
UNIVERSIDAD CARLOS III DE MADRID

Ph.D. THESIS

Content Authentication and Access
Control in Pure Peer-to-Peer Networks

Author:
Esther Palomar González

Supervisors:
Dr. D. Juan M. Estévez Tapiador
Dr. D. Arturo Ribagorda Garnacho

Computer Science Department

Leganés, April 2008

UNIVERSIDAD CARLOS III DE MADRID

TESIS DOCTORAL

Autenticación de Contenidos y Control
de Acceso en Redes Peer-to-Peer Puras

Autor:
Esther Palomar González

Directores:
Dr. D. Juan M. Estévez Tapiador
Dr. D. Arturo Ribagorda Garnacho

Departamento de Informática

Leganés, Abril 2008

TESIS DOCTORAL

CONTENT AUTHENTICATION AND ACCESS

CONTROL IN PURE PEER-TO-PEER NETWORKS

Autor: Esther Palomar González

Directores: Dr. D. Juan M. Estévez Tapiador
Dr. D. Arturo Ribagorda Garnacho

Firma del Tribunal Calificador:

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Calificación:

Leganés, de de 2008

A mi madre.

Acknowledgements

I would like to acknowledge the help of many people who get this done.
First, I would like to thank my Ph.D. Supervisors. I would like to express

my gratitude to Juan, for his good ideas and numerous comments on chapter
drafts. I am extremely grateful to Arturo, who has assisted me in numerous
ways.

I would also like to thank all the rest of my colleagues. Benjamín, for all
those lunches and fresh discussions. Anabel, for encouraging me not to lose
heart, and for the practical help with different problems. Thanks to Julio, who
selflessly gave me this gratifying opportunity. Almudena, Agustín, Chema, and
Jorge, for all the emotional support and interest. Special thanks to Peris, for
the music, for understanding... Y hasta aquí puedo leer, verdad, Peris!

Finally, I wish to thank my parents for everything. In particular, the
impatience shown by Mama throughout these years encourages me to meet
the deadlines and reach my objectives. Gracias mama! Papa, San, Carlos
(and Conan), on whose constant encouragement and love I have relied. I
cannot leave out my friends: my best friends from the elementary school,
Chisi and Fer, Emily, Carlota, Marciano, Alex..., for believing in me and in
my possibilities.

Abstract

The study and analysis of the state-of-the-art on security in Peer-to-Peer (P2P)
networks gives us many important insights regarding the lack of practical se-
curity mechanisms in such fully decentralized and highly dynamic networks.
The major problems range from the absence of content authentication mecha-
nisms, which address and assure the authenticity and integrity of the resources
shared by networking nodes, to access control proposals, which provide autho-
rization services. In particular, the combination of both, authentication and
access control, within well-known P2P file sharing systems may involve several
advances in the content replication and distribution processes.

The aim of this thesis is to define, develop and evaluate a secure P2P
content distribution scheme for file sharing scenarios. The proposal will be
based on the use of digital certificates, similar to those used in the provision
of public key authenticity. To carry out this proposal in such an environment,
which does not count on a hierarchy of certification authorities, we will explore
the application of non-conventional techniques, such as Byzantine agreement
protocols and schemes based on “proof-of-work.”

We then propose a content authentication protocol for pure P2P file sharing
systems. Under certain restrictions, our scheme provides guarantees that a
content is authentic, i.e. it has not been altered, even if it is a replica of
the original and the source has lost control over it. Moreover, we extend our
initial work by showing how digital certificates can be modified to provide
authorization capabilities for self-organizing peers.

The entire scheme is first theoretically analyzed, and also implemented in
C and Java in order to evaluate its performance.

This document is presented as Ph.D. Thesis within the 2007–08 Ph.D. in
Computer Science Program at Carlos III University of Madrid.

vii

Resumen

Esta tesis doctoral se enmarca dentro del área de investigación de la seguridad
en entornos Peer-to-Peer (P2P) totalmente descentralizados (también denom-
inados puros.) En particular, el objetivo principal de esta tesis doctoral es
definir, analizar e implementar un esquema para la distribución segura de los
contenidos compartidos.

En este trabajo de tesis se han realizado importantes avances e innovadoras
aportaciones enfocadas a garantizar que el contenido compartido es auténtico;
es decir, que no ha sido alterado, incluso tratándose de una réplica del original.
Además, se propone un mecanismo de control de acceso orientado a propor-
cionar servicios de autorización en un entorno que no cuenta con una jerarquía
de autoridades de certificación.

A continuación, se resume la metodología seguida, las principales aporta-
ciones de esta tesis y, finalmente, se muestran las conclusiones más impor-
tantes.

0.1 Metodología

Analizando exhaustivamente el estado de la cuestión relacionado con los ser-
vicios de seguridad en las redes P2P, se pueden detectar diversas carencias
en las propuestas existentes, tales como la falta de esquemas que aseguren
la autenticidad e integridad de los contenidos compartidos por los nodos de
red. Especialmente, los esquemas de control de acceso presentados hasta la
fecha deben ser cuidadosamente adaptados a este tipo de redes totalmente
descentralizadas y altamente dinámicas.

Tras completar el análisis anterior, el objetivo principal de esta tesis doc-
toral es definir, desarrollar y analizar un modelo para la distribución segura de
contenidos en sistemas P2P de intercambio de contenidos. La solución prop-

ix

uesta se basa en el empleo de certificados digitales, análogos a los utilizados
para garantizar la autenticidad de una clave pública (estándar X.509.) Para
llevar a cabo esta tarea en un entorno que no cuenta con una jerarquía de au-
toridades de certificación, se ha estudiado el uso de técnicas no convencionales,
tales como los protocolos de acuerdo bizantino o las pruebas de esfuerzo.

La propuesta inicial, que proporciona autenticación de contenidos P2P, es
refinada sucesivamente mediante su análisis o verificación hasta lograr los ob-
jetivos de seguridad y eficiencia deseados. Como resultado de esta evaluación,
extendemos el esquema hacia un modelo de control de acceso. Por último, se
desarrolla un prototipo software que implemente las propuestas de esta tesis.

0.2 Principales Aportaciones

Las redes P2P suponen un nuevo paradigma dentro de las tecnologías de la
información con nuevos retos desde el punto de vista de la Seguridad. En
un sistema P2P, todos los nodos desempeñan el mismo rol, pudiendo ejercer
tanto de servidores como de clientes simultáneamente. Por otro lado, debido
a la expansión de los dispositivos móviles y de los entornos ubicuos, están
apareciendo nuevas aplicaciones P2P en entornos ad hoc. Estas redes pre-
sentan ciertas peculiaridades en cuanto a su arquitectura, y se caracterizan
principalmente por su descentralización y capacidad de autoorganización.

A continuación, enumeramos las principales motivaciones de la presente
tesis doctoral:

• El paradigma P2P constituye un entorno de cómputo y comunicación
distribuido en el que cualquier nodo puede completar transacciones con,
a priori, cualquier otro nodo. La investigación en este campo ha sido
intensa, habiendo sido propuestas hasta la fecha diversas arquitecturas
y topologías basadas especialmente en la colaboración honesta entre una
comunidad heterogénea de participantes. Sin embargo, las característi-
cas inherentemente distintas de este modelo con respecto al ya clásico
paradigma Cliente-Servidor hacen que muchas de las soluciones de se-
guridad existentes no sean aplicables o, en todo caso, necesiten ser cuida-
dosamente adaptadas. En esta tesis se han revisado los aspectos más rep-
resentativos concernientes a la seguridad de las redes P2P, incluyendo un

análisis comparativo entre las arquitecturas más relevantes propuestas
hasta la fecha.

• Entre las numerosas ventajas proporcionadas por los sistemas P2P, quizás
la más interesante sea la capacidad de ofrecer réplicas del mismo con-
tenido en diferentes localizaciones. Nos referimos a los sistemas intercam-
bio de contenidos tan populares hoy en día entre extensas comunidades de
nodos. Estos sistemas permiten acceder a los contenidos incluso cuando
existen nodos desconectados. Sin embargo, el alto grado de redundancia
conlleva la necesidad de disponer de ciertos mecanismos de seguridad a
fin de evitar ataques basados en la modificación no autorizada de los
contenidos compartidos.

• Existen muchas razones por las que es necesario proporcionar autenti-
cación del contenido, cuyo objetivo sea evitar que nodos con compor-
tamiento malicioso puedan crear desconfianza en la comunidad. Una vez
un contenido es replicado en la red, el autor pierde el control sobre el
mismo, pudiendo aparecer nodos deshonestos que alteren el contenido
con diversos propósitos: reclamar la autoría del contenido publicado,
insertar código malicioso (virus y spyware) en contenidos con mucha de-
manda, u ofrecer falsos contenidos. Estos problemas demandan mecan-
ismos de seguridad que ofrezcan servicios de integridad y autenticidad,
tanto de los nodos como de los contenidos compartidos.

• Por otro lado, debido a la inexistencia de terceros de confianza (o TTPs
del inglés, Trusted Third Parties) en este tipo de entornos descentral-
izados, las soluciones tradicionales, que descansan en la utilización de
autoridades de certificación (AC), son difícilmente adaptables. De he-
cho, esto implica la necesidad de buscar soluciones alternativas, ya que
no es realista pensar en la existencia de una AC en este tipo de entornos.
Nuestro modelo depende de la colaboración entre un grupo de nodos,
quienes conjuntamente desempeñan el papel de una AC. Sin embargo,
existen graves problemas de complejidad y escalabilidad, especialmente
si queremos contar con infraestructuras de clave pública.

En esta tesis, se propone, en primer lugar, un protocolo para dotar a
una red P2P pura de autenticación del contenido, basado en el uso de
certificados digitales y de firma digital. Brevemente, la idea principal

es que a todo contenido publicado en la red le acompañe un certificado
firmado por un grupo de nodos honestos o confiables. Este conjunto de
firmantes desempeñan conjuntamente el papel de una AC. Para ello, se
dispondrá del protocolo de autenticación de claves públicas para entornos
totalmente descentralizados presentado por Pathak e Iftode [97], que
también implementamos y analizamos en el presente trabajo.

• El protocolo anterior es posteriormente extendido, mostrando cómo los
certificados digitales pueden ser modificados con el fin de proporcionar
capacidades de autorización a los nodos en un entorno auto-organizativo.
Se propone, por tanto, un mecanismo de control de acceso que permita
a los propietarios/distribuidores de contenidos controlar los permisos de
acceso a sus contenidos dependiendo de la política de seguridad local
establecida por dichos propietarios.

• Asociados al concepto de control de acceso se encuentran los servicios de
revocación y de delegación de privilegios. En esta tesis se propone, por un
lado, un subprotocolo de delegación orientado a controlar la replicación
de los contenidos; y, por otro lado, un subprotocolo de revocación que
gestione la validez de los privilegios de cada nodo en el tiempo.

• Se ha realizado un análisis de la eficiencia y escalabilidad del esquema
empleando umbrales de confianza y técnicas de pruebas de esfuerzo (en
inglés, proof-of-work.) Asimismo, el esquema se ha evaluado desde el
punto de vista de la seguridad, proponiendo numerosos escenarios de
ataque posible y verificando informalmente su seguridad en cada caso.

• El esquema completo se analiza, en primer lugar, teóricamente, y pos-
teriormente es implementado en C y Java con el objetivo de evaluar su
rendimiento y validar su correctitud.

Los objetivos principales de esta tesis son, por tanto, primero formalizar
los servicios de seguridad básicos necesarios en sistemas P2P de intercambio
de contenidos; y, segundo, desarrollar y diseñar un esquema de seguridad de
forma que se solucionen los problemas ilustrados en los párrafos anteriores.
Estos objetivos se pueden desglosar en los siguientes:

• Estado de la cuestión, en el que se explora y formaliza la necesidad de
servicios de seguridad básicos, como son la autenticación de contenidos
y el control de acceso.

• Diseño de un esquema de distribución segura de contenidos para redes
totalmente descentralizadas. El esquema presentado se estructura como
sigue:

– Protocolo de autenticación de contenido.

– Protocolo de control de acceso.

– Servicios avanzados de autorización.

• Implementación de los protocolos anteriores, incluyendo el de autenti-
cación de clave pública basado en acuerdo bizantino para redes ad hoc.

• Análisis y evaluación del esquema de intercambio seguro de contenidos
obtenido, respecto a los siquientes términos:

– Análisis de la eficiencia. Generalmente, la provisión de mecan-
ismos de seguridad ha ido acompañada de una significativa sobre-
carga computacional y de comunicaciones, sobre todo en entornos
distribuidos. Los resultados obtenidos en esta tesis has sido cuan-
tificados experimentamente atendiendo a tiempo computacional y
de mensajes intercambiados en los protocolos.

– Análisis de la seguridad. El esquema completo garantiza los
requisitos fundamentales de seguridad, habiendo sido analizado a
través de los principales escenarios posibles.

0.3 Conclusiones

De las novedosas aportaciones presentadas en esta tesis, y de las características
del esquema propuesto, es posible extraer varias conclusiones:

• El análisis que se ha realizado acerca del estado de la cuestión de las
propuestas relacionadas con los esquemas de seguridad en redes P2P y
ad hoc ha mostrado múltiples aspectos aún sin una solución ampliamente

aceptada. Se podría afirmar que tales carencias son debidas fundamen-
talmente a dos hechos concretos: la hetereogeneidad de tales entornos,
y por tanto de las arquitecturas propuestas, y en segundo lugar la falta
de una perspectiva global a la hora de afrontar retos de seguridad. El
trabajo de tesis ha considerado estos dos factores a la hora de propor-
cionar una solución completa al problema de la replicación segura de
los contenidos compartidos por los sistemas comunes de intercambio de
ficheros en Internet y en entornos colaborativos.

• La suma de los protocolos presentados permite, en su conjunto, una
replicación segura de los contenidos compartidos entre los nodos de una
comunidad P2P, los cuales son capaces de detectar posibles alteraciones
no autorizadas sobre ellos. Bajo ciertas suposiciones, nuestro esquema
garantiza que el contenido compartido es auténtico, es decir, que no ha
sido alterado, incluso tratándose de una réplica del original y, por tanto,
el propietario ya no tiene control sobre él.

• El modelo presentado está basado en el uso de certificados digitales y
no requiere los servicios de un tercero de confianza, entidad impracti-
cable en entornos P2P descentralizados. Las propuestas realizadas han
sido implementadas y posteriormente validadas en entornos de aplicación
concretos con diversos requisitos.

• Tras el estudio de las propuestas más representativas en lo relativo a
modelos de autorización y control de acceso en sistemas distribuidos,
se presenta un mecanismo de autorización apto para entornos que no
cuentan con puntos centrales de decisión. La gestión de los privilegios
en estas cirscunstancias es un reto muy considerado por la comunidad
investigadora.

En lo que respecta a la extensión de las soluciones y aportaciones presen-
tadas en el presente trabajo de tesis, algunas líneas de investigación futuras
son las siguientes:

• Estudiar exhaustivamente la aplicación de mecanismos alternativos, tales
como la criptografía umbral y los esquemas multifirma, para propor-
cionar soluciones al mismo problema. Éstas técnicas han sido aplicadas
en algunos trabajos dentro del area de las redes ad hoc para diseñar,

por ejemplo, modelos de encaminamiento, mecanismos de incentivos y
de control de admisión, entre otros.

• Extender la arquitectura a entornos móviles y/o MANETs, sin olvidar
aplicaciones íntimamente relacionadas como las redes GRID. Algunas
de las propuestas de seguridad presentadas por la comunidad investi-
gadora constituyen, en algunos casos, mecanismos ya muy explotados
(por ejemplo, sistemas de confianza y anonimato) y cuya aplicabilidad
está en entredicho cuando la movilidad y la cooperación son esenciales.

• Integrar y analizar el establecimiento de una política de autorización
global para todos los miembros de la comunidad. Evaluar los resultados
que se pueden obtener en entornos corporativos.

• Otra línea de investigación ya iniciada es el análisis de la idoneidad de
nuestra propuesta a través del uso de Teoria de Juegos. Este enfoque nos
proporciona una visión del comportamiento del protocolo para diferentes
tipos de comunidad, según la naturaleza cooperativa de los nodos.

En resumen, la posible extensión de los servicios de seguridad presentados
como resultado de esta tesis representa un punto de partida de enfoques y
trabajos posteriores que podrían formar parte del uso futuro de tales sistemas
de intercambio de contenidos.

Contents

Acknowledgements v

Abstract vii

Resumen ix
0.1 Metodología . ix
0.2 Principales Aportaciones . x
0.3 Conclusiones . xiii

List of Figures xxiii

List of Tables xxvii

Symbols and Terminology xxix

1 Introduction 1
1.1 Objectives and Scope . 2

1.1.1 Motivation . 3
1.1.2 Summary of the Proposal: P2P Content Authentication

and Access Control based on Byzantine Agreement . . 5
1.1.3 Validating Results . 7

1.2 Organization of this Document 7

2 Security in P2P Networks: State-of-the-Art 9
2.1 Pure P2P Networks . 11

2.1.1 System Model . 12
2.1.2 Security Goals . 15
2.1.3 Challenges on Cooperation 19

2.2 Public Key Primitives for P2P and MANETs 20

xvii

2.2.1 Overview of Public Key Cryptography 20
2.2.2 Threshold Cryptography 22
2.2.3 Byzantine Agreement 24
2.2.4 Web-of-Trust, and Reputation Metrics 28

2.3 P2P Security Services . 31
2.3.1 Secure Routing in Self-organizing Overlay Networks . . 31
2.3.2 Admission Control in P2P and MANETs 34
2.3.3 Content Authentication in P2P Networks 36
2.3.4 Combating Selfish Behavior in P2P Networks 37

2.4 Emergent Trends and Future Research Directions 39
2.4.1 Certificate-based Solutions 39
2.4.2 Social and Group-based Solutions 40
2.4.3 Using Evolutionary Algorithms 41

2.5 Analysis . 42
2.6 Conclusions . 45

3 A P2P Content Authentication Protocol based on Byzantine
Agreement 47
3.1 Background and Motivation 48

3.1.1 Classic Approach . 48
3.1.2 Overview of our Approach 50

3.2 Working Assumptions . 51
3.3 Content Certificate . 51
3.4 Content Certificate Generation 54

3.4.1 Local Verification . 54
3.4.2 Signing the Certificate 56

3.5 Certificate Verification . 57
3.6 Efficiency Analysis . 59

3.6.1 Computational Effort 60
3.6.2 Communication Overhead 71

3.7 Security Analysis . 73
3.7.1 Eavesdropping . 73
3.7.2 Message Modification Attacks 74
3.7.3 Message Reply Attacks 74
3.7.4 Message Insertion Attacks 74
3.7.5 Message Dropping Attacks 74

3.7.6 Impersonation Attacks 74
3.7.7 Attacks Against the Public Key Authentication Process 75
3.7.8 Assurance of Content Authenticity 75
3.7.9 Modified Replicas . 75
3.7.10 Incorrect Sending and No Cooperation 76
3.7.11 A Note on Replication 77

3.8 Conclusions . 78
3.8.1 Including a Bootstrapping Phase 79

4 Access Control in Pure P2P Networks 81
4.1 Overview of Authorization and Access Control Models 83

4.1.1 Definitions and Concepts 83
4.1.2 Discretionary Access Control 85
4.1.3 Mandatory Access Control 86
4.1.4 Role-based Access Control 86
4.1.5 XML-based Access Control 87
4.1.6 Centralized vs. Distributed Implementation 87
4.1.7 P2P Privilege Management 88
4.1.8 Trust-based Authorization Services in P2P Networks . 89

4.2 Overview of our Access Control Approach 90
4.2.1 Extended Assumptions 91

4.3 Authorization Extensions . 92
4.3.1 Join Subprotocol . 94
4.3.2 Content Authentication Subprotocol 100
4.3.3 Content Access Subprotocol 100

4.4 On the Provision of Privilege Management Services 104
4.4.1 Extensions to the Authorization Certificate 105
4.4.2 Delegating Distribution Privileges 106
4.4.3 Revoking Clearances 109

4.5 Efficiency Analysis . 111
4.5.1 Computational Overhead 111
4.5.2 Communication Overhead 113

4.6 Security Analysis . 115
4.6.1 Join and Update Subprotocols 115
4.6.2 Content Authentication Subprotocol 118
4.6.3 Content Access Subprotocol 118

4.6.4 Delegation and Revocation Services 119

4.7 Conclusions . 120

5 A Software Prototype 123

5.1 Purpose . 123

5.2 Software Architecture . 124

5.3 Software Elements Specification 125

5.3.1 Content Certificate . 126

5.3.2 Authorization Certificate 126

5.3.3 Protocol Stages . 126

5.4 Design . 134

5.4.1 Deployment Environment 135

5.4.2 Data Design . 135

5.4.3 Process Design . 139

5.5 Deployment and Testing . 161

5.5.1 Functional Testing . 161

5.5.2 Interface Design . 166

5.6 Project Management . 170

6 Conclusions and Future Work 173

6.1 Contributions . 173

6.1.1 Comparison with Related Work 175

6.2 Publications . 177

6.2.1 Conference/Workshop Publications 177

6.2.2 Journals Articles . 179

6.2.3 Book Chapters . 179

6.3 Research Plan and Future Work 179

References 183

A Empirical Analysis of Public Key Authentication Scheme 199

A.1 Communication Overhead . 199

A.1.1 Cost of Consensus . 199

A.1.2 Cost of Byzantine Agreement 200

A.2 Computational Overhead . 204

B Experimenting with Cryptographic Puzzles 207
B.1 Simulation Framework . 207

List of Figures

2.1 Overlay classification. 13
2.2 Community structure according to the authentication state of

each node. 26
2.3 Phases of the public key authentication protocol. 27
2.4 Example of asymmetry of trust evaluation. 29
2.5 Model of a node [26]: Two incoming and two outgoing/droping

flows of (own and forwarding) packets. 33

3.1 Content certificate and local database maintained by each cer-
tification node. 53

3.2 Summary of the content certificate generation process. 56
3.3 Alternative procedures for content certificate generation. . . . 57
3.4 Distributed content certificate generation. 58
3.5 Centralized content certificate generation. 58
3.6 Content authentication protocol: Certificate generation 59
3.7 Computational cost (best case) for content certificate generation. 62
3.8 Content certificate generation procedure when a signer does not

collaborate: Time computation. 63

4.1 Main building blocks. 93
4.2 User authorization certificate and table of subscribers. 96
4.3 Join subprotocol. 97
4.4 Proposed join scheme: Asking for an authorization certificate. 98
4.5 Summary of the proposed content authentication and access

control scheme. 101
4.6 (continued from Fig. 4.5) Summary of the proposed content

authentication and access control scheme. 102

xxiii

4.7 Content access subprotocol. 104

4.8 User authorization certificate: New fields. 105

4.9 Owner’s information transmissions at delegation. 107

4.10 Certificate Revocation List. 110

4.11 Computational cost (worst case) for content access subprotocol. 113

4.12 Communication cost (number of messages transmitted in the
worst case) for each subprotocol. 115

5.1 Software architecture. 125

5.2 Our P2P secure content replication system: Use case. 126

5.3 Public key authentication: Activity diagrams of Establish con-
text, and Authenticate Public Key, respectively. 127

5.4 Join subprotocol: Activity diagram. 131

5.5 Content Certificate Generation: Activity diagram. 132

5.6 Content Certificate Signing: Activity diagram. 133

5.7 Content access stage: Activity diagram. 134

5.8 Content Certificate Verification: Activity diagram. 135

5.9 Delegation and revocation procedures: Activity diagram. . . . 136

5.10 Establish scenario: Class diagram. 139

5.11 Invoked methods for the two roles in content authentication
protocol: Sequence diagram. 140

5.12 Content authentication protocol: Class diagram. 149

5.13 Content certificate generation: Object interaction. 150

5.14 Content certificate verification: Object interaction. 158

5.15 Execution of an scenario where three signers generate the cer-
tificate for a particular content. 165

5.16 Public Key Authentication: Testing a basic scenario. 166

5.17 Main menu. 166

5.18 Search menu. 167

5.19 Content access menu. 168

5.20 Content authentication menu. 168

5.21 Content certificate verification menu. 169

5.22 Join menu. 170

5.23 Brief illustration of the thesis schedule through these Gantt charts.172

A.1 (a) Communication cost of reaching consensus in Public Key
Authentication; and (b) when node A is revealed as dishonest. 201

A.2 Communication cost of public key authentication when a Pi is
dishonest. 202

A.3 Execution of an scenario where two participant nodes are dis-
honest when authenticating a public key. 203

B.1 AES (left) and TEA (right) computational consumption in sec-
onds to find the corresponding KS through a 32-bits trapdoor
in a sample of 100 experiments. 208

B.2 Comparison of both algorithms’ computational effort spent on
average (in 1000 experiments) regarding the amount of given
information of the encryption key. 209

List of Tables

2.1 Security properties considered by overlay architectures, accord-
ing to if they apply detection methods(4), protection mecha-
nisms (5), both applied (♦), when be deficient (©) or when
not (–). 42

2.2 Security properties considered by P2P architectures and sys-
tems for user community management. (Same legend as in Ta-
ble 2.1). 43

2.3 Security properties considered by P2P architectures and sys-
tems for contents management. (Same legend as in Table 2.1). 44

3.1 Speed of cryptographic primitives used in our simulations [5]. . 60

3.2 Efficiency analysis (computational effort). 61

3.3 Average time of execution (ms): Best and worst case with 100%
collaborative nodes, i.e. all participants collaborate. 64

3.4 Average time of execution (ms): Proportion of collaboration . 65

3.5 Distribution of the time of execution for 1MB contents, 10 par-
ticipants, and different percentages of collaborative nodes in the
community: Worst case. 66

3.6 Distribution of the time of execution for 1MB contents, 10 par-
ticipants, and different percentages of collaborative nodes in the
community: Best case. 67

3.7 Determining k in the [best, worst] cases. 71

3.8 Efficiency analysis (communication overhead). 72

3.9 Summary of the informal analysis about the security of the pro-
posed scheme. 77

4.1 Table of subscribers: New fields. 108

xxvii

4.2 Efficiency analysis (computational effort) for each stage of the
entire proposal. 112

4.3 Efficiency analysis (communication overhead) for each stage of
the entire proposal. 114

4.4 Summary of the informal analysis about the security of the pro-
posed scheme. 118

5.1 Public key authentication use case: Specifications. 128
5.2 Access control: Use Case. 130
5.3 Public key authentication: Class and state diagram. 142
5.4 Functional requirement testing: Content and Public key au-

thentication schemes. 162
5.5 Functional requirement testing: Access Control scheme. 163
5.6 Public Key Authentication: Functional testing. 164

6.1 Informal comparison between our proposal and similar works
according to if they apply detection and protection mechanisms
(X), when none applied (×), only detection (4), or when N/A
(–) . 176

A.1 Public key authentication: Efficiency analysis (computational
effort). 205

B.1 Computational effort spent on average (in 1000 experiments)
by each algorithm regarding the amount of given bits. 209

Symbols and Terminology

A, B, . . . Specific nodes will be occasionally designated by capital letters.
CA Certification Authority.
Cm Content certificate associated with m.
C

nj
ni Authorization certificate issued by nj to ni.

CRL Certificate Revocation List.
DoS Denial of Service.
EKni

(x) Asymmetric encryption of message x using Kni as key.
enc(x,KS) Symmetric encryption of message x using a secret key KS .
h(x) A cryptographic hash function applied to x.
Kni Public key of node ni.
K−1

ni
Private key of node ni.

KS A session key used with a symmetric cipher.
Li A security label/clearance.
m A content.
MANET Mobile and Ad Hoc Network.
N Number of network nodes.
ni Node identification.
OLS An ordered list of signers.
P2P Peer-to-Peer.
PGP Pretty Good Privacy.
PKI Public Key Infrastructure.
PMI Privilege Management Infrastructure.
si(x) ni’s signature over x, i.e.: si(x) = EK−1

i
(h(x)).

Sni Local data base which keeps track of content certificates
previously signed by ni.

Ssni Local register containing the subscribers of ni.
TCP Transmission Control Protocol.
TLS Transport Layer Security.
TMS Trust Management System.
Tni Local register containing the trusted nodes of ni.
tsi A timestamp.
TTP Trusted Third Party.

Chapter 1

Introduction

Advances in distributed systems with increasingly growing capabilities for effi-
cient file transport (both wired and mobile), and their immediate consequence,
i.e. the ability to rapidly replicate a content over a network, have made sharing
of electronic files become a revolution in business and domestic environments.
The extreme decentralization, dynamism, and self-organization of a number
of emerging environments, including teamwork, pure Peer-to-Peer (P2P), and
mobile ad hoc networks (MANET), where nodes are involved in the process
of sharing and collaboration without relying on central authorities, enforce
cooperation to play an essential role in the overall network functioning. Par-
ticularly, ad hoc networks rely upon the cooperation among individual nodes
to carry out essential tasks such as packet forwarding. P2P file sharing systems
face a similar situation.

File sharing has become a common practice for Internet users to obtain,
for example, software updates from public sites. However, such a practice still
provokes mistrust. File corruption may occur easily through dishonest and
malicious actions or even by mistake. Similarly, an impostor could masquerade
himself as the originator of a certain file, publishing a corrupted version of the
file. In fact, users of currently deployed file sharing systems are unable to verify
that files they retrieve are uncorrupted, or whether the content has been truly
created by the presumed owner.

Providing efficient security services in P2P and ad hoc networks is an ac-
tive research area which prompts many challenges [130]. Researchers have to
adapt common cryptographic techniques, e.g. threshold and usual public key
cryptography, to highly dynamic environments to ensure that even when some

1

2 Chapter 1. Introduction

nodes are unavailable, others can still perform the task through the coalition
of cooperating parties [27]. This collaboration-based nature of the communi-
cation layers imposes a number of challenges in the provision of other services,
especially concerning security. In fact, most of the difficulties found to apply
classic security solutions are just related to the inherent lack of central author-
ities, such as public key infrastructures (PKI), and new proposals have to deal
with avoiding such a centralization by exploring alternative paradigms which,
in turn, require cooperation among peers.

For instance, many of the network security services offered today rely in
public key cryptography. However, one of the most important issues when
dealing with public keys is ensuring their authenticity. In distributed envi-
ronments, the classic solution relies on the existence of a PKI. A hierarchy
of Certification Authorities (CA) can assure whether a public key belongs to
someone or not, as well as some additional services (e.g. if the expiration
date has passed.) Nevertheless, it is not realistic to assume that trusted third
parties (TTP) can be deployed in most pure P2P networks, especially in the
case of a mobile ad-hoc network, where the lack of fixed infrastructure makes
it particularly difficult [91].

Furthermore, among the main security properties demanded on a system,
authentication has been identified as a critical issue in self-organized environ-
ments [90]. Several approaches have addressed the provision of fault tolerant
authentication, most in the way of protocols relying on threshold cryptogra-
phy using key sharing and agreement techniques [41]. The key idea is to use
a quorum of participants to create a digitally signed public key certificate.
On the other hand, resource authentication become critical since a content is
replicated through different locations, and therefore the originator loses control
over it.

1.1 Objectives and Scope

This thesis studies and analyzes the above characteristics for the provision of
security services, paying special attention to authentication and access control
techniques suitable for self-organized networks. We propose a content authen-
tication scheme whose main objective is to maintain content integrity, ensuring
its authenticity and avoiding non-authorized alterations. Moreover, since it is

1.1. Objectives and Scope 3

proved that sharing can be encouraged by imposing a cost on the downloads,
the scheme is extended in this regard by means of providing access control
services. We next briefly introduce the motivations of this thesis.

1.1.1 Motivation

In a P2P network, peers communicate directly with each other to exchange in-
formation. One particular example of this information exchange, that has been
rather successful and has attracted considerable attention in the last years, is
file sharing. This kind of systems are typically made up of millions of dynamic
peers involved in the process of sharing and collaboration without relying in
central authorities. P2P systems are characterized by being extremely decen-
tralized and self-organized. These properties are essential in collaborative and
ad-hoc environments, in which dynamic and transient population prevails.

The popularity and inherent features of these systems have motivated new
research lines in the application of distributed P2P computing. New problems
have also been posed, such as scalability, robustness and fault tolerance, orga-
nization and coordination, adaptability, distributed storage, location and re-
trieval, reputation, and security. In particular, security advances have focused
on anonymity, access control, integrity, and availability. New areas are being
explored, such as fairness and authentication [37]. Additionally, a significant
part of the research on security in P2P systems intends to mitigate attacks
against four main system properties: availability, authenticity, access control,
and anonymity. Recent work primarily focuses on addressing attacks against
availability and authenticity [39]. For instance, some results already exist on
the provision of both security properties in traditional Gnutella-like systems.
Different authors have also studied how to use a P2P network to prevent Denial
of Service (DoS) attacks on the Internet [67, 81]. On the other hand, works
such as [32] study how to use P2P networks to provide user anonymity. Fur-
thermore, current architectures for P2P networks are plagued with open (and
apparently difficult to solve) issues in digital rights management and access
control (e.g., [55] outlines some of the problems in this area.) The foregoing
problems in this field are presented and an advancement is provided with this
thesis for a method to securely distribute electronic files in a fully distributed
and self-organized P2P network.

On the other hand, one of the main advantages of P2P systems is their

4 Chapter 1. Introduction

capability to offer replicas of the same content at various locations. Faced
with different locations of the same content, an application can grant priority
to that which offers a less expensive path (e.g. in terms of bandwidth.) To
some extent, replication also guarantees some sort of fault tolerance, since in-
formation can be available even if some parts of the network are temporarily
disconnected. However, this high degree of redundancy implies that it is nec-
essary to apply some security mechanisms in order to avoid attacks based on
non-authorized content modification, i.e. to detect whether a content has been
altered, and also to verify whether it was actually sent by the person/entity
claimed to be the sender.

Early approaches to providing integrity of electronic files were based on
assuring the communication environment through verifying the transmissions,
i.e. ensuring the provider and the requester, the source and the original con-
tent. Such mechanisms apply symmetric key cryptography for message trans-
missions by means of secure channels using a shared secret, e.g. applying secret
key encryption algorithms (block ciphers and stream ciphers.) Encryption of
messages guarantees against unauthorized access, and serves for “distinguish-
ing” the other party between the defined, limited universe of users. Despite its
speed and low computational requirements, the key management is difficult to
achieve reliably and securely.

An advance in the question was the use of asymmetric (or public key)
algorithms in order to distribute symmetric keys at the start of a session. In
practice, public key cryptography is commonly used to bind the public keys to a
user name (in the form of digital certificates – X.509 ITU-T standard for PKI),
and can be used to implement digital signature schemes, i.e. to sign a message
by creating a hash of the message and then encrypting the hash with a private
key. If a message is digitally signed, any change in the message will invalidate
the signature. As a result, the sender identity can also be permanently tied
to the content of the message being signed. The verification of the signature
depends on being in the possession of the corresponding public key. After
decrypting the hash, anyone can compare the hash from the signature to that
generated from the message. Nevertheless, because asymmetric keys have to
be distributed authentically, a public directory is required.

Additionally, another progress is the process of securely keeping track of
the creation and modification time of a file, fixing the time and content of a

1.1. Objectives and Scope 5

document. A central entity, a timestamping authority (TSA), is also needed
to ensure data integrity against a reliable time source; such an information
is in turn digitally signed with the private key of the TSA. Thus, a trusted
party (typically a CA) facilitates the interactions between two parties who
both trust her. This contrasts with web-of-trust models in which there is not
reliance exclusively on a centralized CA (or a hierarchy of such.)

Finally, the vast majority of these schemes to do message integrity checks
and digital signatures use cryptographic hash functions. The hash value, or
digest, of a file is a concise representation of that file as a sort of digital fin-
gerprint of it. Similarly, a cryptographic message authentication code (MAC)
value protects both message’s integrity as well as its authenticity using as
input a secret key, as is the case with symmetric encryption.

The foregoing classic approaches have some limitations when applied to
ensure that a file a user is downloading is the original file from the real author.
In fact, these deficiencies in current systems are a burden on the secure P2P
content distribution, thereby limiting the use of these networks for sharing
files in a manner on which users can rely on [102].

1.1.2 Summary of the Proposal: P2P Content Authen-

tication and Access Control based on Byzantine

Agreement

In this section, we provide a brief summary of the contributions of this thesis,
as follows:

(a) The study and analysis of the state of the art on security in P2P networks
gives us lacking of content authentication and authorization proposals.
We present a comparative analysis of existing solutions, some of which
will be addressed in this thesis. Concretely, we especially elaborate on
the concept of cooperation-based security services.

(b) A recent work addresses the issues related to this problem in P2P systems
[97]. Authors introduce a scheme based on Byzantine agreement for
authenticating public keys. The proposed mechanism is autonomous
and does not require the existence of a TTP in charge of issuing and
verifying certificates to ensure key authenticity. The key point is that

6 Chapter 1. Introduction

the scheme works correctly if the number of honest peers in the network
is above a certain threshold. We implement this scheme, and analyze it
as well, aimed at building high level security services in an upper layer.

(c) We propose a content authentication protocol for pure P2P file sharing
systems. Under certain restrictions, our scheme provides guarantees that
a content is authentic, i.e. it has not been altered, even if it is a replica
of the original and the source has lost control over it. Our proposal
employs a combination of three main cryptographic concepts which are
well known. These are: hash functions, digital signatures and signed
certificates. Moreover, our scheme relies on a set of peers playing the
role of a CA, for it is unrealistic to assume that appropriate TTPs can be
deployed in such environments. An exhaustive report on the efficiency is
presented. We also discuss some of its security properties through several
attack scenarios. For this, we need an implementation and implantation
of the obtained file sharing system.

(d) Many inherent characteristics of P2P environments introduce new re-
quirements for access control, such as different applications running on
each node, control decentralization, and node mobility and dynamics, to
name a few. In general, the extremely decentralized nature of a pure P2P
network makes impossible to apply solutions that rely on some kind of
fixed infrastructure, such as on-line TTPs. We extend our initial work by
showing how digital certificates can be modified to provide authorization
capabilities for self-organizing peers.

(e) Finally, since classic access control schemes must be adapted to such
fully decentralized and highly dynamic networks, we also discuss on the
provision of authorization services, especially delegation and revocation.

Summarizing, the main subject of this thesis will be the design of a secure
content distribution protocol for pure P2P networks. For this, we rely on some
results derived from well-studied problems such as those of reaching consensus
in presence of traitors. Content authentication confirms non-alteration and
source identification of the content, implemented through a digital content
certificate. Once authentication is provided, access control schemes could be
designed.

1.2. Organization of this Document 7

1.1.3 Validating Results

This thesis presents several results obtained from the empirical analysis of the
specification of our proposal, and from the development and evaluation of the
entire scheme as well. Our motivated scenarios are the implementation of our
protocol in future P2P networks, particulary in collaborative environments
and file sharing applications in order to make them more reliable and secure.
In fact, the implementation of the scheme shows that the overhead of the
entire process is low enough, to some extent, and therefore its real application
is possible in current P2P networks.

1.2 Organization of this Document

The remainder of this document is structured as follows.
A brief overview of the state of the art on security in P2P and MANETs is

presented in Chapter 2. First, we motivate the need for basic security solutions
for pure P2P and ad hoc networks, where cooperation among nodes is required.
Finally, we overview main security approaches proposed so far by the research
community, and discuss the most interesting properties they provide.

In Chapter 3, we present our approach aimed at assuring content authen-
tication. An exhaustive description of all the protocol components and phases
is provided, together with an efficiency and security analysis.

Moreover, this proposal is extended in order to provide access control in
Chapter 4. Along with content authentication, our Join subprotocol and Con-
tent Access subprotocol guarantee a secure content distribution in a fully
decentralized P2P network. We also address the provision of authorization
services, i.e. delegation and revocation of privileges. The entire proposal is
further analyzed in terms of the computational and communication overheads
introduced by the security scheme.

Chapter 5 shows a software implementation and testing in order to evaluate
and analyze the functional requirements of our proposal. Finally, Chapter 6
sets some conclusions and research directions.

In Appendix A, we briefly describe the implantation of the public key au-
thentication protocol and its validation. Furthermore, Appendix B is devoted
to examine the availability of computational puzzles and the additional cost
spent in solving cryptographic puzzles through numerous simulations.

8 Chapter 1. Introduction

Chapter 2

Security in P2P Networks:
State-of-the-Art

Research on fully decentralized and self-organized networks, such as P2P or
MANETs, is receiving special attention at present due to the emerging range
of new applications and their real deployment. Note that if a centralized sys-
tems is generally difficult to handle, a distributed one often poses much more
difficulties. However, the inherent differences between the P2P model and
the classic client-server paradigm cause that many solutions developed for the
latter are not applicable or, in the best case, have to be carefully adapted.
Concretely, the provision of security services introduces lots of research chal-
lenges. It is particulary challenging because of the unique characteristics of
such environments, especially mobility and heterogeneity, dynamic node joins
and leaves, and routing issues.

Generally, the inherent lack of fixed infrastructures and a high transient
topology of the physical network, formed and maintained independently by
the peers, can cause significant problems. In fact, most of the difficulties
found to apply classic security requirements (e.g. authentication and autho-
rization services) in a P2P system are just related to the absence of a TTP
functionality, such as the establishment of a PKI. Moreover, this makes diffi-
cult the application of many common cryptographic primitives such as digital
signatures. New proposals have to deal with avoiding such a centralization
by exploring alternative paradigms which, in turn, require cooperation among
peers. This fact enforces the overall cooperation to play an essential role. Fur-
thermore, researchers have to adapt common cryptographic techniques, e.g.

9

10 Chapter 2. Security in P2P Networks: State-of-the-Art

threshold and public key cryptography, to highly dynamic environments to
ensure that even when some nodes are unavailable, others can still perform
the task through the coalition of cooperating parties. Nearly all the solutions
proposed so far are one way or another based on the idea of replacing the
whole PKI by a collaboration scheme. Put simply, a subgroup of peers must
cooperate to perform tasks such as generating (or verifying) a digital signa-
ture, o negotiating a group key for a secure communication. In particular,
ad hoc networks rely upon the cooperation among individual nodes to carry
out essential tasks such as packet forwarding. P2P file sharing systems face a
similar situation. This collaboration-based nature of the communication layers
guarantees fault-tolerance though, however, imposes a number of drawbacks
as well.

However, collaboration-based applications have to deal with the social and
rational dilemma, which motivates a possible tendency of entities towards self-
interested behavior [25]. This way, a fundamental feature of P2P networks is
the honest collaboration among an heterogeneous community of participants.
For example, a node may decide not to cooperate to save its resources while
still using the network. After Napster success –the first P2P file sharing ap-
plication massively used–, advances in this area have been intense, with the
proposal of many new architectures and applications for content and comput-
ing sharing, and collaborative working environments. Most research efforts
have modeled and quantified the incentives and disincentives for cooperation
in P2P networks [80]. On the other hand, anonymity and a highly transient
population incur additional complexity for peers to determine others’ identi-
ties, making difficult (or very inefficient) some tasks such as authentication
and accounting.

In this chapter, we present a survey on security issues in P2P networks.
Concretely, Section 2.1 leads to the description of the P2P system and adver-
sary model, especially elaborating on the concept of cooperation-based security
services, such as authentication and access control. We discuss in Section 2.2
most representative cryptographic primitives used to commonly provide secu-
rity in a fully distributed manner. Moreover, Section 2.3 summarizes main

11Several works have applied rational models, such as the Prisoners’ Dilemma, in order
to empirically observe a networking social pattern. We will further elaborate on this topic
in next chapter.

2.1. Pure P2P Networks 11

security proposals presented so far, some of which will be addressed in this
thesis. We also identify several emerging trends in this research area (see Sec-
tion 2.4), and provide a comparative analysis of existing solutions in Section
2.5. Finally, we conclude by identified some open research issues in Section
2.6.

2.1 Pure P2P Networks

P2P is often described as a type of distributed computing paradigm where
nodes communicate directly with each other to exchange information. P2P
applications allow users to communicate synchronously, supporting tasks such
as instant messaging, working on shared documents or sharing files, among
many others. As a result, the P2P paradigm provides users with the capability
of integrating their platforms within a distributed environment with a broad
range of possibilities.

A P2P network has neither clients nor servers; each individual node could
act simultaneously as a client and as a server for the rest of the nodes in the net-
work. Within this paradigm, any node can initiate or complete a transaction,
and it can also play an active role in the routing operations. In general, nodes
will be users’ personal computers, instead of typical elements of the network in-
frastructure, but they can present heterogeneous characteristics regarding the
local configuration, processing power, connection bandwidth, storage capacity,
etc.

Fully decentralization often enables the possibility of replicating contents.
Replication has important properties, such as the possibility of accessing con-
tents even when some nodes are disconnected. Well-known P2P file sharing
systems have evolved towards an increasing decentralization. However, P2P
networks are useful not only for relatively simple file sharing systems, in which
the main goal is directly exchanging contents with others. Large P2P distri-
bution networks will be more robust against attacks and range to more so-
phisticated structures which self-organize into ad hoc network topologies with
the purpose of sharing resources such as content and CPU cycles (GRID), of
maintaining secure and efficient storage, indexing, searching, updating, and
retrieving data. In fact, a number of factors, such as the increasing popularity
of wireless networks, the opportunities offered by 3G services, and the rapid

12 Chapter 2. Security in P2P Networks: State-of-the-Art

proliferation of mobile devices, have stimulated a general trend towards ex-
tending P2P characteristics to wireless environments. As a result, the P2P
paradigm has begun to migrate to pervasive computing scenarios. So far, the
most straightforward approach consists in mounting a mobile P2P (M-P2P)
system over a MANET. Nevertheless, nodes in a MANET are constrained by
a limited amount of energy, storage, bandwidth and computational power.
These factors, among others, limit the type of security measures that can be
deployed.

In the following sections, a brief overview of the P2P system model is
presented. Firstly, we motivate the need for basic security solutions for P2P
and ad hoc networks, and also elaborate on the influence of collaboration-based
security services which are in the spotlight.

2.1.1 System Model

The study of security issues in P2P networks becomes more difficult due to
the diversity and heterogeneity of existing P2P architectures. With the aim
of providing a general specification, we have identified three elements common
to every P2P system:

1. The user community (nodes.) The user community is characterized
by a high node transience, the total ignorance of the node’s intentions,
and the lack of a centralized authority. These issues have been tackled by
different models, protocols and systems which mostly stress cooperation
playing an essential role in the network performance.

The evolution of cooperation is the creation of social profiles of P2P vir-
tual communities [105, 48], which are addressed by recent investigations
focused on the establishment of incentives that motivate users to be-
have well. Typically, at the heart of these proposals operate traditional
reputation schemes as polling-based algorithms.

A solution to encourage resource sharing is to force each peer to con-
tribute before being served. This collaboration is evaluated for com-
puting a user participation level, rewarding the most collaborative peers
with, for example, high priorities for their queries or by decreasing the
transmission delays of their desired services. The basic assumption of

2.1. Pure P2P Networks 13

P2P (Content Distribution Systems)

Network Structure

Structure

Centralization

Structured

Unstructured

Pure

Partial

Hybrid

Chord, CAN,

Pastry,
Tapestry

Napster

KazaA

Gnutella
FreeHaven

Figure 2.1: Overlay classification.

these models is that peers engage in bilateral evaluations and interaction
feedback are done on an agreed scale [115].

2. The overlay architecture, which defines the logical structure of the
network over the underlying communication layer(s.) Essentially, the
overlay network manages the aspects related to node location and mes-
sage routing.

Overlay networks can be classified in terms of their degree of centraliza-
tion and structure. There are three categories concerning the former:

• Purely Decentralized Architectures: There is no central coor-
dination point of the distribution activities. Nodes are referred as
servents due to their dual nature (SERVers+cliENTS.)

• Partially Centralized Architectures: Special roles are assumed
for some nodes called “supernodes”, which carry out special tasks
mainly aimed at improving the performance of network routing.

• Hybrid Decentralized Architectures: A central server provides
the interaction among the nodes, since indexes which support data
searches and node identification are centralized, but the data is
distributed.

On the other hand, P2P networks are categorized in terms of their struc-
ture as unstructured or structured. The first category of overlay
models was popularized by Napster [4], which showed some scalability
limits, but reduced the network dependence to a small number of highly
connected, easy to attack peers. Peers join the network without any
prior knowledge of the topology. Searching mechanisms include brute

14 Chapter 2. Security in P2P Networks: State-of-the-Art

force methods, such as flooding the network with propagating queries to
locate highly replicated contents. Other well-known unstructured sys-
tems are Gnutella [3] and FastTrack/KaZaA [2].

On the contrary, structured P2P networks provide a mapping between
content and location in the form of a distributed routing table. Queries
can be efficiently routed to the node having the desired content, and
data items can be discovered using the given keys. The overlay network
assigns keys to data items and organizes its peers into a graph that maps
each data key to a peer. Maintenance of this graph is not easy, especially
due to the high transience of nodes.

Figure 2.1 sketches both categories and shows some representative P2P
systems for each of them.

3. The information (content) stored at nodes and accessible through the
services offered by the network. Replication is a common approach to
improve performance when distributed systems need to scale in number
of users and objects in the system, and/or geographical area. The most
commonly used file replication strategy in P2P systems simply makes
replicas of objects on the requesting peer, upon a successful query/reply.

2.1.1.1 P2P in Mobile Scenarios

P2P systems for mobile and ad-hoc networks introduce a number of new issues
related to naming, discovery, communication and security. In particular, as
many mobile devices cannot still store many large files and the network infras-
tructure have remarkably low capabilities, M-P2P services will differ notably
–at least by now– from current P2P applications. Smaller contents, such as
games, video clips, photographs, and news, to name a few, are more likely to
be distributed. Indeed, there are some future collaboration-based applications
in which peers may share data with each other using mobile devices in a P2P
fashion. Some works present middleware implementations in Java and SOAP
to provide M-P2P services for various wireless/mobile technologies, including
WLAN, UMTS, GPRS and GSM [20]. However, the highly dynamic, decen-
tralized and self-organizing nature of MANETs does not fit well with many
approaches developed in the P2P world.

Research on MANET technology has addressed the efficiency of data search

2.1. Pure P2P Networks 15

and routing, a major problems since the topology continuously and unpre-
dictably changes due to frequent joins and leaves, and since the network per-
forms physical broadcast. Basically, the efficiency of routes often depends on
the honest collaboration among nodes, who may serve also as routers, and gen-
erally the trustworthiness of routes is kept in order to exchange them among
different peers. Obviously, this raises a scalability problem. Some recent works
and surveys on MANETs study these fundamental problems (e.g. [43, 70].)
On the other hand, it is also necessary to identify vulnerabilities and threats,
establish the essential security requirements, and define appropriate mecha-
nisms for M-P2P applications. Moreover, most interactions and operational
tasks carried out in a MANET (e.g. forwarding, recommending/accusing, and,
according to the service provided, participating) are mainly built around trust,
and have to necessarily rely on the cooperation of all the participants. Never-
theless, this fact also incurs a problem; malicious nodes and whitewashers may
impersonate others and use the spoofed identities to launch false accusations
and purify the bad reputation accumulated under their previous identity.

Regarding adversary models, collusion is one of the most dangerous threats,
since dishonest peers can act together in efforts to impact honest’s decisions.
For instance, Sybil attack may involve a stream of colluding recommenders
boosting the trust of one badly behaved principal. This should be limited by
using identity certification. Thus, peers need to be sure that the other party
(especially the source, or the recommender) is really who she claims to be. On
the contrary, anonymity has been an important consideration in the earlier
P2P designs, and especially in mobile environments where anonymity incurs
an unacceptable overhead of flooding and uncertainty about the credibility of
the potential participant. Recent solutions consider the existence of a self-
organized PKI to ensure a correct identification, such as that proposed in [27].

2.1.2 Security Goals

Basically, P2P security schemes proposed so far show two main characteristics:
they are inefficient and, in the absence of central authorities, require nodes to
cooperate. In fact, their inefficient performance is currently an obstacle to the
acceptance and usage of several cryptographic solutions. Particulary, it does
not seem easy to deploy security solutions for mobile architectures due, among
other reasons, to the inherent limitations of the peers’ devices and their po-

16 Chapter 2. Security in P2P Networks: State-of-the-Art

tentially very sporadic interaction with other peers. Under these assumptions,
early works have tried to establish a decentralized trust management system.

Furthermore, despite the advances in P2P technology, security-related is-
sues have remained systematically unaddressed or, at best, handled without
a global perspective. Classic approaches have concentrated on specific points,
such as mitigating attacks against three main system properties: availability,
integrity, and anonymity.

Availability is measured by how often object requests are successfully served
and, in particular, mapping two factors: the number of peers (average node
availability) and the number of object replicas (replica storage size.) An im-
portant problem is how to deal with an overestimated number of copies that
could cause serious security conflicts, like DoS, self replication (false infor-
mation distribution), man-in-the-middle and pseudo-spoofing attacks. Some
algorithms increase the availability of all shared files toward a common target
availability while allowing peers to act completely autonomously using only
a small amount of loosely synchronized global data. In Gnutella, a decen-
tralized P2P infrastructure has been implemented to hold self-replication (dis-
tribution of false information), man-in-the-middle, pseudospoofing, ID stealth
and shilling attacks.

It is also necessary to balance the total network anonymity (see references
[83, 116]) and the need of preventing network abuse, to assure content’s high
quality. Common components in such algorithms are: the servent, generally
identified by a public key digest, reputation, the resource (i.e. a content di-
gest) reputation, and a simple binary algorithm for voting. In the same way,
Freenet, like Chord, does not assign responsibility for data to specific peers,
and its lookups take the form of searches for cached copies. But, in Freenet,
files are identified by content-hash keys, which gives every file a pseudo-unique
data file key, and by secured signed-subspace keys to ensure that only one con-
tent owner can write to a file and anyone can read it. Moreover, the integrity
of information in a P2P system may be attacked through the introduction
of degraded-quality content or by misrepresenting the identity of the content
(e.g. falsely labeling.)

On the other hand, emerging security problems are being analyzed, such as
attrition attacks, which perform a especial type of network flooding (see e.g.
LOCKSS, Lots Of Copies Keep Staff Safe, system [81].) Furthermore, when a

2.1. Pure P2P Networks 17

malicious node claims that his storage is full or that he contains a particular
file, an attack against a fair sharing is running, and its detection is being
investigated.

Moreover, research efforts have also focused on the study of DoS attacks
and the abuse of multiple identities (Sybil attack) [44]. Other problems have
been recently identified, such as those associated to the transience of peers
(churn) or how to combat the selfish behavior exhibited by nodes that do not
share their resources (free-riding) [51].

2.1.2.1 Security Requirements

Authentication and access control are fundamental to secure the system from
unauthorized actions. In this regard, several works have already shown how to
provide authentication, confidentiality, integrity and non-repudiation services
in ad-hoc domains, based on identity, reputation and trust, proximity, and also
public key cryptography [61]. Traditional cryptographic primitives can be ac-
tually used, perhaps with some restrictions, in mobile architectures. However,
the low capabilities of wireless nodes have reinforced the use of trust-based so-
lutions rather than the inclusion of regular cryptographic schemes. The main
concern with these approaches is that, in most of them, nodes are trusted by
default, and therefore they are susceptible to attacks. Concretely, a correct
node identification is critical, and the lack of control on it could yield to vulner-
abilities in the main processes. Node identification (and its relationship with
anonymity) is an intense research area due to the potential risk of performing
traffic analysis attacks and the traceability of communications among nodes.
An example is the problem during churn, which involves a large number of
potentially malicious peers in the P2P system to certify the peers identities.
The simplest (but unrealistic) scheme for assigning an ID to each node is to
have a centralized authority providing cryptographic certificates, which is only
consulted when new nodes join.

The existence of an underlying mechanism for providing keys is also a
problematic issue. Approaches based on the creation and distribution of a
common key or on the inference of a strong key from a weak shared password,
have some problems with scalability and mobility [43]. Thus, an encrypted
channel can be created if nodes share (or negotiate) a key. If the common
key can be stored and shared by devices, the problem would have an easy

18 Chapter 2. Security in P2P Networks: State-of-the-Art

solution. Otherwise, a pair-wise shared key has to be established on the fly,
without requiring the use of any on-line key distribution center. Current so-
lutions envisage probabilistic key sharing and threshold secret sharing. Other
solutions suggest the combination of centralization and key agreement tech-
niques [127]. In fact, the key agreement protocol is only executed between a
subset of nodes, which play a connecting role within the community. Then,
the main idea is to cluster nodes in service-oriented communities, generally
according to their physical position [123]. Apart from this, problems such as
Sybil and pseudo-spoofing attacks –extensively studied in the context of P2P
networks– appear whenever authentication protocols use opaque identifiers in
favor of anonymity [135]. For this reason, most mobile solutions require the
existence of some kind of control, such as a CA or a key sharing mechanism.

The establishment of a key management service using a hierarchy of CAs
seems unsuitable for the moment, since a naive delegation and replication of
the CA’s responsibilities makes the service more vulnerable. To solve this
problem, some works suggest the use of trust as a principal building block
to address public key management. Particularly, schemes similar to Pretty
Good Privacy (PGP [136]) are fully distributed and self-organized [27]. Nodes
can generate their keys, and their distribution can be done without relying
on external directories, such as in Friend-to-Friend protocols (F2F.) Basically,
this kind of approaches binds an e-mail address to a public key, that is sent
to a user by e-mail, and then a a ring of trust is created. Key authentication
depends on the execution of an agreed checking on that key’s fingerprint.
This authentication does not exist in the majority of P2P systems, though
some studies show that it may be possible to use some form of cryptographic
puzzles, which avoid attackers with large computational resources to get a
huge range of node IDs.

Nevertheless, this approach presents some inconveniences, e.g. those de-
rived from high transient communities with a high number of sporadic par-
ticipants. On the other hand, proposals based on threshold cryptography
present a completely different approach –distributing the CA’s functionality
over selected nodes [134]. Briefly, this scheme is secure if the adversary cannot
compromise more than k out of the n members in any period of time. These
schemes have also a number of drawbacks, mainly related to their communi-
cation overhead (any client needs to contact at least k different nodes to get

2.1. Pure P2P Networks 19

a certificate.) Furthermore, the work presented in [126] relies on threshold
signatures to protect both routing and data forwarding.

On the contrary, trust negotiation solves the problems associated with
classical authentication and authorization schemes by allowing individuals to
safely agree participation admissions for resources and services. Other ap-
proaches use a similar idea but using mobile agents [75].

2.1.3 Challenges on Cooperation

Besides the proposals and constraints mentioned above (mostly provided by ad
hoc computing), cooperation-based services have been successfully addressed
in order to create opportunities for new approaches which involve interaction
among nodes, and to support different constraints such as those listed below:

1. Support for decentralization, fault-tolerant and scalability.

Since centralized control on ad hoc networks has very poor performance
for their single point of failure, research advances have had either to
adapt classic schemes or to explore novel mechanisms, most in the way
of using informal collaborations to solve complex problems.

2. Support for trust-related tasks.

Almost all reputation systems have been designed for motivating peers to
positively contribute to the network, just like for punishing adversaries
who try to disrupt the system. In fact, users of a current P2P sys-
tems actually appreciate the notion of reputation as an incentive in view
of future interactions [30]. There has also been a trend in the research
community towards the use of trust models to address some security con-
cerns, particularly for ad hoc and self-organized environments. However,
trust-based solutions generally rely on the exchange of reputation feed-
back (submit ratings on performance of their mutual transaction) among
community nodes in order to globally/locally evaluate a certain node’s
trust value. These interactions with many other participants necessary
require collaboration.

3. Support for incentive and fairness models.

Both concepts begin to be taken into account to control aggressive be-
havior (“antisocial”) between peer interactions, and also both look to

20 Chapter 2. Security in P2P Networks: State-of-the-Art

enforce fair resource sharing in which, at best, users are willing to co-
operate even without being explicitly rewarded by the system for their
contributions. Some studies have pointed out the benefits of employ-
ing incentive-based mechanisms as a means to foster cooperation among
peers. Even though these incentives rarely can substitute the strength
provided by a cryptographic primitive, they can be still very useful as
a trade-off for non-critical applications. As an example, node participa-
tion in a network has been recently addressed in [38] by adopting a game
theoretical approach. From the results presented, the authors conclude
that even if nodes perceive a cost in sharing their resources, this may
induce node participation.

2.2 Public Key Primitives for P2P and

MANETs

For readability and completeness, we first discuss some of the most represen-
tative cryptographic primitives to provide security through cooperation.

The provision of security services in a fully distributed system (e.g. a pure
P2P network) becomes quite difficult if public key cryptography cannot be used
–at least, in the way it is employed in classic distributed systems. Nearly all the
solutions proposed so far are one way or another based on the idea of replacing
the whole PKI by a collaboration scheme. Put simply, a subgroup of peers must
cooperate to perform tasks such as generating or verifying a digital signature.
Threshold cryptography has been repeatedly pointed out as an appropriate
technique to achieve these purposes, even though its computational cost can
disable its application for restricted devices (e.g. mobile scenarios) [33]. We
will overview basic operational characteristics of this technique among others.

2.2.1 Overview of Public Key Cryptography

In a public key (or asymmetric) cryptosystem, users have a pair of crypto-
graphic keys, a public key and a private key, related mathematically, but the
private key cannot be practically derived from the public key. The private key
is kept secret, while the public key may be widely distributed. Encryption
with public key cryptography has some interesting properties. A a message

2.2. Public Key Primitives for P2P and MANETs 21

encrypted with a recipient’s public key cannot be decrypted by anyone ex-
cept the recipient possessing the corresponding private key. This is used to
ensure confidentiality. Conversely, in a secret key or symmetric cryptosystem
both entities must agree to use a single secret key for both encryption and
decryption. On the other hand, in order to ensure authenticity and integrity,
a message can be digitally signed with a sender’s private key. The digital
signature can be verified by anyone who has access to the signer’s public key,
thereby proving that the sender signed it and that the content has not been
modified [113].

The critical problem in public key cryptography is how to become con-
vinced that a certain public key is authentic, and has not been tampered with
or replaced by a malicious third party. To face this problem is commonly
applied a PKI, in which one or more (configured in hierarchy) third parties
(CAs) certify the ownership of key pairs by means of binding public keys with
respective user identities (along with several other attributes) in public key
certificates.

However, while TTPs are acceptable in the client - server computing
paradigm, they are not suitable to P2P models for a number of reasons. The
viability of a PKI between P2P communicating parties is limited by practical
problems such as uncertain certificate revocation, CA conditions for certificate
issuance and reliance, variability of regulations and evidentiary laws by juris-
diction, and trust. In fact, another approach is the use of trust metrics, also
known as “web of trust”, used by PGP. We further elaborate on this primitive
below.

Definition 2.2.1 (Public-Key Cryptosystem [89]). Generally, a public-key
encryption scheme, (G,E, D), consist in three main phases:

1. G is a key generator that on input n, the security parameter, outputs a
pair (e, d) where e is the public-key written in a public file and d is the private
key.

2. E is an encryption mechanism that given a message m and the public
key e produces a ciphertext c.

3. Finally, D is the decryption mechanism that on input e the public key
and d the private key and a ciphertext e produces a plaintext message m.

As a practical application, let B be a receiver who publishes his public
encryption key eB (say, in some public file), while keeping secret the private

22 Chapter 2. Security in P2P Networks: State-of-the-Art

decryption key dB. Then, whoever wants to send a plaintext message m se-
cretly to B, will pick eB from the public file, encrypts the plaintext and sends
him the resulting ciphertext EeB

(m). This way, only B can decrypt the mes-
sage by applying the decryption key DdB

(EeB
(m)) = M .

Specifically, if a public key can be securely associated to a party, a typical
scenario is to ensure the integrity of a content generated by her, as follows.
First, the source:

1. Computes a hash value from the content.

2. Encrypts the hash value with her private key, obtaining a digital signa-
ture.

3. The signature is enclosed together with the digital certificate which con-
tains the user’s public key.

4. A CA validates the sender’s digital signature.

Then, the receiver:

1. Computes a hash value from the received content.

2. Decrypts the digital signature enclosed by using the public key certifi-
cate, thus generating a second hash value.

3. Compares both hash values to confirm the non-alteration of the content.

As shown, distributed online CA-based systems count on TTPs to generate
public keys and issue digital certificates. Research works on ad hoc computing
have had to adapt such schemes to such scenarios in absence of CAs [126]. For
further details on introduction to cryptography, the reader is referred to [104].

2.2.2 Threshold Cryptography

The goal of secret sharing schemes and threshold cryptography is to distribute
the provision of basic security services/tasks (e.g. the authority to sign a file),
in fully distributed environments without the existence of any fixed infrastruc-
ture, and in presence of malicious nodes [41]. Such techniques offer better
fault tolerance and resilience with respect to crashes of some of the system

2.2. Public Key Primitives for P2P and MANETs 23

components since even if some nodes are unavailable, others can still perform
the task. Indeed, threshold cryptography exploits cooperation in a way that a
coalition of cooperating parties can jointly perform a critical action.

Definition 2.2.2 ((t, n)–Threshold Signature Scheme [33]). At any time, a
node i may request a signature of message m from other parties in the com-
munity, by sending her identity, parameters t, n and the message m to be
signed; at this point those parties need to generate a t out of n threshold sig-
nature for message m. The scheme is formally structured in the following two
main phases: a key-generation phase and a signature phase. Let (Pkg,Psgn)

be an execution of threshold signature scheme, where:
1. A randomized distributed threshold key generation protocol, denoted as

Pkg, is run by the players P1 . . . Pn. The output of this phase is a string ski, pki

for each player, who use as input the common parameters and a different
random string. Each party will output its signature share.

2. The execution of t-out-of-n signature protocol, denoted as Psgn, pro-
duces a pair (sig, out) for the node Pi, where sig is supposed to be a (t, n)-
threshold signature of m, and out ∈ {yes, no} denotes whether sig is a valid
signature of m. Pi uses as input the common parameters, t (not necessarily
predetermined) parties from the community and a message m of her choice,
while each party Pi uses as inputs the common parameters and the correspond-
ing ski.

In a MANET, the scheme should satisfy the following properties: correct-
ness, unforgeability and robustness.

Concretely, n parties share the ability of performing a cryptographic op-
eration (e.g. creating a digital signature), and any subset of at least t out of
n parties can jointly perform the operation. On the other hand, any t − 1

(or less) parties cannot perform the operation. Moreover, any t < n
2
parties

cannot prevent the remaining honest parties to perform the task.
We can classify threshold schemes in two types: those that need a trusted

centralized authority or dealer, and those that do not required this kind of
TTP. Verifiable secret sharing and common RSA or DSS threshold signature
schemes belong to the former, while others provide joint secret sharing with-
out a dealer. With the aim of not violating the nature of the P2P and ad
hoc network, recent approaches let peers themselves to locally handle main
procedures without any dealer [90].

24 Chapter 2. Security in P2P Networks: State-of-the-Art

The establishment of the threshold t is usually a main matter. With a
fixed threshold policy, an adversary may try to manage and permanently com-
promise t group members in order to expose the secret. In such cases, the
reduction of value t involves associated problems such as when a large number
of members leave the group, resulting in a new group size, probably less than t.
Thus, threshold schemes need to securely and reliably determine the number
of current participants on each task.

Several approaches have addressed the provision of fault tolerant authen-
tication, most in the way of protocols relying on threshold cryptography that
use key sharing and agreement techniques. Practically they all share a com-
mon idea: to use a quorum of participants to create, for example, a digitally
signed public key certificate. Particularly, the work presented in [79] provides
an ubiquitous authentication service by following a certificate-based approach.
In this case, no single node has the power of providing full certification ser-
vices (e.g. certificate issuing, renewal and revocation), since none of them
holds the complete certificate signing key. Instead, multiple nodes collaborate
in a network locality, by means of establishing a temporary trust relationship
via a localized trust model. In general, a node is trusted if any fraction k

(a system-wide parameter) of trusted nodes (typically the neighboring nodes
of the entity) claims so. The required k sets the global acceptance criteria
since a locally trusted entity is globally accepted anywhere. The latter incurs
a problematic requirement concerning to node identification reliability.

2.2.3 Byzantine Agreement

The Byzantine Generals Problem basically consists in deciding a common bat-
tle plan; a group of distributed Byzantine generals, camped around an enemy
city, must agree upon “attack” or “retreat” the enemy. Each base communi-
cates among each others sending conflict information, with the vulnerability
of traitors and enemies who try to prevent the loyal generals from reaching a
plan.

Definition 2.2.3 (Byzantine Generals Problem [71]). Using oral messages,
this problem is solvable if and only if more than 2

3
of the generals are loyal, or

what it is the same, no solution with fewer than 3m+1 generals can cope with
m traitors. With signed messages, the problem is solvable for any number of

2.2. Public Key Primitives for P2P and MANETs 25

general and possible traitors.

Consequently, if all the participants are honest, they will reach consensus on
validity.

Regarding computation, we can model two types of processes/participants:
honest and faulty. Obviously, a participant is faulty if it does not follow,
accidentally or maliciously, the specified algorithm. There is no solution if the
upper bound on the number of faults exceeds one third of the nodes. Note that
if the actual number of faulty processes is larger than the upper bound, then
the algorithm may fail to reach Byzantine Agreement without alerting any
correct process to that fact. Therefore, the immediate sender of any message
must be identified, and also there must be a low threshold which prevents
potential collusion of faulty nodes from introducing fake information.

Several works have applied that idea in order to provide Byzantine Fault
Tolerance [28], while others apply the scheme to support high level security ser-
vices based on consensus. Pathak and Iftode [97] apply the same idea in order
to provide public key authentication in ad hoc networks. This work postulates
that a correct authentication depends on an honest majority of a particular
subgroup of the peers’ community, labeled “trusted group”. However, in P2P
systems an authenticated peer could create multiple fake identities and act
maliciously in the future (Sybil attack [44].) For this reason, the classifica-
tion of the rest of the community maintained by each node (see Fig. 2.2) has
to be proactive and should be periodically flushed. A periodic pruning of the
trusted group will ensure honest majority. Thus, honest members from trusted
groups are used to provide a functionality similar to that of the PKI through
a consensus procedure.

The authentication protocol consists in the four phases that are briefly
discussed below. In Fig. 2.3, a node A belongs to “others” group. Node B

authenticates A using its trusted peers, and one of them turns malicious (black
node) that tries to prevent authentication of A, C... Interested readers can
find further details in [97].

1. Admission request. The protocol begins when B (Bob) run into a
newly discovered peer A (Alice), which claims to be the owner of an
unauthenticated public key KA. Then, B asks to a subgroup of his
trusted group for helping him in verifying the authenticity of KA. Finally,
B sends KA to those trusted peers that agree.

26 Chapter 2. Security in P2P Networks: State-of-the-Art

Trusted

members

Probatory

members

Untrusted

members

Faulty or malicious peers

Admission request
Authentication

Deletion

Figure 2.2: Community structure according to the authentication state of each
node.

2. Challenge response. Each notified peer challenges Alice by sending a
random nonce encrypted with Alice’s supposed public key. Alice is able
to return each received nonce if and only if she holds the corresponding
private key, K−1

A . Each challenger checks if the received response is
correct, thus obtaining a proof of possession of KA.

3. Distributed authentication. Each peer helping Alice sends her proof
of possession to Bob. If all peers are honest, then there will be a con-
sensus, so Bob gets the authentication result: KA belongs to Alice or
not. However, some of the peers summoned by Bob could be malicious
or faulty, which may result in Bob receiving different opinions about
the authenticity of KA. In this case, Bob must initiate the Byzantine
agreement phase.

4. Byzantine agreement. First, Bob verifies if Alice is malicious by send-
ing to her a proof request message. Alice must respond with all challenge
messages received, and the respective responses sent by her. If A is hon-
est, she can provide a correct response and also demonstrate her good
behavior by sending to B the challenges she received and the correspond-
ing responses. If A cannot be proved to be malicious, then some of the

2.2. Public Key Primitives for P2P and MANETs 27

A

Non-Authenticated

B

Originator

E

Dishonest

Encounters an

unauthenticated

public key KA

AUTHENTICATION REQUESTS

ADMISSION REQUEST
Key Possession

Claim (KA)

TB

C

Honest
D

Honest

Selects k nodes,

and announces

them KA

Recovers the nonce only if it

holds the private key.

Returns the nonce

in a signed response

message

CHALLENGE

Compute a random nonce encrypted with

KA, sent in a signed challenge message

Correct response?

RESPONSE

DISTRIBUTED

AUTHENTICATION

Send their proofs of possession

Consensus?
Si

Successful

Authentication

Differing votes.

Byzantine Fault.

Proof Request Message:

1. to A

2. to B,C,D.

PROOF REQUEST

PROOF

BYZANTINE

AGREEMENT

Figure 2.3: Phases of the public key authentication protocol.

peers must be. At this stage, B announces a Byzantine fault to the
group. Each group member sends an agreement message to others. At
the end of this phase, the honest peers will be able to recognize malicious
peers causing the split in authentication votes.

Successful authentication moves a peer to B’s trusted group, while en-
countered malicious peers are moved to the untrusted group. Peers can be
also deleted from trusted groups due to inactivity and periodic pruning of the

28 Chapter 2. Security in P2P Networks: State-of-the-Art

group.
The fundamental limit of this scheme is the following. Assume that N is the

number of peers in the community, t the number of malicious or faulty peers,
and φ a fraction of N , denoting that φN peers may not be reached during the
protocol execution and another φN peers exhibit faulty behavior because the
path between the source and them suffers from a man-in-the-middle attack.
It can be shown that the community has honest majority if t < 1−6φ

3
N . As

the value of φ does not have influence on a random selection, we can consider
that a group has honest majority with 3t + 1 peers [97].

Summarizing, the previous protocol provides us with public key cryptogra-
phy without relying on CAs in MANETs. This can be viewed as an essential
building block upon which more complex security schemes can be developed.
As an example, authors mention its application within an e-mail authentica-
tion system named SAM (Self Authenticating Mail.)

2.2.4 Web-of-Trust, and Reputation Metrics

The idea of creating trustworthy communities has attracted considerable at-
tention in the last years [25, 95]. Since it is not realistic to assume such a
reliance exclusively on a a hierarchy of CAs in a P2P network, and especially
if it is the case of a MANET, some works use web-of-trust models (like PGP)
to provide, among others, authentication mechanisms [93].

This technique has focused largely on public key authentication, digital
signatures, and certificates, and creates a decentralized fault-tolerant web of
confidence for all public keys. It does not require the existence of a single point
of trust, but allows the use of email digital signatures for self-publication of
public key information. The key idea is simple; trust decisions are in the
hands of individual users. This way, it is relatively easy to establish one’s own
trust community. For example, the model proposed in [34] manages utility
functions for individual users as a function of the quality of service. These
utility functions are mainly based on the amount of shared contents and their
quality for estimating the node’s aptitude. The drawback is that these kind of
mechanisms are easily disrupted by the actions of dishonest nodes. Each peer
has a credit value during some time interval and sends it when peers interested
on him require this information. The interested peer compares his value with
the value of other peers interested on the same peer. In order to perform an

2.2. Public Key Primitives for P2P and MANETs 29

A

B

D

C

0.1

0.1

0.8

0.5

Figure 2.4: Example of asymmetry of trust evaluation.

integrity check based on the information provided by the interested peers, we
need to let each peer to disseminate his information to the interested peers
during operation.

Nevertheless, how one authenticates others’ public key? The response is a
digest value (hash result or fingerprint.) A key is validated by verifying the
key’s fingerprint with the key’s owner. By signing the key one certifies it as a
valid key [16].

A few security protocols proposed for P2P environments so far are based
on cryptographic schemes as diverse as threshold cryptography, distributed
consensus or Byzantine agreement. Nevertheless, most proposals require an
underlying trust model. In fact, trust and reputation models have been re-
cently suggested as an effective security mechanism for open environments,
showing that rating nodes is an effective approach in distributed environments
to improve security, to support decision-making, and to promote node collab-
oration [22].

On the other hand, the trust metric implemented in PGP is simple and
can lead to counter intuitive decision being made [49]. Concerning trust met-
rics, different trust models have been developed and their properties have been
extensively studied. Because of the dynamic nature of MANETs, trust compu-
tation/evaluation may be uncertain and incomplete. Some works give intuitive
requirements that any trust algorithm should have under that framework as
well. Basically, users need not have direct experience with every other user
in the mobile network in order to compute an opinion about them [120]. In-
stead, they can base their opinion on the indirect recommendations provided
by intermediate nodes (and probably neighbors.) Obviously, trust schemes

30 Chapter 2. Security in P2P Networks: State-of-the-Art

in MANETs rely on the cooperation among nodes (or on secure automated
agents), and also be robust in the presence of dishonest actions. As many ser-
vices in MANETs, such a problem is addressed as a generalized shortest path
problem on a weighted directed graph. As an example, let the graph plotted in
Fig. 2.4 be a simple trust network (temporary or not) in which directed edges
contain explicitly trust values specified by the evaluator. Node A trusts node
B as 0.1 (∈ [0, 1]), node C as 0.8, and node D as 0.5, while B trusts D as 0.1.
In turn, this does not mean that, for example, B trusts A as the same value;
arrows represent the direction. C knows no one except for A, so a trust metric
can be used to infer the trust values between two nodes who are not directly
connected, e.g. how much C could trust D. Consequently, there are two dif-
ferent interaction paths from C to D: crossing B or not. A simple metric may
be the sum of the trust values obtained directly from own experiences (D has
none) together with the recommendation of others, with the aim of choosing
the maximum. In the example, the shortest path is also the most trustworthy,
by chance, and usually the recommended node will store the recommended
trust value (and the recommender) to compute his own trust strategy. These
topics are out of the scope of the present chapter, and therefore we do not
provide more details either. Note that we have already mentioned some draw-
backs, e.g. the lack of robustness, of adopting security models which rely, to
what extent, on trust in mobile environments.

In similar way, reputation systems counter corrupt content attacks by en-
abling users to rate the validity of content and those who provide it. To ensure
that all copies of the same content share the same reputation, content may be
identified by its hash. This enables reputations to scale far beyond trust in
the user and allows widely duplicated corrupt files to be recalled quickly [111].
Furthermore, it is required ensuring that an attacker cannot modify or delete
its client’s reputation information, so designers must distribute this informa-
tion among the other clients using protocols that prevent tampering. Since
attackers can delete clients and reinstall new ones, a reputation system should
also maintain information for the machines on which clients run. This does not
fit well with anonymity. A malicious node might give erroneous responses to a
request at two levels: network, i.e. returning false routes, and at the applica-
tion level, returning false content. Finally, content authentication is commonly
uncertain and current research efforts have adopted popularity-based ranking

2.3. P2P Security Services 31

systems to help users discover desired contents.

2.3 P2P Security Services

As the bandwidth available per user increases and Internet becomes anywhere
accessible, the lack of scalability and fault tolerance given by the classic client–
server paradigm motivates the exploration of fully distributed schemes, which
often require the cooperation among the network participants. As single nodes
become essential for system operation, their responsibility, costs, and involve-
ment rise, and therefore their vulnerability to malicious attacks and unrelia-
bility also increases. Particularly in P2P file-sharing applications, distributing
control means relying on the cooperation of participants, and it is a significant
challenge to design mechanisms that affect the overall behavior in a population
of rational, and therefore selfish nodes, and also to incentive contributing to
the public good by the sharing of files. The aim of this section is to overview
the most representative proposals which use cooperation as a main building
block in order to provide security services.

2.3.1 Secure Routing in Self-organizing Overlay Net-

works

In P2P computing, the general function of an overlay network is to promote
and support adaptive self-organization and maintenance of a (un)structured
network formed of logical relationships among components. The basic prin-
ciples to provide self-organization are to dynamically discover potential com-
munication nodes and available services (generally starting from a few basic
mechanisms such as broadcasting), and efficiently navigate with independence
of the physical network [128].

Most approaches tend to require a priori assumptions on the network con-
figuration that would limit its self-organizing nature and therefore its degree
of adaptivity and robustness. In an ad hoc wireless network, no pre-deployed
infrastructure is available for routing packets, instead routing relies on inter-
mediary peers. In particular, a collection of mobile nodes join together and
create a network by agreeing to route messages for each other. All networking
functions must be then performed by the nodes themselves in a self-organizing

32 Chapter 2. Security in P2P Networks: State-of-the-Art

way. This operating principle involves cooperation among nodes as an es-
sential requirement [117]. In consequence, instead of considering all peers
trusted by default or caring the trustworthiness of the immediate neighbors,
ad hoc routing proposals should attach more importance to security require-
ments [84, 98, 59].

P2P architectures use data encryption too to prevent adversaries from ob-
serving or modifying network-level communication between legitimate nodes.
We must assume that the attacker is able to use these properties for link-
ing messages and, correspondingly, the pseudonyms used with them. So far,
onion routing provides application independent, real-time, and bi-directional
anonymous connections (not anonymous communications) that are resistant
to both eavesdropping and traffic analysis. Some existing systems which tackle
anonymity issues are: Crowds [100], Hordes [73], Tarzan [56], Freedom and
FreeHaven [42]. On the other hand, the idea of using pseudonyms rises when
solving attacks against anonymity, and also the use of blacklisting. A digital
pseudonym could be conceived as a public key with the aim of testing digi-
tal signatures. Pseudonyms attacks involve several scenarios, such as cheating
and Sybil attacks (a malicious abuse of different pseudonyms), and free-riding
where non-cooperative users benefit from others’ resources [45, 51].

2.3.1.1 Stimulating Wireless Forwarding

The problem of stimulating cooperation in MANETs has been extensively
addressed, since networking nodes are not naturally motivated to cooperate
towards a common goal, but for saving own resources (i.e. memory, CPU cy-
cles, battery power, etc.) This is especially critical in wireless communications
since any node can be used as a relay to forward packets. The work presented
by in [26] is centered in stimulating the packet forwarding function, assuming
that every mobile node has a tamper resistant hardware module. Basically,
this security hardware has a counter which is protected from illegitimate ma-
nipulation, and also establishes cryptographic associations (i.e. link-by-link
encryption of the packets using a session key) with neighbors. The counter is
decreased when the node wants to send its own packets, and increased when
the node is an intermediary and forwards packets for the benefit of other nodes
(see Fig. 2.5.) However, the value of the counter must remain positive when-
ever the node wants to send own packets, just as the energy of the node.

2.3. P2P Security Services 33

Counter

Battery

Intermediaries

IN
o

IN
f

OUT= OUT
o
+ OUT

f

DRP= DRP
o

+ DRP
f

Figure 2.5: Model of a node [26]: Two incoming and two outgoing/droping
flows of (own and forwarding) packets.

Furthermore, in order to send own packets, the estimated number of interme-
diate nodes that are needed to reach a destination will reduce the counter. The
key idea is to equilibrate the number of packets (own as well as forwarding)
that the node can send using its remaining energy, and also maximizing its
own benefit, i.e. the number of own packets sent.

On the other hand, a critical situation occurs when the arrival rate of
forwarding packets is too low, and then the node cannot earn enough to send
all of its own packets, even if it forwards all packets received for forwarding
[26]. On this matter, experiments show that there is usually a small fluctuation
in the ratio between the number of forwarding packets and the number of own
packets, due to the random manner in which the packets arrive. A collection
of forwarding rules are proposed to assist decisions about when forwarding
or dropping packets received for forwarding, while own packets that cannot
be sent immediately (due to the low value of the counter) are dropped. For
example, when the node reaches optimal counter to drain its battery out by
sending only its own packets, it is not necessary to forward more packets.
Results from simulations show that the most cooperative the rule is, the best
the performance it achieves. In summary, it can be seen experimentally that
the network can tolerate less cooperative nodes quite well, even though the
throughput of the network decreases as the fraction of less cooperative nodes
increases.

2.3.1.2 Authenticated vs. Trusted Routing

Authentication in routing presents several challenges due to the fact that each
user brings to the network his own mobile unit, without relying on a central-
ized policy or control such as those present in a traditional network. In fact,
many different types of attacks have been identified against the most impor-

34 Chapter 2. Security in P2P Networks: State-of-the-Art

tant routing protocols for MANETs, e.g. those which are under consideration
by the IETF for standardization: the Ad hoc On-demand Distance Vector
routing protocol (AODV) and the Dynamic Source Routing protocol (DSR.)
Concretely, some analysis focus on DoS attacks based on interception and
noncooperation, derived from redirection of network traffic, and by altering
control message fields or by forwarding routing messages with falsified values.
Modification attacks combined with impersonation and spoofing are also stud-
ied. Possible solutions of these attacks range from securing routing through
pre-determined cryptographic certificates that guarantee end-to-end authen-
tication [110], to applying mechanisms based on watchdogs and distributed
reputation systems [84].

An example of such mechanisms is the CONFIDANT protocol [24], which
aims at detecting and isolating misbehaving nodes in a DSR-based network,
thus making unattractive not to cooperate. The watchdog is a neighborhood
monitoring function which observes the behavior of neighbors and identifies
misbehaving nodes by promiscuously listening to communications of nodes in
the same transmission range. A reputation system maintains global values for
each node according to the information collected.

Nevertheless, these reputation-based solutions present some limitations.
First, the ephemeral nature of wireless connections and the presence of colli-
sions may cause monitoring system to fail. Second, there are severe drawbacks
in terms of traffic overhead and the potential spreading of wrong accusations.
Finally, they eventually can reach a situation where all the traffic is deviated
to well-behaving nodes, with the result of overloading them and the links be-
tween them. On the other hand, proactive protocols (e.g. DSDV, OLSR [31])
are subject to misbehavior caused by selfish nodes that do not cooperate in
the propagation of routing information through the network. We will explore
and identify the problems potentially affected by self-interested behavior in a
subsection bellow.

2.3.2 Admission Control in P2P and MANETs

Another main factor attracting research attention to P2P security is to enforce
appropriate access control policies, which limit the activity of legitimate users
while serve as an obstacle to dishonest requesters. In such a scenario, content
owners may determine if the requester attempting to download a particular

2.3. P2P Security Services 35

content is actually authorized to access it. On the other hand, ensuring that
each one of these new potential providers will behave accordingly to the owner’s
access policy gets more complicated (and definitely hard since a global security
infrastructure is unavailable.)

Similarly, the increasing content availability gives rise to an attracting in-
terest in Digital Rights Management (DRM) and, therefore, in providing “con-
trolled” P2P computing services. In fact, several current research proposals
work on facilitating the emergence of new models that maintain some control
over the file-sharing process. So far, only few works have dealt with admission
control (or any other form of authorization) in P2P and MANETs [121, 70, 38].
A malicious node may coax a man-in-the-middle-based situation where he can
send an unsolicited response to a query, or can attempt to forge a message
to a requester with incorrect results. The best defense against this would be
to employ standard authentication techniques, such as digital signatures or
message authentication codes (MACs.) However, MACs require shared keys.

In most systems, the absence of authentication is solved by distributing ap-
propriate keys into groups of authorized users for granting access to the shared
content. Oceanstore is an example of system in which each owner assigns con-
tents an access control list using digital certificates. Every content alteration is
verified against the access control list (ACL), ignoring non-authorized updates.
A different approach is presented by Pathak and Iftode [97], in a Byzantine
fault-tolerance public key authentication protocol. The lack of TTP motivate
users to classify nodes into three categories: “trusted”, “untrusted” or “others”,
after reaching an agreement through proofs of possession of a legitimate copy
of an untrusted node’s public key. The other side of the spectrum is repre-
sented by the applications where users are known (or “friends”) and share their
friends with new friends; we talk over F2F protocols already discussed [47].

Other approaches provide admission to secure peer-groups based on thresh-
old signatures, such as the scheme proposed in [90]. Newly joining members
must acquire a share of the group secret for themselves in a distributed man-
ner. A newly joining member will receive t partial secret shares together with
a membership certificate from each of the t members, who should admit her
to the group. The possession of a partial share enables him to participate in
future voting procedures, in order to admit new members. Authors examined
and compared two threshold signature schemes: one based on RSA signatures

36 Chapter 2. Security in P2P Networks: State-of-the-Art

and the other based on DSA signatures. We refer the interested reader to the
original work for further details.

In summary, the decentralized and anonymous characteristics of common
P2P file sharing systems enforce an inherent “open-access” policy which does
not provide any mechanism to support access control decisions. This lack is
critical in collaborative applications, especially in team-working and virtual
workplaces where peers’ privileges may not be the same, as well as the sensi-
bility of each resource in the system.

2.3.3 Content Authentication in P2P Networks

The possibility of replicating the same content among different nodes, and
download a specific content at any moment, is an attractive distinctive feature
in P2P file sharing scenarios. In the vast majority of current systems, these
tasks are not performed in a proactive way, but they are simply the result of
the existence of a search and location mechanism. Once a user gets the file, it
is usual that a local copy will remain in the node, in such a way that future
queries will identify the node as one of the various locations from which the
content can be obtained.

This fact presents some interesting properties. Faced with different loca-
tions of the same content, an application can grant priority to that which
offers a less expensive path (e.g. in terms of bandwidth and/or number of
network hops.) To some extent, replication also guarantees some sort of fault
tolerance, since information can be available even if some parts of the network
are temporarily disconnected.

In a collaborative working environment, the previous features are highly
desirable [130]. However, it is unrealistic to assume that every integrating node
will exhibit a honest behavior, even if they have always behaved correctly in
the past. Once that a content is replicated through different locations, the
originator loses control over it. A malicious party can modify the replica
according to several purposes:

• To claim ownership over the content.

• To insert malicious software into a highly demanded content. Not in
vain, P2P networks are becoming an important medium to propagate
recently developed viruses, spyware, etc.

2.3. P2P Security Services 37

• To boycott the system by offering fake contents. Eventually, this can
generate distrust and bad reputation in the community.

Secure content distribution protocols are highly desired for these environ-
ments. The scheme presented in [94] shows how digital certificates can be first
used for content authentication, and also be extended to provide authorization
capabilities, much in the way a X.509 public-key certificate can be used as an
attribute certificate. Briefly, the main objective of this content authentication
protocol is to maintain content integrity, ensuring its authenticity and avoid-
ing non-authorized content alterations. This proposal is similar to PGP in the
sense that both the content and the corresponding authorization certificates
are issued by the users.

However, as opposed to PGP, the proposal does not rely on certificate di-
rectories for the distribution of certificates. Instead, in this model, certificates
are stored and distributed directly by the users. This is achieved through the
collaboration of a fraction of peers in the system. Previously to content distri-
bution, the legitime owner of a given content generates a content certificate.
For this, the owner first selects a subgroup of signing nodes from her group of
previously contacted peers. The certificate contains a number of fields: The
identity of the originator (which ultimately establishes who has generated the
content and is its legitime owner); the identification and hash of the content
(ensuring its integrity); and an ordered list of signers, who in turn provide a
joint signature certifying that the content is authentic and belongs to its owner.
After downloading a replica of a content (and its associated certificate), the
user is encouraged to verify its authenticity.

This service can be extended to provide authorization capabilities by in-
creasing the complexity of the certificates (and, therefore, their manipulation.)
Attributes encoding permissions can be easily inserted into authorization cer-
tificates, which are discretionally issued by the owner.

2.3.4 Combating Selfish Behavior in P2P Networks

A number of works have focused on quantifying the optimal cost/benefit trade-
off that would lead nodes to share theirs resources, especially in collaboration-
based systems where peers are assumed to be rational [114, 58, 125]. Schemes
based on micropayments protocols tend to meet fairness, assuring that

38 Chapter 2. Security in P2P Networks: State-of-the-Art

providers are guaranteed to be paid, while requesters are discouraged to be-
have as freeloaders because they are refunded for each upload. System users
are therefore given an incentive to work together towards a common goal [131].

The lack of cooperation (free-riding) and its complex dynamics has been
also studied by adopting a game-theoretic approach. As an example, the reader
is referred to [52], where the Generalized Prisoner’s Dilemma (a well-known
game) [48] is studied from the perspective of its possibilities as a model to
encourage cooperation.

Mechanism to discourage selfish behavior have been also proposed in dif-
ferent environments. For instance, in [45] it is introduced the idea of using
cryptographic protocols based on proof-of-work to increase the cost of sending
email and make sending spam unprofitable. This concept has been extended
to more general settings, such as preventing network level DoS attacks for
TCP [133]. We have mentioned some of the consequences when a node acts
maliciously in flooding-based overlay topologies. Peers can stem the flood of
requests by requiring that requests must be accompanied by requester proof
of work (e.g. solve a cryptographic puzzle.) Ideas similar to this might be
extended to P2P networks, particularly to impede DoS attacks as well as to
provide a solution for the free-riding problem [67].

Research on this topic could lead to encourage fair content distribution
using cryptographic puzzles, since sharing can be encouraged by imposing a
cost on the downloads. An alternative to client puzzles is to use the repu-
tation systems mentioned above to track individual machine’s utilization of
networks resources. Abadi et al. [7] contribute with an approach based on
the application of memory-bound functions to discouraging spam. Possibly,
its application for authenticated distribution of contents is feasible and even
more convenient than mature reputations systems. However, in order to de-
ploy such schemes in mobile networks we must deal with additional concerns,
e.g. those related to the devices’ low capabilities. An interesting question is
whether this idea is feasible in mobile computation, without a significant lose
of efficiency for victims.

2.4. Emergent Trends and Future Research Directions 39

2.4 Emergent Trends and Future Research Di-

rections

It is generally expected that new forms of networking infrastructures and appli-
cations become soon widespread. Even though research and technical progress
on these areas are nowadays very intense, some important problems remain
to be solved. In this regard, security concerns are among the most impor-
tant issues, and, particularly, the problems associated with adapting security
solutions which were conceived for completely different scenarios.

Whatever the case may be, it seems clear that, in absence of fixed and
centralized authorites, cooperation will play an essential role in the provision
of such services. We have identified three main open research lines: the use of
self-issued-certificates, group-based, and evolutionary techniques.

2.4.1 Certificate-based Solutions

Alternatives to threshold schemes range from endowing the system with pre-
authentication via a location limited channel, to using a tamper resistant stor-
age of group key (specially for nodes with very limited resources e.g. sensors.)
A more interesting approach from the security standpoint is to use self-issued
certificates, i.e. nodes issue certificates to trusted nodes. The use of certificates
has been already addressed in trust establishment models [22], even under the
assumption of existing sparse social relationships among nodes. Nevertheless,
main contribution on this topic is the application of Zero Knowledge Proofs.
Briefly, an entity “Prover” knows a secret, meanwhile entity “Verifier” wants P

to prove his knowledge. Thus, P runs a challenge-response protocol offering a
hard problem to V . At next stage, V proposes a random challenge; P provides
the solution. V checks and decides to accept (or reiterate) or reject. This way,
after the interaction, “verifier” is convinced that “prover” knows the secret, but
“verifier” has zero knowledge about the secret itself.

Perhaps, the main drawback is the requirement of a bootstrapping phase
with a secret dealer. In the cited work [22], the trust establishment for any two
nodes turns into a certificate chain detection problem in a certificate graph,
since a node obtains his secret short list (k bindings of his identifier and public
key) from a secret dealer, and then generates a certificate locally. However, to

40 Chapter 2. Security in P2P Networks: State-of-the-Art

manage trust and reputation locally with minimal overhead, in terms of extra
messages and time delay, is still an open issue. In particular, high latency,
bandwidth usage and energy consumption are not acceptable in situations with
strict real-time requirements, like MANETs. In this sense, this proposal tries to
restrict flooding to a subset of nodes. How to determine the subset, such that
it covers the sufficient number of nodes holding the required trust information,
becomes a problem. Consequently, novel works should have to lead towards
“one-to-one” models, where an arbitrary transaction (interaction between two
nodes, e.g. a requester and a provider) is triggered by the requester and may
be accepted/rejected individually by the provider [92].

In addition, revocation is an important process that generally must ac-
company the use of certificate-based models. It refers to the procedure for
downgrading or eliminating nodes’ privileges. Classic methods based on dis-
tributing Certificate Revocation Lists (CRL), Certificate Validation Protocols
(SCVP), or Online Certificate Status Protocols (OCSP) may not be applica-
ble for dynamic environments in which there are no centralized repositories.
A recent work, presented in [14], addresses the issue of certificate revocation
without input from external entities, employing threshold cryptography and
profile tables.

2.4.2 Social and Group-based Solutions

Some of earlier cooperation-based approaches focused on discovering commu-
nity social patterns. In social networks phenomena, node popularity can be
stemmed from the position of a node within the network, i.e. the degree (the
number of neighbors), and the number of hops he is to every other networking
node. However, since nodes are autonomous, selfish, rational and strategic,
the optimal action for the individual does not produce the best outcome for
the population as a whole. In this situation, most popular nodes (from dif-
ferent studies [30], there are no more than 1% of popular nodes) are acting
as centralized hosts for the network, and therefore lead to the network losing
the benefits of a decentralized architecture. Rather than use a pre-established
social network, the network should tend to be dynamically created at runtime.

Intra-group communications have become an important issue in wireless
networks. Traditional multicast protocols have been developed and exten-
sively evaluated. In order to prevent attackers from paralyzing the network

2.4. Emergent Trends and Future Research Directions 41

and services by manipulating multicast communication, typical scenarios de-
mand the design of protocols that cannot base their security on the existence
of setup information, and having no pre-established trust relationship either
[33]. In particular, this kind of environments, in which multiple groups may
coexist interacting via multicast traffic, should enforce security, and should
be protected by means of cryptography, e.g. counting on secret keys. In this
sense, robust cryptographic solutions are applied more and more in MANETs
specially to provide key management schemes [123, 124].

2.4.3 Using Evolutionary Algorithms

The idea of self-organizing cooperation is being currently addressed by different
research directions, e.g. mobile robots connect with each other in a MANET to
coordinate their movements. Other trends, such as the Adaptive Multi-Agent
System theory [21], focus on the design of cooperative systems in which agents
cooperative interact. Each agent has the ability of self-organization, and it is
locally “cooperative”, but not altruistic. They also has the ability of locally
rearrange its interactions with other agents according to its individual task,
and this can indeed lead to a change at the global function.

On the other hand, several approaches have already taken inspiration from
a number of natural phenomena, which give potential emergence of possibly
self-organizing behaviors and tools to be adopted in decentralized deployments
[128]. For example, ant foraging has motivated the design of some adaptive
P2P agent-based frameworks by relaying on distributed mobile agents (“ants”)
which can directly interact and cooperate, even re-organize, while leaving and
retrieving bunches of data in the visited hosts. Moreover, some proposals in the
area of sensor networks exploit learning theories and evolutionary approaches
to have systems autonomously learn how to self-organized itself. However,
since no possibility of control is assumed, and due to the complexity (often
non-linearity) of the phenomena involved, it is difficult to prove that the sys-
tem will behave as needed. In such cases, some proposals are reasonably (i.e.
probabilistically) confident that the global evolution of the system will even-
tually lead to the desired coordinated behavior.

Additionally, novel approaches are being studied by means of mechanisms
inspired by biological evolution such as mutation and recombination, natural
selection and survival of the fittest. In particular, some works address the

42 Chapter 2. Security in P2P Networks: State-of-the-Art

ARCHITECTURES AND SYSTEMS
Structured Unstructured

[99] [118] [101] [132] [69] [56] KaZaA [40] [42] GRID [13]
ID Assignment
ID spoofing ♦ 4 ♦ ♦ – ♦ – – –
Pseudospoofing – – – – – – © ♦ –
Routing
Churn ♦ 5 – ♦ – – – – ♦
DoS ♦ 4 ♦ – 4 4 ♦ ♦ –
Dishonest Nodes
Cheating © © © © – 4 – ♦ ♦
Sybil – – – ♦ – 4 – – –
Man-in-the-Middle – © 4 – – 4 – – –
Properties
Availability ♦ © ♦ – ♦ – ♦ ♦ ♦
Integrity – ♦ ♦ ♦ – ♦ – ♦ –
Authentication – © – – – – – ♦ ♦
Confidentiality – – ♦ ♦ – ♦ – – –
Anonymity © ♦ © © – ♦ ♦ ©/♦ –

Table 2.1: Security properties considered by overlay architectures, according to
if they apply detection methods(4), protection mechanisms (5), both applied
(♦), when be deficient (©) or when not (–).

evaluation of certain protocol’s suitability using evolutionary techniques, with
the aim of find the optimum sequence of premises, e.g. using random graphs in
a Game theory approach. Concretely, candidate solutions to the optimization
problem using a play the role of individuals in a population, and the cost
function determines the environment within which the solution “lives” [48]. In
fact, P2P and MANET’s general principle, i.e. self-organization, paves the
way for considering the use of evolutionary techniques in analysis processes as
a open research challenge. In addition, evolutionary techniques mostly involve
meta-heuristic optimization algorithms such as self-organization. A range of
scenarios are already under formation assuming a spontaneously networking
environment. Those scenarios may exhibit spontaneously emergent behaviors
which need for methodologies to predict them, like a self-adaptive system.

2.5 Analysis

In this section, we analyze the security properties considered by the three
categories which this survey has discussed, i.e: overlay routing (see Table 2.1),
user community (see Table 2.2), and content distribution (see Table 2.3) in
a P2P network. Note that the study takes into account several dimensions
according to the structure, architecture and system affected by some security

2.5. Analysis 43

Trust Anonymity Authentication
[47], µ-payments [100],

[73]
[56], [42] Oceanstore,

[97]
[47] Middleware

Traceability
ID spoofing 5 – ♦ – – ©
Pseudospoofing 5 © ♦ – – ©
Man-in-the-Middle ♦ – – ♦ ♦ ©
Availability
Attrition (DoS) – – ♦ 4 – –
Dishonest Nodes
Cheating – © © – – ©
Sybil © © © – – –
Free-riding © © © – © ♦
Fairness ♦ – – ♦ – –
Properties
Availability – – – © – ♦
Integrity ♦ 5 5 ♦ ♦ –
Authentication ♦ – – ♦ ♦ ♦
Confidentiality ♦ ♦ ♦ ♦ ♦ –
Anonymity © ♦ ♦ – © –

Table 2.2: Security properties considered by P2P architectures and systems
for user community management. (Same legend as in Table 2.1).

attacks. Thus, for each approach, we analyze the degree of detection and
protection, even the absence of countermeasures against the exposed attacks.

Each row in the tables corresponds to a particular class of attack, while
columns indicate if a specific architecture, model or system implements mech-
anisms for defending against it. At first sight, from Table 2.1, it might ap-
pear that current proposals explore the benefits of enhanced request routing
in P2P file sharing, most of them against DoS attack and ID spoofing. The
most significant proportion of the research efforts are essentially worried about
availability and integrity properties. Current efforts in overlay are focused on
authenticated query routing, while some of them are only studying the conse-
quences of malicious actions and proposing protection models against cheating
and Sybil attacks (e.g. Gnutella and Tarzan.) Analogous difficulties arise in
the real application of anonymity.

Table 2.2 contains the analysis of the peers’ behavior at most popular
reputation systems, anonymity architectures and application-specific models,
showing that there is significant heterogeneity in peer traceability, availability,
and vulnerabilities. Confidentiality, anonymity and integrity are not taken into
account in most systems. Nevertheless, to understand which issues account for
these misses, we first explored the relationship between the protection against
DoS attacks provided by main P2P overlays, obtaining poor matches. Unfor-

44 Chapter 2. Security in P2P Networks: State-of-the-Art

Storage and
Replication

Search and Retrieval Integrity and Au-
thentication

[34], [81] [40]others [40], [118],
[99]

Ranking, Sim-
ilarity

[67], [7] Reputation
S.

Identification
Pseudospoofing ♦ – – – – ©
Blacklisting – ♦ – ♦ – ♦
Service Avail.
DoS – – ♦ – 5 –
Attrition ♦ – ♦ © 5 –
Churn ♦ – – 4 4 ©
Dishonest Nodes
Cheating © ♦ ♦ ♦ – ♦
Sybil – – – – 5 –
Free-riding © – ♦ – – –
Man-in-the-Middle – ♦ – – – ♦
Fairness ♦ – – ♦ 5 –
Properties
Availability ♦ ♦ ♦ ♦ – –
Integrity – – – ♦ – ♦
Authentication – 4 – ♦ ♦ ♦
Confidentiality – – – – – 4
Anonymity © © © © – ©

Table 2.3: Security properties considered by P2P architectures and systems
for contents management. (Same legend as in Table 2.1).

tunately, in any case the protection against dishonest nodes manipulations are
devoid of any detection mechanism. Fairness begins to be taken into account
to control aggressive behavior (“antisocial”) between peer connections.

Concerning content management, since the performance is sensitive to the
degree of user cooperation, it makes sense to provide incentives to users to
share their resources. In particular, an adequate option would be to increase
their download allocations in a manner that depends on their contributions.
As a result, most P2P systems manage efficiently the content availability and
a fair sharing (see Table 2.3.) However, anonymity is less considered and,
therefore, many attacks are not applicable. This uncertainty is not worrisome,
for Table 2.3 does not include systems based on anonymity protocols. We
have thoroughly examined the range of activities performed by dishonest nodes
against almost all the security properties of the content. Based on these results,
we can conclude that every system discussed in Table 2.3 is vulnerable, at least,
to one of the mentioned attacks.

2.6. Conclusions 45

2.6 Conclusions

Infrastructure-less networks, on which, in general, one cannot assume the ex-
istence of centralized services such as those provided by TTPs, present a chal-
lenge in terms of formalizing security protocols in P2P networks. Among
most canalized security problems at present, we enumerate goals in adaptabil-
ity, self-management, scalability, fault-resilience in the presence of network
and computing failures, and availability in the presence of peers’ transience,
all with the lack of a CA. These motivations are mainly attributed to orga-
nization, location and routing algorithms studied in this chapter. Next, we
summarize main contributions of this chapter, as follows:

• We performed the present study of P2P content distribution systems
and infrastructures by identifying the feature space of their functional
and non-functional characteristics, linking them to current security
challenges (anonymity, fairness, scalability, performance, content man-
agement, etc.) and without forgetting emergent applications such as
MANET, GRID, and collaborative environments.

• We have therefore presented a survey of existing security approaches
in P2P networks according to the P2P architecture adopted. It was
proposed to categorize the most popular protocols depending on how
they detect and protect.

• Our analysis summarizes the security characteristics adopted by those
P2P structures.

• We have stressed the most representative cooperation-dependant security
approaches using P2P scenarios in order to highlight the benefits of such
a dependence. In our opinion, these schemes we have outlined in this
proposal offer major advantages over other existing ones.

• Providing efficiency and optimization for the nodes is quite challenging,
given the computational and communication overhead that cooperation-
based security schemes generally incur, and also considering nodes’ limi-
tations. Nevertheless numerous members within the research community
are currently working on optimal solutions for maintaining reasonably

46 Chapter 2. Security in P2P Networks: State-of-the-Art

high levels of cooperation. The future of wireless/mobile ad hoc sys-
tems relies on the ability to provide efficient security support that can
be performed even in the presence of colluders.

Future work should focus on extensions to the following items:

• Study emergent topics related to the dynamics of cooperation and fair-
ness, and which strategy leads to the formation of interesting social pro-
files, and content integrity protocols based on cooperation.

• As shown, although most approaches assume rational behavior, we must
be able to consider non-collaborative peers and to measure the effect
they might have on the overall system performance. Therefore, we have
observed that Game Theory may serve us in analyzing the suitability of
the protocols we propose in this thesis.

• P2P systems for mobile ad-hoc networks introduce a number of new
issues related to naming, discovery, communication and security. In
particular, these systems require a lightweight and efficient architecture
due to their highly dynamic nature.

• The idea of using cryptographic puzzles for decreasing spam is being
extended to P2P networks. This idea could provide a form of access
control and detect DoS attacks in advance.

Chapter 3

A P2P Content Authentication
Protocol based on Byzantine
Agreement

One of the features offered by nearly all P2P networks is the possibility of
having several replicas of the same content distributed among multiple nodes.
Despite the fact that this functionality has many advantages (e.g. robustness
and fault tolerance, which allow to access contents even when some nodes
are disconnected), a crucial requirement is to guarantee basic security prop-
erties, such as content authenticity and integrity. A high degree of content
redundancy implies that it is necessary to apply some security mechanisms in
order to avoid attacks based on non-authorized content access and modifica-
tion. These mechanisms would pave the way for new models in which content
providers can exert some control over the replication and file sharing process.

In most existing P2P file sharing systems, verifying the integrity of contents
depends on a correct node authentication. Unfortunately, no infrastructure
there exists for identifying peers and providing them with digital certificates. A
peer can publish fake or junk files with the names or keywords of some popular
files, causing normal users to frequently download wrong files. This quickly
makes peers lose trust and interest in the community [130]. The objective of
checking content integrity is not only to verify that data is not corrupted, but
also to validate that contents are really what one has requested.

However, the extremely decentralized nature of these environments makes
impossible to apply classic solutions that rely on some kind of fixed infras-

47

48 Chapter 3. A P2P Content Authentication Protocol

tructure, typically in the form of on-line TTPs. In this chapter, we propose
a content authentication protocol for pure P2P systems based on the use of
attribute certificates without relying on the existence of a PKI or any other
form of centralized authority. Instead, our scheme maintains content integrity
based on the collaboration among a fraction of peers in the system, who play
the role of a distributed CA. Under certain restrictions, our proposal assures
content integrity in a P2P file sharing system, i.e. a guarantee that the file
has not been altered even if it is a replica of the original, and therefore the
owner has lost control over it. Finally, we provide an analysis concerning the
efficiency (computational effort and communication overhead) and the security
of our proposal.

Next, we first introduce the background and motivation of our approach,
and then describe our solution in an extensive form. Subsequently, we pro-
vide the performance and efficiency analysis, and informally discuss a security
analysis through a number of attack scenarios. Finally, some open issues and
future work conclude the chapter.

3.1 Background and Motivation

A digital content in a common file sharing scenario is straightforwardly alter-
able; it can be manipulated, so that a binary stream looks like the original.
The solutions to achieve data integrity and/or content authentication, as many
other network security services offered today, rely on public key cryptography.
Once that a public key can be securely associated to any given party, the in-
tegrity of any content generated by her can be ensured through her signature,
thus maintaining the correctness and consistency of global data structures and
shared contents, even when peers independently and unpredictably join and
leave the system. Nevertheless, public key certification authorities do not,
traditionally, certify the behavior of the entities that possess their certificates.

3.1.1 Classic Approach

In classic networking paradigms, guarantees of authenticity and integrity can
be provided by digital signatures. If an authenticated user, A, wishes to offer
a content m, she can rely on a CA to generate and sign an associated evidence,

3.1. Background and Motivation 49

which can be checked by the rest of the community and also ensures that m

has not been modified.
The integrity of a content generated by a source can be ensured as follows.

First, the source:

1. Computes a hash value h(m) from m.

2. Encrypts h(m) with her private key, obtaining a digital signature.

3. Creates a message containing m (probably encrypted using a session
key), its hash, and her signature.

4. Sends this message (including the session key encrypted using the CA’s
public key) to the CA.

5. The CA looks up author’s public key and verifies her signature.

6. The CA signs h(m), sCA(m), and sends this signature to the source.

7. Finally, the source can assure the integrity of the content publishing:

〈m, sCA(m)〉

Then, the receiver:

1. Retrieves m and the CA’s signature.

2. Decrypts the enclosed digital signature by using the CA’s public key
certificate, thus generating a first hash value.

3. Computes a second hash value from the received content.

4. Compares both hash values to confirm the non-alteration of the content.

Even though the previous approach has been successfully applied in sev-
eral domains (i.e. for public key authentication), it requires the existence of
at least one TTP. The reasons why A cannot sign her own evidences are sim-
ple. First, because she can misbehave, offering something different of what she
announces. Furthermore, her signature alone does not prevent from manipu-
lation. Suppose that A offers m in the form of a pair:

〈m, sA(m)〉

50 Chapter 3. A P2P Content Authentication Protocol

Once B obtains m, she can modify it and generate a new signature over
the altered content. Moreover, even if B does not modify m, she can just
remove sA(m) and add her own signature. As a result, several –and probably
different– copies of m claimed by various parties may be circulating through
the network.

3.1.2 Overview of our Approach

One of the most important issues when dealing with public keys is ensuring
their authenticity. In environments such as small/medium size networks, the
classic solution relies on the existence of a PKI. A hierarchy of CAs can assure
whether a public key belongs to someone or not. Since in pure P2P networks,
especially in the case of MANETs, there is neither any fixed infrastructure nor
TTPs [91], we have to deploy such functionalities applying novel alternatives,
or even solutions derived from well-studied problems such as those of reaching
consensus in presence of traitors. Due to the relevance of public key authenti-
cation as an essential building block in the protocol proposed in this chapter,
we have further elaborated on this proposal in previous chapter (see Section
2.2.)

Particularly, since malicious attacks and dishonest peers can cause faulty
nodes to exhibit Byzantine behavior, fault-tolerant algorithms are becoming
increasingly important in many environments. As an example, the work de-
scribed in [76] proposes a mechanism based on erasure code replication for an
effective replica distribution and storage. This technique is based on breaking
the data into blocks and spreading them over many servers. The objects and
their associated fragments are then named using a secure hash over the ob-
ject contents, giving them globally unique identifiers. This provides with data
integrity by ensuring that a recovered file has not been corrupted (for a cor-
rupted file would produce a different identifier.) The authors use a Byzantine
agreement protocol to guarantee Byzantine-tolerant consistency as well.

Similarly, the public key authentication scheme adopted in our model de-
pends on an honest majority of a particular subgroup of the peers’ community,
labeled “trusted group”. Concretely, honest members from trusted groups are
used to provide a functionality similar to that of the PKI through a consensus
procedure. However, in P2P systems an authenticated peer could create mul-
tiple fake identities and act maliciously in the future. A periodic pruning of

3.2. Working Assumptions 51

the trusted group is therefore required in order to ensure the honest majority.
Obviously, this updating process leads to some performance drawbacks that
we must analyze.

In summary, content authentication confirms non-alteration and source
identification of the content, implemented through a digital evidence. The
owner of the content is responsible of generating such an evidence containing
the most important features of the content, while a selected subset of the com-
munity signs it. Even though several signers do not constitute by themselves
a proper TTP, some security properties can be ensured if the group has honest
majority.

3.2 Working Assumptions

Before presenting the details of this proposal, we assume the following five
working hypotheses:

1. Assured transactions without rejections. The absence of a message can
be detected. This can be provided by using a scheme based on timeouts
and/or an appropriate transport protocol such as TCP.

2. Identification of all participants is required through a unique pseudonym,
the IP address, a network name, etc. Anonymity is not desired by now.

3. Identification of contents is also required. A unique name, which is also
used for searching the content, is associated with the content.

4. Digital signatures cannot be forged unless the attacker gets access to
private keys.

5. Anyone can verify the authenticity of a node’s signature by applying the
Byzantine fault tolerant public key authentication protocol presented in
[97].

3.3 Content Certificate

The details of a content certificate and a full description of the scheme are
provided below. The basic idea is that contents will be associated to a digital

52 Chapter 3. A P2P Content Authentication Protocol

certificate ensuring properties such as integrity and authenticity, much in the
way an X.509 public key certificate can be used to ensure these properties for
a public key. According to RFC 3281 [50], the attributes are digitally signed
and the certificate issued by an attribute authority –an entity that pure P2P
networks do not have. Instead, our scheme uses a classic challenge-response
procedure among a subgroup of peers until reaching a consensus.

Let A be the legitime owner of a given content m. After A joins the system
and shows interest in distributing m, she must first produce two main items,
as follows:

• A digest of the file, h(m), using a one-way cryptographically strong hash
function (such as any of the SHA-2 family.)

• A subgroup {n1, n2, . . . , nk} of k cooperative nodes picked up from her
group TA of trusted nodes. These k nodes are also called signers. The
way in which this selection is carried out may consider the following
criteria:

– Past transactions history. Basically, nodes use information about
past transactions to make decisions regarding current interactions.

– Availability level and reputation score level. Among the informa-
tion that most commonly used P2P systems present, one can find
several weighted values: the reputation of files and nodes, and the
fraction of time a piece of data is accessible. These weights may
serve to compute an estimation of the expected success for the cur-
rent transaction.

The content certificate Cm (Figure 3.1(a)) is structured in two parts, as
follows:

• The certificate C, containing the following fields:

1. The identity of the originator, which ultimately establishes who has
generated the content and is its legitimate owner.

2. The identity of the content.

3. A hash, h(m), of m, assuring its integrity.

3.3. Content Certificate 53

Content certificate Cm

Certificate C:
Holder: A
ID: Im

Content: h(m)
OLS: A,n1, . . . , nk

Validity Period: (ts1, ts2)
Signing Algorithm: AlgorithmDesc.

Signatures:
Ek = EK−1

nk
(· · · (EK−1

n1
(EK−1

A
(h(C)))))

(a) Content certificate structure.

Table of signed certificates Sni

Date Owner Content Hash Certificate received Signature Eni

Time1 n1 h(m1) Cm1 Ei1

...
...

...
...

...
Timen nn h(mn) Cmn Ein

(b) Local register for signers.

Figure 3.1: Content certificate and local database maintained by each certifi-
cation node.

4. An ordered list of signers (OLS) of the certificate. It contains the
identity of k + 1 network nodes, denoted by n0, n1, . . . , nk, being
n0 = A the content originator.

5. The validity period (ts1, ts2) for Cm, establishing that the certificate
is valid from ts1 until ts2.

6. Description of the hash and signature functions which have been
used.

• Finally, the previous items are recursively signed by the nodes listed in
the OLS. First, a message containing C is signed by A. The result,
along with m, is then sent to the selected k participants. The resulting
signature is subsequently checked and signed by n1, and so on. We
further elaborate on this signing process in the following sections.

Furthermore, as it will be justified below, each node ni must maintain a
local register Sni

with the certificates it has previously signed. Fig. 3.1(b)
shows the fields that this table should store:

• A time-stamp, showing the time when the certificate was signed.

54 Chapter 3. A P2P Content Authentication Protocol

• The content owner identification.

• The hash of the signed content.

• The received certificate (including the signatures contained in it so far),
and

• The signature generated by the node.

3.4 Content Certificate Generation

Before Cm can be used to ensure content authenticity and integrity, it must be
progressively signed by the nodes included in the OLS. At each stage, the next
node in the OLS adds its signature to the previous ones. Due to the structure
of the chain of signatures, this task cannot be carried out in parallel1. We will
denote by

C0, C1, . . . , Ck = Cm (3.1)

the successive versions of the certificate as it passes through the list of nodes.
The certificate is initialized by the originator, A, who selects an appropriate

value for the number k of signing nodes and their identities (see discussion
above.) Next, A generates C0 by providing the first signature and passes it to
the next node in the OLS. The chained signature is defined as follows:

E0 = EK−1
n0

(
h(C)

)

Ei+1 = EK−1
ni+1

(Ei)
(3.2)

3.4.1 Local Verification

Signers have to perform a local verification stage in order to ensure that they
are not being cheated on. This consists in the following three steps:

1. Certificate verification. Each participant/signer, ni ∈ OLS, should verify
the correctness of the received certificate Ci−1. This includes:

1.1 Obtaining the owner’s public key, and authenticating previous sign-
ers as well.

1We discuss later about group signatures.

3.4. Content Certificate Generation 55

1.2 Computing h(m) and comparing it with the value contained in the
received certificate.

1.3 Checking its table of signed contents, and verify that no entries
exist corresponding to the same content.

2. Signatures verification. Each peer verifies the signatures contained in
the received certificate according to the list order. If any public key is
unknown, it can be acquired with an instance of Pathak and Iftode’s
public key authentication protocol.

3. Local management. If previous verifications succeed, the node adds its
signatures to Ci−1, thus creating Ci. Furthermore, each ni dumps the
received certificate (including the signatures contained), a timestamp,
and the generated signature EK−1

ni
(Ei−1) on his local table of signatures

Sni
(Fig. 3.1(b).)

Finally, A publishes the content m, along with the content certificate:

(m,Cm)

For the sake of illustration, we include the following table which summarizes
the content certificate signing process. Moreover, Figure 3.2 schematically
overviews the entire process that signers in the OLS must perform.

Certificate generation: Signers’ deliverables
Receives Generates

n0 C0 = 〈C, EK−1
n0

(
h(C)

)〉 = 〈C,E0〉
n1 C0 C1 = 〈C, EK−1

n1
(E0)〉 = 〈C,E1〉

n2 C1 C2 = 〈C, E2〉
...

...
...

nk Ck−1 Ck = 〈C,Ek〉
n0 Ck

56 Chapter 3. A P2P Content Authentication Protocol

n0

n1

n2

nk

))((, 1

0
0 ChECC

nK

0E

0, Cm

1, Cm

1, kCm

..1 Verif

..2 Gen

)(ChC

)())(((1

00
0 ChChEEE

nn
KK

0C

)(, 01 1

1

EECC
nK

1E

..1 Verif

..2 Gen

)(ChC

)())(((

))((

1

00

1

11

0

001

ChChEEE

EEEEE

nn

nn

KK

KK
1C

)(, 12 1

2

EECC
nK

2E

comparison

comparison

..2 Gen

)(ChC

)())(((

))((

1

00

1

11
221

ChChEE

EEEEE

nn

knkn

KK

kkKKk
1kC

)(, 11 kKm EECC
kn

kE

comparison

..1 Verif

Figure 3.2: Summary of the content certificate generation process.

3.4.2 Signing the Certificate

We have identified two different ways in which the certificate can be signed by
the nodes included in the OLS. Fig. 3.3 graphically illustrates both alterna-
tives. The main differences are the following:

• In the first one, illustrated in Fig. 3.3(a), each node is responsible of
sending the signed certificate to the next node in the list. In this way, A

3.5. Certificate Verification 57

A

n1

n2

nk

n1nk

n2

(1)

(3)

(2)

A

(4)

(2nk-1)

(2nk)

(a) (b)

Figure 3.3: Alternative procedures for content certificate generation.

simply sends the initial certificate, C0, to the first signer, n1, and waits
until Cm arrives from nk (as shown in Fig. 3.6.) Although it is not
explicitly pointed out in the figure, we assume that each peer must send
a notification message to A when it passes the certificate to the next
node. This, together with appropriate timeouts, allows A to be aware of
the current state of the process.

• In the second alternative (Fig. 3.3(b)), A is responsible of sending Ci−1

to each node and receiving Ci. Now, A can check whether the received
certificate has been properly signed or not, thus having a higher level
of control over the process. However, note that each node still has to
perform its local verification stage in order to ensure that it is not being
cheated on.

A more precise description for both alternatives is provided in Figs. 3.4
and 3.5. Moreover, Fig. 3.6 depicts graphically the signing process of content
authentication protocol.

3.5 Certificate Verification

Let B be the requester who wishes to access m. We can assume that, at
this time, B has already completed a searching process and obtained a list
of sources that keep a replica of the desired content. A query result should
return the content’s descriptor, which could be necessary to rank the relevance

58 Chapter 3. A P2P Content Authentication Protocol

Protocol for distributed content certificate generation
(Note: A = n0)

1. n0 generates C and signs it: C0 = 〈C, EK−1
n0

(h(C))〉 = 〈C, E0〉
2. n0 sends (m,C0) to n1

3. For i = 1 to k
(a) ni performs the local verification stage on Ci−1

(b) ni adds its signature and generates Ci = 〈C, Ei〉
(c) ni updates Sni

with the tuple 〈tsi, A, h(m), Ci−1, EK−1
ni

(Ei−1)〉
(d) ni sends (m,Ci) to ni+1(mod k)

(e) ni sends a notification message to n0

Figure 3.4: Distributed content certificate generation.

Protocol for centralized content certificate generation
(Note: A = n0)

1. n0 generates C and signs it: C0 = 〈C, EK−1
n0

(h(C))〉 = 〈C, E0〉
2. For i = 1 to k

(a) n0 sends (m,Ci−1) to ni

(b) ni performs the local verification stage on Ci−1

(c) ni adds its signature: Ci = 〈C, Ei〉
(d) ni sends Ci to n0

(e) ni updates Sni
with the tuple 〈tsi, A, h(m), Ci−1, EK−1

ni
(Ei−1)〉

(f) n0 verifies the correctness of the signature of ni

Figure 3.5: Centralized content certificate generation.

of the resulted content to the query, as well as the list of identities of the
source nodes. Together with each query result, B obtains sources’ published
information, Cm with all the information associated with the content, and m,
as explained previously.

B first selects a source A among those returned by the query. This selection
could be done taking into account the knowledge (reputation) of some of the
signers, of the source, or simply at random. Whatever the case may be, B

finally recovers m. The correctness of the certificate should be verified to
ensure the authenticity and integrity of m, so B must verify the correctness
either of some or all of the chained signatures and their identities as well. For
this, B performs the following steps:

3.6. Efficiency Analysis 59

Owner (A) Signer i (OLS)

Generate C0

and Sign it

Distributed

Signing Process

Local Verifications

on m and Ci-1

Verify Cm.
Sign. Update Si

Send Ci

to next signer (i+1)

last signer

Pick k

trusted nodes

Publish

(m, Cm)

Address dishonest behavior

and non-collaboration

(m,C0)

ok

Cm

Si

TA

Figure 3.6: Content authentication protocol: Certificate generation

• Step 1. B computes h(m) from m and compares the result with that
included in the certificate. If both values differ, then either m has been
altered or Cm is not an authentic certificate for m.

• Step 2. B should authenticate the peers listed in the OLS. At worst, B

knows none of the signers’ identities, having to run Pathak and Iftode’s
protocol, and pre-evaluating the new members’ trust based, for instance,
on the weighted values given by a Trust Management System (TMS)
[112].

• Step 3. B verifies the chain of signatures by recursively encrypting C

with the ordered list of public keys.

3.6 Efficiency Analysis

This section presents an efficiency analysis considering both the computational
(especially cryptographic) effort required by the nodes, as well as the commu-
nication cost of the scheme.

60 Chapter 3. A P2P Content Authentication Protocol

Algorithm ms/operation
RSA 2048 Encryption 0.08
RSA 2048 Decryption 2.78
RSA 2048 Signature 2.78
RSA 2048 Verification 0.08

MB/second
AES-256 113
SHA-256 106

Table 3.1: Speed of cryptographic primitives used in our simulations [5].

3.6.1 Computational Effort

First we analyze the theoretical efficiency according to time, memory and
computational resources required by each protocol operation.

Table 3.2-(a) presents the content access life cycle summarizing the time
sequence, the number of cryptographic operations and the computational com-
plexity for each stage of the protocol. Concretely, the computational complex-
ity of evaluating the cryptographic operations required by our content authen-
tication protocol is O(|m|k3 log k), which linearly depends on the content size,
and is bounded by a polynomial in the amount of protocol participants.

Furthermore, we include in Table 3.1 the speed benchmarks corresponding
to the cryptographic primitives used. We use previous tables with the aim of
measuring the computational cost for content certificate generation process.

Figure 3.2-(b) shows the cost in the worst case (no signers are known and
all the verifications must be performed), so the curve must be seen as an
upper bound. In fact, content authentication protocol performs a number of
hash generations, signature generations and verifications which depends on the
number k of signers. Of course, this also implies that k instances of Pathak and
Iftode’s protocol must be executed, plus the execution of several symmetric
encryptions.

For instance, generating a certificate for contents between 1 and 100 MB
takes less than 1 minute with the cooperation of 10 signers. As content’s size
and the number of signers increase, the computational cost increase significa-
tively: A certificate for a content of 500 MB and 100 signers takes approxi-
mately 1 hour in the worst case, and 3 minutes when no signer is unknown.
See, however, that this task is carried out just once, and that content access
is considerably faster.

3.6. Efficiency Analysis 61

Stage No. crypto operations Complexity
1. Cm generation 1H + 1S

O(|m|k3 log k)
2. Signature process kS + kH + k(k+1)

2 V + k(k+1)
2 PI

3. Content publishing 0
Subtotal: (k + 1)(H + S + k

2V) + k(k+1)
2 PI

4. B’s Checking on Cm 1H + kPI + kV

Legend: H: Hash generation; E: Symmetric encryption; D: Symmetric decryption;
S: Signature generation; V : Signature verification; k: No. of signers; PI: Pathak
and Iftode’s protocol (k log k)

(a) Computational complexity for each stage of content authentication.

5 10 15 20 25

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

k

tim
e

(s
)

Content certificate generation

m = 1 MB
m = 10 MB
m = 100 MB
m = 500 MB

(b) Computational cost (worst case) for content certificate generation.

Table 3.2: Efficiency analysis (computational effort).

On the other hand, Figure 3.7 shows the computational cost in the best
case, i.e. no instance of public key authentication is needed since signers are
mutually known. In this case, generating a certificate for contents between 1
and 100 MB takes less than half a second with the cooperation of 10, 20 and
50 signers. The upper bound reached in simulations has been half a minute to

62 Chapter 3. A P2P Content Authentication Protocol

1 10 100
0

0.5

1

1.5

2

2.5

3
x 10

4

Content (MB)

T
im

e
(m

s)

Avg. Time of execution: Best case

k=10
k=20
k=50
k=100

Figure 3.7: Computational cost (best case) for content certificate generation.

sign a 100 MB content by 100 mutually known signers.

3.6.1.1 Average Time of Execution

Even though the use of digital signatures and encryption based on public
key cryptography require extra computational cost in our proposal, there are
two main responsible factors for the high computational complexity. First, the
execution of several instances of Pathak and Iftode’s protocol increases the cost
O(k log k). Recall that this protocol must be initiated in order to assist each
node’ public key verification. Secondly, as the content certificate generation
requires the cooperation of k participants, faulty, dishonest or malicious nodes,
and network failures as well, involve additional complexity, as shown in Figure
3.8. In such a scenario, the total cost is comprised of an additional, wasted
cost which is the result of the unsuccessful instances ∆k.

Now, we first evaluate the decrease in the number of public key authenti-

3.6. Efficiency Analysis 63

nk

n2

n1

n’1

)(0 shmt

X

0·1 tvtt tt

0ttt

))log(·(1 kk

(1)

(2)

A

(3)

0·2 tvtt tt

))log(·(2 kk

(4)

n’2

(5)

0·3 tvtt tt

))log(·(3 kk
n’k

0·4 tvtt tt

))log(·(4 kk

X

n’’1

(6)

n’’2

(7)

0·5 tvtt tt

))log(·(5 kk

n’’k

0·6 tvtt tt

))log(·(6 kk

(k+1)·(·k)

Figure 3.8: Content certificate generation procedure when a signer does not
collaborate: Time computation.

cation instances with respect to the proportion of trustworthy peers which are
prone to collaborate. Besides, this will allow us to analyze the impact that
non-collaborative behavior has on the overall system.

We then make a comparison between simulations of the content certificate
generation and signing stages where all participants know each other (best
case) with simulations which require public key authentication (worst case.)
Moreover, we consider different sets of k participants (10, 20, 50 and 100
signers), and several content lengths (1MB, 10MB and 100MB.) Table 3.3
summarizes the average time of execution in each case. We can derive some
conclusions from these results. First, contents’ size is actually an influent factor
concerning time of execution due to its involvement in signatures by each and
every k signers, which also carry weight in the total cost. Nevertheless, we can
notice the growing differences between simulations with and without running
the public key authentication protocol with respect to the number of involved
nodes. For instance, generating a certificate for 1 MB contents, and with the
participation of up to 100 signers takes less than one second in both cases.
The cost increases for values of k up to 50 and having to authenticate public
keys.

A key problem, however, is to guarantee that all the community members
will collaborate to jointly carry out a process. We explore the probabilistic
nature of non-collaborative behavior in a P2P community. On the one hand,
we may apply strictly probability to next interactions and simulate several
rounds of instances using randomness and varying the threshold.

64 Chapter 3. A P2P Content Authentication Protocol

10 Signers
m = 1MB m = 10MB m = 100MB

Best 36.1460 321.8600 3.1790·103

with PI 1.3026·103 1.5883·103 4.4454·103

20 Signers
m = 1MB m = 10MB m = 100MB

Best 77.4060 622.8600 6.0774·103

with PI 1.2659·104 1.3205·104 1.8659·104

50 Signers
m = 1MB m = 10MB m = 100MB

Best 249.1860 1.5739·103 1.4821·104

with PI 2.4964·105 2.5097·105 2.6421·105

100 Signers
m = 1MB m = 10MB m = 100MB

Best 695.4860 3.3189·103 2.9553·104

with PI 2.3263·106 2.3289·106 2.3552·106

Table 3.3: Average time of execution (ms): Best and worst case with 100%
collaborative nodes, i.e. all participants collaborate.

On the other hand, we simulate experiments based on some kind of con-
jecture over the collaboration nature of the whole community that one is im-
mersed. The underlying idea is that a node A will try to reduce the cost when
she estimates it is highly possible to interact with non-collaborative peers of
the community. These experiments work as follows. A content owner first
elaborates a conjecture ζ ∈ {0.0, 0.1, . . . , 1.0} over the community’s collabo-
ration nature. All possible thresholds represent different community profiles,
i.e. 0.2 means the existence of a 20% of cooperative nodes out of the total
networking nodes in the community. At this point, the collaboration of a cer-
tain participant may be modeled using a uniformly defined value θ ∈ U(0, 1).
i.e. the probability at which a node is assumed to be collaborative. Thus,
we experimentally estimate the likelihood of finding k collaborative (consec-
utive) nodes, i.e. k nodes whose value θ is above the given conjecture ζ set
by the user, and jointly cooperate in signing the content certificate. So, if the
computed value θ is higher than the threshold ζ, node ni is supposed to be
collaborative and, therefore, the protocol continues.

Experiments were conducted varying the maximum number k of required
participants from 10, 50 to 100, and 1, 10 and 100 MBs for content lengths.

3.6. Efficiency Analysis 65

m = 1MB
Best case Worst: with PI
k = 10 k = 10

µ ±σ µ ±σ

100% 36.15 0 1.30·103 0
90% 55.96 27.04 1.84·103 7.94·102

80% 110.78 80.14 2.98·103 1.89·103

70% 250.30 215.00 6.19·103 5.29·103

60% 783.80 762.31 1.50·104 1.43·104

50% 3.11·103 3.12·103 5.10·104 4.98·104

40% 1.91·104 1.92·104 2.63·105 2.59·105

30% 2.14·105 6.02·105 2.56·106 2.53·106

20% 7.39·106 7.00·106 7.74·107 8.10·107

Table 3.4: Average time of execution (ms): Proportion of collaboration

The experiment was run 1000 times for each threshold ζ. Table 3.4 shows the
average values for 1MB contents signed by 10 nodes. The expressed cost takes
into account the following computational operations: hashes, signatures and
verification of signatures (according to Table 3.1), and also includes the public
key authentication cost.

We also ran similar experiments with k = 50. Some results were obtained:
in the best case with 90% of collaborative nodes out of 50, the process of signing
the content certificate takes 6 seconds on average, while with 10 participants
and the same percentage of collaboration the average time of execution is 36
ms. Moreover, the fast-growing cost is clear when increasing the percentage of
non-collaboration in the community: with 70% and 50 signers (known among
them) we obtain a computational cost about 7.24·104 seconds.

Now we provide a characterization of the distribution of our results. The
purpose of this is to show the most extreme values in the experimental data
set (maximum and minimum values, which we can consider them as outer-
most situations or potential outliers), the lower and upper quartiles, and the
median. The results are displayed as boxplots, where the box represents the
interquartile range, and whiskers extend to the 25th and 75th percentile of the
simulations. Around the median, we have an equal number of values above
and below, forming the interquartile range upon which we can consider an
associated probability of occurrence.

For instance, Table 3.5 shows the computational cost (time of execution)

66 Chapter 3. A P2P Content Authentication Protocol

1.0
0.9

0.8
0.7

0.6
0.5

0.4
0.3

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Time (ms)

C
ollaborative nodes (%

)

Table
3.5:

D
istribution

ofthe
tim

e
ofexecution

for
1M

B
contents,10

participants,and
different

percentages
ofcollaborative

nodes
in

the
com

m
unity:

W
orst

case.

3.6. Efficiency Analysis 67

0.9
0.8

0.7
0.6

0.5
0.4

0.3

10
2

10
3

10
4

10
5

10
6

Time (ms)

C
ollaborative nodes (%

)

Table
3.6:

D
istribution

ofthe
tim

e
ofexecution

for
1M

B
contents,10

participants,and
different

percentages
ofcollaborative

nodes
in

the
com

m
unity:

B
est

case.

68 Chapter 3. A P2P Content Authentication Protocol

distribution for the 1000 experiments run in each proportion of collaborative
nodes in the community (from 100% to 30% of collaborative nodes) for 1MB
contents, and 10 participants taking into account the complexity of the public
key authentication. We can appreciate a “mild” variability of the simulated
data, indicated by wider boxes. However, the 90% of collaboration gives us
guarantees for, at worst, the cost of creating a 1MB-content certificate takes
no more than 2 seconds with the cooperation of 10 signers which are unknown
among them. On the other hand, though the unrealistic 40% of collaborative
nodes also gives a less probable time of 2 seconds, the vast majority of the
simulations ranges from 1.3 to 10 minutes, at worst.

Similarly, Table 3.6 shows the same scenario at best cases, i.e. when all
participants are known and therefore there is no need to contemplate the com-
plexity given by Pathak and Iftode’s protocol. The best among them constitute
certainly an interesting result. Comparatively, the 90% of collaboration gives
almost all computational cost values of less than 0.1 seconds, while the 40%
less than 1 minute.

Several social-inspired approaches have run similar experiments in order to
demonstrate that it is possible to maintain reasonably cooperation level not
only among nodes perceived as being of a cooperative type, but even with
unknown or possibly deviant nodes, although only with a certain probability
[48].

3.6.1.2 Availability of Signers

The failure of a node/network link can be a serious problem as the proposed
content authentication scheme depends on that network component for its
execution. Particularly, faulty (maliciously or not) nodes incur additional
concerns in content certificate generation and verification stages. In the former,
unavailable signers imply new instances of the signing phase initiated by the
owner, incrementing the whole overhead. On the other hand, in the latter, at
worst, a certain requester B, after a successful download, knows none of the
signers’ identities, having to run Pathak and Iftode’s protocol. Faulty signers
(included in the OLS) do not allow honest requesters to correctly verify a
successfully downloaded content certificate.

Many works have so far addressed availability for predicting per-node re-
source burdens and selecting appropriate data replication strategies. Some

3.6. Efficiency Analysis 69

techniques basically lead to enhance routing schemes to route around faulty
nodes or use multiple pass through the networks in order to avoid faulty net-
working elements, among others. However, it is not realistic to use just any of
them in pure P2P networks due to the highly dynamism of the node commu-
nity. Some research efforts concentrate on providing unreliable fault detectors,
which may suspect a correct “process” or it may fail to suspect a faulty “pro-
cess”.

Although it is out of the scope of this proposal, we sketch some key ideas
to deal with the discussion above. Let B be an honest requester. Since signers’
signatures are chained in the content certificate, B should verify them in the
order established by the OLS. If any signer ni is (temporarily or persistently)
unavailable, there is no way to authenticate its public key by means of the
protocol adopted. A possible solution to this problem is based on the use of
others’ repository, and on reaching a consensus. Let k′ be the amount of nodes
{n1, n2, . . . , nk′} ∈ TB selected by B among his group of previously contacted
nodes. B may securely ask them to provide him with a local copy of the
required key Kni

from their own database. Thus, B should (securely) receive
k′ responses, as follows:

n1 n2 · · · nk′

Kni
Kni

· · · Kni

Whenever the selected k′ participants are honest, available, and have at
their disposal the requested key, then there will be consensus on the accuracy
of this particular public key.

Obviously, this process implies an additional effort to take in conjunction
with the computational and communication overhead already measured. Nev-
ertheless, note that public key authentication must be executed just once by
each node, and for each key in the network.

3.6.1.3 Determining k

This is a challenging problem, especially in a fully distributed, decentralized
and dynamic system. A trivial way to solve it is by assuming or imposing
a certain interval which limits the maximum and minimum number of sign-
ers according to the current community size. However, the highly transient
community makes this implementation unrealistic in such environments.

70 Chapter 3. A P2P Content Authentication Protocol

Applying the same ideas to the Byzantine type of failure [17], it is shown
that n > 3t+1 (where t nodes could be faulty and behave in arbitrary manners,
and n is the total number of nodes) must hold even in the case of only needing
to reach approximate agreement. As we showed before, the expected number of
rounds to reach agreement may be exponential depending on the proportion of
non-collaborative/faulty signers. However, some early works presented so far
propose several theorems, based on probability, which guarantee the following
[19]:

1. As long as a majority of the processes continues to operate, a decision
will be made.

2. If the number of faulty nodes is O(
√

N) then the expected number of
rounds to reach agreement is constant.

3. Moreover, if t satisfies 5t < n, then completely asynchronous agreement
is possible.

On the other hand, we can apply similar approach, but backwards, as
computing the average time of execution in order to estimate an appropri-
ate number of signers according to the time a particular owner is willing to
spend, i.e. how many signers the owner has to collet if she wants to spend
no more than a certain period of time. We simulate, as in previous sections,
different percentages of collaborative nodes in the community, and consider
the best and worst case according to the requirement of instancing the public
key authentication protocol. Table 3.7 presents these results for 0.5, 1 and 30
seconds.

Note that the best case, in which there is no need to instance Pathak and
Iftode’s protocol, the number of nodes can be significantly higher, especially
when having at one’s disposal more than 30 seconds, e.g. we can use up
to 400 nodes for generating a 10MB-content certificate in 30 seconds with
mutually known signers immersed in a 60% collaborative community. On the
other hand, we can consider 0.5 and 1 seconds as excellent lower bounds to
generate 10MB(or less)-content certificates by collaborative communities and
team-working. Moreover, 30 seconds may be a good mark to apply in common
file sharing systems, even in the worst case.

3.6. Efficiency Analysis 71

Acceptable Time Threshold
0.5 s 1 s 30 s

% of col-
laboration

1MB 10MB 1MB 10MB 1MB 10MB

100% [81, 18] [16, 11] [127, 25] [33, 18] [832, 118] [578, 112]
90% [75, 15] [14, 8] [118, 12] [30, 11] [786, 30] [536, 30]
80% [70, 14] [13, 7] [109, 12] [27, 10] [740, 29] [493, 29]
70% [63, 13] [12, 7] [101, 10] [23, 9] [689, 28] [449, 28]
60% [57, 12] [11, 6] [92, 10] [21, 9] [635, 27] [400, 26]
50% [50, 11] [9, 6] [82, 9] [18, 8] [578, 25] [350, 25]
40% [43, 9] [7, 5] [70, 9] [14, 7] [512, 23] [294, 23]
30% [34, 7] [5, 4] [58, 8] [10, 6] [440, 21] [235, 21]
20% [25, 5] [4, 3] [44, 7] [7, 5] [352, 19] [168, 19]

Table 3.7: Determining k in the [best, worst] cases.

3.6.1.4 Memory Consumption

The certificates involved in the proposal are small enough to be stored even on
nodes with low storing capabilities (e.g. mobile devices.) The size of a content
certificate is around 600 bytes, depending on the number k of signatures and
the cryptographic signing algorithm chosen.

Content providers and signing nodes must maintain a number of local
databases (tables Ti and Si.) Their length greatly depends on the dynam-
ics of the network and the extent to what the node is involved. However, it is
reasonable to assume that a peer who offers a large number of contents also
has at her disposal a good amount of computational resources.

3.6.2 Communication Overhead

We analyze efficiency according to the communication overhead imposed by the
proposal. Table 3.8-(a) presents the number of messages and the complexity
in terms of communication transmission for each protocol stage. For example,
the content certificate verification process increases slowly as O(k2 log k) com-
pared to the complexity of the signing stage. O(k3 log k). The cubic factor
results from the possibility of, at worst, all the signers had to execute Pathak
and Iftode’s protocol, O(k log k). Just like similar protocols implementing dis-
tributed authentication, this public key authentication protocol is expensive
in messaging cost. However, authors, in their analysis, try to reduce this cost

72 Chapter 3. A P2P Content Authentication Protocol

Stage No. messages Complexity
1. Cm generation 1 + 1

O(k3 log k)
2. Signature process 2k + k(k+1)

2 PI
3. Content publishing 1 + 1
Subtotal: 2k + 4 + k(k+1)

2 PI
4. B’s Checking Cm kPI

(a) Complexity of communication for each stage of content authentication.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
x 10

4

k

N
o.

 o
f m

es
sa

ge
s

Communication overhead

Cm generation
Signing Cm
m publication
Cm verification

(b) Communication cost (number of messages transmitted
in the worst case) for each stage.

Table 3.8: Efficiency analysis (communication overhead).

using an epidemic algorithm called Public key infection for lazy propagation
of protocol messages. By means of this improvement, the complexity gets re-
duce to O(k log k). The related analysis is included in Appendix A. As an
example, let k be the number of signers and also the number of participants

3.7. Security Analysis 73

in the public key authentication. These signers have to perform the following
set of messages, at worst i.e. they do not know previous signers, for signing
the content certificate:

1 + 1k log k + 2k log k + 3k log k + · · ·+ (k − 1)k log k =
k(k + 1)

2
k log k

On the other hand, certificate generation and content publishing remind
as a constant value.

Figure 3.8-(b) plots how the number of transmitted messages increases
depending on the number of signers involved in each stage. At worst, the
entire content authentication protocol requires a high number of transmissions,
e.g. 10 signers have to exchange at worst 1000 messages. The communication
overhead actually depends on the specific content certificate’s length and the
complexity of the challenges in Pathak and Iftode’s messages. On the other
hand, in the best case where all signers are mutually authenticated before, the
number of messages decreases significatively to 19 messages, using 10 signers.

3.7 Security Analysis

In this section, we provide an informal analysis about the security of the
proposed scheme. For this purpose, we discuss several attack scenarios and
forms of malicious behavior which can occur during each phase of the protocol
execution.

3.7.1 Eavesdropping

An attacker can listen the messages transmitted during the content certifi-
cate generation, for all the communication between A and ni ∈ OLS, since
these messages are not protected neither by any network/transport layer nor
any other bootstrapping phase allowing parties to mutually authenticate and
establish a session key under which all the communication is encrypted.

74 Chapter 3. A P2P Content Authentication Protocol

3.7.2 Message Modification Attacks

An attacker can try to modify some messages with the hope of modifying any
message or field in the content certificate. As in the previous case, there is
not secure channel established between both parties prevent this situation to
occur. However, such a modification can be detected due to it leads to an
incorrect message authentication in the verification stages of proposal, but
never to any gains for the attacker.

3.7.3 Message Reply Attacks

An attacker first listens the messages exchanged between A and any other
participant and then tries to reproduce the session by using some of them.
The protocol is robust against such a situation due to the identities of both
parties are included in the messages, not being useful for anyone different from
them.

3.7.4 Message Insertion Attacks

An attacker can try to generate fake messages and insert them in the channel.
However, she is unable to do that for the same reason previously described for
the case of message modification attack.

3.7.5 Message Dropping Attacks

Given enough control over the network infrastructure, an attacker can try to
delete some of the messages exchanged. By doing so, the only result achieved
is a failure in the correct execution of the protocol (which can be viewed
as a denial of service), but cannot enable the attacker to gain any useful
information.

3.7.6 Impersonation Attacks

Assume that an attacker can success in hijacking a session between any pair
of participants. Even in this case, messages exchanged among trusted peers
are safe from spoofing, for they are signed by authenticated public keys. In
other words, the attacker cannot generate the correct digital signatures. Note

3.7. Security Analysis 75

that this is a particular case of trying to exhibit malicious behavior against
the other party.

3.7.7 Attacks Against the Public Key Authentication

Process

At some stages of the protocol, both parties are required to authenticate the
other’s public key in order to verify the signatures exchanged. However,
Pathak and Iftode’s protocol can fail due to the impossibility of getting an
honest majority. In this case, an adversary might convince a honest peer that
the public key of a node is K ′

ni
when it is not. This kind of man-in-the-middle

attack is detected if at least one peer (apart from A) is honest.

3.7.8 Assurance of Content Authenticity

The protocol is started by A and ultimately relies on her honesty. In case of
A being honest, we can assume that the original content m released by her is
authentic. We also assume that the hash function cannot be manipulated, and
that the OLS contains A’s trusted members. In this case, the initial content
certificate, C0, is correct. It is straightforward to see that any modification on
the certificate performed by a signing node can be easily detected.

The originator might try to exhibit a malicious behavior. Any modification
of the certificate fields will be eventually detected by, at least, one node in
the OLS, since it is assumed honest majority in the signing community and,
therefore, A cannot collude with a sufficient number of traitors. This also
prevents a group of malicious nodes to collude during the signing process in
order to forge a false certificate.

3.7.9 Modified Replicas

Consider the following scenario, where B gets access to m and its associated
certificate Cm, and tries to generate a new, fake certificate C ′

m, in which B

appears as the legitimate owner of m:

76 Chapter 3. A P2P Content Authentication Protocol

Certificate C ′:
Originator: B

ID: Im

Contents: h(m)
OLS: B,n1′ , . . . , nk′

Validity Period: (ts1, ts2)
Signing Algorithm: AlgorithmDesc

Signatures:
Ek = EK−1

n′
k

(· · · (EK−1
n′1

(EK−1
B

(h(C ′)))))

This will be detected by a subset of nodes in the OLS during the local
verification stage, as at least one of them has previously signed Cm and will
refuse to cooperate.

Note that this scheme does not prevent from B modifying m into m′,
changing the identifier Im into I ′m, and subsequently executing another protocol
instance with the aim of obtaining a different content certificate, C ′

m. This
kind of manipulation cannot be avoided exclusively by external means, but by
inserting appropriate mechanisms inside m.

3.7.10 Incorrect Sending and No Cooperation

Considering off-line periods, although our scheme provides efficient and secure
content replication, but is lenient toward non-collaborative and faulty peers: a
proportion of signers must cooperate in content integrity process at each time.
Cooperation is then crucial during the content certificate generation stage.
A dishonest signer can delay the content authentication by not signing the
certificate, not sending any message to the next node in the OLS, and/or not
notifying anything to the originator A. Surely, this behavior will produce a
kind of DoS attack [81], so A must check nodes’ availability when this situation
appears.

A dishonest signer could send its participation randomly or maliciously,
instead of a properly constructed signature. This is indeed a point of failure
of the proposed scheme, even though this fact can be trivially detected, since
cooperation is required among the k+1 nodes to achieve a successful execution
of the protocol. In other words, the protocol actually detects these forms
of misbehavior and no cooperation, but it cannot enforce nodes to behave
properly. Even though this is totally related with the decentralized nature of
P2P systems, nodes can be provided with incentives for cooperation in the way

3.7. Security Analysis 77

Attack Vulnerable Comments
Eavesdropping Yes But not serious
Modification No This attack is detected
Reply No This attack is easily detected
Insertion No This attack is detected
Dropping No A type of DoS can be mounted
Impersonation No This attack is detected
Against PKI No Requirement: Honest majority
Authenticity No This attack is detected
Modif. of replicas Yes It is only detected
No cooperation Yes A type of DoS can be mounted
Collusion No Requirement: Honest majority

Table 3.9: Summary of the informal analysis about the security of the proposed
scheme.

it is done in some current P2P systems for encourage file sharing. Nevertheless,
this is something external to our proposal.

Each intermediate peer must ignore any messages that do not have the
proper form of content and a signed certificate. Besides, peers know that the
originator A is malicious if her signature is incorrect. However, rational parties
would have no reason to deviate from the protocol.

3.7.11 A Note on Replication

After a successful execution of the protocol, a node B obtains a copy of m. This
replica can be published by B, thus contributing to increase the availability of
m throughout the network. For this, B cannot modify this replica, otherwise
Cm would not be valid. Note that by doing this B is not claiming to be the
originator of m; information about the true originator is enclosed within the
signatures.

On the other hand, we could be interested in controlling every transaction
(desirable condition in a collaborative working environment.) Without a clear
data ownership, consumption is infinite, and that is not a desired state in a
mobile environment. Our protocol does not apply any capabilities delegation
over contents among nodes.

Furthermore, our proposal alone cannot prevent m from being modified by
B once she has got access to it. However, if B publishes a modified replica, any

78 Chapter 3. A P2P Content Authentication Protocol

requester will be able to detect it just by checking the associated signatures.

By way of illustration, we include Table 3.9 which summarizes the vulner-
ability of our protocol to the attacks analyzed.

3.8 Conclusions

Due to the very nature of P2P systems, it is usual that several copies of the
same content exist at different network locations. Despite the advantages
derived from replication, in general it is unrealistic to assume that every node
will behave correctly. In this way, once a malicious node gets access to a
content, its integrity can be compromised in several ways.

In this chapter, we have proposed a content authentication protocol based
on Byzantine agreement, especially oriented to pure P2P systems. This scheme
allows for a secure content replication among peers, which is able to detect if
non-authorized alterations have been made on the published contents. Fur-
thermore, our proposal does not rely on the use of a TTP, an assumption that
would be totally impractical for decentralized P2P environments. The key
features of our proposal are:

1. Integrity of content is assured: it is a feature currently demanded by
users of P2P file sharing systems.

2. The absence of fixed infrastructure makes it suitable for ad hoc domains,
such as MANETs.

3. It is fault tolerant, but depends on collaboration.

4. It is probably an excellent building block for considering security to
control content replication/distribution in future research designs.

We have also analyzed the proposal in terms of the computational and
communication overheads. We have provided brief summary of the results in
tables and figures. Moreover, the security of the scheme have been informally
analyzed, enumerating possible vulnerabilities and threats.

3.8. Conclusions 79

3.8.1 Including a Bootstrapping Phase

We have mentioned the need of modifying our scheme either using (very costly)
asymmetrically encrypted messages (which avoid the threat of eavesdropping
during content certificate signing process) or assuming the existence of a boot-
strapping phase in the form of that provided by Transport Layer Security
(TLS.) In summary, we require such a mechanism to transmit secret messages
between two partners without introducing a secret dealer.

Some solutions to overcome the aforementioned problem have been pro-
posed so far based either on the use of public key cryptography or on the pro-
vision of secret handshakes in a fully decentralized environment. We gather
together some of them:

• Traditional approaches, e.g. the (unauthenticated) two-party Diffie-
Hellman key agreement, are vulnerable to active and passive attacks
in ad-hoc exchange.

• On the one hand, the majority of the proposals assume that the partici-
pants already have access to authenticated copies of each other’s public
keys. It is relatively simple then to establish secure and authenticated
channels, given that these public keys have already been exchanged and,
therefore, participants know who they are supposed to be talking to.
Nevertheless, this involves a non-trivial cost.

• Furthermore, in MANETs and ad hoc wireless networks, the problem
of secure communication and authentication without TTP has been ad-
dressed as well [15]. Evolutionary game theory also can be applied in
various application context, especially in self-organized socially cooper-
ative networks, aimed at encoded a social behavior into an automatic
model, such as the automatic social bootstrapping service proposed in
[60].

Our content authentication protocol may then adopt any of them previous
to the certificate signing stage.

80 Chapter 3. A P2P Content Authentication Protocol

Chapter 4

Access Control in Pure P2P
Networks

Despite the intense research activity that has been devoted to develop appli-
cations aimed at facilitating collaboration among multiple, distributed users,
relatively few works have concentrated on controlling access to the collabo-
ration environment and shared resources. Most collaborative systems give all
participants the same rights to access all objects, and expect that access issues
will be controlled by a social “protocol.” Thus, they do not provide support
for preventing mistakes, conflicting changes or unauthorized access.

Just like it is crucial to guarantee properties such as content authenticity
in a P2P file sharing system, it is also interesting to enforce appropriate access
control policies, which limit the activity of legitimate users while serve as an
obstacle to dishonest requesters. In such a scenario, owners may determine if
the requester attempting to download a content is actually authorized to access
it. On the other hand, ensuring that each one of these new potential providers
will behave according to the owner’s access policy gets more complicated (and
definitely hard should a global security infrastructure be unavailable.) Thus,
a secure replication scheme protects distributed replicas from dishonest ac-
tivities, assuring basic security properties such as content authenticity and
integrity, as well as to protect the unauthorized use of the resource.

Many inherent characteristics of fully distributed and collaborative envi-
ronments introduce new requirements for access control, such as different appli-
cations running on each node, control decentralization, and off-line working, to
name a few. Mobility (e.g. by using wireless ad hoc networks) adds additional

81

82 Chapter 4. Access Control in Pure P2P Networks

concerns: support for mobile devices, the sporadic nature of connectivity, the
dynamically changing topology or the low computational power of the devices,
among others. These features pose a challenge from the point of view of the
security mechanisms that should be applied [66].

The most accepted solution for authentication and authorization services
in classic distributed environments relies on the existence of a PKI or, more
generally, a Privilege Management Infrastructure (PMI), since PKIs are not
appropriate to provide authorization services. However, the main features
offered by most P2P networks –replication and self-organization– involve some
difficulties regarding the provision of these security services [27]. In general,
the extremely decentralized nature of a pure P2P network makes impossible to
apply solutions that rely on some kind of fixed infrastructure, such as on-line
TTPs.

As a result, authorization in such environments cannot be generally pro-
vided by means of existing models, which were developed for centralized sys-
tems or, at most, for distributed systems in which the existence of on-line
services is a prerequisite. In common distributed systems, this task is devel-
oped by issuing privileges to users by means of authorization certificates, which
they must present to gain access to resources. However, in a chapter before,
the idea of X.509v3 certificates is used for the protection of contents’ integrity
and prevent non-authorized manipulations in fully distributed systems. In this
chapter, we show how those certificates can be also used for the establishment
and transference of the privileges referring to a node. Briefly, our approach
allows the content owners to define and enforce restrictions on how the content
is used, and also provides a secure access to the content on the basis of proofs
of computational effort. Both, contents and peers, are required to posses a
certificate assuring properties such as integrity and authenticity (in case of
contents), and privileges (in case of users.)

The rest of this chapter is organized as follows. Section 4.1 briefly overviews
traditional approaches to implement authorization in practical systems, and
some related work on P2P privilege management.

The description of our P2P access control approach is first introduced in
Section 4.2 and finally detailed in Section 4.3.

Moreover, the proposal provides support for disconnected sources by in-
cluding delegation of privileges, and also allows to revoke both authorization

4.1. Overview of Authorization and Access Control Models 83

and replication rights. Particularly challenging problems in our proposal are
how to carry out revocation of certificates and delegation of privileges. In order
to seize replication advantages such as high availability of shared resources, our
proposal provides a support for disconnected sources, and deals with traitors
and whitewashers. For this, a node (the delegated) will act eventually on be-
half of another node (the delegating) with some of her privileges. Moreover,
malicious actions may be punished by means of downgrading the misbehaved
node’s security label. The delegation and revocation models are presented in
Section 4.4.

In Sections 4.5 and 4.6, we summarize the experimental results concerning
the efficiency and security, respectively, of the access control and authorization
services integrated in our scheme. Finally, Section 4.7 concludes the chapter
and outlines some future research directions.

4.1 Overview of Authorization and Access Con-

trol Models

Research on security has developed so far a number of models to deal with
access control solutions. The authorization process is used to protect the
system resources, allowing those resources to be used by consumers that have
been granted authority to use them.

4.1.1 Definitions and Concepts

This section introduces concepts, terms, and basic definitions that are com-
monly used in the access control community. Basically, these are the following
[64]:

• Object: Any kind of system resource (e.g. files, directories, registers,
process, printers, ...) Access to an object potentially implies access to
the information it contains.

• Subject: Typically, users and/or process who initiate actions or opera-
tions on objects, and therefore cause information to flow among objects.

• Operation: Active process invoked by a subject (e.g. read, write, ...)

84 Chapter 4. Access Control in Pure P2P Networks

• Permission or privilege: Authorization to perform some operation.
Generally, it refers to some combination of object and operation.

Furthermore, there are two main components in an access control system,
as follows:

• The policy. The policy is a plan of action, like a high level guideline,
usually a sequence of rules, that establishes how to determine the access
decisions. The suitability of a given policy depends on the particular
protection requirements for a given system, environment and users. On
the other hand, policies are formally presented as models.

• The mechanism. Mechanisms implement models. Most mechanisms
are based on the assumption of an authorization relation between ob-
jects and subjects. These actions are permitted or denied according to
the authorization privileges established in the system, and expressed in
terms of access rights [108]. We will briefly describe the most important
approaches.

Generic access control models have been extensively studied both in col-
laborative and non-collaborative domains, providing the basic framework to
describe protection systems such as classic access matrix models (subject-
object-right) and reference monitors [6, 87]. In general, subject and object
attributes can take on a wide variety of forms, e.g. sensitivity labels, types or
lists.

Concretely, there are two basic types of classical access control models:
discretionary and mandatory access control (DAC and MAC, respectively.)
User rights and permissions are implemented differently in systems based on
each of them. For example, in determining a subject’s ability to perform
read/write/execute operations on an object, following a MAC model, the ac-
cess control mechanism should compare the object’s attributes to those of the
object based on a previously determined set of rights.

Next section provides additional information on access control policies and
gives examples of several types of policies.

4.1. Overview of Authorization and Access Control Models 85

4.1.2 Discretionary Access Control

Discretionary protection policies govern the access of users to the contents on
the basis of the user’s identity and the authorizations she possesses. DAC
allows an object’s owner to determine the access rules for that object. It is
generally used to limit a user’s access to a file, being the owner who controls
other users’ access to the file.

Discretionary methods must deal with two main drawbacks, namely:

1. The real flow of information in a system [109], and therefore the possi-
bility of transitivity. While yielding more flexibility than MAC systems,
DAC loses the ability to provide provable security to resources. A user
who is able to read data can pass it to other non-authorized users. This
dissemination of data is controlled in mandatory systems through a lat-
tice of security labels [107].

2. Malware, software designed to infiltrate or damage a computer system
can inherit the identity of the invoking user, without his informed con-
sent. This is the so-called problem of the Trojan horse.

On the other hand, two main data structures have been chosen to represent
the access matrix: capability lists and access control lists. The first stores the
matrix by rows, i.e. each subject is associated with a list of pairs (object,
rights) called capabilities. The second approach stores the matrix by columns,
i.e., each object is associated with a list of pairs (subject, rights), an access
control list (ACL.) The latter is the most common mechanism for implementing
DAC policies.

However, models based on ACLs present some drawbacks when applied in
collaborative environments, mainly due to the impossibility of relating access
rights to contents, attributes of resources, or any other contextual information.
It is difficult to determine all privileges for a user, i.e. one would have to search
all of the ACLs. Furthermore, these approaches lack the ability to support
dynamic changes of access clearances, and also lack of portability. This is
especially critical for a large system where a flexible and constantly changing
access control policy is required. For teamwork applications, for example, some
collaborative frameworks use roles in conjunction with ACLs, such as SUITE
and Intermezzo frameworks [46].

86 Chapter 4. Access Control in Pure P2P Networks

Other well known DAC control scheme is that used in UNIX-like operating
systems by means of protection bits. These bits specify the permissions of
read/write/execute for different classes of subjects: the owner, groups and the
rest. Some limitations regarding the impossibility of specifying separate per-
missions lead to significant vulnerabilities such as the violation of the principle
of “least privilege”, which states that each user should have the minimum set
of privileges needed.

4.1.3 Mandatory Access Control

MAC policy decisions are made by a central authority, and, therefore, users
are not able to change or reassign access rights. The security level related to
a user, also denominated clearance, determines the user’s trustworthiness not
to disclose sensitive data to others not cleared to access it. Moreover, objects
in the system are assigned a security label as well. There is, therefore, a strict
relationship between the security levels associated with the two, object and
subject.

Moreover, MAC can also be applied for the protection of data integrity and
confidentiality by preventing information stored in low objects to flow to high
objects, and vice versa, though data integrity in general requires additional
techniques.

However, in MAC, we need a security administrator who establishes the
security classification of subjects and objects. This actor assigns security lev-
els to users, can change these levels, similar to the levels for resources will be
determined by the system in accordance with the clearances of the users cre-
ating them. Thus, the protection of such label and the access control decision
logic from corruption are MAC-critical issues and require appropriate robust-
ness. DAC and RBAC models, on the contrary, allow several environmental
alternatives [108].

4.1.4 Role-based Access Control

Role-based access control (RBAC) mechanisms were proposed as an alternative
to the models based on users’ identities. In RBAC policies, permissions are
assigned to roles (based on job competencies or responsibilities) rather than
to individual users [46]. RBAC simplifies the administration and management

4.1. Overview of Authorization and Access Control Models 87

of permissions, e.g. user membership into roles can be easily revoked.
In the case of collaborative environments, it is insufficient to have role

permissions based on object types. Moreover, RBAC is difficult to use for
supporting a DAC policy, due to the large number of resources it would require.

4.1.5 XML-based Access Control

A number of research efforts have led to the development of Extensive Markup
Language (XML)-based frameworks which unify basic access control speci-
fication. Several standards are currently maintained by different corpora-
tions such as the Organization for the Advancement of Structured Information
Standards (OASIS.) The three most important advances are Security Asser-
tion Markup Language (SAML), eXtensible Access Control Markup Language
(XACML), and XML Digital Signature Recommendation (XMLDSig.) These
languages define the representation of authorization information, and also pro-
vides general-purpose protocols for expressing access control policies. In par-
ticular, the request and response formats represent a standard interface for
XACML-based access control systems, such as Cardea [72]. For further de-
tails refer to [78].

4.1.6 Centralized vs. Distributed Implementation

It is possible to combine ACLs and capabilities. In particular, this approach
involves advantages especially in distributed systems due to the fact that re-
peated authentication of the subject is not required. Note that access control
relies on and coexists with other security services, particularly with authenti-
cation. Interested readers can find further details in [121].

There is not, therefore, an strict classification which identifies the most
suitable implementation for a certain environment, and no classification de-
fines the space of possible distributed implementations either [68]. There are,
however, some principles, which are built on the basic access control mecha-
nisms, well suited for most of the distributed system environment: user group,
access rules and centralized control. The use of delegation in administration
provides flexibility and scalability, as well as reduces the need of control.

A distributed access control model is addressed in [77] through the idea of
authentication and authorization infrastructures (AAI.) An AAI is the most

88 Chapter 4. Access Control in Pure P2P Networks

significative evolution of PKIs, and may be seen as the result of the union
between PKI and PMI. ITU-T proposal defines four PMI models according
to the application: general, control, role and delegation. An interesting point
is that AAIs provide a delegation procedure by which an owner delegates
authorizations to another without being involved. However, there is some
problems with the application of existing delegation mechanisms in pure P2P
environments. For example, the delegate could masquerade herself as the
delegator, or impersonate her, since there is no control on what others can
and can not do. A possible solution would be that the delegate should act in
his own name, not in hers.

Some cryptographic-based mechanisms have been suggested to solve the
problem of content distribution, such as Broadcast Encryption [54]. This is a
cryptographic technique for implementing compliant authorized domains, and
can be used as a replacement for public key cryptography in certain applica-
tions.

4.1.7 P2P Privilege Management

Just like the existence of an access control system is essential in a distributed
environment, equally important is the question of how this information ac-
cess security can be managed. Distributed systems require a medium for
transferring access control information concerning a node with a level of self-
administration. Traditionally, this can be achieved through the use of dig-
ital certificates basically containing the identity (and other information) of
their owners. The most well-known proposals covering this functionality are
X.509v3 and attribute certificates (an overview is presented in previous chap-
ters), which are digitally signed by a CA. Concretely, an X.509v3 certificate
except for the core fields (issuer, license, public keys, etc.), it also contains
some fields for extension [119]. Thus, we can use the extension fields to store
other service-dependant data, e.g. all of the needed access control information
(including the delegation and revocation information.)

4.1.7.1 Delegation

Propagation of access rights in decentralized collaborative systems presents
difficult problems for traditional access mechanisms, where authorization de-

4.1. Overview of Authorization and Access Control Models 89

cisions are made based on the identity of the resource requester. Unfortunately,
there is a problem in the application of existing delegation mechanisms in pure
P2P environments, for access control based on identity may be ineffective when
the requester is unknown to the resource owner. For example, the delegated
node could masquerade herself as the delegating user, or impersonate her,
since there is no control on what others can do. Further works have addressed
delegation services in a fully distributed environment, such as the complete
framework for role-based delegation addressed in [129], where all behaviors
are governed by a set of explicit rules.

4.1.7.2 Revocation

Revocation is an important process that generally must accompany delegation,
i.e. a system that supports delegation of rights, should also support their revo-
cation. It refers to the procedure for downgrading or eliminating the delegated
node’s privileges. There are several revoking schemes: strong and weak revo-
cations, cascading and non-cascading revocations, among others [62]. Classic
methods based on distributing certificate revocation lists (CRLs), certificate
validation protocols (SCVP) or online certificate status protocol (OCSP) may
not be applicable for dynamic environments in which there are no centralized
repositories. Revocation is always a difficult problem. This problem becomes
more troublesome in modern distributed systems, since the access decision
engine is distributed among autonomous users for which there exists no cen-
tralized authority.

4.1.8 Trust-based Authorization Services in P2P Net-

works

Many algorithms have been proposed to compute the trustworthiness that a
node has over others based on their past interactions. A key aspect of trust
management is delegation, i.e. the transference of limited authority over one
or more own resources to others. For example, AAI provides a delegation pro-
cedure by which an owner delegates authorizations to another without being
involved.

Moreover, the work introduced in [74] presents trust management as an
approach for RBAC credential delegation in decentralized distributed systems.

90 Chapter 4. Access Control in Pure P2P Networks

A recent work, presented in [14], addresses the issue of certificate revocation
without input from external entities, employing threshold cryptography and
profile tables. Nevertheless, each node must possess the public keys of the
CA that issued the other node’s certificates. Among the data collected in the
profile tables, the number of accusations launched against the nodes is used
to determine whether or not a given certificate should be revoked. In this
regard, maintaining a high trust rating can be used as an incentive to reduce
the degree of selfishness or altruistic behavior of peers [131].

Concerning P2P file sharing, [122] proposes a trust-based access control
framework extending the DAC model. The proposed reputation model maps
two dimensions into a rating certificate: trust (a proportion of satisfied trans-
actions) and contribution (measured in megabytes.) The problem arises when
a source encounters a requester she has never met, especially in MANETs. For
this reason, we have tried to avoid the use of trust-based scoring models to
differentiate peer behavior since they are vulnerable to several attacks, such as
collusion. Moreover, this framework assumes the existence of a host who clas-
sifies users, assigns each user different access rights, and authenticates nodes.
This does not preserve the P2P decentralized structure.

4.2 Overview of our Access Control Approach

We extend our previous work by showing how digital certificates can be modi-
fied to provide authorization capabilities. Essentially, both contents and peers
will posses a certificate ensuring properties such as integrity and authentic-
ity (in case of contents), and authorizations (in case of users.) We also shall
explore further extensions which help to reduce the effectiveness of dishonest
behavior by means of a content access procedure based on proofs of computa-
tional effort. In particular, sharing can be encouraged by imposing a cost on
the downloads (e.g. resolving a cryptographic puzzle.)

By balancing the main features of collaboration and security, our solu-
tion establishes a discretionary access control scheme for pure P2P networks,
providing at the same time the ability of detecting non-authorized content
modifications. For this, our protocol is based on the use of authorization cer-
tificates. This kind of user certificate is based on an attribute certificate: a
digitally signed electronic document ensuring that its holder has been given a

4.2. Overview of our Access Control Approach 91

particular set of attributes by the issuer.
Roughly, the basic idea that underlies to our approach is the following.

Each peer classifies her contents according to several security labels. Labels
are ordered, for example as in a lattice-based access control model. An autho-
rized peer will be able to get access to a given content if her security clearance
is higher or equal than the content’s label. These security clearances, which
take the form of attributes in public key certificates, can be discretionally is-
sued and signed by the content provider. Apart from this, our scheme uses
a cryptographic proof-of-work mechanism to discourage selfish behavior and
to reward cooperation, as well as maintaining a reputation-based classifica-
tion over the community. We shall describe how nodes interact following our
proposed scheme in a generic P2P file sharing system. Furthermore, we ana-
lyze some security aspects of the protocol itself, and also present an efficiency
analysis considering both the computational (especially cryptographic) effort
required by the nodes, as well as the communication cost of the scheme.

4.2.1 Extended Assumptions

Throughout this work, we will assume the following working (operational)
hypotheses, which extend those assumptions enumerated in Section 3.2:

1. Identification. Every participant needs a certificate for accessing a
desired content of a certain provider’s directory. These certificates are
discretionally issued by the content owner. Contents owners control the
access to their contents by means of authorization certificates which in-
clude the requester clearance, Li. To some extent, the clearance rep-
resents the trustworthiness of a holder (also called subscriber) not to
disclose non-authorized contents. Furthermore, this clearance may be
upgraded/downgraded or revoked after visible misbehavior.

After several transactions with different providers, it is expected that a
node will have a “portfolio” of authorization certificates.

Contents owners control their contents integrity as well (i.e. that m

has not been modified in an unauthorized way) by means of content
authentication certificates.

2. Authorized providers. Owners also control their replicas located on
other providers by means of replication privileges. Replication privileges

92 Chapter 4. Access Control in Pure P2P Networks

are essential for delegating the file distribution task and providing fault
tolerance.

3. File sharing system requirements. We have established some re-
quirements that a secure file sharing system should support: user clear-
ances and content security labels. Our proposed system should allow
users to infer the access rights locally. Thus, users should be able to
specify access policies. As a result, it should allow users to take multiple
security clearances simultaneously and change these credentials dynam-
ically during different collaboration phases. The resulted file sharing
system transmits contents in clear (i.e. not encrypted) but always ac-
companied by the corresponding content certificate; and, similarly, the
system always presents the aforementioned credentials for requesters and
providers before granting access.

4.3 Authorization Extensions

In this section, we first overview the full protocol operation by means of sev-
eral scenarios. Subsequently, we will describe in detail each building block of
our proposal: Join subprotocol, Content Authentication subprotocol, Content
Access subprotocol, Delegation subprotocol, and Revocation subprotocol (see
Figure 4.1.)

The entire scheme works as follows. Consider a common file sharing sce-
nario wherein, for each transaction, node A, which provides the service (i.e.
the content), is called the provider, while node B, which requests the content,
is called the requester. We assume that B has at her disposal some kind of
search mechanism to engage in a searching process aimed at locating contents.
The usual situation is that, due to replication, the search engine returns a list
of sources from which the content may be obtained.

In previous chapter, we showed how digital certificates can be used for P2P
content authentication, and how a content certificate Cm will serve to guaran-
tee the integrity of m. Now, we have to include in it additional components in
order to provide authorization capabilities. Concretely, we need to incorporate
the security clearance required to access m. The content certificate therefore
shall include a field containing the security label of the content. We further
explain how to assign it.

4.3. Authorization Extensions 93

P2P SEARCH

ENGINE

CONTENT

AUTHENTICATION

PROTOCOL

JOIN / UPDATE

PROTOCOLS

ACCESS

PROTOCOL

TRUST

MGMT. SYSTEM

P2P LOCATION

SERVICE

P2P SECURE CONTENT REPLICATION

DELEGATION &

REVOCATION

SERVICES

PUBLIC KEY AUHENTICATION (P&I)

Figure 4.1: Main building blocks.

On the other hand, providers control access to their contents by means of
authorization certificates, which include the requester clearance Li. In most
situations, this credential issued to new users will have the lowest security
clearance. Briefly, we can identify three different possible scenarios after down-
loading the desired content. If user B has a security clearance issued by A

and with level equal or higher than Li, then B can access the content. On the
contrary, if B’s clearance is not high enough, B can engage in the updating
process; the provider A can then update B’s clearance or simply refuse the pro-
posal. Finally, if B has no security clearance issued by A, she should initiate
the Join subprotocol to ask for one. Furthermore, clearances can be revoked
either when the validity period had expired or by a deliberate revocation.

In any of these scenarios, once B gets access to m, she must verify its
authenticity by means of the content authentication subprotocol described in
Chapter 3.

The high transient node community does not allow us to assume that any
content owner will be highly available. In this case, an authorized delegated
node will act on behalf of the delegating node with some replication rights.
Delegation is one of the main mechanisms for privilege management in our
distributed DAC model. Thus, with the replication privilege, an owner can
delegate some of his authority to another node. In particular, owners assign

94 Chapter 4. Access Control in Pure P2P Networks

their providers a certain security label. Thus, a provider will be allowed to
hold replicas of the contents of that specific level according to the owner’s
desire. Moreover, the replication right is contained within the authorization
certificate structure which is issued by the corresponding owner.

In summary, our secure content distribution protocol is suitable for self-
organized mobile ad hoc networks, and is similar to PGP in the sense that
content and authorization certificates are issued by the users. However, as
opposed to PGP, we do not rely on certificate directories for the distribution
of certificates. Instead, in our model, certificates are stored and distributed
directly by the users. Next, we introduce in detail each of the scheme subpro-
tocols.

4.3.1 Join Subprotocol

This stage is initiated when a node B joins the community and desires a
specific content m. Each owner classifies her contents according to several
security classes, such as those described with a lattice-based access control
policy [107].

Definition 4.3.1 (Access control policy [107]). A triple < SC,→,⊕ > where
SC = {L1, L2, . . . , Ln} is a set of security labels, →⊆ CS × SC is an order
relation on SC, and ⊕ : SC × SC → SC is a binary join operator on SC.

For example, a classic set of labels is “confidential”, “restricted”, “secret”,
and “top-secret”, but can also be extended to support additional usage classifi-
cations depending on the owner’s desires. B needs an authorization certificate
issued by A to get access to m. Once B successfully obtains his authorization
certificate benefits from it in the sense that the P2P file sharing system will
recover m.

We describe the Join subprotocol more formally. The search engine will
return a list of available nodes with their contents and replicas. At the first
step, each user creates her public key KB, and the corresponding private key
K−1

B , as some P2P file sharing systems already do [9]. Thus, B, who is still
unknown by A, must send some information to A:

B → A : m1 = EKA
(〈B, A,RF 〉), sB(〈B, A,RF 〉)

4.3. Authorization Extensions 95

where RF is a request form in which B formally expresses her desire to access
A’s contents, and sB(·) is the signature provided by B. Upon reception, A

must check B’s signature. As in other cases, all messages are asymmetrically
encrypted using the recipient’s public key.

The situation is analogous to people who have several admission cards for
accessing libraries, museums, clubs, etc. B will have an authorization certifi-
cate for each successfully contacted content provider. Nevertheless, the autho-
rization certificates are not issued neither by the holder (the requester) nor
a CA. Authorization certificates are discretionary issued by a content owner
for granting access to a specific requester, with a limited validity period and a
security clearance Li. How owners evaluate requesters’ intentions is discussed
in Section 4.3.1.1.

In case of acceptance, A generates and sends an authorization certificate
CB : 〈Serial, B, A, (ts1, ts2), Li, AlgorithmDesc.〉 for B:

A → B : EKB
(CB), sA(CB)

where (ts1, ts2) is the validity period (i.e. the certificate is not valid before
ts1 and after ts2) and Li the security clearance provided. Upon reception, B

will check A’s signature. If this offer satisfies B, then she will return to A her
signature on CB:

B → A : EKA
(CB), sB(CB)

Finally, after performing similar verifications, A creates B’s authorization
certificate as follows:

CA
B : CB, sA

(
sB(CB)

)

A → B : EKB
(CA

B), sA(CA
B)

Summarizing, A generates a certificate CA
B for node B, containing (see

Figure 4.2):

• A certificate serial number, which univocally identifies a particular user
authorization certificate.

• The identity of the authorization certificate owner (B), also called holder.

96 Chapter 4. Access Control in Pure P2P Networks

User authorization certificate CA
B

Certificate CB :
CertificateSerialNumber Serial
Holder: B
Issuer: A
Validity Period: (ts1, ts2)
Clearance: Li

Signing Algorithm: AlgorithmDesc.
Signatures:

sA

(
sB(CB)

)

Table of subscribers Ssni

Date Requester Clearance
(ts1, ts2) ni1 Li1

(ts1, ts2) ni2 Li2
...

...
...

Figure 4.2: User authorization certificate and table of subscribers.

• The identity of the issuer (A), who establishes who has generated the
content and is its legitime owner.

• Validity period (ts1, ts2) of CA
B .

• B’s security clearance Li.

• Description of the hash and signature functions which have been used.

• Finally, the previous items are signed by the issuer A and the requester
B (as shown in Fig. 4.3.)

Moreover, each provider must store members or “subscribers” and their
clearances, as shown in Figure 4.2.

Since CA
B includes the security clearance which allows B accessing some of

A’s contents, the receiver should have the ability to protect this clearance in
order to prevent eavesdropping or even infiltrations of legitimate users. Using
a simple encryption technique can be enough, but this is an issue which will
not be addressed in this paper.

The full operation of the Join subprotocol is graphically depicted in Fig.
4.3.

4.3.1.1 On Challenges and Cryptographic Puzzles

As explained in section before, the main objective of the Join subprotocol is
to allow owners control requesters by keeping track of requests while granting
privileges to honest and collaborative requesters. Nevertheless, owners should
be able to evaluate requesters’ intentions just to prove, for example, that they

4.3. Authorization Extensions 97

EKA(m1), sB(m1)

EKB(CB), sA(CB)

EKA(CB), sB(CB)

Requester (B)

EKB(CB
A
), sA(CB

A
)

Provider (A)

Generate Join

Request

Verify/Sign/Send

CB

Store CB
A

for

A’s contents of Li

(or lower)

Evaluate

Requester

Generate/Update

and Send CB

Generate/Encrypt

and Send the

Authoriz. Cert. CB
A

Update

SsA

TA/SA/SsA Proof-of-work stage

Figure 4.3: Join subprotocol.

are really interested in sharing. The key idea is simply asking each requester
to invest an effort, e.g. computational, such as solving a puzzle, as follows.

Once owner A receives a request of join from node B (Fig. 4.4–message
m1), she computes a challenge ςi and sends it to B (Fig. 4.4–message m2.)
Upon receiving it, B sends back to A the corresponding response τi (Fig.
4.4–message m3.) If A considers τi as correct, both engage in the three-step
subprotocol described in previous section (Fig. 4.4-messages m4,5,6.)

Concerning the challenge ςi itself, there exist a number of primitives which
can be used for this purpose. The basic idea is that the verification by the
challenger should be fast, but the computation by the requester has to be fairly
slow.

A straightforward and efficient way of implementing such a construction is
by using a block cipher (e.g. the AES standard.) The puzzle solution x is used
as the plaintext to be encrypted, and the resulting ciphertext AESKS

(x) can
be seen as a puzzle. Upon varying the AES encryption key length or revealing
a subset out of the total number of bits of the key (i.e. a trapdoor), the effort
required to recover x can be adjusted from very hard to a quite hard problem.
Formally, A can challenge B using a AES encryption, as follows:

98 Chapter 4. Access Control in Pure P2P Networks

1. B → A: m1 = EKA
(〈B,A, RF 〉), σ1

2. A → B: m2 = EKB
(ςi), σ2

3. B → A: m3 = EKA
(τi), σ3

4. A → B: m4 = EKB
(CB), σ4

5. B → A: m5 = EKA(CB), σ5

6. A → B: m6 = EKB
(CA

B), σ6

where σ1 = sB(〈B,A, RF 〉)
σ2 = sA(ςi)
σ3 = sB(τi)
σ4 = sA(CB)
σ5 = sB(CB)

and σ6 = sA(CA
B)

Figure 4.4: Proposed join scheme: Asking for an authorization certificate.

A → B : EKB
(ςi), sA(ςi)

B → A : EKA
(τi), sB(τi)

where ςi = AESKS
(file)

and τi = h(file)

For instance, if a 256-bits key is used to encrypt challenge x and the user
is provided with a trapdoor value that reveals 250 bits of the key, then she
has to perform 26−1 AES decryptions on average to find the correct response,
x. On the other hand, if we want the party to devote more resources on the
computation for the challenge, a lower informative trapdoor value should be
used. Another example, by providing an AES encryption puzzle using no more
than 32-bits keys, we force requesters to carry out around 232 operations. Thus,
the number of bits of the encryption key used as a challenge can be seen, on the
one hand, as the difficulty parameter in solving the cryptographic puzzle, and
on the other hand, as evaluating the security level for the clearance reached
by the requester.

Another practical way to challenge requesters is by means of MHMBFs
(moderately-hard memory-bound functions [7].) Roughly, F () is a MHMB
function whose domain and range are integers in 0 . . . (2n−1), and we suppose
that its inverse F−1() cannot be evaluated in less time than a memory access.
The key idea is that F () is chosen so that the verification by the challenger
is fast, and so that the computation by the requester is fairly slow. In this
way, A returns a fresh challenge ς to B. The latter should compute F (ς) and
returns τ to A. Finally, A verifies that what it receives is a correct response
to ς, and, if so, initiates the generation of the authorization certificate for

4.3. Authorization Extensions 99

B, as shown before. We further elaborate on other examples for evaluating
requesters’ interest in the section bellow.

4.3.1.2 Updating Security Clearances

Either when a node initiates for the first time the Join subprotocol or when
she wants to increase her clearance, the content provider should have some
procedure for managing clearances. We sketch some ways for granting or
upgrading a clearance, even though this is an external feature to our proposal
and falls out of the scope of this paper:

• Using a Trust Management System (TMS) [10]. A trust metric will
compute the eventual trustworthiness of a target based on a combination
of the direct trust and her reputation. This two components are carefully
weighted and the time factor (i.e. last transactions) is usually considered
too. Trust information is shared between peers using a decentralized
recommendation protocol. Moreover, the quantification of trust can be
based on Fuzzy Logic [12].

The TMS incurs a fixed cost of having to store and exchange all behavior
feedback items to generate a reputation value for each requester. How-
ever, since a naive ni will have no trust information for any unknown
nodes in its local store, her trust value is initialized with a high distrust
or very low trust value. Furthermore, these local values should be peri-
odically updated after a new interaction result, aimed at dynamic trust
changes.

Essentially, higher clearances may be granted according to the past be-
havior of each peer. In this way, our scheme can be successfully inte-
grated with a TMS, for providers can use it in order to classify peers.

Trust measures may be applied on various stages of the entire protocol.
Nodes use it for classifying other nodes according to the resulted weighted
values. This classification makes easy some decisions. Moreover, this
community classification also includes the association of a security label
with the corresponding group.

• Using proofs of work. In this case, the cost of getting a clearance for any
legitimate node B will depend on the time required for solving a puzzle

100 Chapter 4. Access Control in Pure P2P Networks

of a selected level from a provider A’s list of challenges; as discussed in
Section 4.3.1.1.

• Using a discretional policy. In this case, the content owner discretionary
assigns clearances according to her personal criteria.

In any case, the subscriber B must previously send an update request to
the issuer A, as follows:

B → A : EKA
(〈UPD_REQ,B,A, ts0〉), sB(〈UPD_REQ, B,A, ts0〉)

Finally, after receiving a correct puzzle response, A will upgrade B’s clear-
ance and then both engage in Join subprotocol explained above.

4.3.2 Content Authentication Subprotocol

The main objective of this subprotocol is to maintain content integrity, ensur-
ing its authenticity and avoiding non-authorized content alterations. We have
exhaustively described and analyzed it in Chapter 3.

Nevertheless, checking of content authenticity cannot be done until content
access subprotocol (detailed in next section) has been successfully finished.

For the readability and completeness of the entire proposal, we include a
summary of the whole proposal in Figs. 4.5 and 4.6 using pseudocode.

4.3.3 Content Access Subprotocol

Usually, there are two ways for initiating file sharing: direct communication
with a particular node or using the keyword search browser to look for sources
and then contacting one of them. At the search stage, a requester R first
performs a search query, which typically leads to a list of sources that keep a
replica of the desired content.

First, the search engine will only show those available replicas stored by the
owner A and the authorized providers Pi, who have an authorization certificate
with the corresponding replication privileges issued by A. This certificate acts
as a boarding card for the file sharing system aimed at controlling replication.
The possibility of owners unavailability jeopardizes the most interesting feature
of P2P file sharing systems, i.e. replication of contents. By means of our

4.3. Authorization Extensions 101

Join

B → A : EKA
(〈B, A,RF 〉), sB(〈B, A,RF 〉)

A → B : EKB
(ςi), sA(ςi)

B → A : EKA
(τi), sB(τi)

A → B : EKB
(CB), sA(CB)

B → A : EKA
(CB), sB(CB)

A → B : EKB
(CA

B), sA(CA
B)

A updates SsA

B stores CA
B

Update: Using puzzles

B → A : EKA
(〈UPD_REQ, B, A, ts0〉), sB(〈UPD_REQ,B, A, ts0〉)

A → B : EKB
(ςj), sA(ςj)

B → A : EKA
(τj), sB(τj)

If A receives a correct challenge response:
A updates CA

B with Li+↑
A → B : EKB (CB), sA(CB)
B → A : EKA(CB), sB(CB)
A → B : EKB

(CA
B), sA(CA

B)
A updates SsA

B stores CA
B

Content authentication

1. Cm generation:
A generates C =< A, Im, h(m), OLS, (ts1, ts2), AlgorithmDesc. >
and signs:C0 = 〈C, E0〉

2. Distributed signing process:
A sends (m,C0) to n1

For i = 1 to k
(a) ni performs the local verification stage on Ci−1

(b) ni adds its signature and generates Ci = 〈C, Ei〉
(c) ni updates Ti with the tuple 〈tsi, A, h(m), Ci−1, EK−1

ni
(Ei−1)〉

(d) ni sends (m,Ci) to ni+1(mod k)

(e) ni sends a notification message to n0

3. Content publishing:
A publishes (m,Cm)

Figure 4.5: Summary of the proposed content authentication and access con-
trol scheme.

delegation subprotocol, an authorized provider can distribute original replicas
without modifying neither contents nor their associated certificates. In these
cases, when a requester selects a provider instead of the legitimate owner, the
system must verify the provider’s credential, i.e. CA

Pi
has the corresponding

102 Chapter 4. Access Control in Pure P2P Networks

Content access

0. Search response: P → R : CA
P

0.1. CA
P is not revoked, i.e. its serial number is not in CRLA

1. R → P : QUERY, CA
R

Case 1: R has an appropriate CA
R, i.e.:

1.1. CA
R is authentic, and

1.2. CA
R is not revoked, and

1.3. Li ∈ CA
R ≥ Lm ∈ Cm

1.4. The system recovers (m, Cm)
R uses CA

R for getting m.
Case 2: R has no valid authorization:

(a) Initiate Join subprotocol, or
(b) Try to update/increase her clearance, or

2. Cm verification:
2.1. h(m) comparison
2.2. OLS’s public keys verification (if not done before)
2.3. Verification of Cm’s chain of signatures

Delegation: On owner demands

1. Replication request:
A → P : EKP

(〈REPLI_REQ,A, P, ts0〉), sA(〈REPLI_REQ, A, P, ts0〉)
P is already A’s subscriber with the corresponding clearance Li

2. P accepts:
P → A : EKA

(〈REPLI_ACP, A, P, ts1〉), sPi(〈REPLI_ACP,A, P, ts1〉)
3. A includes in CA

P the replication privilege:
A → P : EKP (CP), sA(CP)
P → A : EKA(CP), sP (CP)
A → P : EKP

(CA
P), sA(CA

P)

Revocation

0. Revocation decision by A
CA

B is now revoked
1. Update CRLA with CA

B’s serial number and current time
2. Propagation to providers: A → Pi ⊂ SsA : EKPi

(CRLA), sA(CRLA)

Figure 4.6: (continued from Fig. 4.5) Summary of the proposed content au-
thentication and access control scheme.

security level in the replication field and is not revoked (further details in
Sections 4.4.2 and 4.4.3.) This process concludes with the following messages
sent by available providers to the requester’s system:

Pi → R : CA
Pi

4.3. Authorization Extensions 103

As in previous chapter, a query result should return the content’s descrip-
tor, which could be necessary to rank the relevance of the resulted content to
the query, as well as the list of identities of the sources. Note that successful
past transactions with a certain owner mean that the requester R already has
an authorization certificate to use some of the services offered by A. In fact,
R will be able to obtain A’s contents only by the possession of a valid CA

R ,
particulary if her clearance is high enough. Specifically, R’s file sharing system
can use the information enclosed into her authorization certificate to get m,
whether the following premises were fulfilled:

1. The requester R’s authorization certificate issued by m’s owner, CA
R , is

authentic. The provider (the owner A or an authorized node P) must
check CA

R ’s fields and signatures.

2. The certificate CA
R is not revoked. The provider must validate the time-

stamp field upon A’s CRL. Delegation subprotocol provides this feature
(see next Section for details.)

3. The clearance Li ∈ CA
R is greater or equal than m’s security label, Lm ∈

Cm.

In case of R either not having any authorization issued by A or her clearance
being lower than Lm, she can:

1. Initiate the Join subprotocol to obtain a valid authorization certificate
from A, or

2. Try to update or increase her clearance (see Subsection 4.3.1.2.)

Together with a successful query result, R obtains Cm with all the infor-
mation associated with the content and its owner. Once B gets the desired
content, she must verify the identities of signers and the correctness of their
chained signatures presented in Cm. For the sake of illustration, in Fig. 4.7 it
is graphically shown the content access subprotocol.

Finally, a new generation of P2P middleware is still needed to support these
security-specific requirements, as well as distributing and storing the objects
automatically serialized together with the corresponding certificates.

104 Chapter 4. Access Control in Pure P2P Networks

Requester R

Search m

The system will show authorized,

available nodes

Select a provider, A

Valid CR
A?

Verify Cm

Yes:

CR
A

is authentic, not

revoked, and high enough.

No

(or lower)

TB

Join/

Update

clearance

Download

(m, Cm)

Figure 4.7: Content access subprotocol.

4.4 On the Provision of Privilege Management

Services

In common file sharing systems, contents can be soon replicated through dif-
ferent locations, so assuming that each new potential provider will behave
accordingly to the legitimate owner’s policy gets definitely hard since there is
neither a control mechanism on the replication process nor a global security
infrastructure. A particularly challenging problem in content distribution is
how to carry out delegation of replication privileges. The use of delegation
provides flexibility and scalability, as well as a reduction of the need of high
levels of availability.

Unfortunately, there is a problem in the application of existing delegation
mechanisms in pure P2P environments: classic access control schemes based
on identity may be ineffective when the requester is unknown to the resource
owner. For example, the delegated node could masquerade herself as the del-

4.4. On the Provision of Privilege Management Services 105

User authorization certificate CA
B

Certificate CB :
CertificateSerialNumber Serial
Holder: B
Issuer: A
Validity Period: (ts1, ts2)
Sign. Algorithm: AlgorithmDesc.

Privileges:
Clearance: Li

Replication:NULL||L0|| . . . ||Ln

Signatures:
sA

(
sB(CB)

)

Figure 4.8: User authorization certificate: New fields.

egating user, or impersonate her, since there is no control on what others can
do. However, there is not a strict classification which identifies the most suit-
able implementation for a certain environment, and no classification defines
the space of possible distributed implementations either.

In this section, we present a secure mechanism for providing two additional
authorization services: revocation and delegation, especially oriented to P2P
file sharing systems. Most works done in this field agree with applying schemes
based on X.509v3 certificates and authorization attributes, which they must
present to gain access.

4.4.1 Extensions to the Authorization Certificate

As shown before, the authorization certificate indicates that some requester
B is eligible for access a particular owner A’s contents with a certain se-
curity level Li. Now, owners can delegate some distribution rights over
their contents. These rights are stored at the corresponding node cer-
tificate as attributes. Initially, when a particular node B requests a
join subscription, the replication field is set as NULL by default. Con-
cretely, owner A generates and sends an authorization certificate CB :

〈Serial, B, A, (ts1, ts2), sign.AlgorDesc, Li, NULL〉 for B, as we explained in
Join subprotocol. Figure 4.8 depicts these new fields.

Furthermore, the receiver should have the ability to protect this clearance
in order to prevent eavesdropping or even infiltrations of legitimate users.
Using adequately a simple encryption technique should be enough.

106 Chapter 4. Access Control in Pure P2P Networks

On the other hand, owners and authorized providers, after reaching the
corresponding replication privilege, must maintain securely the information
regarding subscribers and their clearances, and contents and their certificates
as well for each owner. We further explain these data structures in next section.

4.4.2 Delegating Distribution Privileges

The delegation relation involves a set of three actors: the owner or delegating
node, the delegated node or provider, and the associated constraints. We
have identified two ways of operation according to who initiates the delegation
request:

1. On providers offering. After a successful download, a requester B can
choose to contribute on replication by means of sharing a replica of the
downloaded content. For this, B must send a replication offer message
to the particular content owner A.

B → A : EKA
(〈REPLI_OFF, B, A, ts0〉),

sB(〈REPLI_OFF, B, A, ts0〉)

If B belongs to A’s table of subscribers, it means that B has a clear-
ance with a specific label Li issued by A. Thus, A will evaluate B’s
aptitude for replicating her contents of that security label. In case of ac-
ceptance, A re-generates and sends a modified authorization certificate
CA

B : 〈B, A, (ts1, ts2), sign.AlgorDesc, Li, Lj〉 to B (following the same
message exchange as in Join subprotocol.)

On the other hand, if B is not a subscriber or is unknown, A first can
initiate an instance of Join subprotocol, and evaluate the trustworthiness
of B. I any case, A can reject the offer.

2. On owners demand. To simplify the discussion of the delegation proce-
dure, we assume a node can be an owner’s delegated node if that user
is already a member of that owner’s trusted group. Typically, a content
owner demands this kind of distributed storage request whenever she
needs availability support.

A particular owner initiates a replication request choosing one or more

4.4. On the Provision of Privilege Management Services 107

AOwner/Issuer

Providers

Subscribers

ts1 CP1
A L3 L3

ts2 CP2
A L1 L1

ts3 CP3
A L1 L1

ts4 CB
A L1 L1

…

L1 h(m1) Cm1

L3 h(m2) Cm2

Contents

Cm1 m1

Cm2 m2

…

L3 L1
L1

A’s contents

A’s CRL

A D

REPLI_REQ

REPLI_ACP

CP1
A

Cm1 m1

…

A’s contents

Cm1 m1

…

A’s contents

P1 P2 P3

CRLA

CR
ASerial tsi

…

CR
ASerial tsi

…

A’s CRL

CR
ASerial tsi

…

A’s CRL

CR
ASerial tsi

…

Figure 4.9: Owner’s information transmissions at delegation.

providers, according to the required security label. First, A chooses k

delegated nodes {P1, . . . , Pk} ∈ TA, sends them and signs replication
request messages:

A → Pi ∈ TA : EKPi
(〈REPLI_REQ, A, Pi, ts0〉),

sA(〈REPLI_REQ,A, Pi, ts0〉)

If Pi accepts the request, she sends back to A:

Pi → A : EKA
(〈REPLI_ACP, A, Pi, ts1〉),

sPi
(〈REPLI_ACP,A, Pi, ts1〉)

A will send a modified authorization certificate as in Join subprotocol.

Note that this delegation process does not allow the replication right to be
further delegated. Thus, the maximum delegation depth is defined to impose
only one level, i.e. providers may deliver neither clearances nor replication
privileges; they cannot delegate this task to others. A replication tree is shown
in Figure 4.9. Moreover, requesters still require the authorization certificate
issued by the corresponding owner for accessing that owner’s contents, either
from the owner’s repository or from the authorized providers’.

108 Chapter 4. Access Control in Pure P2P Networks

Table of subscribers Ssni

Date Requester Clearance Replication
(ts1, ts2) n1 Ln1 Lj

(ts1, ts2) n2 Ln2 NULL
...

...
...

...

Table 4.1: Table of subscribers: New fields.

Content owners must keep a list with providers, the expiration date for
replication, and the associated level, as shown in Table 4.1. This structure
then includes a new field which represents the replication security label for
each subscriber.

On the one hand, the delegating node A should send her subscribers along
with their current clearance (2nd and 3rd columns in table of subscribers SsA)
to her providers:

A → Pi ⊂ SsA : EKPi
({Subscriber|Clearance} ⊂ SsA), σ

where σ = sA({Subscriber|Clearance} ⊂ SsA).
This database should be periodically updated from each owner to her

providers due to the latter are not allow to update clearances. On the other
hand, however, we can use an alternative data structure, as we will show later,
due to the fact that it is possible to revoke a replication privilege if the owner
wants, e.g. she suspects a provider has been compromised. Moreover, the
validity period included into the authorization certificate should be refreshed
by owners. This task involves the updating of user certificates in order to
avoid undesirable accesses to fake replicas published by non-renewed/revoked
providers. We further elaborate on revocation in next section.

Next, discovering and verifying delegation chains are two open issues: How
requesters will know about owners’ providers, and where this information is
published. First, verification is easy by means of the authorization certifi-
cates. Nevertheless, it is unrealistic to provide a global storage of delegation
credentials in such environments. Instead, we have to distribute them across
the network. Our solution proposes the adaptation at the application layer,
as follows. Before presenting the search result and therefore allowing down-
loading, the P2P client system should require, on the one hand, the existence
of providers’ authorization certificate, together with, on the other hand, the

4.4. On the Provision of Privilege Management Services 109

appropriate security label in the replication field.

4.4.3 Revoking Clearances

Unexpected dishonest behaviors and some malicious actions, such as Sybil at-
tack, force the requirement of either downgrading the privileges of a particular
subscriber or revoking her granted clearance. Revocation implies some changes
at the table of subscribers, and consequently implies the propagation of these
modifications to the delegated nodes.

A traditional way such authorization certificates can be revoked is to use
an online CA to sign negative certificates. However, not counting on a CA,
a node would generally be unwilling to distribute its own negative certificate
[65]. Thus, the proposed revocation process consists in the following tasks:
first, the decision of revocation, and, finally, the propagation of the revocation
information.

4.4.3.1 Revocation Decision

Although an authorization certificate is expected to be in use for its entire va-
lidity period, various circumstances may cause a certificate to become invalid
prior to the expiration of the validity period. A content owner can compose
revocation requests either periodically (depending on the authorization certifi-
cates’ validity period she issued) or when she finds evidences of bad behavior
into her group of subscribers.

An extended solution may include decisions requests based on the accusa-
tions of others. A particular node advises a certain owner (or perhaps a whole
community) of an abnormal situation requiring certificate revocation. Such
circumstances include to be aware of the facts like a change of name, or a
compromise or suspected compromise of the corresponding (own) private key,
among other. For the sake of security, this kind on model has to deal with
trust management. We do not address this extension.

4.4.3.2 Generating and Updating a CRL

In general, the use of X.509 certificates within Internet applications require
appropriate methods in order to assure the certificate validation before fully
relying on the authentication or non-repudiation services associated with the

110 Chapter 4. Access Control in Pure P2P Networks

Certificate Revocation List CRLA

CRL:
Issuer: A
thisUpdate: ts1

nextUpdate: ts2 (OPTIONAL)
revokedCertificates: SEQUENCE OF{

CertificateSerialNumber Serial
revocationDate tsi}

Sign. Algorithm: AlgorithmDesc.
Signature:

sA(CLR)

Figure 4.10: Certificate Revocation List.

public key in a particular certificate. Under such circumstances, typically the
CA is in charge of revoking the certificate by means of the CRL which is
usually freely available in a public repository. A CRL is a time stamped list of
certificates (more accurately: their serial numbers) which have been revoked,
are no longer valid, and should not be relied on by any system user (RFC 3280
[63].)

Since there is not fixed infrastructure in our P2P revocation model, owners
(particularly issuer which has a her disposal at least one delegated service)
must locally carry out the generation and management of this structure. Thus,
each issuer should maintain a local data structure identifying her revoked
certificates, as shown in Figure 4.10. For example, each revoked certificate of
owner A is identified by its certificate serial number in the CRL issued by A.
Moreover, this structure is signed by the corresponding issuer, and is issued on
a regular periodic basis (e.g., hourly, daily, or weekly.) We further elaborate
on the propagation of this data in the following subsection.

4.4.3.3 CRL Propagation to authorized providers

Revocation requires two essential stages: CRL updating and providers up-
dating. A revocation request is always sent from the interested issuer to her
authorized providers, and, due to the one-level delegation model, revocation
only depends on one-level of providers.

We show a typical scenario for revoking a certain subscriber B’s clearance
of Li by the issuer A. First, B’s clearance will be revoked by A. An entry
is added to the CRLA containing B’s certificate serial number along to the

4.5. Efficiency Analysis 111

current date.
Now, due to the existence of delegation, there are several replicas of A’s

contents at different locations, i.e. on authorized providers’ repositories. Thus,
A must find all of her providers by means of the database containing the
authorized delegated nodes and their clearance, and dump the modified CRL
to them, as follows:

A → Pi ⊂ SsA : EKPi
(CRLA), sA(CRLA)

On the other hand, another possibility of revocation is downgrading, i.e.
the issuer locally downgrades a certain subscriber’s clearance, for example,
to Li−1. The resulted clearance depends on A’s criteria. In such a scenario,
the current clearance is revoked, and, therefore, a new one must be created
through Join subprotocol.

In any case, the P2P file sharing system at P , after receiving an A-content
search query from B, not only checks B’s certificate fields and its validity but
also acquires the most recently-issued CRLA and checks that B’s certificate
serial number is not on that CRL.

Similarly, authorized providers can be also revoked by the issuer. In these
cases, the system, at content search stage, will show available replicas located
only at not revoked providers.

4.5 Efficiency Analysis

We have evaluated the efficiency of the entire proposal, including the delegation
and revocation schemes, comparing them to the initial approach as well. We
also consider both the computational (especially cryptographic) effort required
by the nodes, as well as the communication cost of the entire scheme.

4.5.1 Computational Overhead

Table 4.2 presents the computational complexity of evaluating the crypto-
graphic operations required, first, by the Join and Access subprotocols. The
resulted complexity for the former is given by the unique instance of public
key authentication protocol, O(k log k). On the other hand, the content access
relies especially on the verification of the content certificate, i.e. additional in-

112 Chapter 4. Access Control in Pure P2P Networks

Subprotocol Stage Crypto operations Complexity

Join

1.1 B’s Request 1S

O(k log k)
1.2 A’s checking 1PI + 1V
1.3 CA

B generation 3S + 3V + 1DE+
+(1PG + 1PS + 2S + 2V)

Subtotal: 4S + 4V + 1DE + 1PI

Update

2.1 B’s Request 1S

O(|Pz|)
2.2 A’s checking 1V
2.3 Challenge-Response 1PG + 1PS + 2S + 2V
2.4 CA

B generation 3S + 3V + 1DE+
Subtotal: 6S + 6V + 1DE + 1PG + 1PS

Content
3.1 Cm generation 1H + 1S

O(|m|k3 log k)3.2 Signature process kS + kH + k(k+1)
2 V + kPI

Authentication 3.3 Content publish. 0
Subtotal: (k + 1)(H + S + k

2V) + kPI

Access

4.0 Search response 1V

O(|m|k2 log k)
4.1 Access Request 1V
4.2 B’s Checking Cm 1H + kPI + kV

Subtotal: 1H + kPI + (k + 2)V

Delegation

5.1 Replication Request 1S + 1V

O(1)5.2 A’s checking 1S + 1V
5.3 CA

P generation 3S + 3V + 1DE
Subtotal: 5S + 5V + 1DE

Revocation

6.0 Revocation decision 0

O(p)6.1 CRL update 0
6.2 Providers update p(DE + V) + 1S

Subtotal: p(DE + V) + 1S

Legend: H: Hash generation; DE: Asymmetric decryption (encryption is negligible);
S: Signature generation; V : Signature verification; k: No. of signers; PI: Pathak and
Iftode’s protocol; PG: Puzzle generation; PS : Puzzle solving; p: No. of providers;

Table 4.2: Efficiency analysis (computational effort) for each stage of the entire
proposal.

stances according to the number of signers, and on the content length as well.
Note that this task is now executed in the Content Access subprotocol. Thus,
this fact involves a quadratic complexity.

We use previous tables (also considering the speed benchmarks correspond-
ing to the cryptographic primitives used, included in Section 3.6) with the aim
of measuring the computational cost for content access subprotocol. For in-
stance, Figure 4.11 shows the cost in the worst case (no signers are known
and all the verifications must be performed), so these curves must be seen
as an upper bound. Regarding the best case, when all signers in the content
certificate are known for the requester, implies that signatures verifications are

4.5. Efficiency Analysis 113

5 10 15 20 25

400

600

800

1000

1200

1400

1600

1800

2000

2200

Secure content access protocol

k

tim
e

(s
)

m = 1 MB
m = 10 MB
m = 100 MB
m = 1000 MB

Figure 4.11: Computational cost (worst case) for content access subprotocol.

immediate, e.g. the verification of 100 signatures takes only 8.2660 ms.
On the other hand, delegation subprotocol is less complex, since it requires

that both the owner and the (future) provider are mutually authenticated.
In fact, we have assumed potential providers to have acquired the objective
content. Nevertheless, revocation incurs additional cost which depends on the
number of providers. Both processes keep constant.

4.5.2 Communication Overhead

We also analyze efficiency according to the communication overhead imposed
by the new subprotocols. Table 4.3 presents the number of messages and the
complexity in terms of communication transmission for each stage. As shown,
Join algorithm is performed with complexity O(k log k) due to the execution of
a unique instance of the requester public key authentication by the issuer. On
the other hand, the complexity of Access subprotocol varies according to the
number k of signers who participated in signing the content certificate. Thus,

114 Chapter 4. Access Control in Pure P2P Networks

at worst, the requester must perform k instances of the Pathak and Iftode’s
protocol, and therefore this implies a complexity of O(k2 log k).

Figure 4.12 plots how the number of transmitted messages increases de-
pending on the number of signers involved in each subprotocol. Obviously,
the Content Authentication subprotocol requires a higher number of trans-
missions. In the case of Join, communication overhead actually depends on
the authorization certificate length and the complexity of the challenges in
Pathak and Iftode’s messages, but we can consider them negligible.

Similarly to computational analysis, delegation is less complex than revo-
cation, which has to update the CRL at every provider location; however, both
communication complexities are still constant.

Subprotocol Stage No. messages Complexity

Join

1.1 B’s Request 1

O(k log k)1.2 A’s checking PI + 1
1.3 CA

B generation 2
Subtotal: PI + 4

Update

2.1 B’s Request 1

O(1)
2.2 A’s checking 0
2.3 Challenge-Response 2
2.4 CA

B generation 3
Subtotal: 6

Content
3.1 Cm generation 1

O(k3 log k)3.2 Signature process 2k + k(k+1)
2 PI

Authentication 3.3 Content publishing 0
Subtotal: 2k + 1 + k(k+1)

2 PI

Access

4.0 Search response 1

O(k2 log k)4.1 Access Request 1
4.2 B’s Checking Cm kPI

Subtotal: kPI + 2

Delegation

5.1 Replication Request 1

O(1)5.2 A’s checking 1
5.3 CA

P generation 3
Subtotal: 5

Revocation

6.0 Revocation decision 0

O(p)6.1 CRL update 0
6.2 Providers update p

Subtotal: p

Table 4.3: Efficiency analysis (communication overhead) for each stage of the
entire proposal.

4.6. Security Analysis 115

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
x 10

4

k

N
o.

 o
f m

es
sa

ge
s

Communication overhead

Join subprotocol
C. Authentication subp.
Access subprotocol

Figure 4.12: Communication cost (number of messages transmitted in the
worst case) for each subprotocol.

4.6 Security Analysis

We also provide an informal analysis concerning the correctness of these ex-
tensions in terms of security. For this, we discuss several attack scenarios and
forms of malicious behavior which can occur during each subprotocol execu-
tion, showing how the scheme is prevented against them.

4.6.1 Join and Update Subprotocols

Here, we discuss several attack scenarios that may be launched against the
Join subprotocol.

1. Eavesdropping. An attacker can listen the four messages transmitted
during the Join subprotocol. However, due to all the communication
between A and B are asymmetrically encrypted by the sender using

116 Chapter 4. Access Control in Pure P2P Networks

the recipient’s public key, an attacker cannot gain any useful informa-
tion. On the other hand, suppose an eavesdropping peer can observe the
messages tagged as m1···4 at Fig. 4.5. In theory, these messages reveal
nothing about both entities, since they are all correctly encrypted using
the recipient’s public key. Nevertheless, dishonest nodes may try to use
others’ computational resources for solving hers challenges and puzzles,
like a type of free-riding situation. Basically, a malicious node C, de-
crypts and uses the challenge received from one of her issuers (say A) and
sends it to challenge one of her requesters, B. Since B is honest, he solves
and sends the puzzle solution to C who decrypts it and encrypts it again
but using KA. A will receive the correct answer sent by C but solved
by B. This is related to the so-called grandmaster postal-chess problem
[86]. For this reason, puzzles must been associated with both entities,
with the content, and with the transaction as well. Consequently, it will
not be able to have any “zombie” for delegating puzzle computation and
any requesters’ resource exhaustion either.

2. Message modification attacks. An attacker can try to modify some mes-
sages with the hope of modifying the privileges granted by A to B. As
in the previous case, the use of encryption between both parties prevent
this situation to occur.

3. Message reply and insertion attacks. In the former, an attacker first
listens the messages exchanged between A and B and then tries to re-
produce the session by using some of them. Similarly, an attacker can
try to generate fake messages and insert them in the channel between A

and B. However, she is unable to do that for the same reason previously
described for the case of message modification attack.

4. Impersonation attacks of the messages exchanged between A and B.
A major security concern of challenge-response-based schemes is adver-
saries who eavesdrop and subsequent attempt to impersonate the role of
an honest peer. Impersonation may be trivial if an adversary is able to
discover a node’s long-term (secret or private) keying material, using for
example a chosen-text attack. Briefly, suppose that authentication here
consists of A challenging B with a random number rA, RSA-encrypted
under B’s public key, and B is required to respond with the decrypted

4.6. Security Analysis 117

rA. If A challenges B with rA = h(x), B’s response to this authentication
request may (unwittingly) provide to A its RSA signature on the hash
value of the (unknown to B) message x. This may be possible in proto-
cols which are not zero-knowledge, because the claimant uses its private
key to compute its response, and thus a response may reveal partial
information. Other active attacks may involve the adversary itself initi-
ating one or more new protocol runs, and creating, injecting, or other-
wise altering new or previous messages [86]. Witness-indistinguishability
and proof-of-knowledge techniques [18] deal with this issues. Our model
should deal with them through embedding in each challenge response
a self-chosen random number, combining use of random numbers with
short response time-outs and using timestamps.

5. Message dropping attacks and Attacks against the public key authentica-
tion process are limited in the same way as analyzing the security of our
first approach in Chapter 3.

6. Dishonest providers. A real problem occurs when the provider does not
send the appropriate user certificate after receiving the correct puzzle
response. Fair exchange and zero-knowledge protocols address this kind
of misbehavior [11]. Message m1 could be used as a proof of A’s mis-
behavior. In particular, this message can be used as a non-repudiation
evidence by the requester.

7. Traitors. Moreover, it is unrealistic to assume that every integrating
node will exhibit a honest behavior forever, even if they have system-
atically behaved correctly in the past. A malicious party can behave
properly for a period of time and then, after reaching a good clearance,
begin misbehaving. In such scenario, system may provide misbehavior
feedback among the peer community aimed at downgrading dishonest
nodes. However, we try to avoid using a trust metric due to whitewash-
ers and collusion attacks in which adversaries may impersonate others
and use the spoofed identities to launch false accusations.

8. No cooperation. Cooperation is critical in both subprotocols, otherwise
user clients would show no contents.

118 Chapter 4. Access Control in Pure P2P Networks

Attack Vulnerable Comments
Eavesdropping No
Modification No
Reply No This attack is easily detected
Insertion No
Dropping No A type of DoS can be mounted
Impersonation No This attack is detected
Against PKI No Requirement: Honest majority
Manipulation on CA

B No
Manipulation on CRLs No
No cooperation Yes Critical in Join/Update

Depends on node availability
Collusion No

Table 4.4: Summary of the informal analysis about the security of the proposed
scheme.

4.6.2 Content Authentication Subprotocol

The discussion about the security of this subprotocol is detailed in previous
chapter, Section 3.7.

4.6.3 Content Access Subprotocol

The search and downloading processes is external to our proposal and provided
by a P2P file sharing application. Nevertheless, since we assume a certificate-
using client, those processes should be adapted to such a middleware. Once
the content has been successfully downloaded, there are several scenarios for
an attacker:

1. Manipulation of authorization certificates. An user B with an insuffi-
cient clearance cannot upgrade it exclusively by herself. The upgrading
process can only be done by A through the Update subprotocol. Further-
more, as the authorization certificate is signed by A, any modification
performed on it will require to generate the new signature, a task that
again only can be done by A by means of her private key.

2. Manipulation of CRLs and/or content certificates. Just like credentials
manipulation, data structures such as CRL and content certificate may

4.6. Security Analysis 119

be vulnerable by the aforementioned attacks unless they are not signed
by the issuers.

3. No cooperation. Cooperation is less critical in Access since it is the client
system who is in charge of manage the credential presentation for each
situation.

4. Software Manipulation. The dependence of such an automatic client
system enforces to protect carefully the software from any kind of attack
or hole, as well as including correctly our protocol specification. For
example, client system should securely provide key pair management,
public keys, CRLs, authorization and content certificate repositories,
protocol messages formats, etc.

4.6.4 Delegation and Revocation Services

We provide an informal analysis about the security of the proposed authoriza-
tion services, just like we do with the subprotocols above:

1. Eavesdropping. An attacker cannot listen the messages transmitted dur-
ing the delegation request and the propagation of the CRL for the com-
munication between A and her Pi, since these messages are protected
by using public key encryption. Note that revocation and delegation
procedures assume instances between previously mutually authenticated
parties.

2. Message Modification Attacks. An attacker can try to alter some mes-
sages with the hope of modifying any message or field in the authorization
certificate. As in the previous case, such a modification can be detected
due to it leads to an incorrect message authentication in the verification
stages of the proposal, but never to any gains for the attacker.

3. Message Reply Attacks. An attacker first listens the messages exchanged
between A and any other participant and then tries to reproduce the
session by using some of them. The protocols proposed for the autho-
rization services are robust against such a situation due to the identities
of both parties are included in the messages, and their signatures as well,
not being useful for anyone different from them.

120 Chapter 4. Access Control in Pure P2P Networks

4. Message Insertion Attacks. An attacker can try to generate fake mes-
sages and insert them in the channel. However, she is unable to do that
for the same reason previously described for the case of message reply
attacks.

5. Message Dropping Attacks. Given enough control over the network in-
frastructure, an attacker can try to delete some of the messages ex-
changed. By doing so, the only result achieved is a failure in the correct
execution of the protocol (which can be viewed as a DoS), but cannot
enable the attacker to gain any useful information.

6. Impersonation Attacks. Assume that an attacker can success in hijacking
a revocation instance between A and her corresponding providers and
subscribers, aimed at, for example, obtaining a privilege for replication.
Even in this case, messages exchanged among trusted peers are safe from
spoofing, due to the fact taht they are signed by authenticated public
keys and also encrypted using the recipients’ public key. In other words,
the attacker cannot generate the correct digital signatures. Note that
this is a particular case of trying to exhibit malicious behavior against
the other party.

7. No Cooperation. Lack of cooperation in delegation and revocation pro-
cesses does not influence as much as in the case of content authentication.
Nevertheless, when requesting replication by a particular owner it may
be probable none of his trusted nodes were available to response.

For the sake of illustration, we include Table 4.4 which summarizes the
vulnerability of our protocol to the attacks analyzed.

4.7 Conclusions

Although access control is a key feature in content distribution, this has not
been extensively addressed in current P2P scenarios. Traditionally, business
corporations have used service-oriented collaborative tools to protect critical
resources in the local communication network. In particular, access control
in current P2P file sharing systems is chaotic, or even nonexistent. In fact,
access control to the shared resources is a noteworthy problem for users of such

4.7. Conclusions 121

systems. This fact motivates us to propose an authorization protocol which
provides access control to contents anonymously.

In our proposal, each collaborative requester is provided with a user cer-
tificate and the associated clearance, whose advantages varies according to his
privileges. This clearance, the security level related to a user, determines the
user’s trustworthiness not to disclose sensitive data to others not cleared to
access it. Moreover, objects in the system are assigned a security label as
well. There is, therefore, a strict relationship between the security levels asso-
ciated with the two, object and subject. In particular, the clearance provides
its holder with the needed credential for the system to correctly download
and access the desired content if and only if the clearance is authentic, high
enough and not revoked. The resulted file sharing system then ensures that
the protected content is only obtained by those users with the appropriate
access level, that is, only by authorized users.

The aforementioned tasks are specified and automatically guided by the
Join protocol. Experiments show us signs of the reliability of this proposal
according to users’ computational resources and interests. We, as many au-
thors, try to probe that peers tend to collaborate even if they must spend some
resources, and playing down the importance of indirect trust. Therefore file
sharing can be encouraged by imposing a cost on the downloads, where each
transaction implies to be worthy of access each time. Thus, owners, by means
of a challenge-response protocol, can challenge requesters using, for example, a
cryptographic puzzle, aimed at asking them to perform a computational effort.

Furthermore, the proposed authorization services, i.e. delegation and re-
vocation, provides the system with a secure replication scheme so that only
authorized providers will be able to distribute others’ replicas. Issuer can con-
trol this privilege by means of the same clearances. Similarly, a clearance may
be revoked by the corresponding issuer before its expiration of the validity
period, as well as it may be upgraded. The Content Authentication protocol
completes the scheme resulting a secure P2P content replication model.

Finally, future work mainly focuses on applying rational models, such as the
Prisoners’ Dilemma, in order to empirically observe a networking social pat-
tern. In principle, peers generally self-organize in social groups of similar peers,
called “semantic-groups”, depending on the resources they are sharing. Some
works try to exploit this social phenomenon by maintaining social networks

122 Chapter 4. Access Control in Pure P2P Networks

and using these in content discovery, content recommendation, and download-
ing. These social peer communities lead to challenging security concerns that
seem to be more accepted by the real users. It is therefore interesting to study
emergent topics related to the dynamics of cooperation and fairness, and which
strategy leads to the formation of interesting social profiles, and content in-
tegrity protocols based on cooperation. Another interesting research direction
is to study additional ways to combine trust schemes and traditional cryp-
tographic protocols for P2P networks, such as multi-signature schemes and
threshold cryptography.

Chapter 5

A Software Prototype

This chapter covers the groundwork, the methodologies and structures to cre-
ate a software product for our proposal. Experiences from the use of an iter-
ative and incremental development in practice appears to be more promising
in this case, since the overall software life cycle seems to be incrementally
updated. Although an exhaustive protocol’s description has been already ex-
posed in chapters above, this chapter addresses it in terms of technical software
requirements aimed at developing a software prototype.

5.1 Purpose

The final software prototype should be able to automatically provide autho-
rization and authentication capabilities. Thus, this objective of the entire
proposal is structured in two processes: the access control and the content au-
thentication. First, the access control process (Section 5.3.3.5) must apply the
requirements established in its conception: issuing authorization certificates,
which identify the corresponding user’s clearance; assigning security labels to
classify contents; and implementing the challenge-response procedure for man-
aging nodes’ privileges and access rights. The suggested idea is that content
providers challenge requesters before supplying the required content. A re-
quester who do not pass the challenge would be denied access to requested
material, like a “proof-of-work”. In particular, access control is divided be-
tween the process of join the community, the clearance update, the content
access and the proposed authorization services, i.e. delegation and revocation
(Section 5.4.3.5.)

123

124 Chapter 5. A Software Prototype

Similarly, content authentication is represented by a process based on the
use of an honest majority of networking nodes to create a digital certificate
for an electronic file that can be used to assure the file’s integrity and verify
the identity of the file’s owner. This process is composed of three phases: (1)
a content certificate generation; (2) a content certificate signature; and (3) a
content certificate verification. In the first, a content owner generates a digital
certificate for a certain content m, containing the main information of the
content (e.g. the hash of the file) and about himself (see data structures in
Section 5.4.2.) In the content certificate signing (Section 5.4.3.4), the owner
selects a subset of nodes (also called signers) in the community and sends
a signed message with that information to them. Selected nodes verify the
accuracy of this information, and check some local registers as well. According
to the results of these local verifications, signers add their digital signature to
the received certificate, and keep track of the added signature.

A user desiring to verify the content’s integrity retrieves the file with the
content certificate and uses it to verify, first, that the certificate was created
by a majority of honest nodes; and second, that the hash of the file in the
content certificate is the same as the hash computed from the retrieved file
(see Section 5.4.3.7 for further details.) If these two hashes match and the
content is correct, then the user is assured that the file was originated from
the owner, the content is uncorrupted, and signers may be stored as trusted,
to some extent.

5.2 Software Architecture

Software architecture allows us to visualize, understand and reason at a high
level of abstraction about the architecturally significant elements and identify
areas of risk that require more detailed elaboration. Fig. 5.1 illustrates the
main elements (data, actors, procedures) of the software prototype and the
interaction among each other and between other system interfaces as well.

In this figure, we can identified the following modules: (1) the three main
stages which compose the content authentication protocol; (2) the three main
stages which compose the access control and authorization services; (3) roles
or actors for each module; (4) data structures; and (5) the interaction with the
public key authentication module and the underlying transaction management.

5.3. Software Elements Specification 125

TRANSACTION MGMT.

CONTENT AUTHENTICATION

Authenticated/

Trusted nodes

Signers/

Table of

signatures

Contents

ACCESS CONTROL

Roles
OWNER

SIGNER

CONTENT CERTIFICATE GENERATION

CONTENT CERTIFICATE SIGNATURE

CONTENT CERTIFICATE VERIFICATION

PUBLIC

KEY

A

U

T

H

E

N

T

I

C

A

T

I

O

N

Byzantine

Agreement

PROVIDER /

ISSUER

REQUESTER/

SUBSCRIBER

JOIN/UPDATE

CHALLENGE-RESPONSE

Subscribers

CONTENT ACCESS

Roles

DELEGATION & REVOCATION

Figure 5.1: Software architecture.

In particular, the content authentication service requires a unique owner
actor and a certain number of signer actors picked out from the owner’s au-
thenticated/trusted nodes database. During the content certificate signature
process, there will be as many instances of Pathak and Iftode’s protocol as
needed. On the other hand, the transaction management layer creates and
maintains transaction states for each protocol instance. Similarly, the access
control stages interact with both public key authentication protocol and with
the underlying transaction stack. We further elaborate on these modules in
next subsections.

5.3 Software Elements Specification

Writing software requirements specifications lays out the foundation for the
development of a new software product. This section describes the main struc-
tures and stages of the entire protocol.

126 Chapter 5. A Software Prototype

Owner

Signers

Public Key

Authentication

Content

Certificate Generation

Content

Certificate Signing

Content

Certificate Verification

Access Control

Requester

* * * **

*

*

*

*

*

*

*

*
*

«uses»

«uses»

*

*

Figure 5.2: Our P2P secure content replication system: Use case.

5.3.1 Content Certificate

A content owner generates a certificate Cm for content m. Moreover, each node
must maintain a local register with the certificates it has previously signed,
Sni

. The requirements for both structures are detailed in Figure 3.1 in Chapter
3.

5.3.2 Authorization Certificate

A content owner A can generate an authorization certificate for node B, CA
B .

This data structure must maintain both identities, the certificate serial num-
ber, the validity period for CA

B , B’s security clearance Li, the replication priv-
ilege if B is an authorized provider, and all fields signed by both entities as
explained in Chapter 4. Moreover, each issuer must keep track of subscribers
and current clearances at a local structure Ssni

.

5.3.3 Protocol Stages

We apply use cases and activity diagrams in order to capture the functional
requirements of the five main software modules: public key authentication,
the three stages for content authentication, and the access control module (see
Figure 5.2.) We further elaborate on each use case in subsections bellow.

5.3. Software Elements Specification 127

5.3.3.1 Public Key Authentication

The public key authentication protocol consists of four main phases that have
been extensively discussed in Chapter 2.

The deployment of this software module is required in order to exhaus-
tively analyze our protocol. In this section, we present a initial description
of the interaction between a primary actor, the initiator of the public key
authentication, and the sequence of principal steps.

Figure 5.1-(a) depicts the use case diagram. Table 5.1 briefly documents
the most interesting fields of each use case.

Figure 5.3 depicts the activity diagrams illustrating the process for creating
a typical scenario and the stages of a public key authentication.

Establish group size

Create originator, its nature and trusted group

Establish participants' nature

Create unauthenticated node and its nature

Admission request

Originator announces the key to its trusted group

Participants challenge unauthenticated node

Distributed authentication

Proof Request

Byzantine agreement

Figure 5.3: Public key authentication: Activity diagrams of Establish context,
and Authenticate Public Key, respectively.

128 Chapter 5. A Software Prototype

Establish Scenario

Originator node

«uses»

Create Node

Participants

Authenticate

Public Key

1 1

*

*

* 1

Unauthenticated node

1 1

Use case name: Establish Scenario
Actors Originator node
Summary Create an scenario with all networking nodes

and their corresponding roles
Preconditions −−
Postconditions Generate nodes: Originator, Unauthenticated,

and participant nodes
Notes The user can define the size of the community,

and the nature (honesty) of participants
References Create Node

Use case name: Create Node
Actors −−
Summary Generation of all networking nodes
Preconditions Node’s role
Postconditions Node generation
Notes The system automatically creates the local

information related to each networking node according to
the corresponding role: key pair, trusted nodes, etc.

References Establish Scenario

Use case name: Authenticate Public Key
Actors Participants and unauthenticated node
Summary Execution of the public key authentication protocol [97]
Preconditions Create Node
Postconditions Result of public key authentication
References Establish Scenario

Table 5.1: Public key authentication use case: Specifications.

5.3. Software Elements Specification 129

5.3.3.2 Access Control: Join/Update

The proposed access control subprotocol consists of two main phases that have
been extensively discussed in Chapter 4: Join and Content Access.

The purpose of Join phase ranges from granting access rights to honest
requesters (from the content owner point of view) to reach access privileges
by the requesters in order to get the desired content. Requesters who want
contents from a particular provider first have to engage in a four-step protocol
in order to obtain a authorization certificate from the corresponding content
owner. These tasks are represented in Figure 5.2 which depicts the use case
diagram, together with the clearance Update procedure.

Messages for Join subprotocol are illustrated in Fig. 4.4. Moreover, by the
sake of illustration, the activity diagram of this stage is shown in Fig. 5.4.
Update stage just includes a prior request message.

5.3.3.3 Content Certificate Generation

The certificate is initialized by the owner (the protocol originator), who selects
an appropriate value for the number k of signing nodes and their identities
(see subsection 5.3.1 above.) Next, the owner generates an initial content
certificate, denoted as C0, by providing the first signature (his own signature
over the aforementioned content information) and passes it to the next node
in the ordered list of signers. The activity diagram of this stage is shown in
Fig. 5.5.

5.3.3.4 Content Certificate Signing

When describing the proposal, we identified two main alternative to sign the
content certificate. Now, for software construction we use the centralized sign-
ing process which simplifies our simulation prototype (based on threads and
TCP Sockets.) In this case, the originator is responsible of sending Ci−1 to
each signer and receiving Ci. Concretely, the owner can check whether the
received certificate has been properly signed or not, thus having a higher level
of control over the process.

Moreover, signers should verify the following:

1. The owner’s public key, and authenticating previous signers as well.

130 Chapter 5. A Software Prototype

Access Control

Owner
Requester

Request From

* *

Certificate

Generation

«uses»

*

*

*

*

*
*

Updating Clearance

* *

*

*

Content Access

* *

«extends»

Subscriber

Use case name: Request Form
Actors Requester
Summary Request for a clearance generation
Preconditions −−
Postconditions Authenticated parties
Notes The requester should accept the assigned clearance
References Certificate Generation

Use case name: Certificate Generation
Actors Owner and Requester
Summary Generation of a user authorization certificate

after a successful resolution of a puzzle
Preconditions Request Form
Postconditions Update local databases
Notes Parties agree with the certificate fields
References

Use case name: Updating Clearance
Actors Owner and Subscriber
Summary Execution of a challenge-response protocol

aimed at increasing clearance
Preconditions Certificate Generation
Postconditions Update local databases
Notes By means of a challenge, owners evaluate

requesters’ interest
References

Use case name: Content Access (see Section 5.3.3.5)

Table 5.2: Access control: Use Case.

5.3. Software Elements Specification 131

Owner/Issuer Requester

Search content owner

Request for join
[m1]

Verify Request Form [PK. Authentication]

Compute challenge

Challenge

Compute response
Response

Check response

Generate clearance Check clearance

Sign clearance

ClearanceAdd Signature

Store clearance

Keep track

Figure 5.4: Join subprotocol: Activity diagram.

2. The hash of the content h(m), comparing it with the value contained in
the received certificate.

3. Its table of signed contents, checking that no entries exist corresponding
to the same content.

4. The signatures contained in the received certificate according to the list
order.

If previous verifications succeed, each signer adds its signature to Ci−1,
thus creating Ci. Each peer then stores separately Ci−1 and the generated

132 Chapter 5. A Software Prototype

Complete initial content certificate's fields

Add signature

Send initial content certificate to first signer

Originator

Content ID

Hash

OLS

Timestamp

Sec. Label

Crypto. Functions

Figure 5.5: Content Certificate Generation: Activity diagram.

signature in her local database Sni
. The resulted content certificate is sent to

the originator (in centralized signing process.) Figure 5.6 depicts the activity
diagram that signers must tackle to perform this phase.

5.3.3.5 Content Access

In order to set the basis of this stage, we briefly overview the interactions
between actors in the sequential order that those interactions occur through
the sequence diagram in Fig. 5.7.

5.3.3.6 Content Certificate Verification

Once obtained the content, the associated content certificate should be checked
to ensure its authenticity and integrity. For this, a requester performs the
following steps:

1. Requester computes h(m) from retrieved content and compares the result
with that included in the certificate. If both values differ, then either
the content has been altered or Cm is not an authentic certificate for this
content.

2. Requester obtains the public keys associated to each of the peers listed in

5.3. Software Elements Specification 133

Obtain signers' public key

[Retrieve Certificate Ci-1]

Compute h(m) and compare it

Check table of signed certificates

Verify previous signatures

[Error]

Add own signature and send result to owner

Keep track on local registers

Inform originator

Figure 5.6: Content Certificate Signing: Activity diagram.

the OLS. If any public key is unknown, it can be acquired by executing
the public key authentication protocol.

3. Requester verifies the chain of signatures by recursively encrypting C

with the ordered list of public keys.

Figure 5.8 depicts the activity diagram that requesters must tackle to per-
form this phase.

5.3.3.7 Delegation and Revocation Services

The provision of the delegation service is strongly based on Join process. User
authorization certificates will register the corresponding holder’s replication

134 Chapter 5. A Software Prototype

Owner/Authorized Provider

Client
Requester Client

Retrieve (m, Cm)

Check query info.

Response

Verify R's authorization certificate

Join/Update subprotocol

Credential: Certif. + delegation

Query: Search m

QUERY+R's certificate issued by m's owner

Authentic

Not revoked

High enough

Content' label is

higher than R's clearance

Verification of Cm

Figure 5.7: Content access stage: Activity diagram.

privilege as a new field. Obviously, as in Join, the issuer first accepts and
therefore certifies this permission. On the other hand, both processes require
an additional data structure, the CRL. Issuers will periodically refresh their
subscribers/providers database, as well as dump it to the providers’ reposi-
tory. Figure 5.9 depicts the activity diagram that both an issuer and a po-
tential provider(s) must tackle to perform theses phases. For implementation
purposes, we assume the alternative for delegation based on owner demands.

5.4 Design

Among the most important aspects to consider in the design of the software
prototype we should make an effort to modularity. Our resulting software is
comprised of well defined, independent components which will be separately
tested and then integrated in a final round. In this section, we describe the
development environment and main data structures, and the design aspects of
the major stages of our content authentication protocol as well.

5.4. Design 135

Compute h(m) and compare it

Obtain signers' public key

[Error]

Verify chain of signatures

Keep track of dishonest actions

Figure 5.8: Content Certificate Verification: Activity diagram.

5.4.1 Deployment Environment

The environmental requirements are the following:

• The current prototype has been deployed on Linux Operating System.
However, future developments will be tested on Windows as well.

• C and Java programming languages (mainly using NetBeans IDE 5.0)
for implementation.

• GnuPG and Java security packets, java.security. and javax.crypto.,
for cryptographic primitives.

• RPCs (Remote Procedure Calls) and/or TCP/IP sockets (multi-threads
environment, e.g. using packet java.net.) for simulating different
nodes in the prototypes.

5.4.2 Data Design

Basic data structures are the content and node certificates, and local databases
containing signed certificates and trapdoors. We also include the register for

136 Chapter 5. A Software Prototype

Issuer

Instance of Join

Potential provider

[REPLI_REQ]

Replication request

Send acceptance
[REPLI_ACP]

Include in the prior clerance the replication privilege

Select a subscriber of the correspondig clearance

Issuer Set of providers

Revocation decision upon B || Expiration Val. period

Include B's certificate serial number on CRL

Propagation to providers

Dump updated CRL

Distribute CRL

Dump updated CRL

Figure 5.9: Delegation and revocation procedures: Activity diagram.

locally keeping the shared resources, and a structure to locally store the public
information of other nodes in the community.

5.4.2.1 Authorization Certificate Structure

A user authorization certificate is structured in the following fields with the
corresponding data type:

5.4. Design 137

Data Type
Holder string
Issuer string
Validity date–pair
Clearance string
Replication string
Signature byte array
Crossed Reference integer

5.4.2.2 Content Certificate Structure

A content certificate is structured in the following fields with the corresponding
data type:

Data Type
Originator string
ID string
Hash byte array
OLS string array
Validity date–pair
Security label string
Sign. Algorithm string
Signatures byte array

5.4.2.3 Signed Certificates Structure

Signers keep track of signer certificates in the following local register:

Data Type
Register ID enumerate
Date System–date
Owner ID string
Content Hash byte array
Certificate received Certificate
Signature byte array
Crossed Reference integer

5.4.2.4 Public Information Structure

Nodes store public information of last contacted peers, as follows:

Data Type
Node ID string
Public Key byte array
Security Label string

138 Chapter 5. A Software Prototype

Moreover, we can keep track of node behaviors according to the results of
both content certificate signing process, and Byzantine agreement for public
key authentication, if exists. The register may store the following items:

Data Type
Timestamp date
Node ID string
OLS state mark
Byzantine state mark

5.4.2.5 Shared Resource Structure

Owners and providers (who offer replicas) publish the following data:

Data Type
Content Hash byte array
Content Certificate certificate
Content Reference byte array
Crossed Reference integer

5.4.2.6 Table of subscribers/providers

Each issuer must store members or “subscribers” and their updated clearances,
as follows:

Data Type
Date date
Requester string
Current clearance string
Replication string
Crossed Reference integer

5.4.2.7 CRLs Tracking

Content owners who have subscribers, i.e. issuers, must keep a local database
containing the serial number of the revoked authorization certificates, as fol-
lows:

Data Type
Serial number string
Date date
Crossed Reference integer

This structure must be distributed to authorized providers.

5.4. Design 139

P2P Network Set of Registers

Node Public Resource

Multithread ServerRequest Processor

-maintains

1..1 1..1

-consists of1..1

0..*

-consists of1..1

0..*

-has

1..1

1..1

-launches

1..10..*

Figure 5.10: Establish scenario: Class diagram.

5.4.3 Process Design

In this section, we overview the design of the protocol stages separately.

5.4.3.1 Establish Scenario and Create Node

At a initial stage, the number of nodes in the community and their correspond-
ing role must be established in order to perform the different protocols in the
system. Basically, each node will create several threads during its execution
aimed at performing the corresponding protocol task. For example, a node,
who desires to publish a content assuring its integrity, has to be identified as
the originator in a content authentication protocol instance. In Figure 5.10 we
show the class diagram with which we can simulate a P2P network scenario.

On the other hand, the network scenario is established by means of several
data registers and functionalities. We have to store on each node every needed
information of the particular role, e.g. the name, TCP port, type, set of
trusted nodes, data generated during a certain stage, own resources, among
others. In particular, the scenario for our content authentication protocol may
be specified in these two main procedures:

• Originator. The content owner is created as a process and is defined
by the following fields in the Node structure/class:

140 Chapter 5. A Software Prototype

{Ci}Ki

Originator Process Signer Process

Send content

Send certificate i

Generate C0

Signature Request

{Content}Ki

Result
Checking and Signature Generation

Retrieve Certificate i+1

{Ci+1}Ko
Send Certificate i+1

[k]

Figure 5.11: Invoked methods for the two roles in content authentication pro-
tocol: Sequence diagram.

Data Type
Alias string
Public Key byte array
Private Key byte array
IP address byte array
Port integer
Nature string

Figure 5.11 shows the sequence of the invoked methods for the two func-
tionalities.

• Signer. Signers are also created as processes and are defined by the
fields in the aforementioned Node structure.

The table of its previously contacted peer may be also created in this
phase. Moreover, both types of nodes may be easily identified by < alias >

@ < ip_address >.

5.4. Design 141

5.4.3.2 Authenticate Public Key

The implementation of the public key authentication protocol is briefly de-
scribed and analyzed in this section.

First, we adopt a particular format for the messages that protocol partici-
pants will exchange, as follows:

Message items , · · · sni
{·} = Sender’s signature on message items

Admission:
{

A → B : {A,B, admission_request, KA}, sA{·}
B → Pi : {B, Pi, authentication_request, sA{A, KA}}, sB{·}

Challenge-Resp.:
{

Pi → A : CiA = {Pi, A, challenge, EKA
(ri)}, sPi

{·}
A → Pi : RiA = {A,Pi, response, ri}, sA{·}

Distr. Authentic.: {Pi → B : {Pi, B, dis_Authent, sA{CiA, RiA}}, sPi
{·}

Byz. Agreement:
{

B → A : {B, A, proof_rqt}, sB{·}
A → B : {A, B, proof_sent, νA[]}, sA{·}{

B → Pi : {B,Pi, byz_fault, νB[]}, sB{·}
Pi → Pj : {Pi, Pj, byz_agreement, νi[]}, sPi

{·}

As an example, Figure 5.3-(b) depicts the formatted messages exchange
between the three types of participants in the public key authentication pro-
tocol. As it is pointed out in the figure, it is an essential requirement that
messages are signed (using Java this requirement is easily solved by means of
the application of SignedObjects, predefined in java.Security.) Moreover,
Figure 5.3-(a) shows the extensions of the class diagram for the public key
authentication protocol.

Furthermore, the communication model to execute the public key au-
thentication protocol is based on TCP socket connections. Similarly to a
client/server model, the server establishes a port and listens it for clients’
requests. During the connection, data exchange is performed through han-
dlers, called streams. We need the following classes to manage the connec-
tions: SocketServer, SocketHandler y SocketClient. Basically, a new in-
stanced Node creates a permanently active thread which type is SocketServer.
The SocketServer object keeps on waiting for a given request, and detect-
ing a connection on a given port. Once a connection is accepted, an object

142 Chapter 5. A Software Prototype

+
P

u
b

lic
K

e
y
A

u
th

e
n
tic

a
tio

n
 M

o
d
u

le
()

N
o

d
e

11

P
u

b
lic

K
e

y
A

u
th

e
n

tic
a

tio
n

 M
o

d
u

le

-P
o
rt

M
u

ltith
r
e

a
d

 S
e
r
v
e
r

-h
a
s

1
..1

1
..1

+
g

e
t()

+
p

u
t()

R
e
q

u
e
s
t P

r
o

c
e
s
s
o

r

-la
u
n

c
h
e
s

1
..1

0
..*

-S
o
u
rc

e
-R

e
c
e
iv

e
r

-B
o
d
y

P
K

A
u

th
e
n

tic
a
tio

n
 M

e
s
s
a
g

e
s

1

1
..*

N
o
d
e
 T

N
o
d
e
 A

N
o

d
e

 B

i
T

i
A

T
A

r
K

ch
a

lle
n

g
e

A
T

C
)

(
,

,
,

i
A

i
A

T
A

r
K

resp
o

n
se

T
A

R
)

(
,

,
,

T
T

A
T

A
R

C
tio

n
a

u
th

en
tica

d
d

istrib
u
te

B
T

,
,

_
,

,

A
T

A
T

A
R

C
sen

t
p

ro
o

f
B

A
,

,
_

,
,

(a)
P
ublic

key
authentication

m
essages:

C
lass

diagram
(b)

E
xchange

of
evidences

during
B
yzantine

agreem
ent

Table
5.3:

P
ublic

key
authentication:

C
lass

and
state

diagram
.

5.4. Design 143

SocketHandler is created; it is responsible of receiving messages and launch-
ing the corresponding actions. When a node wants to send a message, he needs
a SocketClient object. Both roles’ operation are implemented as follows:

public Message getMessage(SignedObject s_obj){
Message mess=null;
try {

//Obtener el mensaje
mess=(Message)s_obj.getObject();

} catch (IOException ex) {
ex.printStackTrace();

} catch (ClassNotFoundException ex) {
ex.printStackTrace();

}
return mess;

}

public void protocolar(SignedObject s_obj){
register.addMessage(s_obj);
Message message=this.getMessage(s_obj);
//First protocol stage
if("admission request".equals(message.getTipo())){

authenticationRequest(message);
}else{

//Second
if("authentication request".equals(message.getTipo())){

challenge(message);
}else{

//challenge response
if("challenge".equals(message.getTipo())){

try {
response(s_obj);

} catch (IOException ex) {
ex.printStackTrace();

}
}if("response".equals(message.getTipo())){

proofToMaster(s_obj);
}else{

if("proofs sent".equals(message.getTipo())){
loadProofs(s_obj);
//all proofs received?
if((register.getProofs().size())==(register.getTrusted().size())){

distributedAuthentication();
}

}else{
if("proof request".equals(message.getTipo())){

sendProofs();
}else{

if("proof".equals(message.getTipo())){
agreement(s_obj);

}else{
if("byzantine fault".equals(message.getTipo())){

byzantineAgreement(s_obj);

144 Chapter 5. A Software Prototype

}else{
if("byzantine agreement".equals(message.getTipo())){

retrieveProofs(s_obj);
} } } } } } } } }

On the other hand, nodes need a cryptographic infrastructure to complete
the following tasks:

• Challenge encryption. Honest nodes should encrypt the challenge (data
type: byte array) using the public key to authenticate. We show some
samples of the Java source code of some procedures:

public void authenticationRequest(Message mess){
for(int i=0;i<register.getTrusted().size();i++){

Peer p =(Peer)register.getTrusted().get(i);
PublicKey key=mess.getSignature();
Message m=new Message(register.getID(),p.getID(),key,"authentication request",

register.getModule().getPublicKey(),register.getPort());
SocketClient s=new SocketClient(p.getPort(),

register.getModule().signMessage(m,register.getModule().getPrivateKey()),
register.log);

}
}

public synchronized void challenge(Message mess){
if(!register.honest){

register.changeKeys();
}
Random r=new Random();
Integer num=r.nextInt(1000000);
String nonce=num.toString();
register.setNonce(nonce);
String challenge=(register.getModule().encrypt(nonce,(PublicKey)mess.getBody()));
PublicKey key=register.getModule().getPublicKey();
String source=register.getID();
String recipient=register.getProbationary().getID();
Message m2=new Message(source,recipient,challenge,"challenge",

key,register.getPort());
SignedObject challengeSent=register.getModule().

signMessage(m2,register.getModule().getPrivateKey());
SocketClient s2=new SocketClient(register.getProbationary().getPort(),

retoSent,register.log);
register.setChallenge(challengeSent);
if(!register.honest){

register.changeKeyss();
}

}
public void proofToMaster(SignedObject s_obj){

Message mess=this.getMessage(s_obj);
String response=(String)mess.getBody();
boolean b=false;

5.4. Design 145

if (register.getNonce().equals(response)){
b=true;

}

if(!register.honest){
b=false;

}
register.setResponse(s_obj);
register.setValidity(b);

String source=register.getID();
String recipient=register.getMaster().getID();
int recipPort=register.getMaster().getPort();
PublicKey key=register.getModule().getPublicKey();
Message m=new Message(source,recipient,register.getProof(),

"proofs sent",key,register.getPort());
SocketClient s=new SocketClient(recipPort,register.getModule().

singMessage(m,register.getModule().getPrivateKey()),register.log);
}

• Challenge decryption. For the inverse operation.

public void response(SignedObject s_obj) throws IOException{
Message mess=this.getMessage(s_obj);
//randomly challenge generation
int recipPort=mess.getPort();
String challenge=(String) mess.getBody();
String resp=register.getModule().decrypt(challenge,register.

getModule().getPrivateKey());
String source=register.getID();
String recipient=mess.getSource();
PublicKey key=register.getModule().getPublicKey();
Message m2=new Message(source,recipient,resp,"response",

key,register.getPort());
SignedObject respSent=register.getModule().signMessage(m2,register.

getModule().getPrivateKey());
SocketClient s2=new SocketClient(recipPort,respSent,register.log);
Proof p=new Proof();
p.setChallenge(s_obj);
p.setResponse(respSent);
p.setID(recipient);
registwe.addProof(p);

}

• Message signature and its verification. Note that all the protocol mes-
sages should be correctly signed by the sources, while honest nodes
should verify signed messages.

Moreover, at the initialization of this protocol, we can set first the size
of the trusted group, and then create the nodes. On the one hand, node A

146 Chapter 5. A Software Prototype

(newly joined) generates her public key, B will try to authenticate that public
key, and creates his subset of trusted nodes. Secondly, we can determine each
participant nature in order to test all protocol steps, as follows:

private static void setTrusted() {
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
try {

System.out.print("Enter the number of nodes in trusted group: ");
numTrusted = Integer.parseInt(br.readLine());

} catch (Exception e) {
e.printStackTrace();

}
}

public static void setScenario(){
master=new Peer(1521,"B","master",miLog,stop);
proba=new Peer(1523,"A","proba",miLog,stop);
trusted=new Peer[numTrusted];

for(int i=0;i<numTrusted;i++){
String id="P"+i;
int port=2000+i;
trusted[i]=new Peer(port,id,"trusted",myLog,end);

}
proba.setMaster(master);
master.setProbationary(proba);
for(int i=0;i<numTrusted;i++){

master.addTrusted(trusted[i]);
}

for(int i=0;i<numTrusted;i++){
trusted[i].setMaster(master);
trusted[i].setProbationary(proba);
for (int j=0;j<numTrusted;j++){

String s1=trusted[i].getID();
String s2=trusted[j].getID();
if(!s1.equals(s2)){

if(!trusted[i].isTrusted(trusted[j])){
trusted[i].addTrusted(trusted[j]);

} } } } }

public static void setHonestNature(){
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s=null;
try {

System.out.print("\n"+"Honest behavior of A (y/n) ");
s = br.readLine();

} catch (Exception e) {
e.printStackTrace();

}
if(s.equalsIgnoreCase("no")){

5.4. Design 147

proba.setHonestidad();
}
InputStreamReader isr2 = new InputStreamReader(System.in);
BufferedReader br2 = new BufferedReader(isr);
String s2=null;
try {
System.out.print("\n"+"Enter the name of malicious nodes in the trusted group:");
s2 = br.readLine();
} catch (Exception e) {

e.printStackTrace();
}
if(!s2.equalsIgnoreCase("")){

String [] nodes=s2.split(" ");
String s3;
for(int j=0;j<nodes.length;j++){

s3=nodes[j];
for(int i=0;i<numTrusted;i++){

if(trusted[i].getID().equalsIgnoreCase(s3)){
trusted[i].setHonestNature();

}} }} }

public static void run(){
System.out.println("\n"+"-Begining of the protocol-");
System.out.println(".................................");
master.start();
proba.start();
for(int i=0;i<numTrusted;i++){

trusted[i].start();
}

}

Finally, we need an especial structure to store all the proofs-of-possession
(challenge responses) that B will require at Byzantine agreement stage, as
follows:

public void byzantineAgreement(){
System.out.println("\n"+"-No consensus: Byzantine Agreement-");
System.out.println(".................................");
String source=register.getID();
String recipient=register.getProbationary().getID();
String body="XXXX";
String type="proof request";
int port=register.getPort();
Message m=new Message(source,recipient,body,type,

register.getModule().getPublicKey(),port);
SocketClient s=new SocketClient(register.getProbationary().getPort(),
register.getModule().signMessage(m,register.getModule().getPrivateKey()),
register.log);

}

public void sendProofs(){
if(!this.register.honest){

this.register.changeKeys();

148 Chapter 5. A Software Prototype

}
ArrayList proofs=register.getProofs();
String source=register.getID();
String recipient=register.getMaster().getID();
String type="proof";
int port=register.getPort();
Message m=new Message(source,recipient,proofs,type,

register.getModule().getPublicKey(),port);
SocketClient s=new SocketClient(register.getMaster().getPort(),
register.getModule().signMessage(m,register.getModule().getPrivateKey()),

register.log);
}

5.4.3.3 Content Certificate Generation

Figure 5.12 depicts the structure of the system by showing the system’s classes,
some of their attributes, and the relationships between the classes for content
authentication.

For this process, we apply the signature algorithm and the message digest
function over a particular file in the system. We include the header of the
main procedures initiated by the owner (already implemented in C):

1. Compute the file message digest using a SHA-2 hash function:

int compute_hash(char *file, char *sha2);

2. Fill the content certificate with the file information:

int new_certificate(char *sha2, char *id_content, char

**ols, int nodes);

3. The owner signs the certificate:

int sign_certificate(char *input,char *output);

This function uses GnuPG v1.4.6 (GNU/Linux) and calls the following
routine:

gpg –output h(c).0 –clearsign h(c).c

h(c).c being the initial certificate C. In turn, after the owner includes
his signature the certificate becomes h(c).0. Next section details the
syntaxis to name successive signed certificates.

Figure 5.13 depicts the interaction between instanced objects at the content
certificate generation stage.

5.4. Design 149

Certificate
Content

Key

belongs to 1..11..1

Public Private

Node

c
re

a
te

hides

publishes

Unknown

Signature

1..1 1..1

1..1

1..1

0..*

Dishonest
0..*0..*

challenges

0..*

1..1

has

0..*

0..*

s
ig

n

1..*

Value

ID

Honest

Challenge

body
hash
OLS
signatures

tiemstamp
signature

timestamp
challenge
response

Figure 5.12: Content authentication protocol: Class diagram.

5.4.3.4 Content Certificate Signing Process

The signing process requires the following two actors and procedures (already
implemented in C):

• Owner (initiator of a content authentication instance):

150 Chapter 5. A Software Prototype

Signer1:Honest Content:Content

Certificate.Certificate
CreateCertificate()

requestSignature(c)

AddSignature()

Menu user

Owner:Node

GenerateCertificate()

requestHashValue()

requestContent

[ok] := VerifyHash()

requestSignature()

[ok] := verifySignature(signature,key, hash)

[ok]

[ok]

h(m)=computeHash()

Figure 5.13: Content certificate generation: Object interaction.

1. Manages the signing process for all the nodes included in the OLS:

int manage_signatures(int signers, char **ols, char

*cert, char *doc, char *hash, int *node_error);

2. Manages the put command:

int send(char *file, char *machine);

3. Requests for signature to signers:

int request_sign(char *file, char *signer);

4. Manages the get command:

int retrieve(char *file, char *signer)

5. Remote procedure to send a particular file:

int * put_1_svc(args1 *argp, struct svc_req *rqstp);

5.4. Design 151

6. Remote procedure to retrieve a particular file:

char ** get_1_svc(arg2 *argp, struct svc_req *rqstp);

7. Remote procedure which returns a particular file size:

int * size_1_svc(char **argp, struct svc_req *rqstp);

8. Remote procedure to request for the content certificate signature:

int * sign_1_svc(char **argp, struct svc_req *rqstp);

• Signers:

1. Load a content certificate data:

char **load_certificate(char *certificate, char

*sha2_c, char *id_content, int *nodes);

2. Compute the message digest of a particular file:

int compute_hash(char *file, char *sha2);

3. Compare two hash values:

int verify_hash(char *sha2_c,char *sha2_d);

4. Verify the signatures in the content certificate:

int verify_signatures(char *certificate,char **ols, int

nodes, int *failed_node);

We can use the following routine to verify the signature:

gpg –output h(c).0 –decrypt h(c).1

5. Verify that the signatures in the content certificate are correct ac-
cording to the order imposed by the OLS:

int verify_sig_ols(char *buffer, char **ols, int

nodes);

6. Check the local register of previous signed certificates:

int verify_table(char *tableS, char *hash);

7. Add a signature to the content certificate:

int sign_certificate(char *input,char *output);

8. Add a new entry in the local register of previous signed certificates:

int add_S(char *hash);

152 Chapter 5. A Software Prototype

The following table shows the sequence of certificate identification in order
to distinguish each step in the content certificate signing process:

Step Certificate ID
1 Owner creates C ′ h(c).c

2 sn0(C
′) h(c).0

3 sn1(C0) h(c).1

4 sn2(C1) h(c).2

5 sn3(C2) h(c).3

6 snk
(Ck−1) h(c).k = h(c)

7 Certificate Cm h(c)

5.4.3.5 Join Process

The Join process requires the following two actors and procedures (already
implemented in C):

• Requester (initiator of an access request):

1. Sends a request for a clearance to the corresponding owner, in order
to gain access to the desire content. Requesters can obtain own-
ership information from the P2P search engine and the location
service.

int send_RQT (struct acc_req *rqsfrm, char *machine);

2. Evaluates the certificate received from the owner after sending the
corresponding request form.

Initially this is empty. A specific policy of

acceptance/rejection should be inserted here.

3. Verifies clearance and signatures in the authorization certificate:

int verify_clearance (char *clearance, int

*failed_node);

4. Signs and returns the clearance confirmed:

int sign_certificate(char *input,char *output);

int *put_clearance(args1 *argp, char *machine);

5. Add a new entry in the local register of authorization certificates.

char **store_clearance(char *clearance, char *label,

char *machine);

5.4. Design 153

• Owner:

1. After retrieving the request form sent by a certain requester, she
checks her local register of contacted peers and the table of sub-
scribers as well. On the other hand, if the requester is unknown,
the owner must execute an instance of the public key authentica-
tion.

int retrieve_RQT (struct acc_req *rqsfrm, char

*machine);

int verify_table(char *tableSs, char *hash);

int verify_table(char *tableT, char *hash);

If the requester is unknown, call Byzantine class:

public void protocolar(SignedObject s_obj);

2. Generates, signs and sends an authorization certificate (challenge-
response mechanism in the subsection bellow.) Moreover, for sim-
plifying the implementation, the owner will generate a credential
for the requester by default. However, a specific policy of accep-
tance/rejection should be inserted here:

char **load_clearance(char *clearance, char *label,

char *machine);

int *put_clearance(args1 *argp, char *machine);

3. Verifies clearance and signature, signs again and returns to re-
quester.

5.4.3.6 Updating Clearance Process

Upgrading a clearance relies on a challenge-response protocol, which is started
by a particular request message sent by a particular subscriber to the owner:

int send_RQT (struct update_req *rqsfrm, char *machine);

Once the owner accepts the request, both engage in the following four-step
protocol (implemented in Java):

1. The owner challenges requester. For implementation purposes, we can
use basic cryptographic routines, as follows:

154 Chapter 5. A Software Prototype

PuzzleMessage (Handler SourceID, Handler RequesterID, byte
content[], byte puzzle[], byte f[], BigInteger b1, BigInteger b2,
BigInteger b3, String c)
{ signature = f;

n = b1;
a = b2;
t = b3;
cryptogram = c;

}
//Puzzle helps requester to retrieve an authorization certificate
String dataPuzzle = puzzle.getPuzzle(SessionKey);

public String getPuzzle(SessionKey){
int period = 7;
int operations = 10000;
int primesize = 1028;
BigInteger p = new BigInteger(primesize,10,new Random());
BigInteger q = new BigInteger(primesize,10,new Random());
n = p.multiply(q);
a = p;
BigInteger fi = p.subtract(BigInteger.valueOf(1));
fi = fi.multiply(q.subtract(BigInteger.valueOf(1)));
t = BigInteger.valueOf(period * operations);
BigInteger dos = BigInteger.valueOf(2);
BigInteger e = dos.modPow(t,fi);
BigInteger b = a.modPow(e,n);
byte puzzlebody[] = getPuzzlebody(b.toByteArray());
String puzzle=new String(SessionKey.getEncryption())+new String(puzzlebody);
return puzzle;

}

// Puzzle is encrypted using requester’s public key
byte encryptedPuzzle[] = encrypt(dataPuzzle.getBytes(),

node.getPublicKey(requester));

byte signature[] = node.sign(dataPuzzle.getBytes());

Message = new PuzzleMessage(node.getID(),requester.getID(),...);
node.send(requesterID, message);

private byte[] getPuzzlebody(byte puzzle[])
{

int numBytes = 96;
byte body[] = new byte[numBytes];

for(int i = 0;i < numBytes;i++){
body[i] = puzzle[i];

}
return body;
}

2. The requester computes the response, solving the challenge and sending
it back:

5.4. Design 155

public String solvePuzzle(BigInteger n, BigInteger a, BigInteger t,
String puzzle)

{ BigInteger dos = BigInteger.valueOf(2);
BigInteger e = dos.pow(t.intValue());
BigInteger b = a.modPow(e,n);
byte solution[] = getPuzzlebody(b.toByteArray());
String SessionKey = new String(getSolution(puzzle.getBytes(),solution));
return SessionKey;

}
private byte[] getSolution(byte puzzle[],byte puzzlebody[])
{ int numBytes = puzzle.length - puzzlebody.length;

byte solution[] = new byte[numBytes];
for(int i = 0;i < numBytes;i++){

solution[i] = puzzle[i];
}

return solution;
}

\\On the other hand, in this stage, we may use trapdoor functions:
\\Assumptions:

\\ Key length is set on 128 bits -> unsigned char key[16];

l = given trapdoors bytes (most significant) -> unsigned char w[16]
-> w[0:l] trapdoor bits;

Ciphers: AES -> aes_context ctx
(using TEA algorithm: unsigned long key[4];)

for(i=0;i<l;i++)
key[i]=w[i];

key[l:n-1]=0x00; k=0; stop=0;

while ((!stop) && (k<(pow(2,32))))
{

/* Decrypt Part */
aes_set_key(&ctx, key, 128);
aes_decrypt(&ctx, ibuf, obuf);

/*For experiments we compare if the two strings are equal, strcmp returns 0.*/
if (memcmp(ibuf, obuf, 16)==0)

stop=1;
k++;

/* Example: l = 128 - 32 (hidden bits) = 96*/

key[12]=k>>24;
key[13]=(k<<8)>>24;
key[14]=(k<<16)>>24;
key[15]=(k<<24)>>24;

156 Chapter 5. A Software Prototype

/* Try experiments for l= 96, 100, 104, 108*/
}// while

3. The owner verifies the response in her local registers of challenges sent
to requesters. The owner generates and sends an upgraded clearance to
the requester.

private void retrievePuzzleMessage(PuzzleMessage message)
{ if (message.getRecipientID().compareTo(node.getID()) == 0)

{ // Verifies signature
if (node.verify_signature(message.getBytes(), message.getSignature(),
node.getPublicKey(requester)))
{ \\Check table of challenge-response

if (message.getpuzzle().compareTo(node.getTablePuzzles(message.
getpuzzle())) == 0)

{ \\Generate upgraded clearance
clearance= node.getClearance(message.getRecipientID);
clearance=reload_clearance(clearance, clearance.getlabel + 1,...);

}} } }

4. The requester verifies the new clearance and locally stores it.

\\Requester can easily get the session key by means of solving the puzzle
byte puzzle[] = node.decrypt(message.getPuzzleCifrado());
Puzzle p = new Puzzle();
String key = p.solvePuzzle(message.getN(),message.getA(),message.getT(),new String(puzzle));
ReconstructorSessionKey reconstructor = new ReconstructorSessionKey(key.getBytes());

byte contentfile[] = descryptSessionKey(message.getContent(),reconstructor.recoverKey());
//See next section for recover the key from the trapdoor

if (contentfile != null)
{ Downloaded fd = new Donwloaded ("users\\" + node.getID().toString() +

"\\" + message.getFile().toString());
fd.write(content);
}

It is interesting to examine to what extent the usage of this kind of effort-
aware access control mechanism can be applicable and reliable in real networks.
For instance by means of cryptographic puzzles based on trapdoor functions,
we have found that more than 32 hidden bits would be impracticable.

The results on average are shown in Appendix B. Briefly, as the number
of the revealed bits increases, the number of permutations decreases, so to-
tal exploration time as well. Moreover, the required time depends on peers’
computational resources, i.e. computing power, memory size and speed.

5.4. Design 157

5.4.3.7 Content Certificate Verification Process

After downloading, requesters should verify the content certificate, as follows
(already implemented in C):

1. Load a content certificate data:

char **load_certificate(char *certificate, char *sha2_c,

char *id_content, int *nodes);

2. Compute the message digest of the downloaded file:

int compute_hash(char *file, char *sha2);

3. Compare two hash values:

int verify_hash(char *sha2_c,char *sha2_d);

4. Verify the signatures in the content certificate according to the OLS:

int verify_signatures(char *certificate,char **ols, int

nodes, int *failed_node);

int verify_sig_ols(char *buffer, char **ols, int nodes);

As an example, the sequence of verifications of a content certificate signed
by three nodes may use:

Verification of n2 signature: gpg –output h(c).1 –decrypt h(c).2

Verification of n1 signature: gpg –output h(c).0 –decrypt h(c).1

Verification of n0 =owner signature: gpg –verify h(c).0

Moreover, Figure 5.14 depicts the interaction between instanced objects at
the content certificate verification stage. Although it is not explicitly pointed
out in the figure, if any signer’s public key is unauthenticated, an instance of
the public key authentication protocol is created for each one.

5.4.3.8 Content Access Process

We assume that requesters will not deviate from the Join protocol, and that
their clients will correctly use the information enclosed into their authorization
certificates to gain access to the content. On the other hand, the search engine

158 Chapter 5. A Software Prototype

Certificate:CertificateContent:Content

h(m) := computeHash()

[ok]:=VerifyHash

getSignature()

[ok]:

verifySignature

getHash()

getOLS()

Menu user
Requester:Node

verifyContent()

requestContent()

Figure 5.14: Content certificate verification: Object interaction.

will only show those available replicas stored by the owner and/or the autho-
rized providers, who have an authorization certificate with the corresponding
replication privileges issued by that owner.

The sequence of operations should be the following (designed in Java):

1. The requester formulates her query, using a descriptor of the desired
content. From the query response, the requester can select one of the
returned list of sources, i.e. either the owner or an authorized provider.
First, the system must verify the providers’ credential, and will only
show delegated nodes.

QueryResponse(..., contentID,)
public String getQuery (String fileName){
result = new QueryResponse();
registers = net.searchSharedRegisters(new Id(fileName));
for(int i = 0;i < registers.numBytes;i++){

if(registers[i] != null){
if (node.verifyCredential(registers[i].getCredential()) &

(registers[i].getClearance() >= registers[i].getContentLabel())
& !owner.searchCRL(registers[i].getCertificateSN())

{result[i] = registers.show();}

5.4. Design 159

} }
...

2. For implementation purposes, the requester first selects a source at ran-
dom (if the selected provider is unknown the system will visualize the
message and show the direct shortcut.) Finally, the requester sends her
credential to the source, as follows:

...
int x = ((int) Math.random() * 5);
String output = "";
Node source = net.searchNode(result[x].getID());
Message request = new downloadRequest(Id,result[x].getID(),node.getClearance());

node.send(result[x].getID(), request);
int counter = 0;
do{

try{
wait(1000);
counter += 1000;

}
catch(InterruptedException ie){

System.out.println("Exception: Time-out");
}

}while(node.getThreadControl() == null && counter < 7000);

if(node.getThreadControl() != null){
do{

try{
wait(1000);

}
catch(InterruptedException ie){

System.out.println("Exception: Time-out");
}

}while(node.getThreadControl().isAlive());

sharedRegister sharedReg = registers.getRegister(result[x].getID());
File f = new File(sharedReq.Download(Id).toString());
if (f.exists()){

output = "Successful Downloading";
}

}
else{

...
}
node.asignThread(null);
return output;

}

3. The provider client checks requester’s clearance and, whether the ver-
ifications conclude with success, this process then securely sends the

160 Chapter 5. A Software Prototype

content and the associated content certificate to the requester client.

private void retrieveDownloadRequest(DownloadRequest message)
{ if (message.getRecipientID().compareTo(node.getID()) == 0)

{ if (node.verifyCredential(message.getClearance()) &
(message.getClearance() >= node.getContentLabel(message.getId())) &

!node.searchCRL(message.getCertificateSN()))
{
Message response = new downloadResponse(node.getContent(message.getId()),

message.getSenderID(),node.getClearance());
node.send(message.getSenderID(), response);

}
else

\\reject download request
}

5.4.3.9 Delegation and Revocation Processes

This subsection overviews the main routines for the proposed authorization
services. As explained in the analysis of these processes, both are related to
a new data structure called CRL. We have designed in Java programming
language the sequence of tasks, as follows:

1. For implementation purposes, the originator of delegation services is the
issuer, i.e. a content owner who already has, at least, a subscriber be-
longing to a particular security level. This subscriber, who already has
the corresponding clearance, will receive a replication request from the
issuer. Once the subscriber accepts, both engage in Join process. The
successful end of Join involves the following two targets: a new clear-
ance with the replication privilege for the new provider, together with
the sending of the issuer’s CRL.

public String sendDelegation (String level) {
subscriber = new Node(node.getSubscriber(level));
Message request = new Repli_Rqt (node.getID(),subscriber.getID());
node.send(subscriber.getID(), request);
int counter = 0;
do{

try{
wait(1000);
counter += 1000;
}

catch(InterruptedException ie){System.out.println("Exception: Time-out");
}

}while(node.getThreadControl() == null && counter < 7000);

5.5. Deployment and Testing 161

if(node.getThreadControl() != null){
do{

try{
wait(1000);
}

catch(InterruptedException ie){System.out.println("Exception: Time-out");
}

}while(node.getThreadControl().isAlive());
\\Suscriber send the ACCEPT message
\\retrieve_msg ();
\\call Join with Replication parameter not null
Message crlMessage = new crlMessage ();
node.send(subscriber.getID(), crlMessage);

}}

2. In principle, the inclusion of a new entry in the CRL depends on the
issuer suspicions of a compromised clearance, a trust-based accusation
model, or even the expiration of the validity period. For a start, we test
the revocation procedure by choosing a certain subscriber at random.
A new entry will be added into the CRL: the current date, and the
subscriber’s certificate serial number.

5.5 Deployment and Testing

In the current development stage, we have tested the functional requirements
of both content authentication and access control processes.

5.5.1 Functional Testing

In order to evaluate the system’s compliance with its specified requirements,
we have tested the resulted software product in the terms describes in Tables
5.4 and 5.5.

Next, we show the results for test “1. Generate Cdoc” using three signers (see
Fig. 5.15.) Furthermore, we include some screenshots resulted from different
executions of the public key authentication protocol implanted.

Concretely, Figure 5.15 is a Linux console screenshot resulted from running
a simulation of the content authentication module. We can distinguish the
following: the content of the file labeled as “doc” (line (1)), line (2) prints the
procedure call along with the parameter expressing the target content, and the
obtained content certificate for “doc”. This certificate is identified using the

162 Chapter 5. A Software Prototype
T
est

E
xp

ected
resu

lt
F
in
al

resu
lt

C
om

m
ents

C
ontent

C
ertificate

G
eneration

Stage
G
enerate

C
m

N
ew

content
certificate

for
m

X
V
isualization

of
C

m
(F

ig.
5.15)

G
enerate

C
m
′
w
here

m
′

is
m
issing

M
essage

“m
′is

not
a
current

file”
X

V
isualization

of
the

error
m

previously
signed

1st
signer

notifies
a
duplication

m
essage

X
W
e
repeat

this
test

Incorrect
signature

T
he

corresponding
signer

notifies
an

“E
r-

ror
in

signature
verification”

error
m
es-

sage.

X
V
isualization

of
the

er-
ror

and
the

failed
signa-

ture
C
ontent

C
ertificate

V
erification

Stage
C
orrect

C
m

C
orrect

content
certificate

for
m

X
V
isualization

of
C

m

M
odification

over
m

M
essage

error:
“C

m
is

m
issing.

m
is

pos-
sibly

altered.”
X

V
isualization

of
the

er-
ror

Incorrect
signature

M
essage

error:
“E

rror
in

signature
verifi-

cation”.
X

V
isualization

of
the

er-
ror

and
the

failed
signa-

ture
H
ashes

do
not

fit
M
essage

error:
“H

ashes
do

not
fit”.

X
V
isualization

of
the

er-
ror

P
ublic

K
ey

A
uthentication

Stage
C
orrect

scenario
A

node
B

initiates
a
protocol

instance
to

authenticate
A

using
som

e
of

her
trusted

nodes

X
V
isualization

of
traces

(F
ig.

5.16)

A
is

dishonest
T
here

is
no

consensus
and

node
B

gets
ev-

idence
of

A
’s

dishonest
behavior

X
V
isualization

of
traces

(T
able

5.6-(a))
O
ne

or
m
ore

P
i
are

dis-
honest

T
here

is
no

consensus.
N
ode

B
checks

A
’s

evidences,
and

initiates
a
“B

yzantine
agreem

ent”
phase

X
V
isualization

of
traces

(T
able

5.6-(b))

Table
5.4:

Functionalrequirem
ent

testing:
C
ontent

and
P
ublic

key
authentication

schem
es.

5.5. Deployment and Testing 163

T
est

E
xp

ected
resu

lt
F
in
al

resu
lt

C
om

m
ents

Join
Stage

G
enerate

C
AB

N
ew

clearance
for

B
issued

by
A

X
V
isualization

of
C

AB
)

Incorrect
signature

T
he

corresponding
node

notifies
an

“E
rror

in
signature

verification”
error

m
essage.

X
V
isualization

of
the

er-
ror

and
the

failed
signa-

ture
U
pgrade

C
AB

U
pdated

clearance
for

B
issued

by
A

X
V
isualization

of
C

AB

G
enerate/U

pgrade
C

AB

w
hen

B
is

unknow
n

or
m
alicious

Issuer
A

notifies
the

rejection
X

V
isualization

of
the

re-
jection

C
ontent

A
ccess

Stage
C
orrect

C
AB

A
ccess

the
content

X
V
isualization

of
(m

,C
m

)
G
et

m
from

a
dow

n-
graded

C
AB

C
hoose

betw
een

Join/U
pdate

X
V
isualization

of
both

Join/U
pdate

G
et

m
from

an
unknow

n
provider

A
uthenticate

her
public

key
X

V
isualization

of
the

authentication
m
essage

and
selection

button

Table
5.5:

Functionalrequirem
ent

testing:
A
ccess

C
ontrolschem

e.

164 Chapter 5. A Software Prototype

Enter the number of nodes in trusted group: 5

Creating nodeB...

Creating nodeA...

Creating nodeP0...

Creating nodeP1...

Creating nodeP2...

Creating nodeP3...

Creating nodeP4...

Honest behaviour of A (y/n): n

Enter the name of malicious nodes in the trusted group:

-Begining of the protocol-

.................................

-No consensus: Byzantine Agreement-

.................................

Proof sent by A to P1 invalid.

Proof sent by A to P3 invalid.

Proof sent by A to P2 invalid.

Proof sent by A to P0 invalid.

Proof sent by A to P4 invalid.

End: Public key Ka is not authentic

The total number of messages sent during authentication is 23

(a) Public Key Authentication: A is dishonest.

Enter the number of nodes in trusted group: 5

Creating nodeB...

Creating nodeA...

Creating nodeP0...

Creating nodeP1...

Creating nodeP2...

Creating nodeP3...

Creating nodeP4...

Honest behaviour of A (y/n): y

Enter the name of malicious nodes in the trusted group: P2

-Begining of the protocol-

.................................

-No consensus: Byzantine Agreement-

.................................

Invalid signature of P2’s challenge

B deletes P2 from its trusted group

P1 deletes P2 from its trusted group

P3 deletes P2 from its trusted group

P0 deletes P2 from its trusted group

P4 deletes P2 from its trusted group

The total number of messages sent during authentication is 48

(b) Public Key Authentication: Pi is dishonest.

Table 5.6: Public Key Authentication: Functional testing.

5.5. Deployment and Testing 165

(1) \$ cat doc

Esto es una prueba

(2) \$./p2p_cliente doc

(3) \$cat 4f50502679fab5f643887cbbdc8a8eb690e1f23c

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA2

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA2

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA2

(4) $4f50502679fab5f643887cbbdc8a8eb690e1f23c#manten@127

.0.0.1#doc#manten@127.0.0.1&razorin@127.0.0.1&mmunoz@127.0.0.1$

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.6 (GNU/Linux)

iQCVAwUBRlACAIUVUdNfyEGaAQJQ8QQAnYH6UL72swlhOSRaOCbNH/I2PYtM3OjD
+Y+Q/g/iziZ622fd1qD+FI4s/cb65pC8izcviIbbmYlGz40htv2AKwwcEl1gY/lz
CGGXXsjbUk5yAhDg9SaV6diMIF0J70KwtNuJ+kmFXI2LPHocYAbSVIc9QIU3QWb7
sVh11VarKsM= =WdJJ

-----END PGP SIGNATURE-----

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.6 (GNU/Linux)

iQCVAwUBRlACAIUVUdNfyEGaAQKaMgQAgnJxy6oVl7A2J0plfK7QozzAp41kin+3
5XngBaumeGR/O/jYRO6ao4cSQaVsjGb9/jCznUYf9UADl4fOTRgGeUS/OoLn1a8/
vMUnMBUUQwhkWVBy0yns9o4B3zC6ZfVfcZAnHPyzluvoYOMZvkdpWuWAmEXdgGcm
V86S1feUkSA= =Px/y

-----END PGP SIGNATURE-----

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.6 (GNU/Linux)

iQCVAwUBRlACAIUVUdNfyEGaAQIdkgQAnM2hmsL1M5EPUDsoJSAebl67rmTZ+WrP
ZBwcohKBG26uikCiJ+FdlOw2hFQgx3Veq95r0L3kvIWFJQNx8EmJsjksTO0wg0sU
JlUoQ9z7cNfb+ltBHmSv+EgrX3tA0akOBvWkrXzDCos9NNKQossZXlhwyQg5D3ZU
ZbG58JmA4YY= =RoVK

-----END PGP SIGNATURE-----

Figure 5.15: Execution of an scenario where three signers generate the certifi-
cate for a particular content.

content hash, as lines (3) and (4) illustrates. The program prints some traces
showing the signing process, the content hash and signers’ identifiers, and the
delimitation of signers’ signatures.

After the successful evaluation of the content authentication module, a
pre-built executable version is accessible from SourceForge.net projects at

166 Chapter 5. A Software Prototype

A has sent [02-oct-2007 18:50:11] :::: { A, B, admission request }
B has sent [02-oct-2007 18:50:11] :::: { B, Pi, authentication request }

Pi generate the nonce 91169 and sent

Eftz5/kb9WmSmfLMIJHHYXU/6jdjkyk1d5MtfZNC788ItpKB9paQMzlbf2
xUASXR+vGLtqrozL14OWUhsuvwmQ==

Pi has sent [02-oct-2007 18:50:11] :::: { Pi, A, challenge }

A gets the challenge

Eftz5/kb9WmSmfLMIJHHYXU/6jdjkyk1d5MtfZNC788ItpKB9paQMzlbf2
xUASXR+vGLtqrozL14OWUhsuvwmQ==
sent by Pi and responds 91169

A has sent [02-oct-2007 18:50:11] :::: { A, Pi, response }

Pi has sent [02-oct-2007 18:50:11] :::: { Pi, B, proofs sent }

Consensus: Positive authentication

Figure 5.16: Public Key Authentication: Testing a basic scenario.

Figure 5.17: Main menu.

http://sourceforge.net/projects/p2pcontent-auth/.

5.5.2 Interface Design

We tried to design a user interface as close as possible to a common file sharing
client, including well-known functionalities along with the security features
offered by our proposal.

Figure 5.17 shows the main menu of the software application. We can iden-
tify the most important task in file sharing such as Conect/Disconect, and
Search content by a key term, together with our content authentication scheme
and authorization options: Publish contents with the corresponding content
certificate generation, Verify content certificates, Request for a authorization
certificate, among others. We include some screenshots and summarize the

http://sourceforge.net/projects/p2pcontent-auth/�

5.5. Deployment and Testing 167

Figure 5.18: Search menu.

called procedure on each submenu as follows:

• The Conect/Disconect menu allows users to easily join/quit the P2P
network. This function should be supported by the overlay. Instead, our
implementation includes an additional menu called Set Initial State

which allows users to specify a network scenario (number of nodes and
their nature, i.e. honest or non-collaborative) for the simulation. During
this process, an identification and a new key-pair are generated for each
node (see Fig. 5.16 and figures at Table 5.6.)

• Our secure file sharing client also includes a common option to Search

File. Users can type a descriptor term of the desired content. The search
response should only show references (managed by the overlay) of shared
contents, and authorized sources. However, downloading is managed by

168 Chapter 5. A Software Prototype

Figure 5.19: Content access menu.

Figure 5.20: Content authentication menu.

the Content Access menu, which automatically presents and requires
the corresponding credentials without involving the user (see Figs. 5.18
and 5.19.) The lack of authorized providers is visually notified by a
warning popup. On the other hand, the content will be downloaded if
only if the requester node has an appropriate authorization certificate.
Similarly, the system will inform about the reason of the denied access,

5.5. Deployment and Testing 169

Figure 5.21: Content certificate verification menu.

and provide the corresponding alternative routine.

• Owners who want to publish original content must start the Content

Authentication process from the corresponding toolbar, as shown in
Fig. 5.20. The system will show a browser popup window to select the
file. Regarding the functional evaluation of this protocol, we can choose
among different number of signers. When the content certificate signing
procedure ends, the system shows all the content certificate fields. On
the other hand, the verification of the downloaded content certificate will
show a popup window accordingly (as shown in Fig. 5.21.)

• The Join(/Update) menu allows users to request an authorization cer-
tificate to a certain owner by means of our Join subprotocol. The eval-
uation of this request by the owner’s client is empty and, therefore, the
three-step join subprotocol just shows the final authorization certificate
gain by this user.

• The Delegation menu allows owners to request subscribers for replicat-
ing a certain content. The user can select one of her subscribers according
to the particular security level defined by the content. The system, once

170 Chapter 5. A Software Prototype

Figure 5.22: Join menu.

receiving the affirmative response from the subscriber, automatically in-
forms the user, updates the subscriber’s clearance with the replication
label, and also sends the corresponding CRL to the new provider. Fi-
nally, issuers, i.e. owners who have previously assigned clearances, can
revoke a certain subscriber’s authorization certificate by means of the
Revocation menu. Similarly Join and Delegation, this function first
displays the subscriber database. The user selection on a nodeID auto-
matically adds a new entry in the CRL with the serial number of this
node’s certificate. The system shows the updated CRL.

5.6 Project Management

We have summarized the research schedule in a time estimation presented in
the Table 5.23. By means of Gantt charts, we illustrate all the components
comprise the work breakdown structure of this thesis and the set of planned
outcomes that we have appropriately met. As we can see in the figures, the
graphics track and chart the research project time-line from the initial study
of the state-of-the-art on P2P Security to the final stages of this thesis, i.e. the
implementation, evaluation of the proposal and final writing of this document.

The figure in the bottom shows the time-line but using percent complete
indications. As shown, in October last year we had completed a few stages
such as the publication of the initial contribution of this thesis i.e. the con-
tent authentication scheme, while others (although already started) remain
incomplete until the first half of this year 2008.

The security analysis of the entire proposal has been the longest (in time),
but note that the implementation, the performance evaluation, and the effi-

5.6. Project Management 171

ciency analysis had to wait for the DEA exam. These tasks have advanced in
parallel together with the writing process.

Summarizing, we can detail the achievements on each phase, as follows:

1. State of the Art and Problem Formulation. October 2005 –
October 2006.

1.1 Study and analysis of state of the art on P2P Security.

1.2 Explore an initial contribution: Content authentication protocol
[93].

1.3 Specification of a refined approach, providing access control using
proof-of-work mechanisms.

1.4 Begin an informal security analysis of main contributions [92].

1.5 Advances Studies Degree “DEA”.

2. Initial Implementation and Analysis. November 2006 – August
2007.

2.1 Design and development of the proposed model. Initial implemen-
tation of the secure content distribution scheme based on proof-of-
work.

2.2 Study the protocol’s viability through an extensive performance and
efficiency analysis.

2.3 Analysis from a Game Theory approach.

2.4 Writing in parallel.

2.5 Thesis Proposal and Pre-defense presentation.

3. Testing and Finishing dissertation writing. December 2007 –
May 2008.

3.1 Evaluation: Testing Security Vulnerabilities and Performance over-
heads.

3.2 Aggregation and analysis of research results.

3.3 Based on feedback from pre-defense Ph.D Committee: Finalize the
written dissertation. Ph.D. Defense.

172 Chapter 5. A Software Prototype

Figure 5.23: Brief illustration of the thesis schedule through these Gantt
charts.

Chapter 6

Conclusions and Future Work

We conclude this thesis by summarizing our main contributions and pointing
out the conclusions reached and some lines for future research.

6.1 Contributions

We have introduced a secure content distribution protocol especially oriented
to P2P file-sharing systems, which are environments characterized by node
transience and the lack of any centralized authority. The proposed solution
provides a content authentication scheme which allows secure content repli-
cation among peers, thus ensuring the integrity of the published contents.
Non-authorized accesses are prevented by ensuring that only a user having
the proper security clearance will be able to decrypt the downloaded con-
tent. Moreover, content owners can control who accesses their contents by
discretionally issuing clearances in the form of authorization certificates. On
the other hand, we have investigated ways to extend the authentication and
access control services here presented to provide more complex capabilities,
such as privilege delegation and revocation. In fact, replication is also con-
trolled since the inclusion of a delegation protocol assures that only authorized
providers will be able to distribute others’ replicas. Furthermore, by assuming
that every integrating node will exhibit a malicious behavior, even if they have
always behaved correctly in the past, we have addressed a revocation scheme
as well.

In summary, the key goals of this research achieved so far are summarized
below:

173

174 Chapter 6. Conclusions and Future Work

1. Explore and formalize the need of basic security services, such as au-
thentication and authorization, in pure P2P and ad hoc environments.
A state-of-the-art survey of P2P security has been presented in Chapter
2.

2. Design a secure content distribution protocol for fully decentralized net-
works. The proposed scheme consists of five main components:

(a) Content Authentication protocol (Chapter 3.)

(b) Access Control protocol (Chapter 4) which includes the following
subprotocols:

i. Join subprotocol.

ii. Content Access subprotocol.

iii. Delegation subprotocol.

iv. Revocation subprotocol.

3. Analyze and evaluate the P2P file sharing protocol obtained. We obtain
two main results:

• A security analysis. The implemented application ensures the secu-
rity requirements aforementioned to construct several testing sce-
narios for the proposal.

• A performance evaluation. Security services of any kind have sig-
nificant performance overhead, more so in case of fully distributed
networks. Results are quantified in practical terms concerning time
requests, vulnerabilities, threats and other factors. Moreover, stan-
dard statistical tests have been used to draw conclusions regarding
performance differences.

4. Design and implant a software implementation in order to evaluate and
analyze the functional requirements of our proposal. We have used both
Java APIs and C language for the implementation (see Chapter 5.)

5. Design and implant a Public Key Authentication Protocol based on
Byzantine agreement aimed at analyzing the performance of our pro-
posal (see Appendix A.)

6.1. Contributions 175

6. Design and evaluation of a challenge-response mechanism which provides
interesting capabilities for content access control, for instance by apply-
ing proof-of-work technique, such as cryptographic puzzles (see Appendix
B.)

6.1.1 Comparison with Related Work

We include an informal comparison of our entire scheme with other works
proposed so far by the research community which look into similar objectives.
Table 6.1 summarizes the analysis done according to if the proposed models
apply the basic security properties that our model has considered.

In particular, we can distinguish that those schemes based on threshold
cryptography are the most similar to our proposal regarding the features pro-
vided. However, we try to meet fairness and address DoS attacks. Moreover,
threshold-based schemes rely generally on a secret dealer, while our protocols
are fully decentralized.

On the other hand, the benefits of cooperative storage and serving offered
by earlier P2P file sharing systems (such as Napster [4], Gnutella [3], and
Freenet [1]) have motivated numerous works on P2P storage, particularly the
approaches presented in [57, 35, 88]. These works agree with our proposal
on one of our main contributions, i.e. these systems are limited to read-only
or single-publisher data, in the sense that only the original publisher of each
piece of data can modify it. Subsequently, recent works extend this limitation
to a P2P storage system to build a read/write file system that multiple users
can share. Moreover, the most important requirement of these approaches,
including our implementation, is that they can operate in a relatively open
decentralized P2P environment because they do not require participants to
trust each other. We have identified, however, important differences, and
some advantages of our work. For instance, the simplicity of the implemen-
tation and deployment of our proposal makes it more suitable for standard,
highly transient users, e.g. a user who uses an Ivy file system from multiple
hosts concurrently must have one log per host. Furthermore, our approach
is not overlay-dependant, i.e. both structured or unstructured architectures
can support our model. For example, CFS requires the Chord location service
based on distributed hash tables, and similarly SFSRO file system must deal
with the periodically updating of a global database.

176 Chapter 6. Conclusions and Future Work
R
ep

lication
C
ontrol

Integrity
an

d
A
u
th
enti-

cation
A
ccess

C
ontrol

[34],[81],R
a
n
k,

P
-G

R
ID

[8]
T
rust/

R
ep.

Ss.
T
hreshold

C
rypto.

[67],[7]
[96]

[122],
[53],

[78],[90],[106]
O
u
r

p
ro-

p
osal

Id
entifi

cation
P
seudospoofing

X
–

X
X

X
P
artially

X
B
lacklisting

×
X

–
–

–
–

S
ervice

A
vail.

D
oS

X
×

×
×

×
4

C
hurn

X
×

–
4

4
–

D
ish

on
est

N
od

es
C
heating

×
X

P
artially

X
×

X
X

Sybil
×

–
×

×
4

×
Free-riding

X
(R

a
n
k
in

g)
–

–
–

–
X

M
an-in-the-M

iddle
×

X
P
artially

X
×

X
P
artially

X
C
ollusion

×
×

X
X

×
X

H
.
m
a
jority

Fairness
X

–
×

X
–

X
P
rop

erties
A
vailability

X
X

×
×

×
–

Integrity
X
(G

R
ID

)
4

X
×

X
X

A
uthentication

X
(G

R
ID

)
4

X
X

P
artially

X
X

C
onfidentiality

×
×

X
–

–
X

A
nonym

ity
×

×
X

X
×

X
A
uthorization

×
×

–
X

X
X

D
ecentralization

×
×

×
X

P
artially

X
X

Table
6.1:

Inform
alcom

parison
betw

een
our

proposaland
sim

ilar
w
orks

according
to

ifthey
apply

detection
and

protection
m
echanism

s
(X

),w
hen

none
applied

(×
),only

detection
(4

),or
w
hen

N
/A

(–)

6.2. Publications 177

Regarding access control, our proposal does not require any central en-
tities, decision points, or global storage structures either, e.g. one or more
LDAP directories to store attribute certificates such as those used by GRID
infrastructures and PERMIS, a recent X.509 role-based PMI presented in [29].

6.2 Publications

Some of the contributions presented in this thesis have already been published
in various peer-reviewed conference proceedings and journals. Below we list
them.

6.2.1 Conference/Workshop Publications

1. Bayesian Analysis of Secure P2P Sharing Protocols.

E. Palomar, A. Alcaide, J.M.E. Tapiador and J.C. Hernandez-Castro.

Proc. of the 2nd Int. OTM Symposium on Information Security.

LNCS Vol. 4804, pp. 1701–1717. Springer-Verlag, 2007.

2. A P2P File-Sharing Protocol based on Cryptographic Puzzles.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Proc. of the 5th Int. Workshop on Databases, Information Systems and
Peer-to-Peer Computing.

LNCS (To appear.) Springer-Verlag, 2008.

3. Dealing with Sporadic Strangers,or the (Un)Suitability of Trust
for Mobile P2P Security.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Proc. of the 4th Int. Workshop on P2P Data Management, Security and
Trust.

IEEE Press., pp. 779–783, 2007.

4. Protocolo para la Autenticación de Contenidos en Redes P2P.

E. Palomar, A. Ribagorda, M.V. Muñoz and D. Onoro.

Proc. of 2nd Simposio sobre Seguridad Informática, CEDI 2007, pp.
143–150.

178 Chapter 6. Conclusions and Future Work

5. Certificate-based Access Control in Pure P2P Networks.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Proc. of the 6th Int. Conf. on Peer-to-Peer Computing

IEEE Press., pp. 177–184, September 2006.

6. A Protocol for Secure Content Distribution in Pure P2P Net-
works.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Proc. of 3rd Int. Workshop on P2P Data Management, Security and
Trust.

IEEE Press., pp. 712–716, September 2006.

7. Aspectos de Seguridad en Redes P2P: Un Análisis Compara-
tivo.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Proc. of the RECSI 2006 (IX Reunión Española sobre Criptología y Se-
guridad de la Información), pp. 674–688, Barcelona (Spain), September
(2006.)

8. Security in P2P Networks: Survey and Research Directions.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Proc. of IFIP Int. Conf. on Embedded and Ubiquitous Computing
(NCUS 2006 Workshop.)

LNCS Vol. 4097, pp. 183–192, August 2006.

9. A P2P Content Authentication Protocol Based on Byzantine
Agreement.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Proc. of the Int. Conf. on Emerging Trends in Information and Com-
munication Security (ETRICS 2006.)

LNCS Vol. 3995, pp. 60–72, June 2006.

6.3. Research Plan and Future Work 179

6.2.2 Journals Articles

1. Secure Content Access and Replication in Pure P2P Networks.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Computer Communications vol. 31/2, pp. 266–279. Elsevier 2008.

2. Estudio y Análisis de la Distribución de Contenidos Falsos en
una Red P2P.

E. Palomar, J.L. Cadiz, P. Peris and A. Ribagorda.

ALI Base Informatica vol. 42, pp. 37–41, 2006.

6.2.3 Book Chapters

1. Cooperative Security in Peer-to-Peer and Mobile Ad Hoc Net-
works.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Cooperative Wireless Communications.

(To be published by Auerbach Publications, Taylor&Francis Group,
2008.)

2. Secure Content Distribution in Pure Peer-to-Peer and Ad Hoc
Networks.

E. Palomar, J.M.E. Tapiador, J.C. Hernandez-Castro and A. Ribagorda.

Handbook of Research on Secure Multimedia Distribution.

(To be published by IGI Global, 2008.)

6.3 Research Plan and Future Work

Our future work includes several research lines, as follows:

1. First, we will validate the scheme in terms of detecting practical attacks
and measuring performance overheads.

2. In principle, the process for generating content certificates may be per-
formed by using a multisignature scheme [23]. The large number of

180 Chapter 6. Conclusions and Future Work

needed signers and the communication overhead could probably be im-
proved with the use of other approaches, notably those based in secret
sharing schemes. This is generally a more efficient way to gather up a
number of signatures over a given document than by doing it sequen-
tially. The use of Threshold Cryptography in P2P systems for reaching
consensus is also an interesting research line that will be tackled in future
work.

3. A second line is the adaptation of a bootstrapping phase aimed at pro-
tecting all the messages exchanged between our protocol entities by the
network/transport layer, e.g. using TLS. This fact, therefore, prevents
from several attacks such as those mounted by an attacker who can listen
the messages transmitted during some phase of the protocol.

4. A third line is related to the study of specific ways according to which
the clearance granting/updating process can be integrated with other
mechanisms which serve as rewarding nodes appropriately for their in-
vestment in the system. We have identified two alternatives:

(a) Using a classic TMS. This can greatly reduce the computational cost
of the proposal by decreasing the number of cryptographic opera-
tions needed. However, trust and security are concepts somewhat
related but definitely different in nature. As a consequence, dele-
gating security processes to trust systems is something that should
be done carefully and in the appropriate contexts.

(b) Using a e-commerce model. Regarding the fair sharing aspect of
the common used P2P systems, the research community has dealt
with fairness by means of applying multiple mechanisms such as
incentives, credits, micropayments, electronic checks, to name a
few. Now, our solution addresses fairness based on a proof-of-work
model which requires a computational effort through cryptographic
puzzles. Similarly, new platforms for e-commerce are working on
adapting P2P technology to create different kind of marketplaces
not just for content, but for any source in general, for instance
money. A totally innovative framework is the emerging commercial
P2P lending systems where an individual or group of individuals
can lend directly to a borrower [82].

6.3. Research Plan and Future Work 181

5. Timestamps, and therefore time synchronization, are also open issues for
taking into account in our proposal.

6. Both the Sybil attack and the use of pseudonyms are challenging issues
for peer joining in fully decentralized systems. A CA can enforce ran-
domly chosen node identifiers and limit each node to have only one alias.
Nevertheless, the absence on such an entity generally forces the need of a
consensus agreement which depends on the collaboration within a social
group. This group, for example using threshold cryptography, can all
together decide whether a new joining node is genuine or sybil. This is
still an interesting open issue. A simple, but limited solution is by not
allowing any member to revoke or change its identification item.

7. In MANETs, the inefficient performance of several ubiquitous security
works proposed so far is currently an obstacle to the acceptance and
usage of several cryptographic models. The analysis of the suitability of
our protocol in such environments is very challenging in order to verify
common standards. We expect to go beyond simulations and integrate
the proposed content authentication protocol in pervasive environments.
This will surely result in conceiving additional ways to combine trust
schemes and traditional cryptographic protocols for ubiquitous P2P net-
works.

8. Finally, since our entire protocol basically relies on the collaboration
among a fraction of peers in the system, we can formally analyze the
community behavior in order to empirically observe a networking social
pattern. This is possible since our model establishes a rational content
access control by means of a challenge-response mechanism, whereby
nodes may achieve good reputation and privileges. Contrary to classic
trust systems where trust decisions are directly or indirectly given by
nodes’ past behavior, our scheme uses cryptographic proofs of work to
discourage selfish behavior and to reward cooperation. Thus, applying
rational models, such as the Prisoners’ Dilemma [48], we can describe a
formal framework to analyze some security aspects of the protocol itself,
and also the dynamics created when nodes interact following the protocol
description, i.e. play by the rules. In particular, by means of Game The-
ory we can model the dynamics of the community based on evaluating

182 Chapter 6. Conclusions and Future Work

the requester’s trustworthiness and collaboration state through several
probability distribution functions, which give us different community
profiles. This raises an interesting issue, as we are able to consider non-
collaborative nodes and to measure the effect they might have on the
overall system performance. Moreover, we can also measure how nodes
can dynamically adapt their strategies to highly transient communities.

References

[1] The free network project web page. Website, 2007. http://

freenetproject.org/.

[2] The gift-fasttrack project home page. Website, 2007. http://

developer.berlios.de/projects/gift-fasttrack/.

[3] The gnutella home page. Website, 2007. http://www.gnutella.com/.

[4] The napster home page. Website, 2007. http://www.napster.com.

[5] Speed comparison of popular crypto algorithms. Website, 2007. http:

//www.eskimo.com/~weidai/benchmarks.html.

[6] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for ac-
cess control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706–734, September 1993.

[7] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard,
memory-bound functions. ACM Transactions on Internet Technology,
5(2):299–327, May 2005.

[8] K. Aberer. P-grid: A self-organizing access structure for p2p information
systems. ACM SIGMOD Rec., 32(3):29–33, 2001.

[9] K. Aberer and M. Hauswirth. An overview on peer-to-peer information
systems. In Proceedings of Workshop on Distributed Data and Structures,
pages 171–188, Paris, France, March 2002.

[10] W.J. Adams and N.J. Davis. Tms: a trust management system for
access control in dynamic collaborative environments. In Proceedings of
the 25nd Int. Conf. on Performance, Computing, and Communications,
Arizona, USA, April 2006. IEEE.

183

http://freenetproject.org/�
http://freenetproject.org/�
http://developer.berlios.de/projects/gift-fasttrack/�
http://developer.berlios.de/projects/gift-fasttrack/�
http://www.gnutella.com/�
http://www.napster.com�
http://www.eskimo.com/~weidai/benchmarks.html�
http://www.eskimo.com/~weidai/benchmarks.html�

184 REFERENCES

[11] A. Alcaide, J.M. Estevez-Tapiador, J.C. Hernandez-Castro, and A. Rib-
agorda. An extended model of rational exchange based on dynamic
games of imperfect information. In Proceedings of the Int. Conf. on
Emerging Trends in Inf. and Comm. Security, pages 396–408, Germany,
June 2006. Springer-Verlag.

[12] F. Almenárez, A. Marín, C. Campo, and C. García R. Ptm: A pervasive
trust management model for dynamic open environments. In Proceedings
of the First Workshop on Pervasive Security and Trust at MobiQuitous,
Boston, USA, August 2004.

[13] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, , and D. Werthimer.
Seti@home: an experiment in public-resource computing. Communica-
tions of the ACM, 45(11):56–61, November 2002.

[14] G. Arboit, C. Crepeau, C.R. Davis, and M. Maheswaran. A localized
certificate revocation scheme for mobile ad hoc networks. Ad Hoc Net-
works, 6(1):17–31, January 2008.

[15] D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers:
Authentication in adhoc wireless networks. In Proceedings of the Sym-
posium on Network and Distributed Systems Security, February 2002.

[16] S. Balfe, A. Lakhani, and K. Paterson. Trusted computing: Provid-
ing security for peer-to-peer networks. In Proceedings of the 5th IEEE
International Conference on Peer-to-Peer Computing, pages 117–124,
Konstanz,Germany, August 2005. IEEE.

[17] M. Barborak, A. Dahbura, and M. Malek. The consensus problem in
fault-tolerant computing. ACM Comput. Surv., 25(2):171–220, 1993.

[18] M. Bellare and A. Palacio. Gq and schnorr identification schemes: Proofs
of security against impersonation under active and concurrent attacks.
In Proceedings of the 22nd Annual Int. Cryptology Conf. on Advances in
Cryptology, pages 162–177, London, UK, 2002. Springer-Verlag.

[19] M. Ben-Or. Another advantage of free choice (extended abstract): Com-
pletely asynchronous agreement protocols. In Proceedings of the 2nd
annual ACM symposium on Principles of distributed computing, pages
27–30. ACM, 1983.

REFERENCES 185

[20] Q. Bi, G.L. Zysman, and H. Menkes. Wireless mobile communications at
the start of the 21st century. IEEE Communications Magazine, 39:110–
116, January 2001.

[21] B. Biskupski, J. Dowling, and J. Sacha. Properties and mechanisms
of self-organizing manet and p2p systems. ACM Transactions on Au-
tonomous and Adaptive Systems, 2, March 2007.

[22] A. Boukerch, L. Xu, and K. EL-Khatib. Trust-based security for wireless
ad hoc and sensor networks. Computer Communications, 30:2413–2427,
September 2007.

[23] C. Boyd. Digital multisignatures, pages 241–246. H. Baker and F. Piper
(Eds.). Clarendon Press, 1989.

[24] S. Buchegger and J.-Y. Le Boudec. Performance analysis of the confidant
protocol (cooperation of nodes fairness in distributed adhoc networks).
In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHOC), Lausanne, Switzerland, June 2002.

[25] C. Buragohain, D. Agrawal, and S. Suri. A game theoretic framework
for incentives in p2p systems. In Proceedings of the 3rd Int. Conf. on
Peer-to-Peer Computing, pages 48–56, Linköping, Sweden, September
2003. IEEE Computer Society.

[26] L. Buttyán and J.-P. Hubaux. Stimulating cooperation in self-organizing
mobile ad hoc networks. Mobile Networks and Applications, 8:579–592,
2003.

[27] S. Capkun, L. Buttyán, and J-P. Hubaux. Self-organized public key
management for mobile ad hoc networks. IEEE Transactions on Mobile
Computing, 2(1):52–64, Jan-Mar 2003.

[28] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D.S. Wallach. Se-
cure routing for structured peer-to-peer overlay networks. In Proceedings
of the 5th symposium on Operating systems design and implementation,
Boston, Massachusetts, December 2002.

186 REFERENCES

[29] D.W. Chadwick and A. Otenko. The permis x.509 role based privilege
management infrastructure. Future Gener. Comput. Syst., 19(2):277–
289, 2003.

[30] J. Cheng, Y. Li, W. Jiao, and J. Ma. A utility-based auction cooperation
incentive mechanism in peer-to-peer network. In Proceedings of the 2nd
Int. Symp. on Network-Centric Ubiquitous Systems (EUC Workshop),
pages 11–21, Seoul, Korea, August 2006. Springer-Verlag.

[31] M. Conti, E. Gregori, and G. Maselli. Cooperation issues in mobile
ad hoc networks. In Proceedings of the 24th Int. Conf. on Distributed
Computing Systems Workshops, 2004.

[32] M. Conti, E. Gregori, and G. Turi. Towards scalable p2p computing
for mobile ad hoc networks. In Proceedings of the 2nd IEEE Annual
Conference on Pervasive Computing and Communications Workshops,
pages 109–113, Orlando,USA, March 2004. IEEE.

[33] G. Di Crescenzo, R. Geb, and G.R. Arce. Threshold cryptography in
mobile ad hoc networks under minimal topology and setup assumptions.
Ad Hoc Networks, 5:63–75, January 2007.

[34] F.M. Cuenca-Acuna, C. Peery, R.P. Martin, and T.D. Nguyen. Planetp:
Using gossiping to build content addressable peer-to-peer information
sharing communities. In Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing, pages 236–
246, Washington,USA, June 2003. IEEE.

[35] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with cfs. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 202–215. ACM, 2001.

[36] J. Daemen and V. Rijmen. The Design of Rijndael: AES The Advanced
Encryption Standard. Springer-Verlag, 2002.

[37] E. Damiani, S. De Capitani, S. Paraboschi, P. Samarati, and F. Violante.
A reputation-based approach for choosing reliable resources in peer-to-
peer networks. In Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, pages 207–216, Washington,USA,
November 2002. ACM.

REFERENCES 187

[38] L.A. DaSilva and V. Srivastava. Node participation in ad hoc and peer-
to-peer networks: A game-theoretic formulation. In Proceedings of the
Wireless and Comm. and Networking Conf., New Orleans, USA, March
2005. IEEE Computer Society.

[39] N. Daswani and H. García-Molina. Pong-cache poisoning in guess. In
Proceedings of the 11th ACM conference on Computer and communica-
tions security, pages 98–109, Washington, USA, October 2004. ACM.

[40] D. Defigueiredo, A. Garcia, and B. Kramer. Analysis of peer-to-peer
network security using gnutella. Technical report, 2002.

[41] Yvo Desmedt. Some recent research aspects of threshold cryptography.
In 1st. Int. Workshop on Information Security, (ISW’97), pages 158–173.
Springer-Verlag, 1997.

[42] R. Dingledine, N. Mathewson, and P. Syverson. The free haven project:
Reputation in p2p anonymity systems. In Proceedings of the Interna-
tional Workshop on Design Issues in Anonymity and Unobservability,
Berkeley, USA, July 2003.

[43] D. Djenouri, L. Khelladi, and A.N. Badache. A survey of security issues
in mobile ad hoc and sensor networks. IEEE Communications Surveys
and Tutorials, 7(4):2–28, 2005.

[44] J.R. Douceur. The sybil attack. In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems, pages 251–260, Cambridge, USA,
March 2002. Springer-Verlag.

[45] C. Dwork and M. Naor. Pricing via processing or combatting junk mail.
In Proceedings of the 12th Annual International Cryptology Conference
on Advances in Cryptology, pages 139–147. Springer-Verlag, 1992.

[46] W.K. Edwards. Policies and roles in collaborative applications. In Pro-
ceedings of the ACM Conference on Computer Supported Cooperative
Work, pages 11–20, Boston, Massachusetts, November 1996. ACM Press.

[47] W.K. Edwards. Using speakeasy for ad hoc peer-to-peer collaboration. In
Proceedings of the ACM Conference on Computer Supported Cooperative
Work, pages 256–265, New Orleans, USA, November 2002. ACM.

188 REFERENCES

[48] T. Ellis and X. Yao. Evolving cooperation in the non-iterated prisoner’s
dilemma: A social network inspired approach. In Proceedings of the
IEEE Congress on Evolutionary Computation, pages 25–28, Singapore,
September 2007.

[49] L. Eschenauer, V.D. Gligor, and J. Baras. On trust establishment in
mobile ad-hoc networks. In Proceedings of 10th Int. workshop on Security
Protocols, pages 47–66. Springer Berlin/Heidelberg, April 2004.

[50] S. Farrell and R. Housley. An internet attribute certificate profile for
authorization. RFC 3281, April 2002.

[51] M. Feldman and J. Chuang. Overcoming free-riding behavior in peer-
to-peer systems. ACM Sigecom Exchanges, 6(1):41–50, July 2005.

[52] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive tech-
niques for peer-to-peer networks. In Proceedings of the 5th ACM Conf.
on Electronic commerce, pages 17–20, New York, USA, May 2004.

[53] P. Fenkam, S. Dustdar, E. Kirda, G. Reif, and H. Gall. Towards an
access control system for mobile peer-to-peer collaborative environments.
In Proceedings of the 11th IEEE International Workshops on Enabling
Technologies, pages 95–102, Pittsburgh, USA, June 2002.

[54] A. Fiat and M. Naor. Broadcast encryption. In Proceedings of the 13th
Annual International Cryptology Conference on Advances in Cryptology,
pages 480–491, California, USA, August 1994.

[55] G. Fox. Peer-to-peer networks. Computing in Science & Engineering,
3(3), May 2001.

[56] M. Freedman and R. Morris. Tarzan: a peer-to-peer anonymizing net-
work layer. In Proceedings of the 9th ACM Conference on Computer and
Communications Security, pages 193–206, Washingtion,USA, November
2002. ACM.

[57] K. Fu, M.F. Kaashoek, and D. Mazières. Fast and secure distributed
read-only file system. In Proceedings of the 4th conference on Symposium
on Operating System Design & Implementation, pages 13–13. USENIX
Association, 2000.

REFERENCES 189

[58] R. Gupta and A.K. Somani. Game theory as a tool to strategize as well
as predict nodes behavior in peer-to-peer networks. In Proceedings of
the 11th Int. Conf. on Parallel and Distributed Systems, pages 244–249,
Fukuoka, Japan, July 2005. IEEE Computer Society.

[59] M. Haenggi and D. Puccinelli. Routing in ad hoc networks: A case
for long hops. IEEE Communications Magazine, pages 93–101, October
2005.

[60] D. Hales and O. Babaoglu. Towards automatic social bootstrapping of
peer-to-peer protocols. SIGOPS Oper. Syst. Rev., 40(3):56–60, 2006.

[61] M. Haque and S.I. Ahamed. Security in pervasive computing: Cur-
rent status and open issues. International Journal of Network Security,
3(3):203–214, 2006.

[62] A. Herzberg, Y. Mass, J. Michaeli, Y. Ravid, and D. Naor. Access
control meets public key infrastructure, or: Assigning roles to strangers.
In Proceedings of the IEEE Symposium on Security and Privacy, pages
2–14, CA, USA, 2000. IEEE Computer Society.

[63] R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509 public key
infrastructure, certificate and certificate revocation list (crl) profile. RFC
3280, April 2002.

[64] V.C. Hu, D.F. Ferraiolo, and D.R. Kuhn. Assessment of access control
systems. Technical report, September 2006.

[65] Y. Hu and A. Perrig. A survey of secure wireless ad hoc routing. IEEE
Security and Privacy, 2(3):28–39, 2004.

[66] J.P. Hubaux, L. Buttyán, and S. Capkun. The quest for security in
mobile ad hoc networks. In Proceedings of the 2nd ACM international
symposium on Mobile ad hoc networking & computing, pages 146–155,
Long Beach, USA, 2001.

[67] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against
connection depletion attacks. In Proceedings of the Networks and Dis-
tributed Security Systems, pages 151–165, California, USA, February
1999.

190 REFERENCES

[68] K. Kane and J.C. Browne. On classifying access control implementations
for distributed systems. In Proceedings of the 11th ACM symposium on
Access control models and technologies, pages 29–38. ACM, 2006.

[69] Y. Kim, W.C. Lau, M.C. Chuah, and J.H. Chao. Packetscore:
Statistical-based overload control against distributed denial-of-service
attacks. In Proceedings of the 23rd Conference of the IEEE Commu-
nications Society, Infocom, Hong Kong, China, March 2004. IEEE.

[70] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing robust and
ubiquitous security support for mobile ad-hoc networks. In Proceedings
of the 9th International Conference on Network Protocols, pages 251–
260, California, USA, November 2001. IEEE.

[71] L. Lamport, R. Shostak, and M. Pease. The byzantine general problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–
401, July 1982.

[72] R. Lepro. Cardea: Dynamic access control in distributed systems. Tech-
nical report, November 2003.

[73] B.N. Levine and C. Shields. Hordes: A protocol for anonymous commu-
nication over the internet. Computer Security, 10(3):213–240, 2002.

[74] N. Li, J.C. Mitchell, and W.H. Winsborough. Beyond proof-of-
compliance: Security analysis in trust management. Journal of the ACM,
52(3):474–514, May 2005.

[75] C. Lin, V. Varadharajan, Y. Wang, and Y. Mu. On the design of a
new trust model for mobile agent security. In Proceedings of the 1st Int.
Conf. on Trust and Privacy in Digital Business, pages 60–69, Zaragoza,
Spain, September 2004. Springer Verlag.

[76] W. K. Lin, D. M. Chiu, and Y. B. Lee. Erasure code replication revisited.
In Proceeding of the 4th IEEE Int. Conf. on Peer-to-Peer Computing,
August 2004.

[77] J. Lopez, R. Oppliger, and G. Pernul. Authentication and authorization
infrastructures (aais): A comparative survey. Computer Communica-
tions, 27(16):1608–1616, October 2004.

REFERENCES 191

[78] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah. First experiences
using xacml for access control in distributed systems. In Proceedings of
the 2003 ACM workshop on XML security, pages 25–37. ACM, 2003.

[79] H. Luo and S. Lu. Ubiquitous and robust authentication services for ad
hoc wireless networks. Technical report, 2000.

[80] R.T.B. Ma, S.C.M. Lee, J.C.S. Lui, and D.K.Y. Yau. A game theoretic
approach to provide incentive and service differentiation in p2p networks.
In Proceedings of the joint Int. Conf. on Measurement and modeling of
computer systems, pages 189–198, New York, USA, June 2004. ACM
Press.

[81] P. Maniatis, T.J. Giuli, M. Roussopoulos, D.S.H. Rosenthal, and
M. Baker. Impeding attrition attacks in p2p systems. In Proceedings of
the 11th ACM SIGOPS European Workshop, Leuven, Belgium, Septem-
ber 2004. ACM.

[82] Prosper Marketplace. Personal & small business loans at prosper.com -
the p2p lending marketplace, March 2008. http://www.prosper.com/.

[83] S. Marti and H. Garcia-Molina. dentity crisis: anonymity vs reputation
in p2p systems. In Proceedings of the 3rd IEEE Peer-to-Peer Computing,
September 2003.

[84] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbe-
havior in mobile ad hoc networks. In Proceedings of MobiCom, Boston,
August 2000.

[85] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans.
Model. Comput. Simul., 8(1):3–30, 1998.

[86] A.J. Menezes, P.C. Vaz Oorschot, and S.A. Vanstone. Handbook of Ap-
plied Cryptography, chapter Capter 10. Identification and Entity Authen-
tication, pages 385–424. CRC Press, 1996.

[87] J.L. Morant, A. Ribagorda, and J. Sancho. Seguridad y Protección de la
Información, pages 227–290. Editorial Centro Estudios R. Areces, 1994.

192 REFERENCES

[88] A. Muthitacharoen, R. Morris, T.M. Gil, and B. Chen. Ivy: A read/write
peer-to-peer file system. In Proceedings of 5th Symposium on Operating
Systems Design and Implementation, 2002.

[89] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In Proceedings of the 22nd annual ACM sym-
posium on Theory of computing, pages 427–437, Baltimore, Maryland,
1990.

[90] M. Narasimha, G. Tsudik, and J.H. Yi. On the utility of distributed
cryptography in p2p and manets: The case of membership control. In
Proceedings of the 11th IEEE International Conference on Network Pro-
tocols, pages 336–345, Atlanta, USA, November 2003.

[91] M. Oguchi, Y. Nakatsuka, and C. Tomizawa. A proposal of user au-
thentication and a content distribution mechanism using p2p connection
over a mobile ad hoc network. In Proceedings of the IASTED Inter-
national Conference on Communication Systems and Networks, pages
65–69, Marbella, Spain, September 2004.

[92] E. Palomar, J.M. Estevez-Tapiador, J.C. Hernandez-Castro, and A. Rib-
agorda. Certificate-based access control in pure p2p networks. In Pro-
ceedings of the 6th International Conference on Peer-to-Peer Computing,
pages 177–184, Cambridge, UK, September 2006. IEEE, IEEE.

[93] E. Palomar, J.M. Estevez-Tapiador, J.C. Hernandez-Castro, and A. Rib-
agorda. A p2p content authentication scheme based on byzantine agree-
ment. In Proceedings of the Int. Conf. on Emerging Trends in Inf. and
Comm. Security, pages 60–72, Germany, June 2006. Springer-Verlag.

[94] E. Palomar, J.M. Estevez-Tapiador, J.C. Hernandez-Castro, and A. Rib-
agorda. Secure content access and replication in pure p2p networks.
Computer Communications, 31(2):266–279, February 2008.

[95] Th.G. Papaioannou and G.D. Stamoulis. Reputation-based policies that
provide the right incentives in peer-to-peer environments. Computer
Networks, 50(4):563–578, 2006.

REFERENCES 193

[96] J.S. Park and J. Hwang. Role-based access control for collaborative
enterprise in peer-to-peer computing environments. In Proceedings of
the 8h ACM symposium on Access control models and technologies, pages
93–99. ACM, 2003.

[97] V. Pathak and L. Iftode. Byzantine fault tolerant public key authentica-
tion in peer-to-peer systems. Computer Networks, 50(4):579–596, March
2006.

[98] M.O. Pervaiz, M. Cardei, and J. Wu. Routing security in ad hoc wireless
networks. Network Security, 2005.

[99] S.P. Ratnasamy. A scalable content-addressable network. Technical re-
port, Berkeley,USA, 2002.

[100] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1):66–92,
April 1998.

[101] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In Proceedings of
the IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), pages 329–350, Heidelberg, Germany, November
2001. ACM.

[102] A.D. Rubin. Method for the secure distribution of electronic files in a
distributed environment. patent number: 5,638,446, June 1997.

[103] M.D. Russell. Tinyness: An overview of tea and related ciphers, February
2004. http://www-users.cs.york.ac.uk/ matthew/TEA/TEA.html.

[104] B. Ryabko and A. Fionov. Basics of contemporary cryptography for it
practitioners. World Scientific, 2005.

[105] G. Sakaryan, H. Unger, and U. Lechner. About the value of virtual
communities in p2p networks. In Proceedings of the 3rd International
School and Symposium, pages 170–185, Guadalajara, Mexico, January
2004.

194 REFERENCES

[106] R. Sandhu and Xs Zhang. Peer-to-peer access control architecture using
trusted computing technology. In Proceedings of the 10h ACM sympo-
sium on Access control models and technologies, pages 147–158. ACM,
2005.

[107] R.S. Sandhu. Lattice-based access control models. IEEE Computer,
26(11):9–19, 1993.

[108] R.S. Sandhu and Pierangela Samarati. Access control: Principles and
practice. IEEE Communications Magazine, 32(9):40–48, 1994.

[109] R.S. Sandhu and X. Zhang. Peer-to-peer access control architecture
using trusted computing technology. In Proceedings of the 10th ACM
symposium on Access control models and technologies, pages 147–158,
Stockholm, Sweden, June 2005. ACM.

[110] K. Sanzgiri, B. Dahilly, B.N. Levine, C. Shieldsz, and E.M. Belding-
Royer. A secure routing protocol for ad hoc networks. In Proceedings of
the 10th IEEE Int. Conf. on Network Protocols, 2002.

[111] Stuart E. Schechter, Rachel A. Greenstadt, and Michael D. Smith.
Trusted computing, peer-to-peer distribution, and the economics of pi-
rated entertainment. Economics of Information Security, 12:1568–2633,
2004.

[112] A.A. Selcuk, E. Uzun, and M.R. Pariente. A reputation-based trust man-
agement system for p2p networks. In Proceedings of the 4th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pages
251–258, Chicago, USA, April 2004.

[113] A. Shamir. Identity-based cryptosystems and signature schemes. Ad-
vances in Cryptology, 196:47–53, 1984.

[114] J. Shneidman and D.C. Parkes. Rationality and self-interest in peer to
peer networks. In Proceedings of the IPTPS, pages 139Ű–148. Springer-
Verlag, 2003.

[115] B. Sieka, A. Kshemkalyani, and M. Singhal. On the security of polling
protocols in peer-to-peer systems. In Proceedings of the 4th IEEE Inter-

REFERENCES 195

national Conference on Peer-to-Peer Computing, pages 36–44, Zurich,
Switzerland, August 2004. IEEE.

[116] A. Singh and L. Liu. Trustme: Anonymous management of trust rela-
tionships in decentralized p2p systems. In Proceedings of the 3rd IEEE
Int. Conf. on Peer-to-Peer Computing, September 2003.

[117] V. Srinivasan, P. Nuggehalli, C. Chiasserini, and R. Rao. Cooperation
in wireless ad hoc networks. In Proceedings of IEEE Infocom, 2003.

[118] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM Conference, pages 149–160, San
Diego, USA, August 2001. ACM.

[119] K. Stoupa, A. Vakali, F. Li, and I. Tsoukalas. Xml-based revocation and
delegation in a distributed environment. In Proceedings of the EDBT
2004 Workshops, LNCS 3268, pages 299–308. Springer-Verlag, 2004.

[120] G. Theodorakopoulos and J.S. Baras. Trust evaluation in ad hoc net-
works. In Proceedings of the ACM Workshop on Wireless Security, 2004.

[121] W. Tolone, G. Ahn, T. Pai, and S. Hong. Access control in collaborative
systems. ACM Computing Surveys, 37(1):29–41, March 2005.

[122] H. Tran, M. Hitchens, V. Varadharajan, and P. Watters. A trust based
access control framework for p2p file-sharing systems. In Proceedings of
the 38th Hawaii Int. Conf. on System Sciences. IEEE, January 2005.

[123] C. Wang and L. Xiao. An effective p2p search scheme to exploit file
sharing heterogeneity. IEEE Transactions on Parallel and Distributed
Systems, 18(2):145–157, February 2007.

[124] W. Wang and T. Stransky. Stateless key distribution for secure intra and
inter-group multicast in mobile wireless network. Computer Networks,
51:4303–4321, October 2007.

[125] B. Yang, T. Condie, S. Kamvar, and H. Garcia-Molina. Non-cooperation
in competitive p2p networks. In Proceedings of the 25th IEEE Int. Conf.
on Distributed Computing Systems, 2005.

196 REFERENCES

[126] H. Yang, X. Meng, and S. Lu. Self-organized network layer security in
mobile ad hoc networks. In Proceedings of the 1st ACM Workshop on
Wireless Security, pages 11–20, Atlanta, USA, 2002.

[127] S. Yi and R. Kravets. Moca: Mobile certificate authority for wireless ad
hoc networks. In Proceedings of the 2nd Annual PKI Research Workshop,
2003.

[128] F. Zambonelli, M. Gleizesb, M. Mameia, and R. Tolksdorf. Spray com-
puters: Explorations in self-organization. Pervasive and Mobile Com-
puting, 1:1–20, March 2005.

[129] L. Zhang, G. Ahn, and B. Chu. A rule-based framework for role-based
delegation and revocation. ACM Transactions on Information and Sys-
tem Security, 6(3):404–441, August 2003.

[130] X. Zhang, S. Chen, and R. Sandhu. Enhancing data authenticity
and integrity in p2p systems. IEEE Internet Computing, pages 42–49,
November–December 2005.

[131] Y. Zhang, L. Lin, and J. Huai. Balancing trust and incentive in peer-to-
peer collaborative system. Int. Journal of Network Security, 5(1):73–81,
July 2007.

[132] B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. Technical report,
2001.

[133] F. Zhou, L. Zhuang, B.Y. Zhao, L. Huang, A.D. Joseph, and
J.Kubiatowicz. Approximate object location and spam filtering on peer-
to-peer systems. In Proceedings of the ACM International Middleware
Conference, pages 1–20, Rio de Janeiro, Brazil, June 2003. ACM.

[134] L. Zhou and Z.J. Haas. Securing ad hoc networks. IEEE Network,
13(6):24–30, 1999.

[135] B. Zhu, S. Jajodia, and M.S. Kankanhalli. Building trust in peer-to-
peer systems: a review. International Journal of Security and Networks,
1(1/2):103–112, 2006.

REFERENCES 197

[136] P. Zimmermann. The Official PGP User’s Guide. MIT Press, Cam-
bridge, Massachusetts, 1995.

198 REFERENCES

Appendix A

Empirical Analysis of Public Key
Authentication Scheme

This appendix presents an empirical analysis obtained as a result of the im-
plantation of the public key authentication protocol proposed by Pathak and
Iftode in [97] and briefly described in Section 2.2.3. We have implemented this
proposal in C, as explained in Section 5.4.3.2, considering the corresponding
messages formats and entity roles. Experiments carried out on a distributed
environment give us a practical framework to analyze the scheme considering
both the communication effort required by the nodes, as well as the computa-
tional (especially cryptographic) cost of the protocol.

A.1 Communication Overhead

The communication cost incurred in public key authentication protocol can
be theoretically computed considering the amount of participants that have
taken part in a given protocol instance. Similarly, the simulation helps us to
corroborate the theoretic approach.

We have identified two levels of complexity according to whether the Byzan-
tine agreement stage is needed or not.

A.1.1 Cost of Consensus

When all the participants are honest, we can simply count the messages that
they exchange. In particular, each node receives the following messages:

199

200 Appendix A. Empirical Analysis of Public Key Authen...

1. Node B receives a admission request message from A, and one containing
the proof-of-possession returned by each Pi/i ∈ {1 . . . k}.

2. Each node Pi receives an authentication request message and one chal-
lenge response from A.

3. Node A receives k challenge messages, one from each Pi.

The total number of messages then follows the expression below:

k + (k + 1) + 2k = 4k + 1

The complexity of this process is clearly lineal, O(k), and it is graphically
expressed in Fig. A.1-(a).

A.1.2 Cost of Byzantine Agreement

When reaching consensus is not possible, the protocol immerses in the Byzan-
tine agreement stage. Generally, this fact implies that at least one of the
participants has behaved maliciously. The number of messages exchanged
therefore increases in order for the parties to clarify the situation.

We can identify two scenarios. On the one hand, A may misbehave and,
on the other hand, a supposed trusted node Pi may mount a particular attack.

A.1.2.1 Case 1: A is Dishonest

We can simulate a spoofing attack upon a dishonest node who sends an ad-
mission request regarding his public key. The attacker tries to masquerade A

responding challenges as well.
Contrarily to the attacker’s intentions, the protocol participants (if honest)

will realize of such a malicious action at the challenge response step, due to
the fact that the attacker cannot respond correctly to the received challenges.
Thus, the proof-of-possession will be rejected during the Byzantine agreement
phase.

Similarly to the previous case, we can count the messages resulted in this
situation. The complexity is the same, O(k), since we have only two more
messages, (4k+3) regarding B’s requests of proof to A′, and her corresponding
response.

A.1. Communication Overhead 201

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Trusted nodes

M

es
sa

ge
s

Consensus

(a)

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Trusted nodes

M

es
sa

ge
s

No consensus: A is dishonest

(b)

Figure A.1: (a) Communication cost of reaching consensus in Public Key
Authentication; and (b) when node A is revealed as dishonest.

In Figure A.1-(b), we can see how the cost of key authentication increases
according to the number of implicated honest nodes.

202 Appendix A. Empirical Analysis of Public Key Authen...

A.1.2.2 Case 2: At Least One Pi is Dishonest

When B announces a Byzantine fault, all participants share their proof-of-
possessions (the pairs challenge-response.) Therefore, each participant adds a
message proofs to the rest of nodes, and B one communicating the start of
the Byzantine phase.

The total number of messages involved follows the expression below:

4k + 3 + k((k − 1) + 1) = k2 + 4k + 3

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12
x 10

5

Trusted nodes

M

es
sa

ge
s

No consensus: a Pi is dishonest

Figure A.2: Communication cost of public key authentication when a Pi is
dishonest.

Now, the cost of authenticating a public key increases quadratically with
respect to the number of trusted nodes used by B (see Fig. A.2.) Moreover,
note that either the computational or the communication cost keeps constant
having one or more malicious participants. The elimination of several nodes in
the trusted group requires, in terms of communication cost, exactly the same
effort than the elimination of a unique node, since proofs are equally verified

A.1. Communication Overhead 203

once the Byzantine fault is announced to the group.

(1) Enter the number of nodes in trusted group: 5
(2)
(3) Creating node B...
(4) Creating node A...
(5) Creating node P0...
(6) Creating node P1...
(7) Creating node P2...
(8) Creating node P3...
(9) Creating node P4...
(10)
(11) Scenario:
(12)
(13) B’s trusted are: P0 P1 P2 P3 P4
(14)
(15) Honest behavior of A (yes/no): yes
(16)
(17) Enter the name of malicious nodes in the trusted group and press ENTER: P2 P3
(18)
(19) -Beginning of the protocol-
(20)
(21) -No consensus: Byzantine Agreement-
(22)
(23)
(24) Node P3 incorrectly signs the challenge message
(25) B deletes P3 from its trusted group
(26)
(27) Node P2 incorrectly signs the challenge message
(28)
(29) B deletes P2 from its trusted group
(30) P0 deletes P2 from its trusted group
(31) P3 deletes P2 from its trusted group
(32) P4 deletes P2 from its trusted group
(33) P0 deletes P3 from its trusted group
(34) P2 deletes P3 from its trusted group
(35) P1 deletes P3 from its trusted group
(36) P1 deletes P2 from its trusted group
(37) P4 deletes P3 from its trusted group
(38)
(39) The total number of messages sent during authentication is 48
(40)
(41) Messages in C:\PKAuthentication\src\result.log

Figure A.3: Execution of an scenario where two participant nodes are dishonest
when authenticating a public key.

Figure A.3 shows the output of executing a particular scenario for Case
2. We can see in line (1) the establishment of the environment, set in 5
participants nodes P0, P1, P2, P3, P4. From line (3) to (9) the toolkit prints
traces of the creation of nodes. In line (13) we can set which nodes will be
used by B to authenticate A’s public key. Moreover, the system allows us
to specify whether any node has a malicious behavior. When the challenge-
response process ends, the system returns a result message. In this case,
there is no consensus and the protocol reaches the Byzantine stage (see line
(21).) Finally, from line (24) to (37), B and his selected trusted nodes remove

204 Appendix A. Empirical Analysis of Public Key Authen...

the detected malicious nodes from their local databases. As an additional
result, the system has stored the number of transmitted messages during this
simulation. Moreover, we collect the run-time messages in a log file, which we
use later in order to analyze the communication overhead of this protocol.

A.2 Computational Overhead

The computational effort required to each node is very low, and it is determined
by the complexity of the cryptographic algorithms used for message decryption.
Obviously, the more the number of messages nodes must decrypt, the more
effort the protocol will require. In particular, the Byzantine agreement stage
incurs the maximum cost. Table A.1-(a) summarizes the time sequence, the
number of cryptographic operations and the computational complexity for
each stage of the protocol. In order to compute this cost, we can also use the
speed benchmarks shown in Table 3.1 for the cryptographic algorithms used
in a protocol execution.

Finally, Figure A.1-(b) presents the computational time required by the
protocol operations. As it is pointed out in the figure, authenticating a public
key takes less than 1 minute with the cooperation of 600 nodes. Note that
the Byzantine agreement stage supposes the greatest impact on the entire
protocol.

Moreover, as similar protocols implementing distributed authentication,
the implemented public key authentication protocol is expensive in messaging
cost. However, authors, in their analysis, try to reduce this cost using an
epidemic algorithm called Public key infection for lazy propagation of protocol
messages. By means of this improvement, the complexity gets reduced to
O(k log k). Readers interested in a more detailed description should refer to
[97].

The implementation of this protocol is a main building block for evaluating
the suitability of our protocol in real environments. In particular, the simu-
lation of our content authentication experiments along with several scenarios
for public key authentication serve us for actually measuring the computation
and communication effort that real nodes have to spend.

A.2. Computational Overhead 205

Stage No. crypto operations Complexity
1. Admission request 2H + 2S + 1V

O(k2 log k)
2. Challenge response (kV + kN + kE) + 2kH + 2kS+

+(kD + kV)
3. Distributed authentic. kS
4. Byzantine agreement (k + 1)H + (k + 1)S + k(k + 1)V
Total: k(E + D + N) + 3(k + 1)H+

+(4k + 3)S + (k2 + 3k + 1)V
Legend: H: Hash generation; E: Asymmetric encryption; D: Asymmetric decryp-
tion; S: Signature generation; V : Signature verification; k: No. of participants; N :
Nonce generation;.

(a) Computational complexity for each stage of public key authentication.

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10
x 10

4 Public key authentication: Computational cost

k

tim
e

(m
s)

Entire protocol
Byzantine agreemt. stage
Without Byzantine stage

(b) Computational cost of public key authentication.

Table A.1: Public key authentication: Efficiency analysis (computational ef-
fort).

206 Appendix A. Empirical Analysis of Public Key Authen...

Appendix B

Experimenting with
Cryptographic Puzzles

Among the possible ways in which rationality can be ensured, we have con-
sidered computational puzzles as incentives for users to behave in a uniform
fashion, and discourage free riders. In particular, our access control protocol,
concretely Join subprotocol, is based on such a kind of proof-of-work mecha-
nism in order to evaluate requesters’ collaboration nature. Thus, cryptographic
puzzles serve owners as challenges for measuring requesters’ interest.

This appendix is devoted to present some analysis concerning the efficiency
and security of our proposal through a number of scenarios. Experimental
results are reported to illustrate the computational consumption and the time
spent by the protocol according to several cryptographic algorithms.

B.1 Simulation Framework

Apart from the mechanisms mentioned in Section 4.3.1.1, there exist other
possibilities in order to use cryptographic primitives for building up similar
puzzles (e.g. hash functions in which a preimage of a given value have to be
found.)

We have considered two block ciphers as the basis for cryptographic puzzles,
AES-128 and TEA [36, 103]. Both were coded in C, compiled with Microsoft
Visual C++, and ran on a AMD ATHLON(tm)2600 2.09GHz processor, 1GB
RAM under Windows XP SP2.

The factor responsible for the complexity is the cost of executing several

207

208 Appendix B. Experimenting with Cryptographic Puzzles

decryptions, testing each candidate key. We have carried out 1000 experiments
for different values of l-bits (0 . . . 232), and also randomly varying the challenges
and key used. We used the Mersenne Twister algorithm [85] for generating
uniform pseudorandom numbers.

It is interesting to examine to what extent the usage of this kind of effort-
aware access control can be applicable and reliable in real networks. First, we
have considered that more than 32 hidden bits would result in a impracticable
number of potential keys to test in a common platform.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

experiments

t (
se

c)

Time taken in finding 128−bits AES key through 32−hidden bits

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

experiments

t (
se

c)

Time taken in finding 128−bits TEA key through 32−hidden bits

AES TEA

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e
(s

)

Figure B.1: AES (left) and TEA (right) computational consumption in seconds
to find the corresponding KS through a 32-bits trapdoor in a sample of 100
experiments.

B.1. Simulation Framework 209

Time required on average (sec)
ω bits l bits AES TEA
32 96 5495 761
28 100 544 47
24 104 15 0.22
20 108 0.01 0.01

Table B.1: Computational effort spent on average (in 1000 experiments) by
each algorithm regarding the amount of given bits.

32 28 24 20
0

1000

2000

3000

4000

5000

6000

7000

trapdoor’s hidden bits

t (
se

c)

Effort comparison

AES
TEA

−info−info +info

Figure B.2: Comparison of both algorithms’ computational effort spent on
average (in 1000 experiments) regarding the amount of given information of
the encryption key.

The average results are shown in Table B.1. For each case, as the l threshold
increases, the number of candidate keys obviously decreases, so the exploration
time too. Fig. B.1 presents the exploration effort using both algorithms and
trapdoors with 32 hidden bits, in a sample of 100 experiments. In this case,
AES takes 90 minutes with 32-trapdoor bits, while TEA takes 27 minutes, on
average. However, this time decreases to 9 minutes and 0.7 minutes, respec-
tively, when providing 4 additional bits. Therefore, we can consider them good
examples of puzzles for our work-aware access control model. Contrarily, with
264 large number of potential keys to test, it literally takes a matter of years.
Fig. B.2 compares both schemes in terms of different amount of supplied l

bits.

210 Appendix B. Experimenting with Cryptographic Puzzles

The complexity increases when the given l key bits are not organized in
the same key blocks, but randomly.

In summary, experiments show us signs of the reliability of the proposal ac-
cording to users’ computational resources and interests. We, as many authors,
try to demonstrate that peers tend to collaborate even if they must spend
some resources, and playing down the importance of indirect trust. Therefore
file sharing can be encouraged by imposing a cost on the downloads, where
each transaction implies to be worthy of access each time.

