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Abstract

In this paper, we propose a new stochastic volatility model, called A-
LMSV, to cope simultaneously with the leverage effect and long-memory.
We derive its statistical properties and compare them with the properties
of the FIEGARCH model. We show that the dependence of the autocor-
relations of squares on the parameters measuring the asymmetry and the
persistence is different in both models. The kurtosis and autocorrelations
of squares do not depend on the asymmetry in the A-LMSV model while
they increase with the asymmetry in the FIEGARCH model. Further-
more, the autocorrelations of squares increase with the persistence in the
A-LMSV model and decrease in the FIEGARCH model. On the other
hand, the autocorrelations of absolute returns increase with the magni-
tude of the asymmetry in the FIEGARCH model while they can increase
or decrease depending on the sign of the asymmetry in the L-MSV model.
Finally, the cross-correlations between squares and original observations
are, in general, larger in the FIEGARCH model than in the A-LMSV
model. The results are illustrated by fitting both models to represent the
dynamic evolution of volatilities of daily returns of the S&P500 and DAX
indexes.

KEYWORDS: Autocorrelations of squares and of absolute values, Con-
ditional heteroscedasticity, Kurtosis, Whittle estimator.

1 Introduction
One of the main empirical characteristics of financial returns is the dynamic
evolution of their volatilities. There are two important properties that charac-
terized this evolution. First of all, power transformations of absolute returns
have significant autocorrelations which decay towards zero slower than in a short
∗Corresponding author. Email: ortega@est-econ.uc3m.es
†We are very grateful to Ana Pérez for unvaluable support in programming the Whittle

estimator of the A-LMSV models and to Stephen Taylor for many helpful suggestions.
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memory process. Many authors have argued that this pattern of the sample
autocorrelations suggests that the volatilities of financial returns can be repre-
sented by long-memory processes; see Ding et al. (1993) and Lobato and Savin
(1998) among many others. The second property that characterizes volatilities
is their asymmetric response to positive and negative returns. This property,
known as leverage effect, was first described by Black (1976).
There are two main families of econometric models proposed to represent

the dynamic evolution of volatilities. The ARCH-type models are mainly char-
acterized by specifying the volatility as a function of powers of past absolute
returns and, consequently, the volatility can be observed one-step ahead. On
the other hand, Stochastic Volatility (SV) models specify the volatility as a
latent variable that is not directly observable. There have been several pro-
posals of ARCH-type models that represent simultaneously leverage effect and
long-memory. For example, Hwang (2001) proposed to extend the long-memory
FIGARCH model of Baillie et al. (1996) to represent the leverage effect. How-
ever, some authors have pointed out some drawbacks of this model. For in-
stance, Davidson (2004) has recently shown that the FIGARCH model has the
unpleasant property that the persistence of shocks to volatility decreases as the
long-memory parameter increases. Zafaroni (2004) has also showed that the
FIGARCH model cannot generated autocorrelations of squares with long mem-
ory. Finally, Ruiz and Pérez (2003) showed that the model proposed by Hwang
(2001) has identification problems. Consequently, in this paper, we focus on
the Fractionally Integrated EGARCH (FIEGARCH) model proposed by Boller-
slev and Mikkelsen (1996) which extends the asymmetric EGARCH model of
Nelson (1991) to long memory. The statistical properties of the FIEGARCH
model have been derived following the arguments given by He et al. (2002) for
the short-memory EGARCH model. In particular, we give explicit analytical
expressions of the kurtosis and autocorrelations of squares and absolute obser-
vations. Furthermore, we also derived the cross-correlations between |yt+k|c and
yt for c = 1 and 2.
Alternatively, in the context of SV models, Harvey (1998) and Breidt et

al. (1998) have independently proposed Long-Memory Stochastic Volatility
(LMSV) models in which the underlying log-volatility is modelled as an ARFIMA
process. On the other hand, Harvey and Shephard (1996) propose to model the
leverage effect of the short memory SV model by introducing correlation be-
tween the noises of the level and volatility equations1. In this paper, it is our
aim to go one step further and present an extension of the LMSV model to
cope with the leverage effect, that we denote A-LMSV. We derive the statisti-
cal properties of the new model and compare them with the properties of the
FIEGARCH model. We show that both models explain in a different way the
kurtosis and correlations of absolute and squared returns. The kurtosis and
autocorrelations of squares of the A-LMSV models are not affected by the pres-
ence of the leverage effect. However, in the FIEGARCH model, both moments

1So et al. (2002) have proposed a threshold SV model which is also able to represent the
leverage effect.
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increase with the asymmetry. Furthermore, we show that the autocorrelations
of squares increase with the persistence in A-LMSV models and decrease in
FIEGARCH models. On the other hand, in the A-LMSV models, the autocor-
relations of absolute observations increase with respect to the autocorrelations
of the symmetric model when the correlation between the volatility and the
level of returns is positive. However, if, as it is usual in financial returns, this
correlation is negative, the autocorrelations decrease as the magnitude of the
correlation increases. With respect to the FIEGARCH model, the autocorrela-
tions of absolute returns always increase with the magnitude of the asymmetry
regardless of its sign. Finally, the asymmetric response of volatility to positive
and negative returns is reflected in the cross-correlations between |yt+k|c and yt
for c = 1 and 2. We show that the patterns of these cross-correlations in the
two models considered in this paper is rather similar.
The rest of the paper is organized as follows. The description of the sta-

tistical properties of the A-LMSV model is done in section 2. We focus on
the kurtosis, autocorrelations of absolute and squared observations and cross-
correlations between |yt+k|c and yt where c = 1 and 2. In Section 3, we describe
the properties of the FIEGARCH model and compare them with the properties
of the A-LMSV model. Section 4 contains an empirical illustration by fitting
both models to daily financial returns of the S&P500 and the DAX indexes.
Section 5 concludes the paper.

2 Asymmetric LMSV models
The LMSV model, proposed independently by Harvey (1998) and Breidt et al.
(1998), extends the stochastic volatility model of Taylor (1982) by assuming that
the volatility follows a weakly stationary fractional integrated process. There-
fore, the LMSV model captures the long-memory property often observed in
the powers of absolute returns. In this section, we extend the LMSV model to
represent the asymmetric response of volatility to positive and negative returns.
Following Taylor (1994) and Harvey and Shephard (1996), this asymmetry is
introduced by allowing the disturbances of the level and volatility equations to
be correlated. If, for example, the log-volatility is an ARFIMA(1, d, 0) process,
the A-LMSV model is given by

yt = σ∗σtεt (1)

(1− φL)(1− L)d log σ2t = ηt

where yt is the return at time t and σt is its volatility. The parameter σ∗ is a scale
parameter and L is the lag operator such that Lxt = xt−1. The disturbances¡
εt, ηt+1

¢0
are assumed to have the following bivariate normal distributionµ

εt
ηt+1

¶
∼ NID

µµ
0
0

¶
,

µ
1 δση
δση σ2η

¶¶
, (2)

where δ, the correlation between εt and ηt+1, induces correlation between the
returns, yt, and the variations of the volatility one period ahead, σt+1−σt. The
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dynamic properties of the symmetric LMSV model are described by Ghysels et
al. (1996). In particular, the stationarity of yt depends on the stationarity of
the log-volatility, ht = log σ2t . Therefore, if |φ| < 1 and d < 0.5, yt is stationary.
In this case, its variance and kurtosis are given by

V ar(yt) = σ2∗ exp

½
σ2h
2

¾
(3)

and

κy =
E(y4t )

E(y2t )
2
= 3 exp(σ2h) (4)

respectively, where σ2h = σ2η
Γ(1−2d)
[Γ(1−d)]2

F (1,1+d;1−d;φ)
(1+φ) , Γ(·) is the gamma function

and F (·, ·; ·; ·) is the hypergeometric function; see Hosking (1981) for the ex-
pressions of the variance and autocorrelation function (acf) of an ARFIMA
process. From (4), it can be shown that, given σ2η and φ, the kurtosis of re-
turns, κy, increases with d, the parameter of fractional integration. On the other
hand, Harvey and Shephard (1996) have shown, in the context of the symmet-
ric LMSV model, that introducing the correlation between εt and ηt+1 into the
LMSV model does not change the marginal moments of yt with respect to the
symmetric model with δ = 0. Therefore, expressions (3) and (4) are also the
variance and kurtosis of yt in the A-LMSV model.
Furthermore, although the series of returns, yt, is a martingale difference

and, consequently an uncorrelated sequence2, it is not an independent sequence.
There are non-linear transformations of returns, as for example, powers of ab-
solute returns, which are correlated. After some very tedious algebra, and using
the fact that εt and ηt are Gaussian and mutually independent

3, it is possible
to derive the following expression of the acf of |yt|c for c = 1 and 2,

ρc(k) =

exp
³
c2

4 σ
2
hρh(k)

´µ
1 + (δση)

c
³
4
κc

´ c−2
2

λck

¶
− 1

κc exp
¡
c2

4 σ
2
h

¢
− 1

, k > 1 (5)

where ρh(k) is the acf of the log-volatility given by

ρh(k) =

Ã
k−1Y
i=0

d+ i

1− d+ i

!
F (1, d+ k; 1− d+ k;φ) + F (1, d− k; 1− d− k;φ)− 1

(1− φ)F (1, 1 + d; 1− d;φ)
,

κc =
E(|εt|2c)
{E|εt|c}2 =

Γ(c+0.5)Γ(0.5)
[Γ(0.5(c+1)]2 which takes values κ1 = π

2 and κ2 = 3 respec-

tively. Finally, if d > 0, λk =
k−1P
i=0

Γ(i+d)
Γ(i+1)Γ(d)φ

k−i−1. Note that when δ = 0,

2Yu (2004) points out that if the asymmetry is introduced as in Jacquier et al. (2004) by
a correlation between εt and ηt, the series yt is not a martingale difference.

3The expression of the autocorrelations of |yt|c in (5) is also valid for non-Normal distribu-
tions of the errors εt. The only difference is that the value of κc depends on this distribution.
In this paper, we focus on Gaussian errors because, we want to compare the A-LMSV and the
FIEGARCH model in the simplest framework.
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expression (5) becomes the acf of |yt|c derived by Harvey (1998) for symmetric
LMSV models. On the other hand, when d = 0, λk = φk−1 and expression (5)
becomes the acf of a short memory SV model with leverage effect. Taylor (1994)
have obtained this expression for c = 2.
The acf in expression (5) depends on the parameters d, φ and σ2η that affect

both the variance and the acf of the underlying log-volatility process, σ2h and
ρh(k) respectively. The autocorrelations also depend on the correlation between
εt and ηt+1, δ, and on the power parameter, c. For fixed values of the parameters
d, σ2η and φ, the effect of the asymmetry, δ, on the autocorrelation of order k
of y2t is measured by (δσηλk)

2. First of all note that this effect is the same
regardless of the sign of δ. Furthermore, in empirical applications, the variance
of the log-volatility process and the constant λk are typically very small and
consequently, this effect is also rather small. Therefore, the autocorrelations of
squared returns generated by symmetric and asymmetric LMSV processes are
very similar; see Carnero et al. (2004) for a similar result in the context of short
memory ARSV models. As an illustration, the right column of Figure 1 plots
the acfs of squared returns, for the following four A-LMSV models: {φ = 0,
d = 0.4, σ2η = 0.05}, {φ = 0, d = 0.4, σ2η = 0.1}, {φ = 0.2, d = 0.4, σ2η = 0.1}
and {φ = 0.98, d = 0, σ2η = 0.05}. For each of these models, we consider
δ = 0, 0.2, 0.5 and 0.8. The models have been chosen to resemble the parameter
values often estimated when the LMSV model is fitted to time series of financial
returns; see, for example, Pérez and Ruiz (2001). Figure 1 shows that, for the
four models considered, the acfs of squares are nearly the same regardless of the
value of the asymmetry parameter δ.
We consider now the effect of δ on the autocorrelation of order k of ab-

solute observations which is measured by 0.627δσηλk. In this case, a positive
correlation between εt and ηt+1 increases the autocorrelations while a nega-
tive value of δ decreases them. Note that, depending on the parameters that
govern the dynamic evolution of the volatility, the autocorrelations of absolute
returns can even be negative if δ is large enough. The magnitude of this ef-
fect is larger than the corresponding effect on the autocorrelations of squared
returns if |δσηλk| < 0.627. As an illustration, the left column of Figure 1 plots
the acf of absolute returns for the same four models considered above when
δ = 0, ±0.2,±0.5 and ±0.8. This figure shows that the effect of the leverage
effect on the acfs of absolute returns is clearly larger than in the acfs of squares.
Furthermore, we can also observe that a positive correlation increases the auto-
correlations of absolute returns while a negative correlation decreases them. As
we mentioned before, the autocorrelations can even be negative. For example,
in the first three models considered in Figure 1, ρ1(1) is negative if δ < −0.25,
-0.33 and -0.45 respectively. For the last model, which is a short memory model
with d = 0, the autocorrelations of absolute values are never negative. On the
other hand, when δ = 0, i.e. there is not leverage effect, the autocorrelations of
absolute observations are always positive. Therefore, the combination of nega-
tive correlations between εt and ηt+1 and long-memory generates the possibility
of negative autocorrelations in absolute observations. It is also interesting to
observe in Figure 1 that, when the correlation between εt and ηt+1 is negative,
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the pattern of the autocorrelations of absolute values is different depending on
whether the volatility has short or long memory. In the first case, we observe
that, as usual, the autocorrelations decay towards zero monotonically. However,
in the presence of long-memory, if the autocorrelation of order one is positive,
the autocorrelations increase for the first few lags and then decay towards zero.
On the other hand, when there is long-memory and ρ1(1) is negative, the au-
tocorrelations decrease monotonically towards zero in magnitude. Finally, note
that when the correlation between the errors, δ, is positive, we always observe
the usual pattern of autocorrelations decreasing monotonically towards zero.
A property that has often interested researches dealing with models for sec-

ond order moments, is the so-called Taylor effect that states that the autocor-
relations of absolute returns are larger than the autocorrelations of squares. In
the context of symmetric LMSV models Mora-Galán et al. (2004) show that,
when the persistence is large, the autocorrelations of powers of absolute obser-
vations are maximized when the power is close to one. The results previously
described suggest that a positive correlation between the errors reinforces the
Taylor effect while if the correlation is negative, it may disappear. This result is
illustrated in Figure 2 which plots the differences ρ1(1)− ρ2(1) as a function of
δ for the same four models considered before. The first result that emerges from
Figure 2 is that there is an approximately linear positive relationship between δ
and ρ1(1)− ρ2(1). When the correlation between the level and volatility noises
is positive, the Taylor effect is stronger for larger values of δ. However, when δ
is negative or close to zero, the autocorrelations of squares are larger than the
autocorrelations of absolute returns. Figure 2 also illustrates that the range of
values of δ for the Taylor effect to disappear is larger in SV models with long
memory. In the model with d = 0, the correlation between εt and ηt+1 has to
be negative and very large in absolute value for the autocorrelations of squares
to be larger than the corresponding autocorrelations of absolute returns.
As we mentioned in the Introduction, real time series of financial returns

are often characterized by significant autocorrelations of powers of absolute
returns that decay very slowly towards zero and by the asymmetric response
of volatility to positive and negative returns. On top of this, the series of
returns usually have excess kurtosis and the autocorrelations of squares are
rather small in magnitude. We now analyze whether the proposed A-LMSV is
able to explain simultaneously the excess kurtosis and small autocorrelations of
squares. We have seen before that the presence of leverage effect does not have
any effect on the kurtosis and only very marginal effects on the autocorrelations
of squares. Therefore, whether the parameter δ is zero or not is not going
to change the ability of the A-LMSV model to represent simultaneously both
effects. However, we want to analyze how the presence of long-memory may
change the relationship between kurtosis, κy, and ρ2(1) which is given by

ρ2 (1) =

³
ky
3

´ρh(1) ³
1 + (δση)

2
´
− 1

ky − 1
. (6)

Figure 3 plots the relationship between κy, and ρ2(1) as a function of the au-
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tocorrelation of order one of the underlying log-volatility, ρh(1), when δ = 04 .
Note that ρh(1) depends on φ and d. For fixed d, ρh(1) is a non-monotonous
function of φ. On the other hand, when φ is fixed, the autocorrelations of the
log-volatility increase with the long-memory parameter, d. Therefore, when
interpreting Figure 3, if we assume that φ is fixed, larger values of ρh(1) are
identified with larger values of d. We can observe that for a given kurtosis, κy,
the autocorrelation of order one of squares increases with the long memory pa-
rameter, d. However, the rate of growth of ρ2(1) is very small for low values of
the kurtosis and increases with the kurtosis. On the other hand, given ρ2(1), the
kurtosis decreases as d increases. Figure 3 also illustrates that there is a wide
range of combinations of the parameters that govern the dynamic evolution of
the underlying volatilities, φ and d able to generate series with large kurtosis
and small autocorrelations of squares as the ones usually observed in real time
series.
If the distribution of yt is symmetric, the main difference between het-

eroscedastic series with and without leverage effect is that, in the latter case
the correlations between returns and future powers of absolute returns is zero
while in the former they are different from zero. Consequently, another in-
strument for the identification of the leverage effect is the correlation between
returns and future absolute returns to the power c. We consider the more in-
teresting cases from the empirical point of view of c = 1 and 2. In these cases,
the covariances are given by5

Cov (yt, |yt+k|c) =

⎧⎪⎨⎪⎩
0.5σ2∗

q
2
π δσηλk exp{

σ2h
4 (ρh(k) + 1)}, c = 1

σ3∗δσηλk exp{
σ2h
8 (4ρh(k) + 5)}, c = 2

. (7)

The variance of |yt|c derived by Harvey (1998) for the symmetric LMSV
model with Gaussian errors is given by

V ar (|yt|c) = σ2c∗ 2
c exp

µ
c2
σ2h
2

¶⎛⎝Γ(c+ 1
2 )

Γ(12)
−
"
Γ
¡
c
2 +

1
2

¢
Γ
¡
1
2

¢ #2⎞⎠ , (8)

Given that the asymmetry does not change the marginal moments of yt and
given the expression of the variance of yt in (3), it is possible to derive the

4Given that neither the kurtosis nor the autocorrelations of squares depend on the asym-
metry parameter, the results for other values of δ are similar to the ones plotted in Figure
3.

5The expression of the covariance between returns and squared returns has been derived

by Taylor (2005) in the short memory case. However, his value of Cov
³
yt, |yt+k|2

´
is twice

the value obtained from (7) with c = 2 and d = 0.
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following expression for the correlation between yt and |yt+k|c

Corr (yt, |yt+k|c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.5δσηλk exp{0.25σ2hρh(k)}
exp{σ

2
h
8 }
√

π
2 exp{0.25σ2h}−1

, c = 1

δσηλk exp{0.5σ2hρh(k)}
exp{σ

2
h
8 }
√
3 exp{σ2h}−1

, c = 2

. (9)

From (9), it is clear that the correlations between yt and |yt+k|c have the
same sign as δ and that their absolute values increase with the absolute value
of δ. As an illustration, Figure 4 plots these correlations for the same four mod-
els considered above when δ = 0.2, 0.5 and 0.8. It is possible to observe that
the correlations are only slightly larger between observations and future squares
than between observations and future absolute values. It is also interesting to
observe that the cross-correlations plotted in Figure 4 show the same pattern as
the corresponding autocorrelations in the sense that they decay towards zero hy-
perbolically when the volatility has long memory while the decay is exponential
in the short memory model. Finally, note that although the cross-correlations
are typically small in the short-memory model, they can have rather large values
in the presence of long-memory.

3 Properties of the FIEGARCH model
The FIEGARCH model was proposed by Bollerslev and Mikkelsen (1996). In
its simplest form, the FIEGARCH(1,d,0) model is given by

yt = σtεt, (10)

(1− φL)(1− L)d log σ2t = ω + g(εt−1)

where g(εt) = α
³
|εt|−

q
2
π

´
+γεt and εt is a Gaussian white noise with variance

1. The parameter γ measures the leverage effect while, as before, d is the long-
memory parameter. When d = 0, the short-memory EGARCH model of Nelson
(1991) is obtained. Note that the main difference between the A-LMSV model
and the FIEGARCH model is the way the noise is defined in the log-volatility
equation; see Zaffaroni (2005) who proposes an exponential specification of the
volatility that encompasses both models. The FIEGARCH model is stationary
if |φ| < 1 and |d| < 0.5. He et al. (2002) have derived the kurtosis and
autocorrelations of absolute and squared observations for the short memory
EGARCH model, i.e. model (10) with d = 0. Following their arguments, we
have obtained the kurtosis and acf of |yt|c for c = 1 and 2 in the long memory
FIEGARCH model. In particular, if the stationarity conditions are satisfied,
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the kurtosis is given by

ky = 3

∞Q
j=1

E{exp[2λjg]}(
∞Q
j=1

E(λjg)

)2 , (11)

where for notational simplicity g = g(εt) and λj is defined as in (5). Fur-
thermore, if the errors are Normally distributed, the expectations involved in
equation (11) can be evaluated using the following result due to Nelson (1991):

E [exp(bg)] =
©
Φ(bc1) exp{0.5b2c21}+Φ(bc2) exp{0.5b2c22}

ª
exp{−bα(2/π)1/2}

where c1 = α+γ and c2 = α−γ. Although it is not evident from expression (11),
given the parameters α, φ and d, the kurtosis of yt increases as the magnitude
of the asymmetry parameter increases. This is an important difference with
respect to the A-LMSV model in which we have seen that the kurtosis does not
depend on the leverage effect.
On the other hand, the acf of |yt|c in the FIEGARCH model is given by

ρc(k) =
E [|εt|c exp (0.5cλkg)]

κc
∞Q
j=1

E [exp (cλjg)]− P3

∙³π
2

´ 2−c
2

P1P2 − P3

¸
(12)

where P1 =
kQ

j=1
E [exp (0.5cλjg)] , P2 =

∞Q
j=1

E [exp (0.5c(λj+1+k + λj)) g] and

P3 =
∞Q
j=1

(E [exp (0.5cλjg)])
2 and λk is defined as in the A-LMSV model. Fur-

thermore, He et al. (2002) show that

E [|εt|c exp(bg)] = (2π)−1/2 Γ(c+ 1) exp{−bα(2π)1/2}D(−(c+1))(−b(α+ γ))

+ exp{−b2αγ}D(−(c+1))(−b(α− γ))

where D(q) is the parabolic cylinder function and Φ(·) is the standard normal
cumulative function. Nelson (1991) derived this expression for squares, i.e.
c = 2.
As an illustration, Figure 5 plots the acf of absolute and squared returns

for the following FIEGARCH models: {φ = 0, d = 0.4, α = 0.2}, {φ = 0.7,
d = 0.4, α = 0.1}, {φ = 0.7, d = 0.4, α = 0.2} and {φ = 0.7, d = 0, α = 0.2}
with the asymmetry parameter γ = 0, 0.2, 0.5, 0.8. These models have been
chosen to resemble the parameter values often estimated when the FIEGARCH
model is fitted to real time series; see, for example, Bollerslev and Mikkelsen
(1996, 1999). Given that the autocorrelations are the same regardless of the
sign of the asymmetry parameter, we only represent the autocorrelations for
positive values of γ. It is important to point out that this result is not only
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satisfied by the autocorrelations of squares but also by the autocorrelations of
absolute observations. This fact can explain the lack of identifiability of the
sign of γ in the Whittle estimator observed by Zaffaroni (2005). Comparing the
autocorrelations of the FIEGARCH model with the corresponding autocorrela-
tions of the A-LMSV model plotted in Figure 1, we can observe that while in
the latter model, the autocorrelations of squares are nearly the same regardless
of the asymmetry parameter, they may be different in the FIEGARCH model.
However, note that there is not a monotonous dependence of these autocorrela-
tions with respect to the asymmetry parameter. In general, the autocorrelations
of squares of order one increase with the magnitude of γ, although this is not
always the case. On the other hand, for a particular model, the decay towards
zero of the autocorrelations depends on the asymmetry parameter. Similar re-
sults can be observed when looking at the autocorrelations of absolute values.
Although for each particular model considered, the order one autocorrelation is
larger the larger is the magnitude of γ, the decay towards zero may be differ-
ent and, therefore, for large lags, the autocorrelations can be smaller for larger
values of γ. A similar result on the decay of the autocorrelations of squares de-
pending on the asymmetry parameter in the context of short-memory EGARCH
models were found by Carnero et al. (2004).
Figure 5 also suggests that the Taylor effect is reinforced by the leverage

effect in the models with both parameters φ and d different from zero. However,
it seems that the Taylor effect is not a property of the short memory model and
of the model with φ = 0. To have a clearer picture of this phenomena, Figure
6 plots the differences between the first order autocorrelations of absolute and
squared returns for the same four FIEGARCH models described above. This
figure confirms the suspicion that when φ = 0 or d = 0 there is not Taylor effect.
In the first case, the Taylor effect may appear if the asymmetry parameter is
very large. Finally, in the models with both φ and d are different from zero, it
is present even if γ is relatively small.
Finally, comparing Figure 6 with Figure 2 that plots the same differences

as a function of the asymmetry parameter in A-LMSV models, we can observe
that there are clear differences with respect to the Taylor effect in both models.
We showed that in A-LMSV models, the Taylor effect is present as far as the
asymmetry parameter is positive. Even more, when there is not long-memory,
rather larger values of the asymmetry parameter can be allowed before the
Taylor effect disappears. However, when looking at FIEGARCH models, the
differences between the autocorrelations of absolute values and the autocorrela-
tions of squares are not an increasing function of the asymmetry parameter. On
the other hand, there are particular specifications of the FIEGARCH model in
which the Taylor effect is not a property unless the magnitude of the asymmetry
parameter is very large.
Given that it is rather difficult to find an analytical expression relating the

kurtosis and the autocorrelation of order one of squared observations, Figure 7
plots this relationship for different FIEGARCH models. This figure illustrates
that as the kurtosis increases (the asymmetry increases), the autocorrelation
of order one of squares also increases. On the other hand, given φ, α and γ,
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larger values of the long-memory parameter, d, imply smaller autocorrelations
of squares except when the kurtosis (the asymmetry) is very large. Carnero et
al. (2004) have also shown for the short-memory EGARCH model that, given
the kurtosis, the autocorrelation of order one of squared observations decreases
with the persistence parameter, φ. On the other hand, for fixed φ, d and γ,
the autocorrelations of squares are larger the larger is the ARCH effect, i.e. α.
Once more, this relationship can be reverse for large values of γ. In any case, it
is important to point out that the effect of d and α on ρ2(1) is relatively weak
while the effect of the asymmetry parameter, γ, is rather strong.
Comparing now the results illustrated in Figure 7 with the corresponding

results for the A-LMSV model illustrated in Figure 3, we can observed that
in both models, the autocorrelations of order one of squares increase with the
kurtosis. However, while in the A-LMSV model, the kurtosis is the same regard-
less the asymmetry parameter, in the FIEGARCH model, the kurtosis depends
on the asymmetry. Therefore, given the parameters that measure the evolu-
tion of volatility, α in the FIEGARCH model and σ2η in the A-LMSV models
respectively, its persistence, φ, and its memory, d, the kurtosis and the autocor-
relations of squares increase with the leverage effect in the FIEGARCH model
while they are approximately constant in the A-LMSV model. On the other
hand, for fixed α and σ2η, the autocorrelations of squares increase with φ and d
in the A-LMSV model while they decrease in the FIEGARCH model. In both
models it is possible to observe that the variations in the values of ρ2(1) are
small for moderate values of the kurtosis while they are large when the kurtosis
is large.
As in the A-LMSV model, we have also derived the cross-correlations be-

tween returns and powers of absolute returns. In particular,

Corr (yt, |yt+k|c) =
E [exp(0.5cλkg(εt))εt]

∞Q
j=1

exp [E [0.5cλjg]]
∞Q
j=1

E [exp(0.5c(λj+k + λj))g]"
κc
∞Q
j=1

E [exp(cλjg)]−
"
∞Q
j=1

E [exp(0.5cλjg)]

#c#1/2 "
∞Q
j=1

E [exp(λjg)]

#1/2
(13)

Once more, we illustrate the shape of the cross-correlations by plotting them
in Figure 8 for the same four models considered before and c = 1, 2. Given that
these cross-correlations are symmetric with respect to the parameter γ, we have
only plotted them for γ = 0.2, 0.5 and 0.8. As in the A-LMSV model, we can
observe that the cross-correlations between y2t+k and yt are larger in magnitude
than between |yt+k| and yt. Furthermore, comparing these cross-correlations
with the ones plotted in Figure 4 for the A-LMSV models, it is possible to
observe that, in general, the FIEGARCH model generates cross-correlations
similar to those of the A-LMSV model.
It is important to note that the expressions of the FIEGARCH model derived

in this paper have been obtained under the assumption of Normal errors. The
expressions for other distributions could be more complicated. However, gener-
alizing the expressions of the moments in the context of non-Gaussian A-LMSV
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models is rather straightforward.

4 Empirical illustration
In this section we evaluate the performance of the A-LMSV and FIEGARCH
models in capturing the empirical features of financial data. For this purpose, we
analyze daily close prices of the S&P 500 and DAX composite indexes observed
from January 3, 1928 to April 20, 2005 and November 26, 1990 to September
6, 2006 respectively. The sample sizes are 19104 and 3980 observations in each
case. The series of prices denoted by pt have been plotted in Figures 9 and
10 respectively together with the corresponding series of returns computed as
usual as yt = 100(log pt − log pt−1).
We analyze first the series of S&P500 returns plotted in Figure 9. These

returns, denoted by yt, have a kurtosis of 3.083 and show volatility cluster-
ing6. The presence of conditional heteroscedasticity can also be observed in
the correlograms of the absolute and squared observations also plotted in Fig-
ure 9. In both correlograms, the sample autocorrelations are significant and
very persistent. The observed decay of the correlations is not compatible with
the expected decay if squared and absolute returns could be represented by a
short-memory model. In consequence, it seems that the volatility of the S&P500
returns should be approximated by a conditional heteroscedasticity model with
long memory. Figure 9 also plots the Corr(|yt+k| , yt) and Corr(y2t+k, yt). In
both cases, the cross-correlations are similar in magnitude, being negative and
significant. Therefore, it seems that a model with leverage effect could be ade-
quate. We fit the A-LMSV and the FIEGARCH models to the series of S&P500
returns.
The A-LMSV model has been estimated by the Whittle estimator proposed

by Zaffaroni (2005) who establishes its asymptotic normality. The scale param-
eter σ∗ is not identified by the Whittle estimator and, consequently, following
the suggestion of Zaffaroni (2005) we estimate it by bσ∗ = exp{0.5(bμ+E(log ε2t )}
where bμ is the sample mean of log(y2t ) and, assuming Normality of the errors,
E(log ε2t ) = −1.27. The estimated model is given by

(1− 0.400L)(1− L)
0.800

log σ2t = ηt (14)

where the scale parameter is estimated as bσ∗ = 0.102 and the variance of the
log-volatility noise is estimated as bσ2η = 0.010 and the correlation between the
level and volatility noises is estimated as bδ = −0.700.

6To avoid the pernicious effect of large extreme observations on the sample moments and
estimates of the parameters that govern the volatility, all the observations larger than 7
conditional standard deviations have been corrected by substituting them by their estimated
conditional standard deviation; see Carnero et al. (2006) for the effects of outliers on the
identification and estimation of conditional heteroscedasticity. In particular, the observations
corrected correspond to 26th June 1950, 26th September 1955, 19th October 1987 and 13th
October 1989.
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The FIEGARCH model has been estimated by QML using the G@RCH
package version 4.0 of Laurent and Peters (2005) with the following results

(1− 0.469
(0.083)

L)(1− L)
0.581
(0.023) log σ2t = −0.893

(0.147)
+ 0.185
(0.019)

Ã
|εt−1|−

r
2

π

!
− 0.099
(0.012)

εt−1

(15)
where the quantities in parenthesis are estimated standard deviations. Note
that both models have estimates of the long-memory parameter larger than 0.5
implying that the series of S&P500 returns is not stationary. This could be due
to the fact that the series has been observed over more than 77 years which is a
too long period for assuming stationarity. In these circumstances, the moments
implied by the estimated models are not defined. Therefore, it is not possible to
compare the sample moments of the S&P500 returns with the moments implied
by each of the estimated models.
We consider now, the DAX returns plotted in Figure 10. This series has

a kurtosis of 7.365 and also shows clear signs of conditional heteroscedasticity
when looking at the correlations of squares and absolute returns plotted in
Figure 10. Both correlograms show significant positive correlations which decay
slowly towards zero. Finally, the cross-correlations between yt and y2t+k and
between yt and |yt+k| are negative and significant. Therefore, it seems that the
dynamic evolution of the DAX returns can be also represented by a conditionally
heteroscedastic model with long memory and asymmetry. As before, we fit the
A-LMSV and FIGARCH models. The estimated A-LMSV model is given by

(1− 0.900L)(1− L)
0.399

log σ2t = ηt (16)

where the scale parameter is estimated as bσ∗ = 0.317 and the variance of the
log-volatility noise is estimated as bσ2η = 0.010 and the correlation between the
level and volatility noises is estimated as bδ = −0.800.
The estimated FIEGARCH model is given by

(1− 0.789
(0.0570)

L)(1− L)
0.455
(0.054) log σ2t = 1.022

(0.308)
+ 0.114
(0.023)

Ã
|εt−1|−

r
2

π

!
− 0.050
(0.012)

εt−1

(17)
We now analyze which model implies moments closer to the observed mo-

ments of DAX returns. With respect to the kurtosis, the observed kurtosis is
7.365 while the kurtosis implied by the estimated A-LMSV and FIEGARCH
models are 7.876 and 3.790 respectively. Therefore, the kurtosis of the A-LMSV
is clearer closer to the observed kurtosis. Looking at the autocorrelations of
absolute and squared returns implied by each of the two models, which have
been also plotted in Figure 10 together with the corresponding estimated corre-
lations, it is possible to observe that the correlations of order one implied by the
A-LMSV model, 0.183 and 0.147 for absolute and squared returns respectively,
are closer to the estimated correlations, 0.216 and 0.183, than the corresponding
autocorrelations implied by the FIEGARCH model, 0.115 and 0.123. However,
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although the decay of the correlations implied by the FIEGARCHmodel is closer
to the one observed in reality, none of the models explain well the slow decay of
the autocorrelations towards zero. Finally, it seems that the cross-correlations
between yt and |yt+k| implied by both models and represented in Figure 10,
are very similar between them and similar to the correlations truly observed in
the DAX returns. However, comparing the implied cross-correlations between
yt and y2t+k of the A-LMSV and FIEGARCH models, it is possible to observe
that the former are clearly closer to the ones estimated for the original DAX
returns.

5 Conclusions
In this paper, we propose an extension of the LMSV to represent the asymmetric
response of volatility to positive and negative returns. We compare the statisti-
cal properties of the new model with the FIEGARCH model. As a by-product,
we derive expressions of the autocorrelations of squares and absolute returns
as well as cross-correlations between these transformations of returns and the
original returns when they are generated by the FIEGARCH model.
We show that the A-LMSV model reproduces better the empirical features

of financial data: volatility persistence, excess kurtosis, autocorrelations of ab-
solute and squared returns and cross-correlations between returns and future
squared returns. In fact, the FIEGARCH model needs simultaneously high val-
ues of d and φ, close to the level of nonstationary, and small values of δ in order
to capture at the same time persistence and small first order autocorrelation.
On the other hand, this last requirement interferes with generating large kur-
tosis. The Gaussian FIEGARCH model is only able to reproduce high kurtosis
if δ is not close to zero. Therefore, it seems to exist, for this model, a trade off
among different moments. Contrarily, the A-LMSV model is able to reproduce
these three features of financial data for larger combinations of the parameters.
In an empirical application to daily S&P500 and DAX returns, we show that

when both models are fitted to real data, the conclusions in terms of the station-
arity of the volatility are similar. When one of the models imply stationarity, the
other does and the other way round. If the estimated parameters of both mod-
els satisfy the stationarity conditions, then the kurtosis and autocorrelations of
order one of absolute and squared returns implied by the A-LMSV model are
closer to the estimated sample moments of the real data than the ones implied
by the FIEGARCH model. However, in our empirical application to the DAX
returns none of the implied autocorrelations explain completely the slow decay
of the autocorrelations towards zero. Consequently, and given that, as we have
seen in this paper, dealing with the statistical properties of the A-LMSV model
is easier than when considering the properties of the FIEGARCH model, we
think that the former is a model to be considered when modelling the dynamic
evolution of the volatility of series with long-memory and asymmetric response
to positive and negative returns.
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Figure 1. Autocorrelations of |yt| (left column) and y2t (right column) in
four A-LMSV models with different values of the asymmetric parameter:
continuous line (δ = 0), dotted (δ = 0.2), discontinuous (δ = 0.5), dotted
dotted discontinuous (δ = 0.8), larger dotted (δ = −0.2), dotted dotted
dotted discontinuous (δ = −0.5) and dotted discontinuous (δ = −0.8)).
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Figure 2. Differences between the autocorrelations of order 1 of absolute
and squared returns as a function of the correlation between εt and ηt+1
in four A-LMSV models.
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(γ = 0.8).
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Figure 6. Differences between the autocorrelations of order 1 of absolute
and squared returns as a function of γ in FIEGARCH models.
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Figure 7. Relationship between kurtosis and first-order autocorrelation
of squared observations for different values of the persistence for FIE-
GARCH(1,d,0) models.
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Figure 8. Correlations between yt and | yt+k | (left column) and yt and
y2t+k (right column) in four FIEGARCH models with different values of γ:
continuous line (δ = 0.2), dotted (δ = 0.5) and discontinuous (δ = 0.8).
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Figure 9. Observations of daily S&P500 prices (a) and returns (b) together
with sample autocorrelations of absolute returns (c) and squared returns
(d) and cross-correlations between yt and |yt+k| (e) and between yt and
y2t+k (f).
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Figure 10. Observations of daily DAX prices (a) and returns (b) together
with sample autocorrelations of absolute returns (c) and squared returns
(d) and cross-correlations between yt and |yt| (e) and between yt and y2t
(f).
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