost of innovation are p =

σ
σ−1

ε.

Proof. Dividing the first order condition (1.2) by n, we get:

h(p) (p− ε) 1

n
+ σ

(
n− 1

n

) (
p− ε
p

)
− 1 = 0.

As n → ∞, the term with the hazard function goes to zero. This is

because each firm becomes negligible and does not affect the probability

of innovation on its own. It is clear that the equilibrium price of the

limiting economy solves:

σ

(
p− ε
p

)
− 1 = 0.

Therefore, p = σ
σ−1

ε, which is between ε and v̄ only when σ > v̄
v̄−ε .

It is interesting to comment on three characteristics of the equilib-

rium. First, any p ≥ v̄ is an equilibrium for any value of σ in this

limiting economy. If p ≥ v̄ the probability of innovation is zero, but

if a single input seller deviates, its impact on the cost of innovation

is infinitesimal, so the probability of innovation (i.e. expected profits)

remains unchanged. Therefore, there are no profitable deviations when

p ≥ v̄.

Second, the equilibrium quantity xi goes to zero as n→∞. This is

because the number of inputs is increasing towards infinity but the total

quantity of inputs required is keeping constant, given our assumptions

on the innovation technology.

Finally, it is easy to show that 1 ≤ σ̂ < σ∗. The first inequality

follows trivially from the fact that σ̂ = v̄/(v̄ − ε). Therefore, σ̂ = 1

only when v̄ →∞ or ε = 0. For the second inequality, it is enough to

compare the equilibrium price when σ = σ̂ with the equilibrium price
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when σ = σ∗, since price is decreasing in σ. When σ = σ̂, price is

equal to v̄. When σ = σ∗ we know that the equilibrium price solves

h(p)(p− ε) = 1. If p = v̄, then h(p) (p− ε)→∞, which is much larger

than 1. For h(p) (p− ε) to decrease and approach 1, p has to decrease.

This means that equilibrium price is larger with σ̂ and therefore σ̂ < σ∗.

Figure 5 shows the cost schedule as a function of σ when v̄ = 1 and

ε = 0.1. The equilibrium of the limiting economy does not depend on

the distribution of v, but it depends on the upper bound of the support

of the distribution.

Figure 5. Cost of innovation in the limiting economy.

The equilibrium price is the same than Dixit and Stiglitz’s (1977)

monopolistic competition model. When inputs are substitutes, firms

set a mark-up over marginal cost equal to 1/(σ − 1). This means

that the pricing inefficiency decreases as n increases, but it does not

disappear even when n→∞.

For complements, the outcome depends on whether σ is greater or

less than σ̂ = v̄/(v̄− ε). When σ > v̄/(v̄− ε), firms set a mark-up just

like in the substitutes case. When σ ≤ v̄/(v̄ − ε), the only equilibria

have p ≥ v̄ and so the probability of innovation is zero. In this case, as

n increases the inefficiency due to monopoly pricing increases and it is

at its maximum when n→∞.

4. Sequential Innovation, Patent Policy and Welfare.

In order to focus on the effects of the pricing of old ideas on the

discovery of a new one, we have assumed that old ideas have already

been invented when the new invention is considered. In this case, the
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optimal patent policy would be to remove patents completely: with

patents the market price of the inputs is always above their marginal

cost, introducing a wedge between the social and private cost of the

innovation.

However, in many cases patent policy also affects the incentives

to discover those research inputs. Given the sequential character of

innovation, old ideas are past innovations themselves, so patent policy

affects not only the cost, but also the revenues of the innovation.

A thorough treatment of this issue would require the development

of a dynamic model, which we leave for further research. However, a

slight modification of our basic model will allow us to extract some

useful intuitions for the design of optimal patent policy.

Patent policy will be represented by a continuous policy parameter

φ ∈ [0, 1], which represents patent length. Any new product is pro-

tected by a patent for a proportion φ of the useful life of the invention.

After that, any producer can enter the market and produce the new

good.

In the final goods sector, this means that the innovator remains a

(perfectly discriminating) monopolist for a proportion φ of time. Af-

ter that, free entry and perfect competition lead to zero profits. In

both cases (perfect price discrimination and perfect competition), the

quantity of final good produced is optimal, so there is no inefficiency

coming from monopoly pricing in the final goods market. The profit of

the innovator is φ v, where v is the social value of the innovation, just

as before.

In the inputs market, assuming that previous ideas were introduced

sequentially, only a proportion φ of patents has not yet expired. This

means that the innovator has to pay a non-competitive price for φn

inputs (those still protected by patents) and a competitive price equal

to marginal cost for the other (1−φ)n inputs (those for which patents

have already expired).

The policy parameter φ can also be interpreted as the novelty re-

quirement, the patent breadth or the strength with which IP law is

enforced in courts. In this case, there is a probability φ that the in-

novator is granted a patent and that the patent can be successfully
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defended in court. At the same time, only a proportion φ of previous

inventors has been granted a patent.

The above assumptions guarantee that the patent regime does not

affect the social value of the innovation (i.e. the total consumer sur-

plus from the new good). In order for the patent system not to affect

the social cost of the inputs either, it should lead to an optimal com-

bination of the inputs for the innovation, which requires all inputs to

be used in the same quantity. This condition holds when the inputs

are perfect complements, given that conditional demands are constant

and independent of price, and when the inputs are perfect substitutes,

given that the price of the inputs will be equal to ε independently of the

patent policy. On the other hand, when the inputs are imperfect sub-

stitutes patent policy will affect the social cost of innovation. If some

inputs are protected by patents and others are not (0 < φ < 1), the

innovator will tend to use the cheaper unprotected inputs in a higher

proportion. As a consequence, the social cost of the inputs used in

R&D will be higher than ε.

This argument implies that the patent policy that maximizes the

probability of innovation also maximizes expected social welfare only

when the inputs are perfect complements or perfect substitutes. In the

intermediate cases, the patent policy not only affects the probability

of innovation but also its social cost. Therefore, when 0 < σ < ∞,

the policy that maximizes the probability will not maximize expected

social welfare in general.

Given that it is not possible to obtain a general solution for the op-

timal policy in the cases of imperfect substitutability, we will first focus

in the perfect complements and perfect substitutes cases. Then, we will

analyze intermediate cases with the aid of numerical simulations.

4.1. Perfect Complements. Under perfect complementarity, the

probability that revenues (φ v) exceed the cost of the innovation is

1− F (c/φ) and the conditional input demands are constant and equal

to 1/n, regardless of whether the inputs are protected by patents or

not. The cost of innovation is

c =

φn∑
i=1

1

n
pi + (1− φ) ε.
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The Profit Maximization Problem (PMP) of the input sellers be-

comes:

max(1− F (c/φ))
1

n
(pi − ε).

The following proposition characterizes the equilibrium given patent

policy φ.

Proposition 1.9. The cost of innovation in the symmetric equi-

librium solves

(1.4) h(c/φ) (c− ε) = nφ2

and its derivative with respect to patent policy φ is

(1.5)
dc

dφ
=
h′ c (c− e) + 2nφ3

φ (h′ (c− ε) + hφ)
.

Proof. The first order condition of the input seller’s PMP is:

−f
(
c

φ

)
1

φ

∂c

∂pi

pi − ε
n

+

(
1− F

(
c

φ

))
1

n
= 0.

It is easy to prove that in a symmetric equilibrium, p− ε = (c− ε)/φ.

Imposing symmetry, using Sheppard’s Lemma and rearranging we get

expression (1.4). Equation (1.5) follows from a simple application of

the implicit function theorem.

The following lemma presents a simplification which allows us to

find the optimal patent policy.

Lemma 1.3. The patent policy that maximizes the probability of

innovation solves ∂c
∂φ

= c
φ

.

Proof. The problem of maximizing 1−F (c(φ)/φ) is equivalent to

the problem of minimizing c(φ)/φ, given that F is non-decreasing. The

first order condition for the latter is

c′(φ)φ− c(φ)

φ2
= 0.

Rearranging this expression, we get our desired result.

Proposition 1.10. The optimal patent policy φ∗ solves

h

(
2ε

φ

)
=
nφ2

ε
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and its derivative with respect to the complexity of the innovation is

∂φ∗

∂n
= − φ4

2(h′ ε2 + nφ3)
,

which is always negative.

Proof. From Lemma 1.3 we know that the optimal policy solves
∂c
∂φ

= c
φ
. Using (1.5) we have that:

h′ c (c− e) + 2nφ3

φ (h′ (c− ε) + hφ)
=
c

φ
.

Simplifying we get:

(1.6) h(c/φ) c = 2nφ2.

Combining this last expression with (1.4) we get that at the optimal

policy the cost of innovation is c = 2ε. Introducing this in (1.6), we

get our first result. The second result follows from an application of

the implicit function theorem.

From Proposition 1.10 it follows that the optimal policy is larger

than zero and less than one for ε > 0. This means that some pro-

tection is always desirable, even when the research inputs cannot be

substituted at all. However, the most important result in Proposi-

tion 1.10 is that the degree of patent protection should decrease when

technologies become more complex.

4.2. Perfect Substitutes. Proposition 1.10 shows the effects of

increases in complexity on the optimal policy when the inputs are per-

fect complements. However, this result changes when the inputs are

perfect substitutes. In this case, the cost of innovation is ε for any

level of patent protection. This means that the patent policy should

be directed at maximizing the revenues from the innovation, so φ∗ = 1

regardless of the complexity of the innovation.

4.3. Imperfect Substitutes. A comparison of the results with

σ = 0 and σ →∞ gives an intuition of what happens for intermediate

values of σ. There will be a σ̄ such that the optimal policy decreases

for lower degrees of substitutability, and increases in the opposite case.

Given that it is not possible to get an explicit formula for σ̄, we resort

to a numerical analysis. Figure 6 shows the optimal patent policy as
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a function of σ for n = 10 and n = 20 (ε = 0.1). We can see that the

optimal policy decreases as n goes from 10 to 20 for σ < 1.137, and

increases in the opposite case, which verifies our previous conjecture.

Figure 6. Optimal policy for different values of n.

5. Extensions.

In this section we analyze the consequences of relaxing some of the

basic assumptions of the model.

5.1. Social value and cost depend on complexity. Until now,

we have assumed that the distribution of values of the innovation and

the social cost of the inputs do not depend on n, and that there are

no returns from specialization. Under these assumptions, a change in

n only changes the number of producers from whom the innovator has

to buy the research inputs in order to innovate, but does not change

the probability that the innovation is socially valuable.

However, it could be argued that the revenues of the innovator or

the cost of the inputs are increasing or decreasing in n, or that a higher

number of inputs has a positive impact in the R&D technology due to

a higher division of labor. All these changes have equivalent effects on

the probability of innovation so we will concentrate on changes in the

distribution of returns of the innovation.

Let the return of the innovation be a(n) v, with a′(n) ≥ 0 or a′(n) ≤
0 and limn→∞ a(n) = a∞ > 0. v has a cumulative distribution F (v)

as before. Notice that we are not setting an upper bound on a∞.

All we require is that if a is non-increasing it does not go to zero as
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n → ∞. This is because if a∞ = 0 then the distribution of values of

the innovation will collapse to zero and the innovation will never be

profitable when n is very large by assumption.

The probability of innovation is 1− F (c/a), and in the symmetric

equilibrium c = p and x = 1/n. The equilibrium price of the inputs

(i.e. the cost of innovation) solves:

(p− ε)h(p/a)/a = n− σ (n− 1) (p− ε)/p

but we are more interested in the ratio k = c/a, which enters in the

probability of innovation. Replacing in the previous equation we have:

(1.7) (k − ε/a)h(k) = n− σ (n− 1) (k − ε/a)/k.

This equilibrium is equivalent to the one in Proposition 1.2, thinking

of k = c/a as the cost of innovation and ε/a as the social cost of the

inputs. We can prove the same theorems as before with respect to the

difference between complements and substitutes, the welfare effects of

patent pools and ∂k/∂σ. However, ∂k/∂n will be different because now

ε/a is a function of n.

Using the implicit function theorem on the equilibrium relation

(1.7) we get:

∂k

∂n
=

h(k) (k−ε/a)−1
n−1

− na′

a
ε/a

k−ε/a

h′(k) (k − ε/a) + h(k) + σ(n− 1)(ε/a)/k2

As before, the sign of this derivative depends only on the sign of

the numerator, but now there is an additional term which shifts the

threshold value of σ that divides positive and negative changes in k.

This threshold value will be to the left of σ∗ when a′(n) > 0 and to the

right of σ∗ when a′(n) < 0.

Two important remarks are in order. First, if a′(n) is large then the

last term in the numerator will determine the sign of the derivative. In

this case, the effect of changes in n on revenues completely overcomes

the effect on the pricing of inputs, and ∂k/∂n has the opposite sign of

a′(n) irrespective of the value of σ. Second, even for small a′(n), when

a′(n) > 0 and σ → ∞ the derivative is always positive. Therefore

when a′(n) is small and positive, there are two regions where ∂k/∂n is

positive: one with low values of σ and another with large values of σ.
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According to the previous analysis, assuming that the return of

the innovation depends on n has an effect on the derivative of the

probability of innovation with respect to n. Next, we will show that this

assumption has no significant effect on the analysis of the equilibrium

as n→∞.

The equilibrium price solves:

h(p) (p− ε) 1

a n
+ σ

(
n− 1

n

) (
p− ε
p

)
− 1 = 0.

When n→∞, the first term will go to zero because a∞ > 0. Therefore,

the equilibrium price is the same as before, p = σ
σ−1

ε, which is less

than the maximum possible revenue (a∞ v̄) only if σ > a∞v̄/(a∞v̄−ε).
When σ ≤ a∞v̄/(a∞v̄ − ε), on the other hand, there is no equilibrium

price such that the probability of innovation is positive.

The probability of innovation is 1 − F (p/a∞). There are two pos-

sible cases. If a∞ < ∞ then the probability of innovation is less than

optimal, just as in the basic model. If a∞ =∞ then the probability of

innovation will go to 1 for σ > 1 and 0 for σ ≤ 1, which is the same as

assuming ε = 0 in the basic model.

5.2. No Asymmetric Information. Another assumption of the

basic model is that there is asymmetric information on the value of

the innovation (read Gallini and Wright 1990, Bessen 2004, for good

discussions of why this assumption makes sense). However, our results

do not depend on the existence of asymmetric information. All that is

needed for the results is a downward sloping demand for innovations.

An alternative interpretation could be that there is a continuum of

innovators with decreasing returns to their innovations. Suppose that

the innovators are indexed by the return to their innovations, which

ranges between v and v̄. Now, F (v) is the measure of innovations with

a return less or equal to v. Also, assume that the innovations do not

compete against each other in the final goods market and that the input

sellers cannot price discriminate between the innovators. It is easy to

see that all the previous results translate directly into this setting. All

that changes is that now 1− F (c) is not the probability of innovation

but the measure of innovations performed.

A second alternative would be to assume that there is a continuum

of perfectly competitive innovators and that the inputs are not used in
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research, but in the production of every unit of final good. This descrip-

tion is closer to Cournot’s (1838) theory of complementary monopoly.

The production function of output is y = (
∑n

i=1 n
ρ−1 xi

ρ)
1/ρ

and the

demand of the final good is y = 1 − F (py), where y and py are the

quantity and price of the final good. In this case, the input demands in

Proposition 1.1 still solve the CMP, but c becomes a marginal cost per

unit of final good. Competition leads price to marginal cost (py = c),

but c still remains above ε. 1−F (c) is now the equilibrium quantity of

final good, but all the previous results still hold. However, now there is

a welfare loss from the anti-competitive pricing in the inputs market,

which is approximately equal to (c− ε)(F (c)− F (ε))/2.

5.3. No price discrimination. We can also relax the assump-

tion that the innovator is a perfect price discriminator. Dropping this

assumption introduces a wedge between the social and private values

of the innovation. This means that the distribution of values of inno-

vation changes, and that now there is also an inefficiency in the final

goods sector. Assume that the social value of the innovation is still

distributed according to F (v), with probability density function f(v).

The private value of the innovation is now vp, which is less than the

social value of the innovation. With a linear demand for the final good,

for example, the private return of the innovation would be vp = v/2,

which has a probability density function given by 2 f(2vp). The qual-

itative results are the same as before. All that changes is that now

the probability of innovation decreases for each value of σ, and so the

values of σ∗, σ̂ and σ̄ increase. Also, the optimal patent protection

is lower for each value of σ and n than in the case of perfect price

discrimination.

5.4. Uncertain return of the innovation. We have also as-

sumed that the innovator is the only one that knows the value of the

innovation. In this section we ask what happens if v is also unknown

to the innovator. Formally, we do this by changing the timing of the

game: (i) the input producers simultaneously set the price of their

inputs, (ii) given prices, the innovator calculates the input mix that

minimizes the cost of innovation and decides whether to innovate or
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not, and (iii) Nature extracts a value v for the innovation from the

distribution F (v).

We begin by solving the second stage of the game. The innovator

decides what would be the optimal combination of inputs to perform

the innovation in case he decides to perform it. This leads to the

same cost of innovation and conditional demands as before. Then, the

innovator decides whether to perform the innovation or not, in order to

maximize expected profits E(v)− c. The innovation will be performed

if E(v) ≥ c and will not be performed otherwise. If E(v) < ε, then the

innovation will never be performed, so we assume that E(v) ≥ ε. We

also assume that the innovator will perform the innovation if E(v) = c.

The uncertainty has now passed from the input sellers to the input

producer. The problem of the input sellers is deterministic, they know

E(v) and they know that if the price is higher than E(v) the innovation

will not be performed (i.e. their demands will be zero). Now, the

inputs are always market substitutes unless σ = 0. It is easy to show

that the innovation will always be performed, and that the elasticity of

substitution only affects the distribution of payoffs between the input

sellers and the innovator.

Lemma 1.4 shows that input demands are discontinuous at a certain

price, and Proposition 1.11 proves that in the symmetric equilibrium

c ≤ E(v) so the innovation is always performed.

Lemma 1.4. Input demands are discontinuous at

pi =

(
nE(v)1−σ −

∑
j 6=i

pj
1−σ

) 1
1−σ

.

Proof. The demand for inputs is positive if the cost of innovation

is not larger than the expected value of the innovation, that is:

n−
1

1−σ

(
n∑
i=1

pi
1−σ

) 1
1−σ

≤ E(v).

Rearranging terms, we get the condition on the price of the input:

pi ≤

(
nE(v)1−σ −

∑
j 6=i

pj
1−σ

) 1
1−σ

.
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If pi is larger than this value, then the innovation is not performed and

the demand for all inputs is zero.

The input sellers want to maximize profits xi (pi − ε). Proposition

1.11 states the solution of the game.

Proposition 1.11. The equilibrium price when the return of the

innovation is uncertain for the innovator is:

p =

{
σ(n−1)

σ(n−1)−nε if σ > n
n−1

E(v)
E(v)−ε ,

E(v) otherwise.

Proof. After imposing symmetry, the derivative of xi (pi−ε) with

respect to pi becomes:

D(p) =
1

n

(
−σ(n− 1)

n

p− ε
p

+ 1

)
.

Lemma 1.4 implies that if the derivative with respect to price is

positive at p = E(v), this is a symmetric equilibrium, as firms are

making positive profit, do not want to lower price (D ≥ 0), and would

have a zero profit if they would rise price. This happens when σ ≤
n
n−1

E(v)
E(v)−ε .

When σ > n
n−1

E(v)
E(v)−ε , on the other hand, the equilibrium price

solves the unrestricted first order condition D(p) = 0.

5.5. Input decision is discrete. Suppose now that input deci-

sions are discrete (zero or one). What matters for innovation now is

whether old ideas are used in research (for which you have to pay a li-

cense fee) or not. In this case, the qualitative results of the paper would

be left unchanged, but the description of technology would be more

complex, and we would have to resort to reduced forms for the payoffs

of the innovator (like in Lerner and Tirole 2004). As a consequence,

we would not be able to use the traditional definition of complements

and substitutes, and the model would lose descriptive power.

Consider first the perfect complements case. The innovation is per-

formed if all previous ideas are used in R&D, and is not performed if

at least one of them is not used. This corresponds to σ = 0 in our

model, so all previous conclusions still hold. In the perfect substitutes

case, the innovator needs to use m < n inputs in R&D, and any of

the n old ideas is equally good. In this case, all the inputs would
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be priced at marginal cost (Bertrand competition), which corresponds

to σ → ∞ in our model. For intermediate cases, the value of the

innovation depends on the number of ideas finally used. The degree

of substitutability/complementarity depends now on the shape of the

payoff function. Nevertheless, the intuition behind our previous results

would be left unchanged: When inputs are more substitutable, compe-

tition leads to lower prices, and when inputs are more complementary,

each input becomes more necessary and therefore prices will tend to

increase.

6. Conclusions.

Innovation in hi-tech industries is sequential (each innovation builds

on previous innovations) and complex. In this context patent protec-

tion affects the expected profits of the innovator in two ways: (i) by

increasing her expected revenues because of the monopoly power it

grants over the innovation; (ii) by increasing the cost of innovation,

since the innovator must pay each of the previous patented innovations

on which her new good is built.

In this paper we constructed a model of a complex and sequen-

tial innovation to analyze how the probability that an innovation is

privately profitable changes as technologies become more complex and

the inputs used in research are patented. We found that the results

depend on the substitutability of the research inputs.

When the inputs are complements, the profitability of the innova-

tion is decreasing in the technological complexity. In the limit (when

n→∞), when the degree of substitutability is below a threshold level,

which is higher than 1, the innovation is never profitable. This paper

therefore gives a formal treatment of the tragedy of the anticommons.

On the other hand, when the inputs are substitutes, the profitability

of the innovation is increasing in technological complexity. Even in

this case, when n → ∞, the cost of gathering all the inputs for the

innovation is always too high from a social point of view and thus the

probability of innovation is suboptimal.

Since we used a very general model not relying on strong assump-

tions, our findings generalize the results of the literature on comple-

mentary monopoly, mainly concerned with perfect complementarity.
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We also studied what happens when inputs are priced cooperatively,

either by a collective organization as a patent pool or by a single owner

of all the inputs. We found that the cost of the innovation decreases

with respect to the non-cooperative pricing, when inputs are market

complements, while it increases when inputs are market substitutes.

This result is in line with the intuition of Shapiro (2001) and the model

of Lerner and Tirole (2004). In this sense the contribution of this

paper has been to use a more precise definition of complementarity

and substitutability. This has allowed us to study with greater detail

what is the intuition behind this result.

Finally we studied the welfare implications of the patent system.

We find that, when research inputs are complements, the optimal de-

gree of patent protection is decreasing in the complexity of the in-

novation. This is the exact opposite of what we observe in the real

world: the complexity of technology is increasing but patents are be-

coming stronger every day. Not only they have been recently extended

to sectors previously lacking protection (sexually reproduced plants,

software, business methods, products and processes of biotechnology,

including plants and animals). Also patent length has been increasing

over the years, and an patent systems are being created in countries

where they did not previously exist. We think this is a contradiction

worth to be studied further.
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CHAPTER 2

Dynamic Incentives in a Model

of Sequential Innovation1

Abstract. We study the problem of introducing a sequence of in-
novations when their value is private information. We study three
cases: patents, no-patents and patent pools. With patents, each
innovator has to pay licensing fees to previous innovators. We find
that the probability of innovation decreases as the sequence pro-
gresses, converging to zero in the limit. Without patents, the prob-
ability of innovation is constant and higher than in the patents case,
unless the degree of appropriability of the innovation is very low.
A patent pool increases the probability of innovation, in compari-
son with the patents case, and dynamic incentives imply a higher
probability of innovation than in the static case, which strengthens
previous results in the literature. We also show that innovation is
suboptimal in the three cases analyzed, and extend the model for
patents of finite length.

1. Introduction

In Llanes and Trento (2007) we analyzed the problem of introduc-

ing an innovation based upon n existing inventions. We introduced a

model in which all prior inventions are protected by broad patents, and

the innovator has to pay licensing fees to n patent holders in order to

innovate. Substitutability among prior inventions goes from 0 (perfect

complements) to ∞ (perfect substitutes), and this determines the de-

gree of competition between patent holders. The new idea has random

value, which is private information of the innovator.

Our main findings were: (i) when innovations become more com-

plex, the probability of innovation decreases (increases) if prior inven-

tions are complements (substitutes), (ii) the formation of a patent pool

(a cooperative agreement among patent holders, through which they

agree on the licensing terms of their patents) increases (decreases) the

1This chapter is based on Llanes and Trento (2008).
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probability of innovation if prior inventions are complements (substi-

tutes), (iii) when n → ∞, the probability of innovation goes to zero

for innovations based on highly complementary prior inventions, and is

positive but less than optimal in the other cases, and (iv) when prior

inventions are complementary, the strength of patent policy (patent

breadth or length) should decrease with complexity, in order to maxi-

mize expected welfare.

The paper provides a rigorous analysis of the problem known as

the tragedy of the anticommons: when too many agents have exclusion

rights over the use of a common resource, this resource tends to be

underutilized, in clear duality with the tragedy of the commons in

which too many agents hold rights of use and the resource tends to be

overused. Additionally, the model shows that the formation of a patent

pool can mitigate the perverse effects of patents when innovations are

highly complementary.

Llanes and Trento (2007) complements the literature of sequential

innovation and links it to the literatures of complementary monopoly

and patent pools, by analyzing what happens when a given innovation

depends not only on one, but on several prior inventions (for more de-

tails read Llanes and Trento 2007 and references therein). However,

the model in that paper is static, when the nature of sequential inno-

vation is truly dynamic: old inventions were once new ideas, and new

ideas are the stepping stones of future innovations.

Developing a dynamic model is important for several reasons. First,

it will eliminate any bias stemming from the asymmetric treatment of

old and new ideas. Second, patent policy will affect not only current

but also future innovative activity. Third, it will allow us to analyze

the problem of assigning resources to enabling innovations with low

commercial value (basic research).

In this paper we extend the analysis of Llanes and Trento (2007) to

a dynamic framework. There is a sequence of innovations n = 1, 2, . . .

and each innovation builds upon all prior inventions. Each innovation

has a commercial value (the profit it generates as a final good), which is

random and private information of the innovator, and a deterministic

cost of R&D to be developed. We are mainly interested in determining
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if an anticommons problem arises also in this dynamic version of the

model.

In the basic model, all innovations are protected by a patent of

infinite breadth and length. Patents affect the innovator in two ways:

on one hand, the innovator has to pay licensing fees to all previous

inventors, but on the other hand, she will collect licensing revenues from

all subsequent innovators, in case they decide to innovate. Therefore,

it is not clear what is the net effect of patents on innovation as the

sequence of innovations progresses. We compare this basic model to

the case in which patents are completely removed from the economy,

and analyze the effects of the creation of a patent pool.

We find that with patents, innovation becomes harder and harder

with more complex innovations. The probability of innovation goes to

0 as n→∞. The probability of innovation is higher than in the static

case, but not enough to stop the tragedy of the anticommons from

happening.

In the no-patents case, on the other hand, the probability of in-

novation is constant and depends on the degree of appropriability of

the commercial value of the innovation on the final goods sector. The

no-patents case will provide higher innovation than the patents case

unless the innovator can appropriate a very small fraction of the value

of the innovation.

When ideas are protected by patents, the formation of a patent pool

increases the probability of innovation for all innovations. Interestingly,

the probability of innovation with a pool is constant and higher than

what it would be in the static case. This result strengthens the findings

of Shapiro (2001), Lerner and Tirole (2004), and Llanes and Trento

(2007) for static models. The comparison between the pool and the

no-patents case depends once again on the degree of appropriability of

the value of the innovation in the latter case.

We solve for the innovation policy that maximizes the expected

welfare of the sequence of innovations. We find that innovation is sub-

optimal in the three cases. In the no-patents case, there is a dynamic

externality: innovators do not take into account the impact of their

decision on the technological possibilities of future innovators. In the

two other cases, the inefficiency is caused by asymmetric information
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and market power: patent holders do not know the value of the inno-

vation, which generates a downward sloping expected demand for the

use of their ideas, and market power implies a price for old ideas above

marginal cost.

Our paper is related to Hopenhayn, Llobet, and Mitchell (2006),

which also presents a model of cumulative innovation with asymmetric

information. However, the focus of that paper is different. Innovations

are substitutive: the introduction of a new product automatically im-

plies the disappearance of old versions in the market. Patents impede

subsequent innovations for the duration of the patent. The question

they study is how to allocate monopoly power in the final goods mar-

ket to successive innovations. A trade-off arises because the promise

of property rights to the first innovator limits what can be offered to

the second innovator. In our paper, innovations are complementary:

all prior inventions are necessary to introduce a new idea. We study

what is the effect of intellectual property rights on the pricing of old

ideas. The problem is that granting too many rights on sequential in-

novations implies an increase in licensing fees, hindering innovation as

a consequence. Therefore, the two papers offer complementary analysis

of the process of sequential innovation when the value of innovations is

private information.

2. Innovation with patents

There is a sequence of innovations n = 1, 2, . . .. Innovation n cannot

be introduced until innovation n − 1 has been introduced. Formally,

the model is a multi-stage game with uncertain end. At each stage, an

innovator may introduce an innovation. If the innovation is performed,

the game continues and further innovations may be introduced. If the

innovation fails to be performed, the game ends and no other innovation

can be introduced (we will relax this assumption in Section 8). We

will see that the probability that the game continues is determined

endogenously.

The innovation process is deterministic. At stage n, the innovator

may introduce the new idea by incurring in an R&D cost of ε. The new

idea is based on n−1 previous ideas. These previous ideas are protected

by patents, which means that the innovator has to pay licensing fees
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to the n− 1 previous innovators (patent holders), in case she wants to

introduce the innovation. The cost of innovation is the sum of the cost

of R&D and the licensing fees paid to patent holders.

Each idea has a commercial value vn, which represents the revenues

obtained by selling the new product in the final goods market. In order

to concentrate on the effects of patents on innovation activity, we will

assume that the innovator is a perfect price discriminator in the final

goods market, which means that the commercial value of the innovation

is equal to the total consumer surplus generated by the new product.

The value of the innovation is private information of the innova-

tor. Patentees only know that vn is drawn from a uniform distribution

between 0 and 1, with cumulative distribution function F (vn) = vn.

The new idea will be protected by a patent of infinite length, which

means that the innovator can request licensing fees from all subsequent

innovators (we will relax this assumption in Section 9). The total

revenues of the innovation equal the commercial value of the innovation

plus the future licensing revenues.

The timing of the game within each stage is the following: (i) the

n − 1 patent holders set licensing fees pin, (ii) Nature extracts a value

for vn from distribution F (vn), (iii) the innovator decides whether to

innovate (In = 1) or not (In = 0).

At each stage, patent holders only care about maximizing the ex-

pected future licensing revenues. Let J in denote the expected future

licensing revenues of innovator i at stage n, given that stage n has

been reached. Then,

J in = Prn p
i
n + Prn Prn+1 p

i
n+1 + . . .

=
∞∑
m=n

pim

m∏
k=n

Prk,

where Prn is the probability that the nth innovation is introduced,

given that all prior innovations have been introduced. Notice that the

probabilities Prn work as intertemporal discount factors, which arise

endogenoulsy from the specification of the model.

J in can also be expressed in a recursive way:

J in = Prn (pin + J in+1),
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This means that with probability Prn the innovation is performed,

and the patent holder gets the licensing fee from the innovator plus the

continuation value of her expected licensing revenues.

The innovator’s payoff is In(vn+Jnn+1−cn−ε), where cn =
∑n−1

i=1 p
i
n

is the sum of licensing fees paid to previous innovators.

We will focus on Markov strategies. A strategy for player i specifies

an action conditioned on the state, where actions are prices and the

state is simply the number of previous innovations introduced. The

equilibrium concept is Markov Perfect Equilibrium.

Perfectness implies that future prices will be determined in fol-

lowing subgames, as the result of a Nash equilibrium. Thus, players

understand that no action taken today can influence future prices and

probabilities. Current actions only affect the probability that the fol-

lowing stage is reached, through the effect of current prices on the

probability of innovation. We have just proved the following lemma:

Lemma 2.1. J im for m > n does not depend on any action taken at

stage n.

The game is solved recursively. The solution to the innovator’s

problem is straightforward. Given vn and cn, the innovator forecasts

Jnn+1, and decides to innovate (In = 1) if the revenues from the inno-

vation exceed the cost of innovation:

In =

{
1 if vn + Jnn+1 ≥ cn + ε,

0 otherwise,

which implies that the probability of innovation is Prn = 1 + Jnn+1 −
cn − ε.

Patent holders want to maximize their expected licensing revenues

from stage n onwards. They know their decisions do not affect J in+1

(they can only affect the probability that stage n + 1 is reached), and

decide a licensing fee pin, taking the decision of the other patent holders

as given. The patent holder’s problem is:

max
pin

J in = Prn (pin + J in+1),

which leads to a price equal to pin = (1− ε)/n.

Imposing symmetry, pin = pn and J in = Jn for all i. Replacing prices

and probability in Jn, we get Jn =
(

1−ε
n

+ Jn+1

)2
. Rearranging this
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equation, Jn+1 =
√
Jn− 1−ε

n
, which is a decreasing sequence, converging

to 0 as n→∞.

The sequence of probabilities of innovation is:

Prn+1 =

(
Prn −

1− ε
n

)1/2

,

which is also a decreasing sequence converging to 0 as n → ∞. This

means that innovation gets harder and harder with more complex in-

novations (those that are based on more previous innovations).

3. Innovation without patents

Suppose that a policy reform completely removes patents. This

change has two effects on innovation. First, the revenues of the inno-

vator in the final goods sector will decrease as a result of imitation.

Specifically, assume that the innovator can only appropriate a fraction

φ ∈ [0, 1] of the consumer surplus generated by the innovation. Sec-

ond, innovators will not pay licensing fees to previous innovators, nor

will they charge for the use of their ideas in subsequent innovations.

Therefore, cn = 0 and Jn = 0 in the previous model.

At each stage: (i) nature extracts a value of the innovation vn, and

(ii) the innovator decides to innovate or not. The innovator will inno-

vate if φ vn ≥ ε and will not innovate otherwise. Thus, the probability

of innovation is constant and equal to 1− ε/φ if φ > ε. If φ ≤ ε, then

the probability of innovation is zero.

4. Patent pools

In this section we analyze what happens when licensing fees are

set cooperatively by a collective institution like a patent pool. At

each stage, the pool maximizes the future expected revenues of cur-

rent patent holders. The pool will set a symmetric price for all current

patent holders. Once an innovation is performed, the innovator be-

comes a member of the pool in all subsequent stages. In the first stage

there is no pool because no innovation has been introduced (the pool

plays from stage 2 onwards).
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The probability of innovation is Prn = 1 + Jn+1 − (n − 1)pn − ε,
and the pool’s problem is

max
pn

Jn = Prn (pn + Jn+1).

The difference with respect to the non-cooperative case is that the pool

recognizes cross-price effects, and therefore is encouraged to set lower

prices than in the no-pool case.

The first order condition of the pool is −(n − 1)(pn + Jn+1) + 1 +

Jn+1 − (n − 1)pn − ε = 0. A higher Jn+1 fosters innovation in two

ways. First, it increases the future revenues of the innovator. Second,

it encourages the pool to set a lower price, because it increases the loss

of current patent holders if the sequence of innovations is stopped.

The equilibrium price is pn = 1−ε
2(n−1)

− n−2
2(n−1)

Jn+1, which is equal to

the static price a pool would set minus an additional term arising from

the pool’s concern of keeping future revenues.

The probability of innovation becomes Prn = 1−ε
2

+ n
2
Jn+1. Intro-

ducing price and probability in Jn, we get

Jn =
1

n− 1

(
1− ε

2
+
n

2
Jn+1

)2

.

This is a first order non-linear difference equation. Jn is decreasing in

n and converges to 0 as n→∞.

The sequence in terms of probabilities is

Prn =
1− ε

2
+

1

2
Pr2

n+1.

which is a constant sequence such that Prn = 1 −
√
ε for n ≥ 2.

To determine Pr1 we need J2, which is equal to (1 −
√
ε)2. Then,

Pr1 = min{1, 2(1−
√
ε)}.

5. Comparison

Figure 1 shows the evolution of the probability of innovation in

the three cases studied above: infinitely lived patents, no-patents and

patent pool. The cost of R&D is ε = 0.2 and we consider φ = 1

(full appropriation) and φ = 0.3 (the innovator appropriates 30% of

consumer surplus) for the no-patents case.
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Comparing the patent and no-patent cases, we can see that patents

increase the probability of the first innovations but decrease the prob-

ability of further innovations. The number of innovations for which

patents increase the probability depends on φ. For example, when

φ = 1, patents only increase the probability of the first innovation.

Nevertheless, even when φ = 0.3 the probability increases only for the

first two innovations. For patents to increase the probability of several

innovations, it is necessary that φ is very small and close to ε.

When ideas are protected by patents, the formation of a patent

pool increases the probability of innovation. Figure 1 shows that the

probability of innovation with patent pools is always larger than the

patents case. Moreover, with a pool the probability of innovation does

not go to zero as n → ∞. The comparison with the no-patents case

depends on ε and φ. If φ is low, a patent pool increases the probability

of all innovations. When φ is high, the pool increases the probability

of the first innovation, and decreases the probability of all posterior

innovations.

Figure 1. Comparison of Equilibria.

6. Socially Optimal Innovation

The relevant measure of welfare is the expected social value gener-

ated by the sequence of innovations. The social value of an innovation

is equal to the increase in consumer surplus minus the cost of the re-

sources spent in R&D. Therefore, at stage n, the social value generated

45



is vn − ε if an innovation is performed, and 0 otherwise. Let W be the

expected social value. Then,

W =
∞∑
n=1

E(vn − ε / In = 1)Pr(In = 1) + E(0 / In = 0)Pr(In = 0)

=
∞∑
n=1

E(vn − ε / In = 1)
n∏

m=1

Prm

=
∞∑
n=1

∫ 1

wn

vn − ε
1− wn

dvn

n∏
m=1

(1− wm)

=
∞∑
n=1

(
1 + wn − 2ε

2

) n∏
m=1

(1− wm),

where wn is the smallest vn such that the innovation is performed.

In the cases studied above, wn = ε/φ when there are no patents and

wn = cn + ε− Jn+1 with patents or patent pools.

Suppose now that the decision of whether to innovate or not is

taken by a centralized agency or social planner. The social planner

has to determine {wn}∞n=1, namely what is the minimum value of vn

she would require to perform the innovation at stage n. The planner

may decide to perform an innovation even when the realization of vn

is less than ε, if the expected gain from future innovations exceeds the

current loss in terms of welfare.

Proposition 2.1 (Socially optimal innovation). In order to max-

imize expected social welfare, the innovation should be performed at

stage n if and only if vn ≥ w∗n, where

w∗n =

{
0 if ε ≤ E(vn) = 1/2,√

2 ε− 1 if ε > E(vn) = 1/2.

Proof. Because previous decisions are irrelevant once a stage is

reached, the social planner’s problem at stage n is exactly the same as

the problem at stage n + 1, which means that wn = w for all n. The

social planner wants to maximize

W =
∞∑
n=1

(
1 + w − 2 ε

2

)
(1− w)n,

=

(
1 + w − 2 ε

2

)
1− w
w
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The first order condition is −(1 +w2− 2 ε)/(2w2) ≤ 0, with equality if

w ≥ 0. The value that equates the first order condition, w∗ =
√

2 ε− 1,

makes sense only when ε ≥ 1/2. On the other hand, when w → 0, the

first order condition converges to sign (2 ε− 1)∞, which means that

w∗ = 0 only if ε < 1/2.

Figure 2. Socially Optimal Innovation.

Proposition 2.1 implies that innovation will be suboptimal in the

three cases studied above, unless ε = 0. There are three reasons why

this may be so: externalities, market power and asymmetric informa-

tion.

The externality is best described by analyzing the no-patents case.

Without patents, the innovator will perform the innovation when vn ≥
ε/φ. Given that w∗n ≤ ε, the innovator may decide not to perform

an innovation when it is socially optimal to do so, even if φ = 1.

There is a dynamic externality: the innovator ignores the effect of her

decision on the technological possibilities of future innovators. This

effect is well known in the literature of sequential innovation (Scotchmer

1991, Hopenhayn, Llobet, and Mitchell 2006), and is similar to the

one found in the literature of moral hazard in teams (see for example

Holmstrom 1982), where each agent internalizes only his reward from

the effort exerted.

With respect to the patents and patent pool cases, the inefficiency

arises from a different source: market power and asymmetric infor-

mation. Because patentees care about the stream of future licensing

revenues, they internalize the effect of today’s decision on future inno-

vation. However, asymmetric information implies a downward sloping

demand for innovations, and market power implies inefficient pricing
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of patents, which leads to suboptimal innovation. As the number of

holders of rights on innovation increases, the inefficiency due to market

power increases.

Figure 3. Comparison of expected welfare.

6.1. Static versus dynamic incentives. Previous models of com-

plementary monopoly, sequential innovation and patent pools were

static (Shapiro 2001, Lerner and Tirole 2004, Boldrin and Levine 2005,

Llanes and Trento 2007). It is interesting to ask what changes when

we add the dynamic dimension.

To see what happens in the static case, assume only one innovation

is being considered. The innovation uses n − 1 old ideas, which have

already been invented. If the innovation is performed, the innovator

obtains a value v from a uniform distribution between 0 and 1, and

has to incur in a cost ε in R&D. The probability of innovation is Pr =

1 − ε − cn, with patents or patent pool and Pr = 1 − ε/φ without

patents.

With patents, the patent holder’s problem is to maximize Pr pi, the

equilibrium price is 1−ε
n

and the probability of innovation is 1−ε
n

. We

have shown that in the dynamic model, the probability is 1−ε
n

+ Jn+1,

with Jn+1 > 0. This extra term arises because the innovator gets

licensing revenues from future innovators. Dynamic incentives imply

a higher probability of innovation, but the increase is not enough to

prevent the probability from converging to 0 as n→∞.
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A patent pool would consider cross-price effects, which would lead

to a price of 1−ε
2 (n−1)

and a probability of innovation of 1−ε
2

. The prob-

ability of the corresponding dynamic model is 1−ε
2

+ (n − 1)Jn, with

Jn+1 > 0. In this case, the extra term arises not only due to the fu-

ture licensing revenues of the innovator, but also because the pool is

concerned with keeping the future licensing revenues of current patent

holders.

With respect to the no-patents case, the profit-maximizing decision

is the same as in the dynamic case. This means that innovators will

perform the innovation if φ vn ≥ ε, which leads to a probability of

Pr = 1− ε/φ. However, in the dynamic case innovation is suboptimal

even when φ = 1, which contrast with the static case, where innova-

tion is socially optimal because there is no intertemporal link between

innovations and therefore there is no externality.

7. Externalities and Optimal Transfers

In the previous section we have shown that sequential innovation

is suboptimal because of the presence of externalities and asymmet-

ric information. Without patents, current innovators do not take into

account the effect of their decisions on the innovation possibilities of

future innovators. The solution to this problem would require intertem-

poral transfers between innovators. Patents provide a way to transfer

resources from future innovators to current innovators, but we have

shown that with patents, market power leads to high licensing fees for

old innovations, and therefore to low innovation. In this section we ask

how close can the government get to the social optimum when it does

not have information on the value of innovations.

To do this, we will use a simplified 2-period version of the general

model. In the first period, innovator 1 has the option of introducing an

innovation with value v1 and cost ε. If innovator 1 decides to perform

the innovation, in the second period, innovator 2 can introduce an

innovation with value v2 and cost ε. Innovator 1 does not know v2.

To determine the social optimum, we have to assume the social

planner knows v1 at stage 1, and v2 at stage 2. It is likely to think that

the government would have reduced information on vn, but assuming
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the social planner does not know vn would imply that innovation de-

cisions without patents give higher welfare than the social optimum,

which does not make sense. Later we will analyze government policy,

and we will assume that the government does not know vn.

7.1. Optimal innovation. Let us begin by finding the optimal in-

novation policy in this 2-stage model. At stage 2 the value and cost of

the first innovation are sunk. Therefore, the second innovation should

be performed if v2 ≥ ε, and should not be performed otherwise. Con-

sider now the first innovation. The social planner will introduce this

innovation if

v1 + Pr(v2 ≥ ε)E(v2 − ε/v2 ≥ ε) ≥ ε,

v1 + (1− ε)
(

1− ε
2

)
≥ ε.

which leads to a probability of innovation Pr∗1 = min{1, (1−ε)(3−ε)
2

}.
Without patents, the probability of introducing the second inno-

vation is Pr2 = 1 − ε, which is optimal. However, the probability of

introducing the first innovation is also Pr1 = 1− ε, which is less than

optimal. The reason is the same as in Section 6: the first innovator

does not take into account the effect of her decision on the innovation

possibilities of the second innovator.

With patents, innovator 1 sets a licensing fee p1 to try to extract

part of the surplus of innovator 2 (in this 2-period model, the patent

and patent pool cases are the same). The probability of innovation of

innovator 2 is Pr2 = 1− ε− p1. Innovator 1 maximizes:

max
p1

v1 − ε+ (1− ε− p1) p1,

which leads to a price p1 = (1 − ε)/2. The probabilities of innovation

are Pr1 = min{1, (1−ε)(5−ε)
4

} and Pr2 = (1 − ε)/2, so Pr1 ≤ Pr∗1
and Pr2 < Pr∗2. This is due to the combined effects of asymmetric

information and market power.

Therefore, the 2-period model presents a simplified version of the

general model but still allows to capture the externality and asymmetric

information problems.

7.2. Second Best Innovation: Optimal Transfers. One way

to correct the dynamic externality would be to allow for transfers from
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future innovators to current innovators. We have seen that patents fail

to convey appropriate incentives because of asymmetric information.

In this subsection we analyze what is the optimal transfer a govern-

ment should set to maximize expected welfare when it does not have

information on the value of innovations, and we compare it with that

of the patents case.

Assume that the government does not know v1 nor v2. In this case,

the government cannot make the transfer depend on the realization

of v2, and it will be impossible to reach the optimum. The best the

government can do is to set a transfer equal to t if innovator 2 innovates,

and 0 otherwise.

In this case, innovator 1 will innovate if v1+Pr2 t ≥ ε, and innovator

2 will innovate if v2 ≥ ε + t. The government wants to maximize

expected welfare:

W = Pr1

(
E(v1 − ε/v1 + Pr2 t ≥ ε) + Pr2E(v2 − ε/v2 ≥ ε+ t)

)
,

=
1

2
(1− ε)(2− ε− t)(1− ε+ t(1− t− ε)).

Solving this problem we get that the second best transfer with asym-

metric information is:

t∗ =
3− 2ε−

√
6− 6ε+ ε2

3
,

where t∗ < p1. Therefore, even if the government does not know v2,

it will set a lower transfer than the licensing fee of innovator 1 with

patents. This is due to the combined effects of asymmetric information

and market power with patents.

8. Ongoing innovation

In this section we analyze what happens if the sequence of innova-

tions does not stop after one innovation fails to be performed. There

is a sequence of innovations n = 1, 2, . . ., just as before, but now there

can be many trials until an innovation is successful.

Innovator n, j is the jth innovator trying to introduce innovation

n (j − 1 previous innovators tried to introduce innovation n without

success). The innovator has to pay licensing fees to n − 1 patentees

(the n−1 previous successful innovators), and obtains a draw vnj from

the same distribution as before. If the revenues from the innovation are
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higher than the cost, innovator n, j will introduce the innovation, and

in the next stage, innovator n + 1, 1 will try to introduce innovation

n+ 1. If revenues are lower than cost, innovator n, j fails to introduce

innovation n, which will then be tried by innovator n, j + 1 in the

following stage. This innovator will face the same n− 1 patent holders

and will have a new draw of the value of innovation vn,j+1.

For this model, we need to be more specific about the time dimen-

sion. Specifically, assume that stages correspond with time periods.

At each period only one trial for one innovation is performed. The

discount factor of innovator and patent holders is β. At stage n+ j the

game is summarized by a state {n, j}.
Let J inj be the expected future licensing revenues of patentee i at

trial j of innovation n, given that stage n + j has been reached under

state {n, j}. Expressed in a recursive way:

J inj = Prnj (pinj + βJ in+1,1) + (1− Prnj)βJ in,j+1,

where Prnj is the probability that innovation n is introduced in trial

j. With probability Prnj, the patent holder gets the price pinj plus the

continuation value of J of the first trial of the next innovation, J in+1,1,

appropriately discounted by β. With probability 1−Prnj, the innova-

tion will not be introduced and the patent holder gets the continuation

value of J corresponding to the next trial of the current innovation.

The profit of the innovator is Inj (vnj + βJn+1,1 − cnj − ε).
Just as before, subgame perfection implies that the patent holders

take J in+1,1 and J in,j+1 as given when deciding pinj. The profit maxi-

mizing price is pinj = (1− ε+ βJ in,j+1)/n. In a symmetric equilibrium,

pinj = pn and J inj = Jn for all i, j.

Replacing in the probability of innovation, we get Prn = 1−ε
n

+

βJn+1 − n−1
n
βJn, and introducing in the expression for J inj:

Jn =
1

1− β

(
1− ε
n

+ βJn+1 −
n− 1

n
βJn

)2

.

Rearranging this expression:

Jn+1 =
1

β

(√
(1− β)Jn −

1− ε
n

)
+
n− 1

n
Jn,

which is a decreasing sequence converging to 0 as n→∞.
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The sequence in terms of probabilities is:

Prn+1 =
1− β
β

(
Prn +

n− 1

n

β

1− β
Pr2

n −
1− ε
n

)1/2

,

which is also a decreasing sequence converging to 0 as n→∞. There-

fore, the main conclusions of the basic model still hold under when

innovation does not stop when a single innovation fails.

9. Finite Patents

In this section we analyze what happens if patents have finite length.

Each stage corresponds to one period and only one innovation is at-

tempted at each period. If the innovator decides to introduce the inno-

vation, she obtains a patent for L periods. This means that the inno-

vator has to pay patents for L previous innovations, but also charges

licenses to L future innovators.

The main difficulty of the present analysis is that now the identity

of the patent holders matters. The price and future expected licensing

revenues will be different for different patent holders, depending on

how long will it take for her patent to expire.

The innovator will introduce the innovation if the revenues from

innovation are larger than the cost:

vn +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk ≥
n−1∑
i=n−L

pin + ε,

which means that the probability of innovation is

Prn = 1 +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk −
n−1∑
i=n−L

pin − ε.

The L current patent holders differ in their objective functions. Let

J in be the future expected revenues of patent holder i at stage n, given

that stage n has been reached. Then,

J in = Prn(pin + J in+1).

The patent holder charging a license for the last time is patent

holder n−L, so Jn−Ln+1 = 0. The patent of n−L+ 1, on the other hand,

will last for one more period, so Jn−L+1
n+1 = Prn+1 p

n−L+1
n+1 . In this way,

we can construct the future expected revenues of the L patent holders.
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The profit maximization problem is

max
pin

J in = Prn(pin + J in+1).

The first order condition is−pin−J in+1+Prn = 0, so pin+J in+1 = Prn

and J in = Pr2
n for all i. This also implies that pn−Ln = Prn.

We are interested in stationary equilibria, which means that Prn =

Pr for all n. This, together with the first order condition, implies

that pin = Pr(1 − Pr) for i ≥ n − L. Replacing in the probability of

innovation, we get:

Pr = 1 +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk −
n−1∑
i=n−L

pin − ε

= 1 +
L−1∑
m=1

Pr(1− Pr)Prm + PrPrL − (L− 1)Pr(1− Pr)− Pr − ε.

Solving for Pr, we get:

Pr =
L+ 1−

√
(L− 1)2 + 4Lε

2L

which is the stationary equilibrium probability of innovation.

Figure 4 shows the probability of innovation as a function of the

patent length for ε = 0.2. We can see that the probability of innovation

decreases with L, which means that patents hurt more than benefit the

innovator. This is because the innovator has to pay licenses that are

certain to the patent holders, but the future licensing revenues are

uncertain, as they depend on future innovations being performed.

It is also interesting to see that Pr → 0 when L → ∞ and Pr →
1−ε when L→ 0, which correspond to the previously analyzed patents

and no-patents cases (with φ = 1).

9.1. Revenues Depend on Patent Length. We have assumed

that the revenues from selling the new product in the final goods market

are independent of patent length. In this subsection we analyze what

happens when we relax this assumption. Assume the revenues of the

innovator are φ(L) vn, with φ′(L) ≥ 0, φ′′(L) ≤ 0, limL→0 φ(L) = φ and

limL→∞ φ(L) = 1. Here, φ is the fraction of social surplus the innovator

would appropriate without any patent protection, due to trade secrets

or first mover advantages.
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Figure 4. Probability of Innovation and Patent Length.

In this case, the innovator will innovate if

φ(L) vn +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk ≥ ε+
n−1∑
i=n−L

pin.

Applying a similar procedure as that of the previous case, we obtain

the probability of innovation in the stationary equilibrium:

Pr =
L+ 1−

√
(L− 1)2 + 4Lε/φ(L)

2L
.

The effect of patent length on the probability of innovation depends

on the functional form of φ(L). Let φ(L) = 1− 1−φ
(L+1)γ

, where γ measures

the speed at which revenues grow when L increases. Figure 5a shows

that when φ is more concave (γ = 1), the probability of innovation first

increases and then decreases with patent length. The optimal length

is positive and finite (in this case L = 1). Figure 5b shows that for a

lower degree of concavity of φ(L) it is optimal to completely remove

patents. Therefore, the results do not change significantly when the

revenues in the final goods sector depend on patent length.

10. Conclusions

The contribution of this paper to the literature of sequential inno-

vation is twofold. First, it extends the analysis of anticommons to a

dynamic framework. Second, it models the exact role of externalities,

asymmetric information and market power in generating an inefficient

innovative effort under different patent policy arrangements.

We develop a model of sequential innovation to analyze the dy-

namic incentives of innovators and patent holders. There is a sequence
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(a) φ = 0.2, ε = 0.1, γ = 1. (b) φ = 0.2, ε = 0.1, γ = 0.1.

Figure 5. Probability of innovation as a function of
patent length.

of innovations n = 1, 2, . . . such that each innovation builds upon all

prior inventions. Each innovation has a commercial value (the profit it

generates as a final good), which is random and private information of

the innovator, and a deterministic cost of R&D to be developed. We

study three cases: patents, no-patents and patent pools.

With patents, each innovator has to pay licensing fees to previous

innovators, but will also collect licensing revenues from future inno-

vators. We find that the probability of innovation decreases as the

sequence of innovations progresses, converging to zero in the limit.

This is because the accumulation of rights on innovation increases the

total license payments to previous innovators, but expected future li-

censing revenues decrease as a consequence of the lower probability of

innovation.

Without patents, innovators do not have to pay previous innovators,

but they will not be able to charge future innovators either. At the same

time, imitation will be easier so the innovator will only appropriate a

fraction of the commercial value of the innovation. In this case, each

innovator will perform the innovation if the value she appropriates is

larger than the cost of R&D. The probability of innovation will be

constant and higher than in the patents case, unless the degree of

appropriability of the innovation is very low.

When innovations are protected by patents, the formation of a

patent pool increases the probability of innovation. As in Llanes and

Trento (2007), the patent pool takes into account cross-price effects be-

tween the different innovators, and therefore is encouraged to set lower
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licensing fees, but dynamic incentives imply a higher probability of in-

novation than in the static case, which strengthens previous results in

the literature.

We find the socially optimal innovation policy and show that inno-

vation is suboptimal in the three cases studied. In the no-patents case,

there is a dynamic externality: innovators do not take into account

the impact of their decision on the technological possibilities of future

innovators. In the two other cases, the inefficiency is caused by asym-

metric information and market power: patent holders do not know the

value of the innovation, which generates a downward sloping expected

demand for the use of their ideas, and market power implies a price for

old ideas above marginal cost.

We extend the model to an ongoing sequence of innovations (cases

where the sequence of innovations does not stop when one innovation

is not performed). We find that the probability of innovation with

patents is decreasing and goes to zero in the limit, so the Tragedy of

the Anticommons is still verified under this alternative specification.

We also extend the model to patents of finite length, and find that

the probability of innovation converges to some positive value in the

limit. However, we also find that the optimal patent length (the one

that maximizes the probability of innovation) is very small. When

patent length does not affect the revenues of the innovator in the final

goods market, the optimal patent length is zero. When patent length

affects these revenues, innovators should be granted a patent for only

one or two periods, depending on the exact effect of patents on the

commercial value of the innovation.
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CHAPTER 3

Industry Equilibrium with

Open Source and Proprietary Firms

Abstract. I present a model of industry equilibrium to study the
co-existence of Open Source (OS) and Proprietary (P) firms. Two
novel aspects of the model are: (1) participation in OS arises as
the optimal decision of profit-maximizing firms, and (2) OS and
P firms may (or may not) co-exist in equilibrium. Firms decide
their type and investment in R&D, and sell packages composed
of a primary good (like software) and a complementary private
good. The only difference between both kinds of firms is that
OS share their technological advances on the primary good, while
P keep their innovations private. The main contribution of the
paper is to determine conditions under which OS and P co-exist in
equilibrium. Interestingly, this equilibrium is characterized by an
asymmetric market structure, with a few large P firms and many
small OS firms. This finding is consistent with the observations of
recent surveys.

1. Introduction

Collaboration in research enhances the chances of discovery and cre-

ation. This is true not only for scientific discoveries, but also for com-

mercial innovations. However, innovators face incentives to limit the

access of competitors to their innovations. According to the traditional

view in the economics of innovation, innovators innovate because they

obtain a monopolistic advantage over their competitors. Therefore, in-

novators should prevent other from gaining access to their discoveries,

either by keeping them secret or by protecting them with patents.

This view contrasts with the Open Source (OS) development model,

which has been intensively used in the software industry since the 1990s

and in other industries at various points in time, as documented in the

next section. In OS, developers voluntarily choose to disclose their

technological improvements so that they can be copied, used and im-

proved by other innovators free of charge, as long as further advances
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are also kept OS. But if everybody has access to the same technologies,

then how do developers benefit from their collaborations? What do

they receive in exchange for renouncing their monopolistic advantage?

The answer is that OS producers collect most of their revenues from

a complementary good (servicing and support in the case of software)

that they also sell. Still, this leaves open the question of how can OS

firms coexist and compete with Proprietary (P) firms, as the latter

earn revenue from both the sale of software and the complementary

services? Existing literature has yet to address this question, which is

instead the main focus of this paper.

I present a model of industry equilibrium with endogenous technol-

ogy sharing. Firms decide whether to become OS or P, how much to

invest in product development, and the price of their products. For

firms electing the OS regime, a contractual arrangement (such as the

General Public License) forces them to share their improvements to

the main product if they want to benefit from the contributions of

other OS firms. P firms, on the other hand, develop their products on

their own. Both kinds of firms sell a complementary good, the quality

of which depends on the individual investment in the development of

the main good. Consumers value the quality of both goods (vertical

differentiation) but also have idiosyncratic tastes for the products of

different firms (horizontal differentiation).

Depending on parameter values, there are equilibria with both kinds

of firms and equilibria with only OS firms. When the consumer valua-

tion of the complementary good is low in comparison with the valuation

of the primary good, the equilibrium has both kinds of firms. In this

case, the market structure is asymmetric with few large P firms and

many small OS firms. This finding is consistent with the observations

of recent surveys. Seppä (2006) compares both kinds of firms, and

finds that OS firms tend to be younger and generally smaller than P

firms. Bonaccorsi and Rossi (2004) show that the most important mo-

tive for firms to participate in OS projects is that it allows small firms

to innovate.

A second result of the paper is the characterization of product qual-

ity under either regime. Investment in R&D may be very small in an

OS firm, due to the presence of free-riding. However, P firms do not
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share their technological advances, generating a duplication of effort.

As a consequence, either model may yield higher product quality in

equilibrium.

The model shows that when both kinds of firms coexist the products

of P firms are of higher quality than those of OS firms. On the other

hand, when all firms are OS two things are possible: OS may prevent

the entry of a higher quality good or it may result in a product of

higher quality than that a potential P firm. The latter is the case when

the consumers’ valuation of the complementary good is high enough

relative to the valuation of the main good.

Another interesting finding is that, even when the quality of OS

is lower than that of P, average quality increases with the number of

OS firms because this stimulates research by P firms. Investments in

quality by P firms are strategic substitutes, so when a P firm becomes

OS, it decreases its investment in quality and the other P firms respond

by increasing theirs.

Welfare will in general be sub-optimal because of the public good

problem in OS and the duplication of effort of P firms. In Section

4, I perform a welfare comparison of the different market equilibria

depending on the number of firms in OS. The equilibrium may have

too many or too few firms in OS. The latter will happen when average

quality increases with the number of OS firms. In this case, a policy

stimulating OS projects would increase social welfare. When all firms

are OS in equilibrium, on the other hand, there is no other industry

structure with larger welfare (a decrease in the number of OS firms

would decrease social welfare).

The above model assumes symmetric consumer preferences for OS

and P products. In other words, the substitutability between two OS

products is the same than the substitutability between an OS and a

P product. However, given that OS firms sell the same primary good,

their products are likely to be more similar than those of P firms. I

modify the basic model to allow for a higher cross-price elasticity be-

tween OS products by introducing two idiosyncratic taste shocks: one

for the main good and one for the complementary good. OS firms share

the first shock, so they are differentiated only through the complemen-

tary good. In this case, I find that if the substitutability between OS
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products is high enough, there are equilibria with only P firms, and

also multiple equilibria.

The model and the results are important for a variety of reasons.

First, endogenizing the participation decision is crucial for understand-

ing the motivations of commercial firms to participate in OS projects.

Second, the model shows there are forces leading to an asymmetric

market structure, even though all firms are ex-ante symmetric. Third,

the model shows under what conditions OS can overcome free-riding

and produce a good of high quality, even without coordination of indi-

vidual efforts. Fourth, the model shows that even when the quality of

OS software is lower than the quality of P software, an increase in the

number of OS firms may increase total average quality. Finally, the

model allows a welfare comparison of the different equilibria.

1.1. The Software Industry and OS in Detail. There are clear

antecedents of OS in the history of technological change and innova-

tion. Nuvolari (2005), for instance, describes two nineteenth century

episodes with similar characteristics: the iron industry in Cleveland

(UK) and the development of the Cornish pumping engine. In both

episodes, inventors shared their improvements with the rest, which led

to a fast technical advance (see Allen 1983, Nuvolari 2005, for detailed

quantitative analyses). One of the characteristics in common with OS

is the presence of complementarities. Iron industry entrepreneurs were

also owners or had mining rights of the mines in the Cleveland district.

Improvements in the efficiency of blast furnaces lead to an increase in

the value of the iron ore deposit. In the case of the Cornish engine,

technical advances were publicized by mine managers, stimulated to do

so by the owners of these mines.

OS has been used to develop software since the early years of com-

puter science, but gained special revelance in the 1990s, with the suc-

cess of Linux, Apache and Sendmail, among other programs. Software

programmers started to develop software as OS to avoid the restrictions

imposed by P firms on the access to the source code.

OS projects have significant market shares. According to IDC, in

the second quarter of 2007 the market shares of server operating sys-

tems installed in new computer servers were: Microsoft 38.2%, Unix

31.7%, Linux 13.6%, and other 16.5%. This shows that Linux has a
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significant market share in the market for server operating systems.

However, there are reasons to think that Linux’s market share is un-

derestimated by IDC. First, the measurement is a flow, not a stock.

Second, the operating system is very often changed by users in the

years following the acquisition of a computer server and Linux is con-

sidered to run better on old computers. It is also interesting to notice

that most Unix systems nowadays are also OS. If we sum the shares for

Unix-like systems (Unix plus Linux), we get that OS operating systems

have the largest share in the server operating systems market.

The participation of individual developers in OS is still very im-

portant, but the same is true for commercial firms. In the case of

embedded Linux, for example, 73.5% of developers work for commer-

cial firms and contribute 90% of the total investment in code (Henkel

and Tins 2004). Lakhani and Wolf (2005) show that 55% of OS de-

velopers contribute code at work, and these programmers contribute

50% more hours than the rest. Lerner, Pathak, and Tirole (2006) show

that around 30% of OS contributors work for commercial firms (how-

ever, they cannot identify non-US commercial contributors). Moreover,

they show that commercial firms are associated with larger and more

dynamic OS projects (commercial contributors have four times more

sensitivity to the growth of the project).

Firms participate in OS projects because they sell goods and ser-

vices complementary to the code. For instance, IBM sells consultancy

services and specialized complementary software, HP sells personal

computers and computer servers and Red Hat sells training and sup-

port services.

The presence of complementarities in OS has been documented by

Henkel and Tins (2004) and Dahlander (2004). Henkel and Tins present

a survey of embedded Linux developers and show that 51.1% of develop-

ers work for manufacturers of devices, chips or boards and 22.4% work

for specialized software companies. Dahlander finds that the dominant

trend for appropriating the returns of innovation in OS is the sale of a

complementary service.

The sale of a complementary service can indeed be profitable. The

case of Red Hat is illustrative. According to its financial statements, in

fiscal year 2007 Red Hat invested $71 million in R&D, and got over $400
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million in revenues for its subscription and training services. However,

competition is large within the market for support services. Table 1

shows the license and maintenance revenues of the top 5 vendors of

Linux in 2003. These firms collaborate in software development but

are competitors in the market for related support services.

Total Revenue Market Share (%)
Red Hat 69.3 53.5
Novell 29.0 22.4
Turbolinux 11.2 8.6
MandrakeSoft 4.4 3.4
Red Flag 2.7 2.1
Other 13.0 10.0
Total 129.6 100.0

Table 1. Revenues of top 5 Linux vendors in 2003 (mil-
lions of dollars). Source: IDC, 2005.

OS licenses are the instruments guaranteeing the access of develop-

ers to the source code. Some licenses allow further modification of the

source code without imposing any restriction on developers. Restric-

tive OS licenses, on the other hand, require the disclosure of further

improvements to the source code when programs are distributed (pro-

grammers are still allowed to keep their innovations private if the pro-

gram is for personal use). The most popular OS license is the General

Public License (GPL), which is a restrictive license. The GPL is used

by Linux, MySQL, Perl and Java, for example. It is true that some OS

contributors disclose improvements to the source code even when these

modifications are for personal use. However, restrictive licenses are the

most important means for the success of OS projects. For example,

the survey by Henkel and Tins (2004) finds that the main reason why

developers disclose their contributions to the code is because they are

forced to do so by the GPL.

1.2. Related Literature. Previous papers have been mainly con-

cerned with explaining why individual developers contribute to OS

projects, apparently for free (see Rossi 2004, Lerner and Tirole 2005,

for recent surveys). Some of the initial answers have been altruism, per-

sonal gratification and career concerns. The motivations of commercial

OS firms, on the other hand, have been studied less extensively.
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Lerner and Tirole (2005) present a description of OS and identify

directions for further research. Some of the questions related with the

present paper are: (i) what are the incentives of for-profit firms to par-

ticipate in OS, (ii) what development model provides higher quality

and welfare, and (iii) what is the influence of the competitive envi-

ronment in OS. More importantly, these authors remark that direct

competition between P and OS firms has received little attention.

Most papers addressing competition between the two paradigms are

duopoly models of a profit maximizing P firm and a community of not-

for-profit OS developers, selling at marginal cost (Kuan 2001, Mustonen

2003, Bitzer 2004, Gaudeul 2005, Casadesus-Masanell and Ghemawat

2006, Economides and Katsamakas 2006). Introducing profit-seeking

OS firms is important because it allows to perform an analysis of their

product development decisions. To my knowledge, the only papers with

profit maximizing OS firms are Bessen (2006) and Schmidtke (2006).

However, these papers do not deal with direct competition between the

two paradigms.

This paper is also related to the literature of cooperation in R&D.

Kamien, Muller, and Zang (1992) show that free-riding incentives are

so strong that a joint venture where firms share R&D but do not coordi-

nate their R&D levels has a lower total investment than the individual

investment of each one of these firms when there is no cooperation in

R&D. I show that this result can be reversed if the consumer valu-

ation of the complementary good is high enough in comparison with

her valuation of software. Bloch (1995) builds a model of endogenous

association in oligopolies. Firms decide to enter the association se-

quentially, and compete in quantities after the association is formed.

Bloch shows that in equilibrium two competing association of firms

are formed. However, firms do not decide their optimal investments in

R&D, so this model cannot be used to analyze the free-riding incentives

created by association.

2. The Model

2.1. Technology. There are n firms selling packages composed of

a primary good (which is potentially OS) and a complementary private

good. Firms may improve the quality of both goods by investing in a
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single R&D technology. Let xi be the investment in R&D of firm i. The

cost of the investment is c xi, which is a fixed cost, and the marginal

cost of producing packages is zero.

The quality of the primary good depends on the investment of all

firms in the project. For P firms, quality is simply ai = ln(xi). For OS

firms, quality is aos = ln(Σi∈os xi).

The quality of the complementary good is bi = ln(xi) for all firms.

There is a learning effect: firms improve the quality of their comple-

mentary good when they participate more in the development of the

primary good. For example, if a software firm participates more in an

OS project, it gains valuable knowledge and expertise and then can

offer a better support service.

2.2. Preferences. There is a continuum of consumers. Each con-

sumer has income y and buys only one package. Consumer j’s indirect

utility from consuming package i is:

(3.1) vij = α ai + β bi + y − pi + εij,

where α is the valuation of quality of the primary good, β is the val-

uation of quality of the complementary good, pi is price, and εij is an

idiosyncratic shock (unobservable by firms) representing the hetero-

geneity in tastes between consumers. This specification for preferences

allows for vertical (ai and bi) and horizontal (εij) product differentia-

tion.

Each consumer observes prices and qualities and then chooses the

package that yields the highest indirect utility. The total mass of con-

sumers is 1, so aggregate demands are equivalent to market shares.

To obtain closed-form solutions for the demands I make the follow-

ing assumption, which corresponds to the multinomial logit model

(McFadden 1974, Anderson, De Palma, and Thisse 1992):

Assumption 3.1. The idiosyncratic taste shocks εij are i.i.d. ac-

cording to the double exponential distribution:

Pr(εij ≤ z) = exp [− exp [−ν − z/µ]]

where ν is Euler’s constant (ν ≈ 0.5772) and µ is a positive constant.
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Under Assumption 3.1, the market share (demand) of firm i is:

(3.2) si =
exp [ (α ai + β bi − pi) / µ ]∑

exp [ (α ai + β bi − pi) / µ ]
.

The εij have zero mean and variance µ2π2/6, hence µ measures

the degree of heterogeneity between consumers. I will show that the

equilibrium depends on two important relations:

δ =
α + β

µ
, γ =

α

α + β
.

δ measures the relative importance of vertical vs. horizontal product

differentiation and γ represents the relative importance of the primary

good vs. the complementary good (γ can also be interpreted as the

degree of public good of the investment in R&D).

To guarantee the existence of a symmetric equilibrium we need

enough horizontal differentiation relative to vertical differentiation. I

will assume µ ≥ α + β, which is a sufficient condition. Thus δ ∈ [0, 1].

2.3. Game and Equilibrium Concept. The model is a two-

stage non-cooperative game. The players are the n firms. In the first

stage firms decide their type (OS or P), and in the second stage they

make their investment and price decisions (xi, pi). It can be shown that,

in the case of logit demands, equilibrium decisions would be exactly the

same if they were taken sequentially (first xi and then pi).

I want to focus on the decisions of firms, so I will abstract from the

decisions of consumers. Given investments (quality) and prices, each

consumer chooses her optimal package. These decisions are summa-

rized by consumer demands (si) and embedded into the firms’ payoffs:

πi = si pi − c xi.
The equilibrium concept is Subgame Perfect Equilibrium. I will

only analyze symmetric equilibria, i.e. all firms deciding to be of the

same type in the first stage will play the same equilibrium strategy in

the second stage.

3. Solution of the Model

3.1. Second Stage. Let nos be the number of firms deciding to

be OS in the first stage. In the second stage, firms choose pi and xi
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to maximize πi = si pi − c xi, taking as given the demands and the

decisions of other firms.

Working with the first order conditions and imposing symmetry we

get the optimal price:

(3.3) pi =
µ

1− si
,

and the optimal investment in R&D for OS and P firms:

xos =
α + β

c
sos

(
1− γ nos−1

nos(1−sos)

)
,(3.4)

xp =
α + β

c
sp.(3.5)

The term inside the parenthesis of (3.4) represents free-riding: as-

suming sos = sp, OS have less incentives to invest than P because

they can appropriate a smaller fraction of their investment. In other

words, there is a public good problem given that OS are sharing their

technological advances.

From (3.2), we can get the ratio of market shares sos/sp. Intro-

ducing equations (3.3) to (3.5), taking logs and rearranging terms we

get:

(1− δ) ln

(
sos
sp

)
+

1

1− sos
− 1

1− sp
(3.6)

= δ ln

(
1− γ nos−1

nos(1−sos)

)
+ δ γ ln (nos).

This equation says that the difference in market shares depends

on the resolution of the conflict between free-riding and duplication of

effort. To see this, notice that the left hand side is increasing in sos

and decreasing in sp, so the difference in market shares will increase if

the right hand side does. The first term on the right hand side is just

the difference between xos and xp (free-riding). The second term is a

multiplicative effect due to the elimination of the duplication of effort

in OS (collaboration effect).

The second-stage equilibrium is completely characterized by (3.6)

and the condition that the sum of the market shares is equal to 1:

(3.7) nos sos + (n− nos)sp = 1.
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Proposition 3.1. A second-stage equilibrium exists and is unique.

Given nos, the equilibrium market shares solve (3.6) and (3.7).

All proofs are in the Appendix.

3.2. Second-Stage Comparative Statics. In Lemma 3.1 I present

a simple condition to determine which kind of firm will have higher

market share in a second-stage equilibrium.

Lemma 3.1. sp > sos if and only if γ > γ̂(nos, n), and sp < sos in

the opposite case, where γ̂(nos, n) is increasing in nos and n and solves:

γ
nγos

nγos − 1

nos−1

nos
=
n− 1

n
.

The comparison between OS and P quality is equivalent to the

comparison between market shares: if sos > sp, then the value of OS

packages is higher than the value of P packages, and vice versa.

Lemmas 3.2 and 3.3 analyze the effects of changes in δ and γ on sos

(the effects on sp have the opposite sign).

Lemma 3.2. sos is increasing in δ if γ < γ̂(nos, n), and decreasing

in δ in the opposite case.

Lemma 3.2 has a clear interpretation. When δ increases, vertical

differentiation gets more important relative to horizontal differentia-

tion. This means that investing in R&D has a larger effect on demand,

which benefits firms with higher quality products. If γ < γ̂, then the

firms with a higher quality product are the OS firms, and therefore,

their market share increases relative to the market share of the P firms.

The opposite happens when γ > γ̂.

Lemma 3.3. There exists γd ∈ (0, γ̂) such that sos is increasing in

γ for γ < γd, and decreasing in γ for γ > γd.

Lemma 3.3 implies that the graph of sos with respect to γ is hump-

shaped. For low values of γ, collaboration dominates free-riding (in-

vestment is mostly private), so sos is increasing in γ. For high values

of γ, free-riding dominates collaboration and sos is decreasing in γ.

The effects of changes in nos are more difficult to be determined.
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An increase in nos has three effects: (i) free-riding tends to decrease

the market share of OS relative to P, (ii) collaboration tends to increase

the market share of OS relative to P, and (iii) a level effect on the

equilibrium market shares may increase or decrease both market shares.

With respect to (i) and (ii), we know from Lemma 3.3 that collab-

oration dominates free-riding when γ is low, and free-riding dominates

the collaboration when γ is high. To understand (iii), suppose that

for a given nos, P firms have higher market shares. If some P becomes

OS, it will change a large market share for a small market share. The

difference will be distributed among all firms and hence both kinds of

firms will tend to increase their market shares (positive level effect).

The opposite will happen if P firms initially have lower market shares.

The following lemma, together with Lemma 3.1 can be used to

describe the effects of changes in nos.

Lemma 3.4. If sp(nos) < sos(nos), then sp(nos−1) > sp(nos) >

sp(nos+1) (sp is decreasing in nos).

(a) Low γ. (b) Intermediate γ.

(c) High γ.

Figure 1. Effects of changes in nos on market shares.
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There are three cases, depending on the value of γ, which are rep-

resented in Figures 1a to 1c. When γ is low (γ ≤ γ̂(2, n)) collabora-

tion is stronger than free-riding and the level effect is negative. This

implies that sp decreases with nos (by Lemma 3.4) and sos increases

for small nos (collaboration is stronger than the level effect) and de-

creases for large nos (level effect is stronger than collaboration). When

γ is high (γ > γ̂(n − 1, n)), free-riding is more important than col-

laboration and the level effect is positive. Thus, sp increases and sos

decreases and then increases with nos. For intermediate values of γ

(γ̂(2, n) < γ ≤ γ̂(n− 1, n)), collaboration dominates for small nos and

free-riding dominates for large nos, and the level effect is positive for

small nos and negative for large nos.

3.3. First Stage. In the first stage of the game, firms decide

whether to be OS or P, taking as given the decisions of the rest of

firms and forecasting their equilibrium payoffs in the second stage. Let

π(nos) be the second stage equilibrium payoffs when nos firms decide

to be OS. Replacing the second stage equilibrium values of prices and

investments for both kinds of firms we get:

πos(nos) = µ
sos

1− sos

(
1− δ(1− sos) + δγ

nos−1

nos

)
,(3.8)

πp(nos) = µ
sp

1− sp
(1− δ(1− sp)) ,(3.9)

where sos = sos(nos) and sp = sp(nos) are the second stage equilibrium

market shares. Comparing equations (3.8) and (3.9), we can see the

direct effect of collaboration in profits, which is the saving in the in-

vestment cost of OS firms (third term inside the parenthesis of the first

equation).

A number nos of firms in OS is an equilibrium if and only if πos(nos) ≥
πp(nos−1) and πp(nos) ≥ πos(nos+1). The first inequality says that

firms deciding to be OS cannot gain by deviating and becoming P.

The second inequality is a similar condition on the decision of be-

ing P. The equilibrium conditions can be summarized by the function
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f(nos) = πos(nos)− πp(nos−1):

f(nos) = µ
sos

1− sos

(
1− δ(1− sos) + δγ

nos−1

nos

)
(3.10)

−µ s̃p
1− s̃p

(1− δ(1− s̃p)) ,

where sos = sos(nos) and s̃p = sp(nos − 1). Using this function, the

equilibrium conditions can be restated as f(nos) ≥ 0 and f(nos+1) ≤ 0.

The equilibrium may be such that both kinds of firms co-exist (in-

terior equilibrium) or all firms choose to be of the same kind. nos = 0

is always an equilibrium. For nos = 1 to be an equilibrium we need

f(2) ≤ 0. Likewise, for nos = n to be an equilibrium we need f(n) ≥ 0.

Proposition 3.2 (Existence and uniqueness of equilibrium). An

equilibrium for the complete game exists and is unique.

Simulations show that f(2) ≥ 0 for any γ and δ. This means that

it is always profitable to begin an OS project in the case an OS project

does not exist. Suppose that all firms are P and two of them decide to

become OS. If the market share increases as a result of this deviation,

then it is obvious that the deviation is profitable. Suppose instead

that the market share of these two firms decreases as a result of their

collaboration. This means that the two firms had a large cut in their

investment in code. However, their market shares will not decrease as

much, because their investment efforts are now pooled together. As a

consequence, the profit of these firms will increase and they will find it

profitable to start the OS project. This result explains the presence of

OS projects in nearly every category of software.

When firms choose between OS or P, they compare the relative

benefits of collaboration and secrecy. There are two elements associated

with this trade-off. On one hand, free-riding and collaboration affect

the equilibrium market shares, as has been analyzed in the previous

sections. On the other hand, OS firms have a lower investment cost.

Being P will be more profitable than OS only if free-riding is sufficiently

strong as to overcome the positive effects of collaboration.

Lemma 3.5 will prove very important in characterizing the Sub-

game Perfect Equilibrium of the game. In order for an OS firm to find
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it profitable to become P (f(nos) < 0), it has to be the case that the in-

crease in market share from becoming P is large enough to compensate

for the increase in cost. If γ < γ̂(nos−1, n), then OS firms have a larger

market share so it is not profitable for them to deviate (f(nos) > 0).

Corollaries 3.1 and 3.2 are two important implications of this lemma.

Lemma 3.5 (Sufficient condition for positive f). If γ < γ̂(nos−1, n)

then f(nos) > 0.

Corollary 3.1 (Necessary condition for an interior equilibrium).

At an interior equilibrium nos it is necessary that γ ≥ γ̂(nos, n).

Corollary 3.2 (Sufficient condition for an equilibrium with nos = n).

If γ ≤ γ̂(n− 1, n) then there is an equilibrium where all firms decide to

be OS.

Corollary 3.1 states that in any interior equilibrium it has to be the

case that the P firms have a larger market share than OS firms, and

therefore a higher quality product. This is because the market share

of P firms has to be large enough in order to compensate for the larger

cost of investment. For P firms to have a larger market share than OS

firms, in turn, it is necessary that the public good component of the

investment is high enough (γ > γ̂(n− 1, n)).

Corollary 3.2 complements the previous corollary. If the degree of

public good of the investment is low enough, OS firms have a larger

market share for any nos, and therefore all firms decide to collaborate

in the OS project.

Proposition 3.3 and the previous two corollaries completely charac-

terize the equilibrium.

Proposition 3.3 (Necessary and Sufficient condition for equilib-

rium with nos = n). Given n > 3 and δ, there exists γ̄ ∈ (γ̂, 1) such

that f(n) ≥ 0 if and only if γ ≤ γ̄.

Corollaries 3.1 and 3.2 and Proposition 3.3 imply that there are

three kinds of equilibria. If γ > γ̄, then there is an interior equilibrium

with both kinds of firms, where the quality of P goods is higher than

that of OS goods. If γ̂(n−1, n) < γ < γ̄, then all firms decide to be OS.

However, if one of the firms was to become P, then it would produce a

good of higher quality than the OS firms. This means that OS prevents
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the entry of a product of better quality. Finally, if γ ≤ γ̂(n − 1, n),

then the equilibrium has only OS firms, but OS quality is higher than

that of a potential deviator.

Figure 2 shows the regions corresponding to the three equilibria for

different values of n and γ, and for δ equal to 1. We can see that γ̄ < 1

for n ≥ 4. The area corresponding to interior equilibria first increases

but then decreases as n increases. This means that large numbers favor

cooperation, even without coordination of individual investments.

Figure 2. Equilibrium regions.

3.4. OS Licenses, Free-Entry and Profits. In this section I

show there is an economic reason for the provision in OS Licenses (such

as the General Public License) of free-entry into OS projects. Specifi-

cally, the General Public License establishes that any developer is free

to join the OS project, without requiring a minimum contribution to

the project. The only restriction is that whenever modifications to the

program are distributed, they have to be made available to the rest of

developers in the project.

The reason for this kind of provision is simply that OS firms prefer

to compete against other OS firms, rather than competing against P

firms. When a P firm becomes OS, the investment effort is shared

between more firms. Also, if the P product is of better quality, the firm

joining the OS project changes a good of high quality for a good of low

quality, which benefits the rest of OS firms. On the other hand, if the

OS product is initially of better quality, the saving in the investment

cost compensates the competition from a higher quality substitute.

This is interesting because other forms of cooperation in R&D,

like research joint ventures, cross-licenses and patent pools, generally
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limit the access of competitors to the agreement, or have explicit rules

(cross-payments, license fees, etc.) according to which the benefit of

a contributor from joining the agreement depends on her individual

contributions.

Figure 3 shows the profit schedules of P and OS firms for γ = 1,

δ = 1 and n = 10. As nos changes, the profits of both types of firms

increase. For lower values of the parameters γ and δ, the increase in

the profits of OS firms is even larger.

Figure 3. Firm profits as functions of nos.

Notice that the result holds even being the case that OS firms are

direct competitors in the market of software and support. If the firms

were not direct competitors but were benefiting from the development

of the OS program (e.g. HP and Red Hat) the result would be even

stronger. However, the result also depends on the fact that the number

of firms in the industry is fixed. If free-entry into the project would

stimulate the entry of new firms in the industry the result could be

reversed.

Finally, it is interesting to note that for γ large, entry in the OS

project also benefits P firms. This result changes when γ is smaller. In

this case, entry into the OS project diminishes the profits of P firms.

4. Welfare Analysis

One of the advantages of the logit model is that it can be used to

construct a representative consumer whose utility embodies the aggre-

gate behavior of the continuum of users.

Let si be the quantities of each variety consumed by the represen-

tative consumer, and let
∑
si = 1. Total income is y and s0 represents
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consumption of the numeraire. The utility of the representative con-

sumer is:

U =
∑

(α ai + β bi)si − µ
∑

si ln(si) + s0

This utility embodies two different effects. The first term represents

the direct effect from consumption of the n varieties, in the absence

of interactions. The second term introduces an entropy-effect, which

expresses the preference for variety of the representative consumer.

The social welfare function corresponding to this utility function is:

(3.11) W =
∑

(α ai + β bi)si − µ
∑

si ln(si) + y −
∑

c xi,

and the Social Planner’s problem is to maximize (3.11) subject to∑
si = 1. It is obvious that the Social Planner would have all the

firms sharing their improvements to the primary good. Also, given the

concavity and symmetry of the utility function, the social planner will

set si = 1/n for all i. To determine the optimal investment, the Social

Planner maximizes:

W = α ln(nx∗) + β ln(x∗) + µ ln(n) + y − n c x∗,

which leads to an optimal investment equal to x∗ = (α + β)/c n.

Not surprisingly, product quality is suboptimal regardless of the

number of OS and P firms. The reasons have been previously exposed.

In OS free-riding leads to a lower investment in R&D. P firms, on the

other hand, do not share their improvements on the primary good,

generating a duplication of effort.

We know that product quality is suboptimal. However, it would be

interesting to rank the different equilibria in terms of welfare. Specifi-

cally, it is interesting to analyze what is the effect of changes in nos on

welfare to see if the equilibrium number of firms in OS is too low or

too high from a social point of view.

Simulations show that when γ is high, social welfare increases,

reaches a maximum and then decreases with nos, but this welfare max-

imum depends on the value of δ. As δ increases, the number of firms

in OS which maximizes welfare also increases. When γ is low, on the

other hand, welfare increases monotonically and is maximized when all

firms are OS.
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Figure 4 shows W and f(nos) for γ = 1, δ = 1 and n = 10. The

equilibrium number of firms in OS is nos = 6, but maximum welfare

is not reached until nos = 8 (simulations show that in general the

maximum for γ = 1 and δ = 1 is nos = n − 2 for any n). The

effect driving the increase and later decrease in welfare is the change

in average quality. Even though OS firms invest less in quality than

P firms when γ is high, an increase in the number of OS firms may

increase average quality because it stimulates the investment of P firms

(quality investments are strategic substitutes for P firms).

Figure 4. Welfare analysis of the industry structure.

As δ decreases (for high γ), the value of nos at which maximum

welfare is attained decreases. Figure 5 shows the welfare schedule for

δ = 0.8. The equilibrium number of firms in OS increases, but the

welfare maximizing number of firms decreases. The reason is that when

δ increases, vertical differentiation has a smaller impact on demand

and firms tend to be more similar. Consequently, as nos increases the

increase in quality is smaller than in the previous case.

Figure 5. Welfare analysis of the industry structure.
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When γ is low, the welfare schedule increases monotonically. Figure

6 shows the equilibrium and welfare maximum for γ = 0.8, δ = 0.8 and

n = 10. Welfare is maximized when nos = n. In this case, the factor

driving the large increase in welfare is the reduction in the investment

cost.

Figure 6. Welfare analysis of the industry structure.

The above analysis implies that when γ is high, it is socially op-

timal to keep both kinds of firms in the market. In this case, the

equilibrium number of firms in OS may higher or lower than optimal.

This will depend on the strength of horizontal product differentiation

in comparison with vertical differentiation. When γ is low, on the

other hand, the equilibrium has only OS firms, which is optimal from

a welfare point of view.

5. Higher Substitutability Between OS Products

Given that OS packages share the same primary good, they are

likely to be more similar than P packages. To introduce this difference

in the degree of substitutability, I use a nested logit model (Ben-Akiva

1973). This adds an element of endogenous horizontal differentiation to

the trade-off between collaboration and secrecy. By becoming P, firms

get their product more differentiated in comparison with OS firms.

The main consequences are that (i) the equilibrium number of firms

in OS will be smaller than in the previous model, (ii) there are equi-

libria with only P firms, and (iii) there are parameter values leading to

multiple equilibria.

Consumers are heterogeneous in two different dimensions: they

have idiosyncratic tastes for the primary good and idiosyncratic tastes
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for the complementary good. Differences in substitutability will be

driven by the relative strength of these two forces. Following the nested

logit representation of Cardell (1997), consumer j’s indirect utility from

consuming package i, based on primary good k is:

vij = α ak + β bi + y − pi + σ ηkj + (1− σ) εij,

where ηkj is a primary good idiosyncratic component, and σ ∈ [0, 1]

weighs the different idiosyncratic components. Assumption 3.2 replaces

Assumption 3.1 for the standard logit case.

Assumption 3.2. The idiosyncratic support components εij are

i.i.d. according to the double exponential distribution with scale param-

eter µ. The idiosyncratic software components ηkj are i.i.d. according

to a distribution such that σ ηkj + (1− σ) εij is distributed double expo-

nential with scale parameter µ.

Assumption 3.2 implies that the horizontal differentiation term σ ηkj+

(1 − σ) εij has the same distribution than εij in the previous model.

Cardell shows there is a unique distribution for ηkj such that Assump-

tion 3.2 holds.

The parameter σ determines the relative strength of the horizontal

differentiation forces. As σ increases, consumers get more differentiated

in their tastes for the primary good, and less differentiated in their

preferences for the complementary good. When σ = 0 consumers only

have idiosyncratic preferences for the complementary good, and the

model becomes the standard logit model of previous sections. When

σ = 1 consumers only have idiosyncratic preferences for the primary

good, and all OS firms sell a homogeneous good.

The market share of a P firm is:

(3.12)

sp =
exp

(
αai+β bi−pi

µ

)
exp

(
αaos
µ

) [∑
j∈OS exp

(
β bj−pj
(1−σ)µ

)]1−σ
+
∑

j∈P exp
(
αaj+β bj−pj

µ

) .
This market share is increasing in σ. The market share of an OS

firm can be decomposed in the following way:

(3.13) sos = si|os Sos,

79



where si|os is the proportion of consumers who buy the complementary

good from firm i given that they buy the OS primary good, and Sos is

the aggregate market share of OS firms. The expression for si|os is:

si|os =
exp [ (β bi − pi) / (1− σ)µ ]∑

j∈OS exp [ (β bi − pi) / (1− σ)µ ]
.

Once consumers decide to buy an OS package, differences in the quality

of the primary good do not play any role in the decision of which

complementary good to buy. The aggregate market share of OS firms

is:

Sos =
exp

(
αaos
µ

) [∑
j∈OS exp

(
β bj−pj
(1−σ)µ

)]1−σ

exp
(
αaos
µ

) [∑
j∈OS exp

(
β bj−pj
(1−σ)µ

)]1−σ
+
∑

j∈P exp
(
αaj+β bj−pj

µ

) ,
which is decreasing in σ.

The optimal price and investment of P firms have the same func-

tional forms as before. The optimal price and investment effort of OS

firms become:

pos = µ

(
1− sos +

σ

1− σ
nos − 1

nos

)−1

,(3.14)

xos =
α + β

c
sos

1− γ

1− σ
nos−1

nos

(
1− sos + σ

1−σ
nos−1
nos

)
 .(3.15)

From (3.12) and (3.13), we can get the ratio of market shares sos/sp.

Introducing prices and investments, taking logs and rearranging terms

we get:

(1−δ) ln
(
sos
sp

)
+

1
1− sos + σ

1−σ
nos−1
nos

− 1
1− sp

(3.16)

= δ ln

1− γ

1−σ
(nos−1)/nos(

1− sos + σ
1−σ

nos−1
nos

)
+ (δ γ − σ) ln (nos).

Proposition 3.4 shows that the equilibrium depends in δ and γ, as

before, but also on the parameter σ, which represents the difference in

heterogeneity between OS and P firms.

Proposition 3.4. A second-stage equilibrium for the nested model

exists and is unique. Given nos, the equilibrium market shares solve

(3.16) and (3.7).
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Comparing equations (3.6) and (3.16), we can see that the higher

substitutability between OS varieties has three effects on equilibrium

market shares. First, there is a lower investment due to the lower re-

turn to investment (first term on the right hand side of 3.16). Second,

there is a direct negative effect on the average value of the complemen-

tary good (second term on the right hand side of 3.16). Consumers

care for variety, and therefore the value of choosing an OS package

decreases when the complementary good becomes less differentiated.

Third, OS firms will set a lower price in equilibrium because of higher

substitutability (second term on the left hand side of 3.16). The first

two effects tend to reduce the market share of OS relative to P, and

the third effect tends to increase it.

Figure 7 shows the effects of the nesting on the second stage equi-

librium for γ = 0.5, δ = 0.5, n = 10 and nos = 5. Not surprisingly, we

can see that sos decreases and sp increases as σ increases, because of

the higher substitutability between OS varieties.

Figure 7. Effect of a change in σ on market shares.

With respect to the equilibrium of the first stage of the game, there

are three interesting observations to be made. First, as σ increases for

given γ (OS varieties become more similar), the equilibrium number of

firms in OS decreases (Figure 8a). Second, if σ is very high with respect

to γ, it can even be the case of an equilibrium with all P firms (Figure

8b). Third, there are some values of the parameters for which the

model exhibits multiple equilibria (in Figure 8c there is an equilibrium

with nos = 2 and another equilibrium with nos = 10). In this case,

there may be a coordination problem if the OS project fails to attract

a large number of contributors.
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(a) Effect of a change in σ. (b) All P Equilibrium.

(c) Multiple Equilibria.

Figure 8. Nested logit equilibrium.

6. Conclusion

I have presented a model of industry equilibrium with endogenous

sharing of innovation. Firms decide whether to become OS or P and

how much to invest in R&D. OS firms share improvements to the source

code and P firms develop the software on their own. Both kinds of firms

sell a complementary good the quality of which depends on individual

R&D investment. Consumers value the quality of software and sup-

port (vertical differentiation) but also have idiosyncratic tastes for the

different varieties (horizontal differentiation).

The paper shows that the decision to develop technologies as OS

can arise endogenously in an industry in which both OS and P firms co-

exist. My main contribution is to prove the existence of an equilibrium

with an asymmetric market structure, even though all firms are ex-

ante symmetric. When both firms co-exist, the investment of a single

P firm is larger than the sum of investments of all the OS firms. OS

firms compensate the lower market share and price with a lower cost

of developing the software.
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The results depend on the existence of enough horizontal differ-

entiation relative to vertical differentiation. When this assumption is

relaxed to allow for a higher substitutability between OS goods, the

equilibrium number of firms in OS decreases. When OS goods become

nearly homogeneous the equilibrium has all firms deciding to be P. Mul-

tiple equilibria are also possible under this alternative specification.

Appendix A: Proofs of Theorems in Text

Proposition 3.1. A second-stage equilibrium exists and is unique. Given
nos, the equilibrium market shares solve (3.6) and (3.7).

Proof. The first order conditions with respect to pi and xi are:

∂πi
∂pi

=
∂si
∂pi

pi + si ≤ 0 with equality if pi > 0,(3.17)

∂πi
∂xi

=
∂si
∂xi

pi − c ≤ 0 with equality if xi > 0.(3.18)

Assume an interior equilibrium exists so that the first order conditions hold
with equality. Working with equation (3.17) we get the optimal price:

(3.19) pi = µ/(1− si).

Equation (3.19) holds for both kinds of firms (OS and P). In order to
find the optimal number of programming hours we need to calculate ∂si/∂xi,
which in the case of OS firms is:

∂si
∂xi

=
si(1− si)

µ

(
α
∂a

∂xi
+ β

∂b

∂xi

)
−

∑
j∈OS−i

α
sisj
µ

∂a

∂xi
,

and in the case of P firms becomes:
∂si
∂xi

=
si(1− si)

µ

(
α
∂a

∂xi
+ β

∂b

∂xi

)
.

Here we can see that the difference between both kinds of firms is the
public good nature of a for OS firms. The improvement in the quality of the
primary good due to firm i’s investment benefits the rest of OS firms and
therefore the increase in market share is less than what it would be if the
firm was P.

Imposing symmetry and introducing these expressions in 3.18 we get:

xos =
1
c
sos

(
α+ β − α nos−1

nos

1
1− sos

)
,(3.20)

xp =
1
c
sp (α+ β),(3.21)
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and the relation of optimal investments in equilibrium:

xos
xp

=
sos
sp

(
1− α

α+ β

nos−1
nos

1
1− sos

)
.(3.22)

From 3.2 we get that the ratio of market shares between OS and P firms
is:

sos
sp

= exp
[
αaos + β bos − αap − β bp + pp − pos

µ

]
,(3.23)

ln
(
sos
sp

)
=

1
µ

∆ +
1

1− sp
− 1

1− sos
,(3.24)

where ∆ = αaos + β bos − αap − β bp represents quality differences. From
the definitions of a and b:

∆ = (α+ β) ln
(
xos
xp

)
+ α ln (nos).(3.25)

From equations (3.22), (3.24) and (3.25), we get equation (3.6), which
is an implicit equation determining the relation of market shares between
OS and P firms in equilibrium. This equation, together with the equation
establishing that the sum of the market shares is equal to 1, completely
characterizes the equilibrium.

To show existence and uniqueness, we need to prove two things: (1)
there is only one fixed point of the system of equations in Proposition 3.1,
and (2) the profit function is quasiconcave.

Let’s first show there is only one fixed point in term of equilibrium
market shares. Define the function g(sos) by plugging equation (3.7) in
equation (3.6).

g(sos) = (1− δ) ln
(

(n− nos)sos
1− nossos

)
− δ ln

(
(1− γ) + γ

1− nos sos
(1− sos)nos

)
+

(3.26)

− δ γ ln(nos)−
n− nos

1 + nos(1− sos)− n
+

1
1− sos

.

By construction, sos solves equations (3.6) and (3.7) if and only if g(sos) = 0.
Existence follows from a standard application of the mean value theorem.
First, limsos→0 g(sos) = −∞ and limsos→ 1

nos

g(sos) = ∞. Then, continuity

of g implies there exists at least one sos such that g(sos) = 0. Next, I will
show there exists only one such sos. For this, it is sufficient to show that g
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is strictly increasing, for which I will calculate its derivative:

∂g

∂sos
=

1− δ
sos(1− nos sos)

+
δ γ (nos−1)/(1− sos)

(1− γ)(nos−1) + 1− sos nos
+

+
(n− nos)nos

(1 + nos(1− sos)− n)2
+

1
(1− sos)2

.

All terms are positive because sosnos ≤ 1. It follows there exists a unique
(sos, sp) solving the system of equations.

To prove that the profit function is concave at the equilibrium candidate,
I will evaluate the determinant of the Hessian of the profit function at the
equilibrium price and market share, and show that it is positive definite.
The determinants of the Hessian of both kinds of firms are:

|Hp| =
(α+ β) s2

p

µx2
p

(
1− (α+ β) (1− sp)2

µ

)
,

|Hos| =
s2
os

µx2
os

((
1− nos sos

(1− sos)n2
os

α+ β

)
− (1− sp)2

µ

(
1− nos sos

(1− sos)nos
α+ β

)2
)
.

A sufficient condition for both determinants to be positive is µ ≥ α+β, which
has been assumed throughout the paper, which means that the concavity
of the profit function at the equilibrium is guaranteed for both kinds of
firms.

Lemma 3.1. sp > sos if and only if γ > γ̂(nos, n), and sp < sos in the
opposite case, where γ̂(nos, n) is increasing in nos and n and solves:

γ
nγos

nγos − 1
nos−1
nos

=
n− 1
n

.

Proof. In order to prove the first part of the lemma we only have to
check the sign of g

(
1
n

)
, where g is defined in (3.26). If g

(
1
n

)
< 0, then

sos > 1/n and therefore sos > sp.

g

(
1
n

)
= −δ

(
ln
(

1− γ n

n− 1
nos−1
nos

)
+ γ ln (nos)

)
.

g
(

1
n

)
< 0 if and only if:

ln
(

1− γ n

n− 1
nos−1
nos

)
> −γ ln (nos),

1− γ n

n− 1
nos−1
nos

> n−γos .

Rearranging this expression we get the desired result.
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In order to show that γ̂(nos, n) is increasing in n and nos, let h(γ, nos) =
γ nγos
nγos−1

nos−1
nos

. Computing the derivatives:

∂h

∂γ
=

nγos
(nγos − 1)2

nos−1
nos

(nγos − 1− γ ln (nos))(3.27)

∂h

∂nos
=

γ

n2−γ
os (nγos − 1)2

(nγos − 1− γ(nos−1))(3.28)

First, I will show that ∂h
∂γ ≥ 0, which is enough to determine that γ̂

is increasing in n. ∂h
∂γ ≥ 0 if and only if nγos − 1 ≥ ln(nγos). Let x = nγos,

f1(x) = x − 1 and f2(x) = ln(x). x ranges from 1 to nos. When x = 1,
f1 = f2, but then f1 grows faster than f2 for any x. This means that
nγos − 1 ≥ ln(nγos) and ∂h

∂γ ≥ 0.
Next, I will show that ∂h

∂nos
≤ 0, which implies that γ̂ is increasing in nos

following a simple application of the implicit function theorem. ∂h
∂nos

≤ 0 if
and only if γ (nos−1) ≥ nγos−1. Let g1(γ) = γ (nos−1) and g2(γ) = nγos−1. It
is easy to check that g1(0) = g2(0), g1(1) = g2(1), and that both functions are
increasing but g2 is strictly convex and g1 is linear. Therefore, g1(γ) ≥ g2(γ)
and ∂h

∂nos
≤ 0.

Lemma 3.2. sos is increasing in δ if γ < γ̂(nos, n), and decreasing in δ

in the opposite case.

Proof. Suppose γ < γ̂. Then, by lemma 3.1, h(nos, γ) < (n − 1)/n
and s∗os > 1/n in equilibrium. Let partial derivatives of g be denoted by
subscripts, where g is defined in (3.26). By the implicit function theorem,
∂sos/∂δ = −gδ/gsos . In the proof of proposition 3.1 it has been shown that
gsos > 0. Next, I will determine the sign of gδ. It can be shown that gδ
is decreasing in sos, then if gδ(1/n) ≤ 0, and given that s∗os > 1/n, we can
deduce that gδ(s∗os) ≤ 0. Let us compute gδ(1/n):

gδ(1/n) = − ln (nγos)− ln
(

(n− 1)nos − n(nos−1)γ
(n− 1)nos

)
.

This expression in negative if and only if,

(n− 1)nos
nγos ((n− 1)nos − n(nos − 1)γ)

< 1.

Rearranging terms, this expression is equivalent to h(nos, γ) < (n − 1)/n
which holds by assumption. Thus gδ(s∗os) ≤ 0 and ∂sos

∂δ ≥ 0. The proof for
γ > γ̂ is analogous, but reversing the inequalities.

Lemma 3.3. There exists γd ∈ (0, γ̂) such that sos is increasing in γ for
γ < γd, and decreasing in γ for γ > γd.
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Proof. By the implicit function theorem, ∂sos/∂γ = −gγ/gsos , where
g is defined in (3.26). We know gsos > 0. With respect to gγ :

gγ = ln (nos)−
nos − 1

γ + (1− sos − γ)nos

Therefore, ∂sos/∂γ = 0 when gγ = 0. Solving for the value ŝos that makes
gγ = 0 we get:

ŝos =
ln (nos)(nos(1− γ) + γ) + 1− nos

nos ln (nos)

Introducing this in g = 0 we get an equation determining the value γd that
makes the derivative equal to zero.

To prove that to the right of γd the graph of sos(γ) is decreasing, assume
this is not the case, so gγ > 0. Then, for γ > γd it has to be the case that
sos > ŝos, but this implies that gγ < 0, which is a contradiction. This means
that ∂sos/∂γ < 0 for γ > γd. A similar reasoning implies that ∂sos/∂γ > 0
for γ < γd.

Lemma 3.4. If sp(nos) < sos(nos), then sp(nos−1) > sp(nos) > sp(nos+1)
(sp is decreasing in nos).

Proof. Restating equilibrium equation (3.26) in terms of sp:

g̃(sp) =(1− δ) ln
(

1− (n− nos)sp
nossp

)
+

nos
nos − 1 + (n− nos)sp

− 1
1−sp

− δ ln
(

1 +
(nos − 1)γ

nos − 1 + (n− nos)sp

)
− γδ ln (nos)

g̃ is continuous and differentiable in sp and nos, and continuously de-
creasing in sp, with g̃(0) =∞ and g̃(1/(n−nos)) = −∞. Therefore, there is
some point s∗p where g̃ crosses the axis, and this determines the equilibrium
level of sp as a function of nos.

Assume for the moment that nos can take non-integer values. I will
prove that s∗p < 1/n implies ∂sp/∂nos < 0. To do this I will proceed in three
steps.

First, by the implicit function theorem, ∂sp/∂nos = −∂g̃nos/g̃sp but
g̃sp < 0, so the sign of the derivative is equal to the sign of g̃nos. Second, we
know that g̃ is continuously decreasing in sp. It can be shown that g̃nos is
continuously increasing in sp. Therefore, if g̃(1/n) ≤ 0 and g̃nos(1/n) ≤ 0,
then g̃nos(s∗p) < 0. Finally, it is straightforward to calculate g̃n(1/n):

g̃n(1/n) = − δ γ
nos

(
1 +

n

nos − n(nos(1− γ) + γ)

)
.
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It is easy to show that g̃n(1/n) ≤ 0 if and only if k(γ, nos) < (n − 1)/n,
where:

k(γ, nos) =
1 + (nos − 1)γ

nos
.

However, k(γ, nos) ≤ h(γ, nos), so h(γ, nos) < (n− 1)/n implies k(γ, nos) <
(n− 1)/n. Therefore, if s∗p < 1/n then ∂sp/∂nos < 0.

Let us now treat nos as an integer and prove that sp(nos) > sp(nos+1).
Given that ∂sp/∂nos is negative at sp(nos), then sp(nos) > sp(nos + ε) for ε
positive and arbitrarily small. But then sp(nos+ε) < 1/n and so ∂sp/∂nos <
0 at sp(nos + ε). Repeating this argument for all values between nos and
nos + 1, we get that sp is continuously decreasing in all the interval and
therefore sp(nos) > sp(nos+1).

To show that sp(nos− 1) > sp(nos), assume this inequality does not
hold. This means that sp(nos−1) < sp(nos) < 1/n, and so ∂sp/∂nos ≤ 0 at
sp(nos−1). But the previous argument implies that sp(nos−1) > sp(nos),
which is a contradiction.

Proposition 3.2 (Existence and uniqueness of equilibrium). An equi-
librium for the complete game exists and is unique.

Proof. For nos = 1 to be an equilibrium we only need f(2) ≤ 0. Like-
wise, for nos = n to be an equilibrium we only need f(n) ≥ 0. In order to
have an equilibrium with both kinds of firms (1 < nos < n), we need that
f(nos) ≥ 0 and f(nos+1) ≤ 0 at the equilibrium nos. If f(2) ≥ 0 and f(n) ≤ 0
then it is guaranteed that there is at least one such equilibrium. Therefore,
existence of an equilibrium with 1 ≤ nos ≤ n is guaranteed. Simulations
show that the equilibrium is unique for any value of the parameters.

Lemma 3.5 (Sufficient condition for positive f). If γ < γ̂(nos−1, n) then
f(nos) > 0.

Proof. Rearranging f(nos) and dividing by µ we get:

f(nos)
µ

=
sos

1− sos
(1− δ(1− sos))−

s̃p
1− s̃p

(1− δ(1− s̃p)) + δγ
sos

1− sos
nos−1
nos

where sos = sos(nos) and s̃p = sp(nos−1). The value of µ does not influence
the sign of f . The first two terms have the same functional form and are
increasing in s. The last term is always positive. Therefore, if sos(nos) ≥
sp(nos−1), then f(nos) > 0. A sufficient condition is that sos(nos−1) ≥ 1/n
and sos(nos) ≥ 1/n, which is equivalent to γ < γ̂(nos−1, n) and γ < γ̂(nos, n).
However, γ̂(nos, n) is decreasing in nos, so γ < γ̂(nos−1, n) implies f(nos) >
0.
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Corollary 3.1 (Necessary condition for an interior equilibrium). At
an interior equilibrium nos it is necessary that γ ≥ γ̂(nos, n).

Proof. For an interior equilibrium at nos we need that f(nos) ≥ 0 and
f(nos+1) ≤ 0, but Proposition 3.5 implies that for f(nos+1) ≤ 0 we need
γ ≥ γ̂(nos−1, n).

Corollary 3.2 (Sufficient condition for an equilibrium with nos = n).
If γ ≤ γ̂(n − 1, n) then there is an equilibrium where all firms decide to be
OS.

Proof. If γ ≤ γ̂(n − 1, n) then f(n) ≥ 0, so if nos = n then no firm
would gain by becoming a P firm.

Proposition 3.3 (Necessary and Sufficient condition for equilibrium
with nos = n). Given n > 3 and δ, there exists γ̄ ∈ (γ̂, 1) such that f(n) ≥ 0
if and only if γ ≤ γ̄.

Proof. µ does not influence the sign of f(nos), so I will assume µ = 1
for the rest of this proof. We know that f(n) > 0 for γ < γ̂(n − 1, n). We
need to determine the sign of f(n) for the rest of values of γ. When nos = n,
sos = 1/n. Therefore,

(3.29) f(n) =
1

n− 1
− δ(1− γ)

n
− s̃p

1− s̃p
(1− δ(1− s̃p)) ,

where s̃p = sp(n− 1). We need to find the value of s̃p that makes f(n) = 0.
There are two roots of this equation. The only positive root is:

s̃p =
−n2(1− δ)− (1− γ)δ − nγδ +

√
n4 − 2n2 z + z2

2δ n (n− 1)

where z = δ (n− 1) (n− 1 + γ). The corresponding value for sos(n− 1) is:

s̃os =
n2 + s−

√
n4 − 2n2 z + z2

2δ n (n− 1)2

Plugging this value in the equilibrium condition (3.26) and solving for γ we
get the value γ̄ where f(n) = 0. Lemma 3.5 implies that γ̄ ≥ γ̂(n − 1, n).
Lemma 3.3 implies that ∂s̃p/∂γ > 0 in the relevant area. This means that
γ̄ is the unique value of γ such that f(n) = 0.

To finish the proof we need to show that f(n) > 0 for γ < γ̄ and f(n) < 0
for γ > γ̄. Given the continuity and monotonicity of sp, it suffices to show
there is some value to the right or to the left of γ̄ such that these inequalities
hold.

Consider first the case of γ < γ̄. We know that at γ = γ̂(n − 1, n),
f(n) > 0. This proves that f(n) > 0 for γ < γ̄. For γ > γ̄, consider γ = 1.
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When γ = 1, the investment of OS firms is very low, and P firms have the
largest advantage. In this case, f(n) < 0, which proves that this inequality
holds for any γ > γ̄.

Proposition 3.4. A second-stage equilibrium for the nested model exists
and is unique. Given nos, the equilibrium market shares solve (3.16) and
(3.7).

Proof. The first order conditions are (3.17) (3.18). Assume that an in-
terior equilibrium exists so that the first order conditions hold with equality.
Equilibrium prices and effort for P firms are identical to the logit model so I
will focus on the OS firms. Let’s first work with the equation corresponding
to prices. In the case of OS firms the partial derivative of prices with respect
to market shares is

∂si
∂pi

= − 1
(1−σ)µ

si(1− σ si|os − (1−σ) si).

Then from the equation (3.17) and imposing symmetry we get equation
(3.14). In order to find xos we need to calculate ∂si/∂xi for OS firms:

∂si
∂xi

=
α

µ

si(1− si)∑
j∈OS xi

+
β

(1−σ)µ
si(1− σ si|os − (1−σ) si)

xi
.

From equation (3.18) and imposing symmetry we get equation (3.15), and
the relation of optimal investments in equilibrium:

xos
xp

=
sos
sp

1− γ

1−σ
(nos−1)/nos(

1− sos + σ
1−σ

nos−1
nos

)
(3.30)

The ratio of market shares between OS and P firms is:
sos
sp

= n−σos exp
[
αaos + β bos − αap − β bp + pp − pos

µ

]
(3.31)

ln
(
sos
sp

)
= −σ lnnos +

1
µ

∆ +
1

1− sp
− 1

1− sos + σ
1−σ

nos−1
nos

(3.32)

where ∆ = αaos + β bos − αap − β bp represents quality differences. From
the definitions of a and b:

(3.33) ∆ = (α+ β) ln
(
xos
xp

)
+ α ln (nos)

From equations (3.30), (3.32) and (3.33), we get equation (3.16), which
is an implicit equation determining the relation of market shares between
OS and P firms in equilibrium. This equation, together with the equation
establishing that the sum of the market shares is equal to 1, completely
characterizes the equilibrium.
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Seppä, A. (2006): “Open Source in Finnish Software Companies,”

Discussion Papers 1002, The Research Institute of the Finnish Econ-

omy.

92


	Cover
	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Resumen
	Chapter 1. Anticommons in Sequential Innovation
	1. Introduction.
	2. The model.
	3. Equilibrium.
	4. Sequential Innovation, Patent Policy and Welfare.
	5. Extensions.
	6. Conclusions.
	Bibliography

	Chapter 2. Dynamic Incentives in a Model of Sequential Innovation
	1. Introduction
	2. Innovation with patents
	3. Innovation without patents
	4. Patent pools
	5. Comparison
	6. Socially Optimal Innovation
	7. Externalities and Optimal Transfers
	8. Ongoing innovation
	9. Finite Patents
	10. Conclusions
	Bibliography

	Chapter 3. Industry Equilibrium with Open Source and Proprietary Firms
	1. Introduction
	2. The Model
	3. Solution of the Model
	4. Welfare Analysis
	5. Higher Substitutability Between OS Products
	6. Conclusion
	Appendix A: Proofs of Theorems in Text
	Bibliography


