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O. ABSTRACT 

This paper proposes an equilibrium concept for the classes of 

environments in which players can cornmunicate with each other but cannot 

rnake binding agreernents. This Cornmunication-proof equilibrium is intended 

to be regarded as an extension of both Coalition and Renegotiation-proof 

equilibria. Conceptual foundations for this particular definition are 

widely discussed as it is confronted with other definitions in this class of 

environments. The definition is extended to infinite horizon garnes using 

the von Neumann and Morgenstern's concept of abstract stable sets. 

l. INTRODUCTION 

Traditionally, garnes have been divided in two classes, cooperative and 

non cooperative. What defines cooperation is the players' capability to 

cornmunicate and rnake binding cornmitrnents, whereas the lack of these 

abilities leads to the non cooperative scenarios. But, of course, two 

classes of garnes cannot exhaust the possibilities of a division that is rnade 

upon two different characteristics. 

Recently, rnany works have been dedicated to the class of environments 

in which players can freely cornmunicate with each other, but cannot rnake 

binding agreernents. The Coalition-Proof Nash equilibrium (CPNE) and 

different Renegotiation-Proof equilibria (RPE) have been defined as 

reasonable solution concepts for sorne particular situations. 

Bernheirn, Peleg and Whinston (1986) (frorn now on B,P&W) defined the 

1 





CPNE for normal form games in the spirit of the Nash equilibrium; since all 

players move simultaneously, they allow for a deviating coalition that can 

take as given the opponent coalition's strategy; but when a first coalition 

considers whether to deviate, it should know that a subcoalition may 

consider further deviations, and so 
1 

on . Despite the fact that it is 

believed that the CPNE may not recognize all possible deviations that can 

"credibly" occur, it has been widely accepted as a "consistent" attempt to 

describe coalitional behavior in games of simultaneous moves. 

In multi-stage games, the definition of a RPE has been studied in 

severa1 works. The idea is that p1ayers wi11 not submit to a "grim" 

strategy in a subgame if they can renegotiate to a better equi1ibrium for 

a11 of them. For finite horizon games, backwards induction a110ws for a 

natural definition of RPE, the Pareto Perfect equi1ibrium, given by Bernheim 

and Ray (1989) (B&R). Farre1 and Maskin (1989) (F&M), Bernheim and Ray 

(1989) and Asheim (1988) extended this concept to infinite horizon games in 

different ways; but no one of them has provided a genera11y accepted 

definition. 

In al1 the 1iterature of renegotiation-proof, on1y the coa1ition of a11 

p1ayers can renegotiate. However, as pointed out by F&M, "a potentia1 

improvement by a11 p1ayers needs not be a prerequisite to renegotiation; a 

proper subset may profit from renegotiating by themse1ves." 

B, P&W extended the CPNE to games in extensive form (the Perfect1y 

Coa1ition-Proof Nash equi1ibrium, PCPNE); but, as it wi11 be argued, it does 

not fu11y capture the idea of renegotiation. 

1 The earlier definition of Strong Nash equilibrium in Aumann (1959) 
a110ws for coa1itional deviations even if they are not irnmune to further 
deviations. 

2 



The purpose of this paper is to define an equilibrium that may be 

regarded as both coalition and renegotiation proof; the Cornrnunication-Proof 

equilibrium (Com-PE). Following recornrnendations in Abreu and Pearce (1989), 

conceptual foundations for this particular definition wi11 be discussed (in 

the sense of being explicit about the cornrnunication process and the way in 

which players renegotiate and deviate). 

To better understand the discussion, let us consider the examp1e in 

figure 1 (this examp1e is in Peleg (1988)): 

FIGURE 1 

It is straightforward to check that and 

B=(1 1 ,12,r*1,r3 ) 

pure strategies. 

are the only Subgame Perfect equilibria of this game in 

If, for whatever reason, B is proposed, the three 

players have a clear incentive to renegotiate to A at the subgame in which 

player 2 moves. No similar deviation by the grand coalition can be found in 

A. This renegotiation process isolates A as the only PPE in this game. 

It can be shown (Peleg 1988) that this game has no PCPNE. According to 

definition 5 below, it has to be checked that the proposed strategy profile 

is a PCPNE in all subgames and in all games induced by the strategy of any 

subset of players. B cannot be a PCPNE by the argument above and because 

(r
2

,1*1,13) is a PCPNE in the game induced by r
1

. To show that A is not 

a PCPNE, consider the game induced by r
2 

(figure 2): 

FIGURE 2 
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The coalition forrned by players 1 and 3 will clearly "renegotiate" frorn 

the strategy profile induced by A in this garne, to 

(r
l

,r*1,r
3
), since this is a PCPNE in this induced garne, it is enough to 

rule out A as a PCPNE. 

A rnain objection can be pointed out at this rnornent: when considering a 

deviation, taking as given the opponents' strategies is a natural assumption 

only if those strategies and the deviation are played sirnultaneously. If 

part of the deviation can be observed by sorne opponent, the possibility of a 

reaction by the opponents cannot be ruled out. In the exarnple, after r
l

, 

player 2 observes the deviation and should be able to prevent the path 

that, after all, is not an equilibrium. The precise way in 

which this is done will be described below, after the defini tion of the 

Cornmunication-proof equilibrium is given. 

2. NOTATION 

r: a garne. 

N = {l, ... }, the set of players. A subset of N will denote a coalition 

S. will denote the (cornpact) set of strategies for player 
~ 

i' , s = X. NS,; 
~E ~ 

Sc = X. CS. 
~E ~ 

and S C = X. CS., where 
- ~El ~ 

CeN is a coalition and -C=N\C. 

Their respective typical elernents will be s, and 

i 
u S~R is the (continuous) outcorne function for player i. 

rls
c 

is the garne that sc induces on r. For details see Peleg (1988). 

g will denote a subgarne of r. 

s(g) is the strategy induced by s in the subgarne g. 
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H is the set of feasible histories of r· , hEH is a history. 

H
h 

is the set of feasible histories following h. 

h 
g is the subgame induced by history h. 

slh is the strategy induced by s after history h. 

s(t) is the behavior that strategy s induces at stage t. 

t(h) stage at which history h is observed (history h ends at stage 

t(h)-l). 

h(l) set of histories of 1ength t(h)+l that be10ng to H
h

. 

The number of stages for a given game is the maximum number of nested 

subgames in it. 

For detai1s regarding the definition of feasible histories, see Asheim 

(1988). 

When there is no confusion, the short name of an equi1ibrium (e.g SPE) wi11 

denote the set of those equilibria in a given game (that set wil1 a1so be 

denoted by e.g SPE(r». 

3. CONCEPTS 

In what follows, games wi11 be assumed to be of complete information 

and perfect recal1 so that only behaviora1 strategies wi11 be considered. 

iff 

DEFINITION l. s* is a Nash egui1ibrium restricted to TeS, NE(T), 

s*ET and for a11 iEN and a1l S.ES. 
~ ~ 

such that ( s * ., s . ) ET , 
-~ ~ 

When T=S, we have the standard definition of a Nash equilibrium (NE). 
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DEFINITION 2. (i) In a single player garne, s* is a Coalition-proof 

Nash eguilibrium restricted to TeS, CPNE(T), iff 
1 

s* E argrnax T u (s). 
sE 

(ii) Assume that CPNE(T) has been defined for garnes with less than n 

players. Then, in a n-players garne; 

(a) S*ES is Self-enforcing restricted to T, SE(T), iff for any 

coalition C,,",N, s* is CPNE(T) in the garne rls* . 
-C' 

(b) s*ES is CPNE(T) if it is SE(T) and if it does not exist any other 

sET such that s is SE(T) and 
i i 

u (s) > u (s*) for all iEN. 

If T=S, CPNE(T) is the definition of coalition-proof Nash equilibrium 

(CPNE) given by B,P&W. 

DEFINITION 3. s*ES is a Subgarne perfect eguilibriurn, SPE, iff, for 

any subgarne g, s*(g) is a NE. 

If r has a finite number of stages, say t, an al ternative 

definition of SPE, using definition 1 above, is as follows: 

DEFINITION 3'. Let r be an extensive forrn garne with t«oo) stages. 

(i) If t=l, S*ES is a SPE' iff s* is a NE. 

(ii) Assume that a SPE' has been defined for all garnes with r<t 

stages and consider a garne with t stages; then s*ES is SPE' iff s* is 

a NE(T) where T={SES / s induces a SPE' in proper subgarnes of r}. 

PROPOSITION l. s* is a SPE if and only if it is a SPE' . 
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PROOF. See appendix. 

DEFINITION 4. (i) In a single stage game r, s* is a Cornrnunication 

proof eguilibrium, Com-PE, iff it is a CPNE. 

(ii) Let t>l and assurne that Com-PE has been defined for games with 

r<t stages. Then, in a game r with t stages, s* is Com-PE iff it is a 

CPNE(Sl) where Sl=(SES / s induces a Com-PE in proper subgames of r}. 

REMARK l. If we replace CPNE with NE in definition 4, we obtain SPE and 

Com-PE is seen as a natural extension of definition 3' . 

REMARK 2. s is a Com-PE iff for every history h and every coalition 

C, (sC(t(h)), s(h(l))) is a Com-PE in i.e. at the 

beginning of any subgame, and when the strategies by any coalition are fixed 

for the current period, s is a Com-PE. 

REMARK 3. The name CPNE is not necessary in defini tion 4; for one-

stage games, the Com-PE can be defined as the CPNE and then the recursive 

definition may continue. If a new definition of coalition-proof equilibrium 

is presented for one-stage games, a new definition of cornrnunication-proof is 

irnrnediately available. 

The following proposition studies the existence of Com-PEa for a 

special and important class of games. 

PROPOSITION 2. Let r be a perfect information finite game (the 
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number of stages, players and strategies is fini te); then there exists a 

Com-PE. 

PROOF. Perfect information means that only one player moves at each 

stage of the game. The proof is inductive in the number of stages, t. 

Let t=l, then a Com-PE exists by the finiteness of alternatives and 

transitivity of preferences. 

Let t>l and assume the proposition is true for games of r<t stages. 

W.l.o.g. let player one be the (only) player moving at the first stage in 

r. Consider the (finite) set of Com-PEa in each subgame g(k.), where k. 
~ ~ 

is a one-stage history. Given g(k.), select a Com-PE that maximizes player 
~ 

one's utility and denote it by sl (k
i
); (such a Com-PE exists by finiteness 

of Com-PEa and by the transitivity of the preferences). is 

selected for each of the m one-stage histories take s = 
1 

.. ,s (k ». 
m m 

1 
Let s (sl) be a strategy that maximizes player one's expected 

utility at stage one when is to be played thereafter. Then 

strategy 

and 

is a Com-PE. If not, there exist a coalition CeN and a 

such that s' = (s' s*) 
C' -C 

is a CPNE(S') in the game 

s'> s* C . Since player one cannot improve his utility in any 

subgame (by construction), he is not in C; but then sl (k
i

) is not a Com-

PE for some k. played with positive probability in 
~ 

Proposition 3 relates the concept of Com-PE with those of Pareto 

Perfect equilibrium and Perfectly Coalition-Proof Nash equlibrium, which are 

defined below for the sake of completeness. 
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DEFINITION 5. (B, P&W) . (i) In a single player, single stage garne r, 

is a Perfectly Coali tion- Proof Nash eguilibriurn (PCPNE) iff s* 

rnaxirnizes 
i 

u (s). 

(ii) Let (n,t)~(l,l). Assurne that PCPNE has been defined for all garnes 

with rn players and s stages, where (rn,s)~(n,t) and (rn,s)~(n,t). 

a) For any garne r with n players and t stages, s*ES is 

Perfectly self-enforcing (PSE) if (1) for all CeN, s*c is a PCPNE in the 

garne rls*_c' and (2) for any proper subgarne of r, g, s*(g) is a PCPNE in 

g. 

b) For any garne r with n players and t stages, S*ES is PCPNE if 

it is PSE and if there does not exist another PSE strategy vector SES such 

that 
i i 

u (s»u (s*) for all iEN. 

REMARK 4. As pointed out by B,P&W, being PCPNE is not equivalent to 

being CPNE in every subgarne (a possible extension of definition 3 to 

coalitions). 

DEFINITION 6. (B&R). (i) In a single stage garne, a Pareto-perfect 

eguilibriurn (PPE) is a Nash equilibriurn that is not strictly Pareto-

dorninated by another Nash equilibriurn. 

(ii) Let t>l and assurne that PPE has been defined for all garnes with 

less than t stages. Let r be a t stages garne; then a strategy profile 

s is a PPE in r iff 

(a) s is a Nash equilibriurn, and is a PPE of 
h 

g 

h~, and 

(b) there is no profile x satisfying part (a) such that 
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~ ~ 



for all iEN. 

PROPOSITION 3. Let r be a finite horizon game, then 

(i) Com-PE e SPE. 

(ii) If r is a one-stage game (t=l), Com-PE = CPNE. 

(iii) If r is a two-player game (n=2), Com-PE = PPE. 

(iv) Neither Com-PE e PCPNE nor PCPNE e Com-PE is satisfied. 

PROOF. 

(i) Follows from proposition 1 and from the fact that CPNE e NE. 

(ii) Follows from the definition of Com-PE. 

(iii) The proof procedes by induction on the number of stages of the game. 

For t=l the statement is trivial (CPNE reduces to a non strictly Pareto-

dominated Nash equlibrium). Assume now that the proposition has been proven 

for s<t, and let r be a t-stages game. First prove PPE e Com-PE; let 

* sES be a PPE, by definition 6 (ii) (a) SES = {SES / s induces a PPE in 

* proper subgames}, by induction hypothesis S =S'={sES / s induces a Com-PE 

in proper subgames}; also sENE, what, for n=2, means that s is self-

enforcing; these two facts and definition 6 (ii) (b) show that s is CPNE 

restricted to S'. To prove Com-PE e PPE, let s be CPNE restricted to S' . , 

* SES' implies that sES by induction hypothesis. By definition of Com-PE 

we also have that 

(*) it does not exist any other s'ES' such that s.=s'. and s' >. s 
J J J 

for all iE{l,2} and j~i. 

This means that s is a NE and definition 6 (ii)(a) is satisfied; if not, 

there exists a player iE{l,2} and a strategy 
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such that 



s'=(s'. ,s.) >. s. 
~ J ~ 

But then s(l)=s'(l) (otherwise s(l) was not a NE in 

subgames) and s'ES', which contradicts (*). Fina11y, part (ií) (b) of 

definition 6 is satisfied by the optimality of CPNE. 

(iv) See counterexample in the appendix. 

Let f be an extensive game form with perfect information. Peleg 

(1988) shows that, for every profile of linear preferences (i.e when there 

are no indiferences), the set of SPE of f coincides with the set of PCPNE; 

he also studies sorne important applications of this result to the theory of 

voting. Proposition 4 shows that the Com-PE satisfies the same property 

and, therefore the same applications follow. 

PROPOSITION 4. Let f be a finite horizon perfect information game 

with linear preferences. Then the Com-PE(f)=SPE(f). 

PROOF. The proof is straightforward and contrasts with the more 

involved proof for PCPNE given by Peleg. 

For one-stages games (t=l), since there are no simultaneous moves, 

Com-PE=NE=SPE trivially. Also, by the linearity of preferences, the 

equilibrium is unique. 

Assume that Com-PE=SPE for s<t, and that the equilibrium is unique. 

Let f be a t-stage game. Denote by s* (h. ) 
~ 

the only SPE (and CPE) after 

the one-stage history h.; let 
~ 

m is the 

number of one-stage histories (i.e. the number of alternatives available to 

the first player moving -w.l.o.g. player one-). Given s*(l), at the 

beginning of the game, player one will choose the alternative (the one-stage 
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history) that induces his preferred equililibriurn afterwards; denote that 

alternative by h*. 
~ 

(h*. 
~ 

is unique by linearity of preferences), then 

s*=(h*., s*(h*.» 
~ ~ 

is easily seen as the only SPE and CPE of r, since no 

deviation (coalitional or individual) can take place after the first stage 

(by the uniqueness of CPE thereafter) and any deviation in the first stage 

will make player one worse off (by construction). 

Definitions 1, 2, 3 and 4 are applicable to any extensive form game; 

but, of course, NE and CPNE make more sense when applied to games in 

normal form. A normal form game can be thought as an extensive form game 

(with perfect recall) of one stage in which all possible actions by one 

player lead to the same information set of sorne other player (this reflects 

the fact that they play sirnmultaneously). When players do not play 

sirnmultaneously in the same stage, the refinements of perfect and sequential 

equilibria rule out sorne "irrational" moves in unreached information sets. 

The definition of Com-PE does not deal with these issues. It generalizes 

the definition of SPE to coalitions in the same spirit as CPNE generalizes 

that of NE. Possible refinements are postponed to future research. 

4. DISCUSSION 

In the example in section 1, it was said that, after A=(11,r
2

,1*1,13) 

is proposed, the deviation can be obj ected because it 

results in the path (r
l
,r

2
,r*1,r

3
), that is not an equilibriurn at the point 

when player 2 has to move. To predict the deviation D after A is to 

12 



after as an equilibrium of 

that subgame; but it is not clear at all that the cornmunication within the 

coalition (1,3) at the beginning of the game can change the nature of P 

from being a non-equilibrium path to being an equilibrium one. Instead, it 

seems better to think that, whenever cornmunication can take place, the 

continuation of the strategy should be an equilibrium that prevents any 

deviation that may occur after that precise cornmunication (in the case of no 

cornmunication, the continuation should, at least, be a SPE). Once the set 

of equilibria in the last stage has been detected, one stage earlier any 

coalition C has to consider that any deviation s' 
C 

to a strategy profile 

s, has to satisfy that (s'C,s_C) induces an equilibrium in the last stage, 

because cornmunication (renegotiation) at the beginning of that last stage 

will lead to an equilibrium. 

In the example in section one, one may think of the following 

procedure: first, A is proposed, then coalition (1,3) considers the 

deviation D· , if D occures, player 2 observes r
l 

instead of 11 and 

calls for renegotiation, the three players sit at the negotiation table and 

decide how to play thereafter; the only "good" equilibrium at this point is 

Knowing this, player one should never agree to deviate from 

to and A remains an equilibrium. In this particular example it 

is not even necessary that cornmunication takes place; i t is enough that 

players can reproduce the argument. Without cornmunication, it is also 

possible to think that, after player 2 has observed r
l 

(instead of 11)' 

he may deduce that the only explanation for that is the deviation D; then 

his best response is to play 1
2 

(instead of r
2

) and this, again, rules 
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out D as a profitable deviation for player one (see section 5 below for an 

example and a discussion concerning forward induction and cornmunication). 

The general scheme to deal with cornmunication issues is proposed as 

follows: 

1) There is a definition of equilibrium E to be applied in a multi-stage 

game in which players can freely cornmunicate with each other at the 

beginning of each stage (subgame). 

2) At the beginning of the game, a strategy profile SES is proposed; this 

will be called a "social 
2 

agreement" s will be also proposed at the 

beginning of every stage if a deviation has been observed by a player 

outside the deviating coalition. 

3) If a coalition C deviates from s at stage t using s'CESC' this 

deviation constitutes a new social agreement for members of c. 

4) Every player obeys the last social agreement in which he is involved. 

If, by doing so, the resul t is an equilibrium E ex-ante (in the sense 

that, up to the extent of their abilities, beliefs and knowledge, players do 

not find any incentive to form new social agreements), then that last social 

agreement will be followed until the end of the game. 

5) Every player is aware of all social agreements of every coalition he has 

been in (including s for the coalition of all players at the beginning of 

any stage when it is proposed). 

6) Any player i believes that any other player j will behave according 

to the last social agreement involving j that player i is aware of. 

2 
A social agreement is a unique 

which usually refers to a subset of S. 
also an equilibrium will be regarded as 
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7) 1f, at stage t, coali tion C plans a deviation that consists of a 

change of strategy at stages tal' t
a2

,···, t a3 , the time at which a given 

player knows the change at stage t* is at 

i) stage t if he belongs to C and 

ii) stage t*+l if he does noto 

8) No deviation takes place after s has been proposed if and only if s 

satisfies the definition of equilibrium E. 

The concept of Com- PE fi ts in this scheme. 1f no cornmunication is 

permitted (no coalitions are allowed) so does the SPE and, for one-stage 

games, the NE. The CPNE also fits for one-stage games. The PPE follows the 

scheme when only the grand coalition is allowed to be formed. However, the 

PCPNE does not fit in it since players do not react to deviations (by 

renegotiating to the first agreement, as said in 2». 

Consider now the following situation: at the beginning of the game 

(t=l), the strategy s is decided and, at that very time the coalition C 

plans a deviation s ' 
C 

to s that will start at period t>2 (and is 

credible after that period) so that it will not become observable until that 

time. Yet, according to the definition of Com-PE, for this deviation to be 

consistent, it has to induce a Com-PE at period 2. 1f sorne coalition T 

crediblely deviates from (s_C' sc') at sorne time between periods 2 and 

t, then s ' 
C 

was not credible itself and s may be an equilibrium after 

all; but this way of rulling out a deviation does not seem reasonable. 1s 

this a problem for the definition of Com-PE? The answer is no. This is 

bacause one has to check any possible deviation from s, and, in our case, 
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there is always a credible one, narnely s ' 
C 

proposed at period t. 

Conversely, if s ' is not ruled out before period t, it cannot be ruled e 

out at period t either. This argurnent shows that there is no lost of 

generality if it is assurned that deviations are planned in the sarne period 

they are irnplernented (the definition of Corn-PE will be equivalent). 

5. TWO EXAMPLES 

The purpose of this section is to explore further the heuristics of the 

definition of Corn-PE. The first exarnple deals with the requirernent of 

having an equilibriurn after deviations. The second exarnple shows how 

cornrnunication rules out deviations that players rationalize using "forward 

induction" argurnents. 

Consider, then, the exarnple in figure 3. 

FIGURE 3 

Let denote the probability of choosing L. 
~ 

by player i in a 

behavioral strategy. Note that, in the subgarne after L
l

, players 2 and 3 

play the "rnatching pennies" garne and that the only equilibriurn at this 

subgarne is (P2' P3)=(1/2, 1/2). Therefore the Corn-PEa are as follows: 

(i) if x<l, (Pl' P2 ' P3) = (1, 1/2, 1/2); 

(ii) if x>l, (O, 1/2, 1/2), and 

(iii) if x=l, (Pl' 1/2, 1/2) with l~Pl~O. 

See that, in this exarnple, the set of Corn-PEa coincides with that of 
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SPEa. 

Case (i) presents no problem. But, in case (ii) one may argue that, 

players 1 and 3 may agree to play an 

equilibrium in the induced game that gives both players a better payoff (in 

fact, this is enough to rule out (O, 1/2, 1/2) as a PCPNE). However, 

player 2 observes the deviation and, in a first approach, one may say that 

he will try to deduce something about player 3's strategy and play 

accordingly; he may anticipate p =1 
3 

and play P2=1 himself. But once we 

have open the door to this kind of arguments, it is difficult to stop; 

player 3 can anticipate player 2' s deduction and so on. In other words, 

following this line of resasoning, one has to accept that, after the 

deviation by player 1, anything can happen (players 2 and 3 will play 

rationalizable strategies (Bernheim, 1896». If cornmunication may take 

place, there is a better way to analyze the game; according to the scheme in 

section 4, player 2 just calls for renegotiations to impose the equilibrium 

(1/2, 1/2) at the subgame. It is now the last agreement for player 3 and 

the deviation at the beginning was not profitable for player l. 

For the case x=l, the question may not be that simple. Take the 

(Com-P) equilibrium (1/2, 1/2, 1/2), again players 1 and 3 may deviate to 

(1, 1). If player 2 observes the randomization by player 1, we can argue as 

in case (ii); but, if in the more realistic case in which playe 2 only 

observes the realization of the random choice, he can not conclude anything 

when he observes that Ll has been chosen and, then, the deviation (Pl' 

P3) = (1, 1) may seem credible
3

. But, even in this case, nothing prevents 

player 2 from calling for renegotiations just to make sure that (1/2, 1/2) 

3 In this case, the only PCPNE is (1, 1/2, 1/2). 
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will follow afterwards. At the beginning of the game, players not only 

agree to play sorne strategy profile, but they agree to agree to play that 

strategy at any time they are called for renegotiations (and they will obey 

the agreement if it is an equilibrium). 

For the second example, consider the game of "battle of sexes" in 

figure 4. 

FIGURE 4 

If player has the opportunity to "burn a dollar" before playing, it is 

well known that there is only one stable equilibrium in which player 2 does 

not burn the dollar and (t,l) follows. With cornmunication, however, 

(b, r) is still plausible: if (b, r) is decided and player 2 burns the 

dollar to show that he will play agressively afterwards (to induce (t,l)); 

at the begining of the second stage he will hear from player 1 something 

like: 

"Ok, you burnt a dollar, so what? we planned to play now (b,r) and 

we shall do that way since it is an equilibrium; your deviation is worthless 

so you better follow the equilibrium path." 

Still , van Darnme argues that, "if the requirement (of Pareto 

perfectness (= Com-PE in this example)) is really compelling, then 

players should accept the same concept also in the case in which no such 

cornmunication is possible, especially in the case there is a unique PPE". 

(van Darnme Oct, 1987). Then he shows that the only PPE may be ruled out by 

fordward induction arguments (stability in the sense of Kolhberg and Mertens 

(1986)). A more detailed discussion on the relation between stability and 
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4 
renegotiation-proof will be presented in a forthcorning work by the author 

6. EXTENDING Corn-PE TO INFINITE GAMES 

This section will follow the approach by Greenberg (1989) and Asheirn 

(1988) where the von Neurnann and Morgenstern abstract stable set is used to 

extend recursive definitions to the infinite case. The reader is referred 

to those works for a discussion on this approach. 

A von Neurnann and Morgenstern abstract systern (AS) is a pair (D,<) 

where D is an abstract set and < is a dorninance relation. d<f will be 

interpreted to mean that f dorninates d. Let (D,<) be an abstract 

systern, and let fED. The dorninion of f, denoted by ll(f), is the set 

ll(f)={dED / d<f}. That is, ll(f) consists of all elernents of D that f 

dorninates, according to the dorninance relation <. Sirnilarly, for a subset 

FcD, the dorninion of F, denoted by ll(F), is the set ll(F)=U{ll(f) / fEF}. 

That is, an elernent d in D belongs to ll(F) if it is dorninated by sorne 

elernent in F. A set FcD is a von Neurnann and Morgenstern abstract stable 

set (ASS) for the systern (D,<) iff F=D\ll(F). 

Let r be a rnulti-stage garne. Inspired by definition 4 and rernark 2 

an abstract systern (D,<) is introduced; let the elernents of the abstract 

set consist of a coalition, a subgarne and a SPE in this subgarne, 

4 Roughly speaking, it will be argued that, in the very particular case 
when players rnay belive in the theories of both stable and renegotiation­
proof equilibria, then the definition of Pareto perfect equilibriurn needs to 
be changed in a situable way to accornodate the two concepts. 
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h h 
D=((C,g ,s) / CeN, C~, hEH, sEE } 

where Eh is the set of SPE after h; and let the domination relation be 

defined as follows: 

(C,g 
h 

,s) < (T,g 
k 

,y) if and only if either 

(i) kEH
h 

and k ... h: TeN, s -T=y-T' y >T s or 

(ii) k=h: TeC, s -T=y-T' y >T s. 

REMARK 5. (D,<) reduces to the AS used in Greenberg's extension of 

CPNE when t=l and to the AS in Asheim's extension of PPE when n=2. 

The next proposition relates the ASS of (D,<) with the definition 

of Com-PE for finite games and allows for a definition applicable to 

infinite games. 

PROPOSITION 5. Let K be an ASS of (D, <); then, for fini te games 

(the number of players, stages and alternatives is finite), we have that for 

all hEH, CeN and SES; 

(C h ) K -lff ,g ,s E .L is a Com-PE in the subgame 

in particular, when C=N and h=0, Com-PE(f)=A=(s/(N,f,s)EK}. 

The proof will follow after two lernmas. 
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LEMMA 1. For all hEH, CeN and SES; (sC(t(h» ,s(h
l

» is a Com-PE 

in 
h 

g IS_C(t(h» if and only if there are no T, k and x such tha t 

(xt(t(k»,x(kl » is a CPE in and neither 

(i) 

(ii) 

h 
kEH , 

k=h, 

is satisfied. 

TeN, s_T=X_ T , x >T s; nor 

TeC, s_T=X_ T , 

PROOF. By induction in the number of stages t. If t=l, the proof 

reduces to show that for all CeN, is a Com-PE (=CPNE) in 

implies that no TeN and XES exist such that is CPNE in rlx_
T 

and 

TeC, x_T=s_T' x >T s; but this comes from lernma 1 in Greenberg (1989). 

Assume that the lernma has been proved for games of less than t stages 

and prove it now for t(>l). If (sC(t(h», s(h
l

» is a 

C(t(h» and kEH
h 

and if k~h then slk is Com-PE in 

Com-PE in 
h 

g Is 

k 
g by definition 

of Com-PE; apply the induction hypothesis to get that no TeN and XES 

exist such that is a Com-PE in with 

X_T=s_T and x>Ts . Finally, for the case k=h, supose that there exist 

h 
TeN and XES such that (x

T 
(t(h» , x(h

l
» is a Com-PE in g Ix_T(t(h», 

then xl is a Com-PE in 
h(l) 

g ; if TeC, s_T=x_ T 
and x>Ts then s was 

not a CPNE restricted to S'={SES / s induces a Com-PE in proper subgames of 

r} and the proof is complete. 

LEMMA 2. For all hEH, CeN and SES, if (sC(t(h», s(h
l

» is not a 

Com-PE then there exist TeN, kEH and XES such that (xT(t(k», x(k
l
» 

is a Com-PE in 

(i) h 
kEH , s_T=X_ T 

and either 

and or 
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(ii) k=h, TcC, s_T=x_
T 

and x >T s. 

PROOF. If t=l, it comes from lernma 1 in Greenberg (1989). 

h 
g ¡ s _C(t(h» is not a Com-PE in means If t>l, 

that either 

(i' ) 
k 

with b-<h, 
h 

51 is not a Com-PE in g kEH , or 

(ii' ) 51 is a Com-PE in g 
h(l) 

but there exist TcC and XTES T 

such that (X
T

, s_T) >T s and (X
T

, s_T) is a Com-PE in gh¡ _T(t(h» . 

(i' ) implies (i) and (i i ' ) implies (ii) . 

PROOF OF PROPOSITION 5. Comes from lernmas 1 and 2. 

Since the characterization of a Com-PE given in proposition 5 is not 

based on backwards recursion, it can be used to formulate a general 

definition of the concept, covering both finite and infinite horizon games 

and games with either a finite or an infinite number of players. 

DEFINITION 7. Consider a multi-stage game r with a finite or 

infinite number of players. A strategy profile s is said to be a Com-PE 

of r if and only if there is a ASS, F, for the associated system (D,<) 

such that (N,r,s) E F. 

F is interpreted as a "social norm"; every point in F is equally 

reasonable: no one dominates any other in the social norm and any point 

outside the social norm is dominated by sorne element inside it. 
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APPENDIX 

PROOF OF PROPOSITION l. For t=l SPE = NE = SPE' trivially. Assume 

that the proposition has been proved for games of les s than t stages, and 

let f be a game of t>l stages. Let s*ESPE and let T = (SES / s 

induces a SPE in propoer subgames of f) = (SES / s induces a SPE' in proper 

subgames of f), by induction hypothesis. Clearly s*ET and s* is a NE, 

which implies that s* is a NE restricted to T and by definition 3' this 

means that s* is a SPE'. Now let s* be a SPE', this means that s* is 

a NE restricted to T as defined aboye. Then s* is a SPE in all subgames 

with less than t stages. If s* is not a NE there exists a strategy 

s.ES. 
~ ~ 

such that i( * u s ., 
-~ 

i 
s.) > u (s*). 
~ 

Consider two cases: 

(1) s.(g)=s*.(g) where g is a proper subgame of f. Then s* is not a 
~ ~ 

NE restricted to T (s*~T), and the proposition is proved. 

(2) s. (g);><s*. (g) 
~ ~ 

for some proper subgame g. The induced outcome of g 

under (s*., s.) is defined by u(s*. (g), s. (g»; then it has to be that 
-~ ~ -~ ~ 

ui(s* . (g), s. (g» ~ ui(s*(g» since s* is a NE in every subgame. Next 
-~ ~ 

consider 

clearly i( * u s ., 
-~ 

restricted to T. 

s' , ~ 
~ {

S,. in the first stage of 

= s*~ in proper subgames of 
~ 

i 
s" .) > u (s*); 

~ 
then, by case (1) s* 

PROOF OF PROPOSITION 5 (iv). Consider the game in figure 5 
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FIGURE 5 

There are two SPEa in the game: 

(i) (11,1 2 ,1 3 ,1*3,1*1,1**1,1*2,1**2) and 

(ii) (r1 ,r2 ,r3 ,1*3,r*1,1**1,r*2,1**2). 

The equilibrium in (i) is Com-PE but not PCPNE. To show that it is 

Com-PE see that no coa1ition of n p1ayers can deviate to a better 

stragtegy (n=1,2,3). If n=l, because (i) is SPE; if n=3, because the 

payoffs induced in every subgame are Pareto optima1; if n=2, see that on1y 

the coa1ition formed by p1ayers 2 and 3 can find an outcome in which both 

p1ayers are better off, namely the outcome (0,9,5) which is preferred to 

(8,4,4). But in order to obtain that outcome, the deviation to 

has to take place in the second stage of the game, but that 

deviation does not conform a Com-PE in the subgame after r
2

. Since that 

deviation is a PCPNE (it is SPE and optima1) in the game induced by fixing 

p1ayer 3's strategy (11,1*1,1**1)' we conc1ude that (i) is not a PCPNE. 

Equi1ibrium (ii) is PCPNE but not Com-PE. It is not Com-PE because it 

is Pareto dominated by (i). It is a PCPNE because it induces a PCPNE in 

every proper subgame (it is straightforward to check), because it induces a 

PCPNE in games induced by p1ayer i's strategies (a1so straightforward since 

on1y subgame perfection and optima1ity is needed) and because it is not 

dominated by any other PCPNE. 
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