
 
 

Working Paper 02-54 (14)  
Statistics and Econometrics Series  

November 2002 
 

Departamento de Estadística y Econometría 
Universidad Carlos III de Madrid 

Calle Madrid, 126 
28903 Getafe (Spain) 

Fax (34) 91 624-98-49 

ESTIMATION METHODS FOR STOCHASTIC VOLATILITY 
MODELS: A SURVEY 

Carmen Broto and Esther Ruiz* 

 
Abstract 
The empirical application of Stochastic Volatility (SV) models has been limited due to the 

difficulties involved in the evaluation of the likelihood function. However, recently there 

has been fundamental progress in this area due to the proposal of several new estimation 

methods that try to overcome this problem, being at the same time, empirically feasible. As 

a consequence, several extensions of the SV models have been proposed and their empirical 
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1 Introduction

During the last decade there has been an increasing interest in modelling the

dynamic evolution of the volatility of high frequency series of �nancial returns

using Stochastic Volatility (SV) models. In the simplest framework, the series of

returns, yt; is modelled as the product of two stochastic processes. If the loga-

rithm of volatility, �t; is assumed to follow an AR(1) process, the corresponding

model, known as Autoregressive SV (ARSV(1)) model, is given by

yt = ��"t�t; (1)

log(�2t ) = � log(�2t�1) + �t;

where �� is a scale parameter that removes the necessity of including a constant

term in the log-volatility equation, "t and �t are mutually independent Gaus-

sian white noise processes with variances 1 and �2� respectively. Some detailed

reviews of ARSV models are given by Taylor (1994), Shephard (1996), Ghysels

et al. (1996), Capobianco (1996) and Barndor�-Nielsen and Shephard (2001).

Carnero et al. (2001) show that the ARSV(1) model is more adequate than

the more popular GARCH (1,1) model to represent the empirical regularities

often observed in �nancial time series. However, one of the most important

limitations of SV models is that the distribution of yt conditional on past obser-

vations up to time t�1 is unknown. Consequently, the exact likelihood function

is di�cult to evaluate. In order to derive it, the vector of the unobserved volatil-

ities has to be integrated out of the joint probability distribution. If we denote

by y = fy1; :::; yT g the vector of observations, h = fh1; :::; hT g the vector of log-

volatilities, i.e. ht = log(�2t ); and � = f��; �; �2�g; the corresponding parameter

vector, the likelihood is given by,

f(y j �) =
Z
f(y j h; �)f(h j �)dh: (2)

The dimension of the integral in (2) is equal to the sample size, T; and, in or-

der to evaluate it, numerical methods must be used. Therefore, Maximum Like-

lihood (ML) estimation of the parameters of SV models is not straightforward.
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Furthermore, one of the main purposes when �tting a heteroscedastic model to

a series of returns is to obtain estimates of the volatility. As the volatility is

unobservable in SV models, it is necessary to use �lters to yield such estimates.

Several estimation techniques have been proposed in the literature for both the

parameters and volatilities of SV models.

On the other hand, it has often been empirically observed that the log-

volatilities could be characterized as a long-memory process. Consequently,

Breidt et al. (1998) and Harvey (1998) propose independently the Long-Memory

SV (LMSV) model, where the log-volatility is modelled as an ARFIMA(p; d; q)

process. Denote by ARLMSV(1; d; 0) the following process

yt = ��"t�t; (3)

(1� �L)(1� L)d log(�2t ) = �t:

where d is the long memory parameter. Model (3) encompasses the short mem-

ory model in (1) when d = 0:

In this paper, we review the main estimators of the parameters proposed for

univariate SV models describing what is known about their asymptotic and �nite

sample properties. We also summarize the main advantages and limitations of

each of the estimators considered, focusing on their ability to deal with non-zero

conditional means, Student-t errors1 and asymmetric behavior of volatility.

The paper is organized as follows. Section 2 describes the alternative esti-

mators of the parameters of ARSV models, their asymptotic and �nite sample

properties as well as their main advantages and limitations. This section is

completed with an illustration with simulated data. Section 3 describes the es-

timation methods proposed for LMSV models. Section 4 illustrates the results

with an empirical application that compares the principal estimators by �tting

1Although we focus on the generalization of the estimators to Student-t errors, there are

other alternative distributions proposed in the literature, as, for example, (i) the exponential

power distribution, suggested by Nelson (1988); (ii) the normal inverse Gaussian distribu-

tion, proposed by Barndor�-Nielsen (1997) or (iii) the skewed exponential power distribution,

suggested by Steel (1998).

4



the ARSV model to daily S&P 500 returns. Finally, section 5 concludes the

paper.

2 Estimation of the parameters of ARSV(1) mod-

els

Estimation methods of the parameters of the short-memory ARSV(1) model

in (1) can be classi�ed into two general groups. The �rst class is comprised by

estimators based directly on the statistical properties of yt. There are three main

classes of estimators within this group: (i) estimators based on the method of

moments (MM); (ii) estimators based on the ML principle; and (iii) estimators

based on an auxiliary model.

Alternatively, taking logarithms of squared observations, the following non-

Gaussian linear state space model is obtained:

log(y2t ) = �+ ht + log("2t );

ht = �ht�1 + �t: (4)

where � = log(�2
�
). The parameters of the ARSV(1) model can also be estimated

using the linear model in (4):

In subsection 2.1, we describe the estimators within the �rst group while

subsection 2.2 deals with the estimators based on log(y2t ).

2.1 Methods based on yt

2.1.1 Method of moments

The simplest estimator within this group is the MM used by, for example, Tay-

lor (1986) and Chesney and Scott (1989). Later, Melino and Turnbull (1990)

proposed to estimate the parameters of the ARSV(1) model using generalized

method of moments (GMM). These estimators are based on the convergence of

selected sample moments to their unconditionally expected values. The proce-

dure also implies the estimation of a weighting matrix that takes into account
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the non-iid property of the moment discrepancies. The problem is that the score

function in ARSV models cannot be computed and, consequently, the proper

set of moments to be used should be guessed. An alternative approach to esti-

mate SV models using the MM principle, is the simulated method of moments

(SMM), proposed by Du�e and Singleton (1993), that replaces the vector of

analytical moments is replaced by the vector of moments of a simulated process.

Finally, Andersen and S�rensen (1996) propose to improve the MM procedure

by using a penalty function to ensure stationarity of the model and employing

a modi�ed weighting matrix.

Hansen (1982) demonstrates that the GMM estimator is consistent and

asymptotically normal. Another advantage of this estimator is that it is very

simple. For this reason, there are numerous empirical applications where the

parameters of SV models are estimated using GMM estimators. For example,

Andersen (1994) applies this procedure to a series of IBM returns and Ghyshels

and Jasiak (1996) study the S&P stock index. Vetzal (1997) �t the SV model

to short term interest rates and Flemming et al. (1998) to the S&P 500, the

T-bond and the T-bill returns to study the volatility linkages in the stock, bond

and money markets.

However, these procedures have poor �nite sample properties and their ef-

�ciency is suboptimal with respect to ML methods. Jacquier et al. (1994)

�nd substantial bias and sampling variability, especially for the estimates of

�
2
� , and show that the performance of the technique worsens when there is

high persistence (high �) and low coe�cient of variation, de�ned as C:V: =

V (�2t )=(E(�
2
t ))

2 = expf �2
�

1��2
g � 1. As real time series of returns are charac-

terized by highly persistent volatilities, it seems that the methods based on

the MM principle are not suitable to estimate the parameters of SV models.

Furthermore, the GMM criterion surface for the ARSV(1) model is highly ir-

regular. Therefore, optimization fails to converge, specially for small sample

sizes. A large amount of non-converging estimations has also been reported by

Andersen and S�rensen (1996). This problem can be caused by imprecise es-

timates of the long-run covariance matrix, and, consequently, would disappear
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with an accurate approximation of the true weighting matrix; see Andersen et

al. (1999).

Another important limitation of the GMM based estimators is that they do

not generate estimates of the volatility so other procedures as, for example, the

Kalman �lter should be used to get those estimates; see, for example, Andersen

(1994) and Ghysels and Jasiak (1996).

2.1.2 Maximum likelihood estimators

Recently, ML estimators of the parameters of SV models have experienced a big

progress thanks to the development of numerical methods based on importance

sampling and Monte Carlo Markov Chain (MCMC) simulation techniques; see

Wong (2002) for a description of MCMC algorithms in the framework of ARSV

models.

The main attractive of importance sampling over MCMC algorithms is that

is less computationally demanding and avoid convergence problems. Further-

more, the accuracy of the estimators can be increased by augmenting the simula-

tion sample size. However, MCMC algorithms are more 
exible than importance

sampling because they allow large dimensional problems to be split into smaller

dimensional tasks.

The �rst importance sampling algorithm applied to SV models was Geweke

(1994), who also introduced the possibility of using MCMC in this setting. Al-

though his procedure has not been directly applied to real time series, it is

important because it was the basis of many other procedures proposed after-

wards, for example, Danielsson (1994), Shephard and Pitt (1997) and Sandmann

and Koopman (1998).

The �rst MCMC estimator of the parameters of ARSV(1) models was pro-

posed by Jacquier et al. (1994), JPR onwards, who consider a slightly di�erent

parameterization of the ARSV(1) model, given by

yt = "t�t; (5)

log(�2t ) = 
 + � log(�2t�1) + �t;
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where 
 = log(�2
�
)(1 � �). The JPR procedure treat the volatilities, �t; t =

1; :::; T; as if it were a vector of unknown parameters to be estimated, so that

they focus on the joint posterior �(��; �2 j y) where �� = (
; �; �2�). As com-

monly used in standard Bayesian analysis of regression models, the authors con-

sider the Normal-Gamma prior for ��: Draws of �2t are performed considering

the univariate conditional distributions p(�2t j �2t�1; �2t+1; ��; y) for t = 1; :::; T

and combining an accept/reject and a Metropolis algorithm. Inference about ��

is carried out by means of the marginal distribution �(�� j y) and the smoothing

problem is solved by means of the marginal distribution �(�2 j y): Therefore,

the JPR procedure permits to obtain simultaneously: (i) sample inference about

the parameters, (ii) smooth estimates of the unobserved variances and (iii) pre-

dictive distributions of multistep forecasts of volatility taking into account the

inherent model variability and the parameter uncertainty. However, Shephard

and Kim (1994) point out that the sampler for the smoothing of the volatility

is computationally ine�cient. This sampler is slow if � is close to one and �2�

is small because of the almost singularity of the matrix Corr(� j y): A feasible

alternative could be the e�cient multi-move algorithm by Shephard and Pitt

(1997) that outperforms the single block JPR approach in computational terms;

see Sandmann and Koopman (1998) and Wong (2002)2. However, Wong (2002)

suggest to use single-move algorithms because, although they are not robust, its

implementation is simpler. On top of that, Andersen (1994) also notes that the

algorithm is not well suited to the �ltering problem of updating the posterior

of �t as more data are accumulated.

If the simulation size is large, the JPR estimator has asymptotically the

same distribution as the ML estimator.

By means of an extensive Monte Carlo study Jacquier et al. (1994) show

that MCMC outperforms both quasi-maximum likelihood (QML)3 and GMM

2Amulti-move (or block-move) algorithm is based on sampling a block of states at a time in-

stead of sampling only one state, as in Geweke (1994) or JPR. That is, let ht;k = (ht; :::; ht+k);

then the Shephard and Pitt (1997) algorithm samples from p(ht;k j ht�1; ht+k+1; y; �); where

ht�1 and ht+k+1 are stochastic knots.
3The QML estimator will be described in section 2.2.
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estimators in e�ciency, demonstrating that the convergence of their Markov

chain is rapid and reliable. They consider the following parameter design:

� = (0:9; 0:95; 0:98) and C:V: = (10:0; 1:0; 0:1): That is, for each parameter

� considered in the experiment, there are three associated values of �2� :
4

However, the procedure is rather complicated and requires substantial com-

putations that contrast with the simplicity of alternative methods. Recently,

and despite the complexity of extending this approach, the generalization to fat

tails and correlated errors has been implemented in Jacquier et al. (2002).

On the other hand, Andersen (1994a) points out that the JPR procedure

is not easily applicable to analyze SV-in-mean (SV-M) models that relate the

conditional mean return and an estimate of volatility based on current infor-

mation. In general, due to its lack of 
exibility, the JPR algorithm needs to

be non-trivially modi�ed for extensions such as the introduction of explanatory

variables, as well as the multivariate approach; see Jacquier et al. (1995). Fur-

thermore, increasing the number of parameters suppose a big computational cost

to the MCMC procedure. For example, Jacquier et al. (1994) always remove

the AR(1) component and the monthly e�ects in their empirical applications in

order to decrease the number of parameters.

Because of its computational cost, the JPR algorithm has not been used

very often in empirical applications, even though is an e�cient method.

An alternative estimation procedure within this group is the simulated max-

imum likelihood (SML) estimator of Danielsson and Richard (1993). The pri-

mary purpose of this technique is to obtain the likelihood in (2) by factorizing

the joint density f(y; h j �) in an importance sampling function  (h j y) and a

remainder function �(h; y); so that

f(y; h j �) = �(h; y) (h j y): (6)

The expected value of the remainder function is E [�(h; y)] = f(y j �). Then a

4In this Monte Carlo setting, when � = 0:9; �2� = (0:4556; 0:1317; 0:0182); in the case

� = 0:95; �2� = (0:2337; 0:0676; 0:0092) and �nally if � = 0:98; �2� = (0:0948; 0:0274; 0:0037):
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natural estimator of f(y j �) is the MC sample mean, namely

f̂T (y j �) =
1

T

TX
t=1

�(�t; y); (7)

where f�tgTt=1 is a random sample generated from  (h j y): The variance of the

remainder function �(h; y) is minimized by means of the Accelerated Gaussian

Importance Sampling (AGIS) algorithm of Danielsson and Richard (1993). Once

the likelihood is evaluated by simulation, estimates are obtained by means of a

derivative-free optimizer. The asymptotic distribution of the SML estimator is

the same as for the ML estimator.

Danielsson (1994) analyses the �nite sample properties of the SML procedure

and compares them with MM, QML and JPR. He concludes that SML clearly

outperforms the MM and QML estimators, while SML and JPR have similar

RMSE. However, his conclusions are based on just one experiment with 
 =

�0:736; � = 0:9 and �� = 0:363 and T = 2000:

With respect to the solution to the smoothing problem, Liesenfeld and Jung

(2000) provide a method to estimate the volatility using the conditional expec-

tation E(h j y; �) evaluated at the SML estimates of �.

However, the SML procedure su�ers from several drawbacks. Jacquier et al.

(1994) criticize the fact that the way in which SML evaluates the integral is not

direct, so that it is hard to measure the accuracy of the proposed approximation.

In fact, the likelihood can only be exactly evaluated for � = 0; and for the rest

of parameter values is not available. To solve this problem, JPR propose to nest

the SML procedure in a wider Bayesian framework using Monte Carlo methods

of numerical integration. However, this extension of the SML procedure is not

jet developed. Furthermore, the method is not easily generalizable to other SV

models, as the adaptation of the importance function is not straightforward.

Danielsson (1998) considered the multivariate extension of the SML procedure.

Finally, Shephard (2000) presents evidence that typical importance samplers

for the ARSV model may not posses a variance and, consequently, not obey a

standard central limit theorem.
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There are several empirical applications of the SML procedure along the lit-

erature. For example, Danielsson (1994) analyze the S&P 500 index, Liesenfeld

(1998) applies the SML estimator to German stock-market returns and Liesen-

feld and Jung (2000) �t the ARSV(1) model with Normal and Student-t errors

to six series of �nancial returns. Finally, Liesenfeld (2001) applies the method

to estimate an ARSV model and a bivariate mixture model for closing prices of

the stocks of IBM and Kodak.

Alternatively, Fridman and Harris (1998) propose a direct ML estimation

method that calculates the likelihood function directly by means of the recursive

numerical integration procedure suggested by Kitagawa (1987) for non-Gaussian

�ltering problems. This method can be considered as an extended Kalman �lter.

Through a small simulation experiment, Fridman and Harris (1998) conclude

that their direct ML procedure performs better than QML and GMM, and

similar to SML, the simulated expectation maximization (SEM) algorithm by

Kim and Shephard (1994), and the JPR procedure. The smoothed sequence

of volatilities can be obtained with an additional forward-recursion step in the

extended �lter. They apply their technique to the S&P 500 index considering

both Gaussian and Student-t errors.

Finally, Watanabe (1999) proposes a non-linear �ltering natural extension

of QML. He obtains the exact form of the likelihood by means of a non-linear

�lter that makes use of the conditional probability density functions of the log-

volatility and the observed series5. Watanabe (1999) carries out a small Monte

Carlo comparative study with the same design proposed by JPR and shows

that his non-linear �ltering maximum likelihood (NFML) procedure outperforms

QML and GMM in e�ciency, and is close to SML and JPR. He also proposes

a smoothing algorithm to estimate the volatilities that is shown to be superior

to the standard smoothing solution used in QML.

The NFML procedure can be used in models with a linear structure in the

5This is not the �rst attempt to use of non-linear �lters in order to estimate the log-normal

SV model. For example, Brigo and Hanzon (1998) use projection �lters in order to estimate

the model.
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mean where the errors are assumed to be normal. Finally, Watanabe (1999)

uses this procedure to �t the Tokyo Stock Price Index (TOPIX).

However, one of the main drawbacks of methods based on an extended

Kalman �lter (as Fridman and Harris (1998) or Watanabe (1999)) is their slow

convergence. These procedures also involve choosing a priori a �xed grid over

which the process will be integrated, and the optimal grid may not exist; see

Sandmann and Koopman (1998).

Recently Yu et al. (2002) propose a new class of SV models, the nonlinear

SV model, where the volatility is transformed according to the Box-Cox power

function. This new speci�cation includes the lognormal SV model. The pro-

posed estimation procedure is another MCMC algorithm where the simulation

e�ciency of the single-move algorithm is improved by updating the components

of ht sequentially. Properties of this algorithm compared with other MCMC pro-

cedures developed in the SV setting are not already established. The authors

apply the new procedure to the Dollar/Pound exchange rate.

2.1.3 Estimation procedures by means of an auxiliary model

The methods described in this subsection choose an auxiliary model easy to

estimate, as an instrument to estimate a model easy to simulate. Notice that

SV models are easy to simulate although they are di�cult to estimate. There

are two main methods proposed within this group: the Indirect Inference and

the E�cient Method of Moments (EMM) methods.

The indirect inference estimator proposed by Gourieroux et al. (1993) is

given by

~�HT = argmin

� 2 �

�
�̂T � ~�TH(�)

�
0


̂T

�
�̂T � ~�TH(�)

�
; (8)

where �̂T is obtained by maximizing an auxiliary criterion from the auxiliary

model QT (�;yt); ~�TH(�) is an estimate of the binding function obtained by

maximizing QTH(�;yTH (�)) and yTH(�) = ( y1; :::; ytH) is a vector of simulated

observations. Gourieroux et al. (1993) propose the quasi-likelihood function of
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Harvey et al. (1994) as an auxiliary criterion to estimate a continuous time SV

process. Pastorello et al. (1994) also estimate continuous time SV models using

Indirect Inference. Engle and Lee (1996) and Calzorali et al. (2001) use GARCH

as the auxiliary model. Monfardini (1998) �ts the log-normal SV model through

indirect inference with AR(m) and ARMA(1,1) as auxiliary models. Finally,

Fiorentini et al. (2002) �t the SV model proposed by Heston (1993) to call

options on the Spanish IBEX-35 index using a nonlinear asymmetric GARCH

(NAGARCH) as auxiliary process.

The EMM approach introduced by Bansal et al. (1993, 1995) and Gallant

and Tauchen (1996) is similar, but is based on score calibrating the criterion

function. EMM improves the Indirect Inference approach in computational

terms, as there is no need to re�t the score to each simulated realization, while

in the Indirect Inference procedure the binding function should be computed

at each step. The EMM procedure has been implemented by Engle (1994) and

Ghysels and Jasiak (1994) to estimate SV models in continuous time. Then,

Gallant et al. (1997) and Jiang and van der Sluis (2000) analyze some discrete

time SV models by EMM. In van der Sluis (1997a, 1997b), the EMM procedure

is applied to analyze exchange rate and S&P index series making use of the

EGARCH model as the auxiliary process6. During the last years EMM has

been mainly applied for SV models in continuous time, as in Andersen and

Lund (1997), Chernov and Ghysels (2000) or Dai and Singleton (2001).

Gourieroux et al. (1993) demonstrate that the Indirect Inference and EMM

estimators are asymptotically equivalent. Both estimators are consistent and

asymptotically normal. Furthermore, Tauchen (1997) and Gallant and Long

(1997) show that the estimated covariance matrix of the EMM estimator ap-

proaches that of maximum likelihood, as the score generator approaches the

true conditional density.

There is available only reduced Monte Carlo evidence on the �nite sample

properties of the Indirect Inference and EMM. For example, Monfardini (1998)

6The code in Ox 2.0 to implement the EMM procedure proposed in van der Sluis (1997a,

1997b) is available at: http://www.geocities.com/WallStreet/Exchange/6851/
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concludes that the Indirect Inference estimator performs well in �nite samples,

but JPR procedure and the SEM of Kim and Shephard (1994) are more e�cient.

Andersen et al. (1999) analyze the �nite sample properties of EMM estimators

of SV models and observe an improvement in e�ciency compared with GMM,

although they are not as e�cient as JPR. As they point out, the EMM procedure

can be considered to be conceptually between the GMM and the methods that

infer the exact shape of the likelihood. They also state that the e�ciency of the

method for �nite samples strongly depends on the choice of the auxiliary model,

specially for small samples. Calzolari et al. (2000) also develop a Monte Carlo

study based on the Jacquier et al. (1994) design. Their procedure is shown to

be less e�cient than the approach of Jacquier et al. (1994), as the auxiliary

model does not nest the model of interest and no prior information is used.

One of the main drawbacks of the Indirect Inference and EMM estimators

is that none of them provide exact �ltering and smoothing solutions for the

associated volatility. Therefore, alternative procedures are necessary to obtain

volatility estimates. Furthermore, these two procedures are very expensive in

computational terms.

Table 1 summarizes the properties of the estimators described in this sub-

section. The �nite sample properties of the MM estimators are not appropriate

when the volatility is highly persistent, as is often the case in real series of

returns. On the other hand, the methods based on an auxiliary model, seem

adequate for continuous time models but are not, in general, e�cient. The

e�ciency of these methods depend on the auxiliary model and there is not

consensus about the best auxiliary model for discrete ARSV models. On top

of that, these methods do not estimate directly the volatility. The procedures

that seem more relevant are JPR and Watanabe (1999). The JPR procedure

is the basis of many posterior procedures. However, Wong (2002) shows that

it is not the most e�cient among the single-move MCMC procedures. On the

other hand, the method proposed by Watanabe (1999) is not computationally

very intensive and seems very promising for future developments and empirical

implementations. The lack of a deep study of the �nite sample properties of
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this procedure encourages future research on the method.

2.2 Methods based on log(y2t )

2.2.1 Quasi-maximum likelihood (QML)

The QML estimator, proposed independently by Nelson (1988) and Harvey et

al. (1994), is based on linearizing the SV model by taking the logarithms of

the squares of the observations as in expression (4). Treating log("2t ) as if it

were Gaussian, the Kalman �lter can be applied in order to obtain the quasi-

likelihood function of log(y2t ) which, ignoring constants, is given by

logL(log(y2) j �) = �
1

2

TX
t=1

logFt �
1

2

TX
t=1

�
2
t

Ft
; (9)

where �t is the one-step-ahead prediction error of log(y2t ), and Ft is the cor-

responding mean squared error. Ruiz (1994) shows that the QML estimator is

consistent and asymptotically normal. However, the QML procedure is ine�-

cient as the method does not rely on the exact likelihood of log(y2t ). Note that

approximating the density of log("2t ) by a normal density instead of using the

true log(�21) density could be rather inappropriate; see Figure 1 for a comparison

of both densities. The e�ects of this approximation depend on the true param-

eter values and are worse as the variance of the volatility equation �2� decreases.

This is an important problem as in empirical applications to �nancial data, �2�

is typically rather small.

On the other hand, an inlier problem often arises when dealing with the

log-squared transformation. When returns, yt, are very close to zero, the log-

squared transformation yields large negative numbers. In the extreme case, if

the asset return is equal to zero, the log-squared transformation is not de�ned.

In Figure 1 large negative values in the distribution of log(�21) re
ect the pres-

ence of those inliers. To solve this problem, Fuller (1996) proposes the following

modi�cation of the log-squared transformation
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y
�

t = log(y2t + �s
2)�

�s
2

y2t + �s2
(10)

where s2 is the sample variance of yt and � is a small constant. In several

studies this constant has been set equal to 0.02; see, Fuller (1996), Breidt and

Carriquiry (1996) and Bollerslev and Wright (2001).

The �nite sample properties of the QML estimator have been analyzed by

Ruiz (1994) who shows that the bias of the QML estimator of �2� increases

when �
2
� decreases. Jacquier et al. (1994) also �nd that QML has a worse

behavior in situations of high persistence and low �
2
� . Furthermore, they also

remark that, in this case, there is a huge degradation in the �ltering performance

in terms of the RMSE. However, Sandmann and Koopman (1998) and Breidt

and Carriquiry (1996), state that although QML is ine�cient, is not as bad as

Jacquier et al. (1994) show. These authors suppose that the bad results of

QML in Jacquier et al. (1994) may be due to an ine�cient implementation of

the procedure (poor starting values, di�erent convergence criteria, etc.). Finally,

Jacquier et al. (1994) point out that although 
 and � are separately identi�ed,

the high correlation between their estimates indicates that these parameters

are underidenti�ed. On the other hand, Andersen and Sorensen (1996) show

that the QML estimator dominates the GMM estimator for models with a high

degree of persistence. Deo (2002) provides theoretical intuition for this �nding.

Given estimates of the parameters, the log-volatility, ht, can also be esti-

mated by means of a smoothing algorithm; see Harvey et al. (1994) for further

details. Notice that, as log(y2t ) is not Gaussian, the Kalman �lter yields mini-

mum mean square linear estimators (MMSLE) of ht rather than minimum mean

square estimators (MMSE).

Despite the limitations of the method, QML procedure is very 
exible and

several generalizations of the method have been proposed. For instance, the

QML estimator can be directly implemented to estimate models with heavy-

tailed, such as the Student-t or GED, errors. The QML procedure can also be

easily extended to models with explanatory variables or other ARMA models
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for the log-volatility. Furthermore, the multivariate generalization is straight-

forward in this context; see Harvey et al. (1994). Missing or irregularly spaced

observations can also be easily handled. Another interesting generalization of

the QML procedure is to capture the \leverage e�ect" by which the response of

the volatility is larger when the return is negative than when it is positive; see

Black (1986). To deal with the \leverage e�ect", Harvey and Shephard (1996)

introduce correlation between the disturbances "t and �t in model (1); where

Corr("t; �t) = �; so that an increase in predicted volatility tends to be associ-

ated with falls in the stock price. The estimate of � is obtained after imposing

certain distributional assumptions about "t and �t: The corresponding QML

estimators are consistent and asymptotically normal.

The QML method is very easy to implement7 and has often been imple-

mented in practice. For instance, Hwang and Satchell (2000) use QML to an-

alyze four FTSE 100 stock index. Lien and Wilson (2001) �t a multivariate

ARSV model to weekly data on spot prices and future prices of crude oil mar-

kets. McMillan (2001) also estimates by QML a multivariate ARSV model for

the deutschemark/dollar and french franc/dollar exchange rates. Finally, Yu

(2002) applies the procedure to �t an SV model to New Zealand stock market

data.

The last contribution in this area, at the moment, is the recent work by

Alizadeh et al. (2002) who propose a new QML estimation procedure based on

using the range as a proxy of the volatility. The range is de�ned as the di�erence

between the highest and lowest log security prices over a �xed sampling interval.

The new procedure is applied to �ve exchange rates.

2.2.2 Other methods based on linearization

Kim and Shephard (1994) propose a simulated expectation maximization (SEM)

algorithm using a mixture of seven normal distributions to match the �rst four

moments of log("2t ). Later, Mahieu and Schotman (1998) propose a more 
exible

7QML procedure for SV models is already implemented in the software STAMP 6.0 by

Koopman, Harvey, Doornik and Shephard, London: Timberlake consultants, (2000).

17



mixture model in order to accommodate a wider range of shapes of log("2t ).

The main advantage of approximating the distribution of log("2t ) by mixtures

of normals is that, conditional on the mixture component, the state space in

(4) is Gaussian. Besides, the use of mixtures makes the procedure more robust

than QML to the inlier problem. A Gibbs sampling technique that extends

the usual Gaussian Kalman �lter can then be applied in both cases, o�ering

the possibility of using a multi-move Gibbs sampler, as explained by Shephard

(1994) and Carter and Kohn (1994).

The performance of the SEM procedure for �nite samples has been studied by

Fridman and Harris (1998), who show that this procedure is similar to MCMC

and SML in terms of e�ciency.

Later, Kim, Shephard and Chib (1998) (KSC) propose a procedure that

nests and improves several aspects of the SEM estimator; see Jacquier et al.

(1994) for several criticisms of the SEM procedure. Speci�cally, they propose a

MCMC algorithm that samples all the unobserved volatilities simultaneously by

means of an approximating o�set mixture of normals model, together with an

importance reweightening procedure to correct the linearization error. The KSC

procedure provides e�cient inferences, likelihood evaluation, �ltered volatility

estimates, diagnostics for model failure and computation of statistics for com-

paring non-nested volatility models. However, its �nite sample properties have

not been compared with other estimators. Finally, Kim et al. (1998) implement

the KSC method to analyze daily returns of the exchanges rates of the U.K.

Sterling, German Deutschemark, Yen and Swiss Franc against the U.S. dollar.

The generalization of the KSC method to Student-t errors was proposed by

Chib et al. (2002) who also include a generalization of the method for the SV

model with jumps.

Alternatively, Sandmann and Koopman (1998) propose approximating the

likelihood function by a Gaussian part constructed via the Kalman �lter plus a

correction for departures from the Gaussian assumption relative to the true un-

known model. Their procedure is based on previous work by Shephard and Pitt

(1997) and Durbin and Koopman (1997), who perform methods for construct-
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ing the likelihood function for general state space models using importance

sampling. The procedure, known as Monte Carlo Likelihood (MCL), gener-

ates simultaneously estimates of the parameters and the latent volatility. The

Kalman �lter smoother applied to the approximating Gaussian SV model in the

MCL procedure e�ectively computes the posterior mode estimates of the volatil-

ity without obtaining the marginal of �(h; � j y) as in Jacquier et al. (1994).

Using the same design of Jacquier et al. (1994), Sandmann and Koopman (1998)

compare the �nite sample properties of QML, JPR and MCL. They conclude

that with a small number of draws, the MCL procedure gives similar results to

MCMC in terms of e�ciency and it is not so expensive in computational terms.

The MCL estimation procedure can be easily generalized to heavy-tailed

errors, explanatory variables or to the inlier problem. The multivariate case is

not yet available. Although Sandmann and Koopman (1998) also mention that

the MCL can be implemented in models with correlated "t and �t and with

stochastic seasonal components, these extensions have not yet been developed

in the literature.

Brandt and Kang (2002) propose an interesting application of this procedure

for monthly returns on the CRSP index and use MCL to �t a VAR model where

the �rst equation describes the dynamics of the conditional mean and the second

equation is a SV model.

The MCL procedure can also be generalized to the SV-M model. The in-

corporation of the unobserved volatility as an explanatory variable in the mean

equation is analyzed by Koopman and Uspensky (2002) who �t the SV-M model

to three di�erent �nancial series. In this empirical application, estimates of the

volatility are obtained by means of the particle �ltering technique of Pitt and

Shephard (1999).

Recently, Singleton (2001) and Knight et al. (2002) have proposed a new

estimation procedure based on the empirical characteristic function (ECF). As

log(y2) is the convolution of an AR(1) process and an iid logarithmic �21 se-

quence, there is a closed form expression for the characteristic function so that

the model is fully and uniquely parameterized by it. Knight and Yu (2002) es-
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tablish the strong consistency and asymptotic normality for the ECF estimators

with a general weight function. The procedure is applied in Knight et al. (2002)

to the Australian/New Zealand dollar exchange rate.

Table 3 summarizes the main estimators of the parameters of the ARSV(1)

model described in this subsection, together with their asymptotic properties

and their main advantages. It seems that the most competitive procedure based

on the linearization log(y2t ) is the MCL approach, both in terms of the e�ciency

of the estimators and its computational requirements.

2.3 Illustration with simulated data

To illustrate the di�erences between the estimates obtained by the some of the

alternative estimators previously described, in this subsection, the ARSV model

is �tted to simulated series generated by two di�erent models. The �rst model

considered (M1) has parameters � = 0:95; �2� = 0:05 and �� = 1:0 and the sec-

ond (M2) � = 0:98; �2� = 0:02 and �� = 1:0: The parameters have been selected

to represent values often found in empirical applications of daily data. One

series of size T = 5; 000 is generated by each of the models. The parameters are

estimated using the whole series and using also the �rst 500 and 1; 500 observa-

tions by GMM, JPR, QML, MCL and KSC. With respect to GMM, estimates of

the covariance of the di�erences between the sample and populational moments

have been obtained as in Melino and Turnbull (1990)8. We have not obtained

the original code of the JPR estimator and, consequently, we have implemented

our own code following Wong (2002) with the number of iterations suggested by

JPR, i.e. 1500 burn-in iterations and 2500 iterations9. The convergence of the

resulting algorithm is extremely slowly10. The MCL procedure is implemented

8Probably, best results for GMM method would have been obtained by using the other

procedures, as using the Barlett window; see Andersen et al. (1996).
9We are very grateful to Mike Wiper for his continuos help to develop this code.
10Geweke in his comments on Jacquier et al. (1994) proposes an alternative algorithm

that uses an adaptive rejection sampling algorithm (Wild and Gilks (1993)) given that the

log-conditional probability density of log(�2t ) is globally concave. Although this alternative is

simpler and would produce a faster sampler, no detailed analysis of this suggestion is provided
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using the library SsfPack 2.3 of Koopman, Shephard and Doornik (1999)11. The

program employed for estimation is named sv mcl est.ox and can be downloaded

from the webside of Siem Koopman12. The KSC procedure is implemented in

BUGS following the approach by Meyer and Yu (2000)13. Alternatively, the

KSC procedure can also be implemented using the software package SVPack 2.1

by Neil Shephard but we do not use this approach as it only provides Monte

Carlo standard errors of the parameters, that cannot be compared with those

of the rest of procedures14.

Estimates of �� are obtained in di�erent ways depending on the estima-

tion procedure. In the QML case, �̂� is the sample standard deviation of the

observations standardized by the smoothed estimates of the volatility. The ap-

proximation of the asymptotic variance of �̂� is given by V ar(�̂2
�
) =

(�2=2)(�̂2
�
)2

T
;

see Harvey and Shephard (1993). In MCL and JPR, the corresponding algo-

rithms obtain estimates of 
 so estimates of �� and its corresponding standard

deviation are obtained after transformation. Finally, KSC estimates directly ��:

Table 4, that reports the estimation results for model M1, shows that, for

moderate sample sizes, T = 500, the GMM estimates of � and �2� could under-

estimate the true values, even can lead to conclude that the volatility is close

to be constant over time. Furthermore, the standard errors of these estimates

are clearly greater that for any of the other methods considered. Finally, we

would like to point out that, for this moderate sample size, there are important

di�culties for the convergence of the GMM estimation algorithm. The QML

estimator of � also seems to underestimate the true value when the sample size

is moderate. The estimates of these parameters obtained by the other methods

are rather similar. With respect to their standard errors, the biggest corre-

sponds to the QML estimator and the smallest to the KSC. Looking at the

and the implementation of the algorithm exceeds the scope of this survey.
11More information at http://www.ssfpack.com
12More information at http://www.econ.vu.nl/koopman/sv/
13BUGS is available free of charge from http://www.mcr-

bsu.cam.ac.uk/bugs/welcome.shtml
14More information at http://www.nu�.ox.ac.uk/users/shephard/ox/
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estimates of the scale parameter, it can be observed that all of them are very

similar. However, in this case, the smallest standard error corresponds to the

GMM estimator and the biggest to the KSC estimator. Finally, for the larger

sample sizes, T = 1000; 5000, the estimates of all the parameters are similar

independently of the estimator used. The main di�erences between the estima-

tors arise in the standard errors, with the GMM standard errors of b� and b�2�
being rather big compared with the other estimators. Notice that the results

for QML and KSC are remarkably similar. Once more, the smallest standard

errors of the estimates of �� are obtained using the GMM and QML estimators.

The results for the M2 model are reported in Table 5 and are very similar

to the ones reported in table 4. Although the results in tables 4 and 5 have

just scratch the surface of the problem, it seems that the best estimator of the

scale parameter is based on using the corresponding sample moment. Therefore,

as suggested by Harvey and Shephard (1993), it seems to be a good strategy

to standardize the original observations using the estimated marginal standard

deviation before the ARSV model is estimated and then to estimate the scale

parameter by the sample standard deviation of the observations standardized

by the estimated conditional standard errors. Furthermore, for the sample sizes

usually encountered in empirical applications, it seems that, with the exception

of the GMM estimator, the results obtained by the methods considered in this

example are rather similar and, consequently, it is not worth to use the more

computer intensive methods to estimate the parameters. However, before a

conclusion can be reached it seems necessary to know whether the asymptotic

standard errors reported in tables 4 and 5 are adequate approximations of the

standard errors of the sample distributions of each of the estimators. It is clear

that a more deep study is due.

With respect to the estimation of the latent volatilities, �gure 2 plots the

corresponding volatilities estimated by the QML, JPR, KSC and MCL �lters,

together with the underlying simulated volatilities for the �rst model considered

(� = 0:95; �2� = 0:05 and �� = 1) and T = 1500. Notice that the KSC estimates

are too volatile while the QML estimates are too smooth. The corresponding
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Root Mean Square Errors (RMSE) are 0.32 and 0.29 respectively. On the other

hand, the JPR and MCL estimates are rather similar. In both cases, the RMSE

is 0.27. Finally, �gure 3 plots the estimated volatilities obtained using the QML,

JPR and MCL �lters with the parameters �xed at the GMM estimates together

with the simulated volatilities. Once more, the shapes of the JPR and MCL

estimates are quite similar with RMSE of 0.27. As before, the QML estimates

have a smoother shape and the RMSE is slightly bigger with a value of 0.29.

3 Estimation methods for LMSV models

The autocorrelation function of the squared high frequency returns is usually

characterized by its slow decay towards zero. This decay is neither exponential,

as in short-memory processes, neither implies a unit root, as in integrated pro-

cesses; see, for example, Ding et al. (1993). Consequently, it has been suggested

that squared returns may be modelled as a long memory process, whose auto-

correlations decay at an hyperbolic rate. Evidence of long-memory in second

order moments is also found in Dacorogna et al. (1993) and Lobato and Savin

(1998), among others.

Model (3) with � = 0 is the basic Long-Memory SV (LMSV) model intro-

duced by Harvey (1998). Breidt et al. (1998) propose a LMSV model where the

log-variance ht follows an ARFIMA(p; d; q) process. In both papers, estimation

is carried out by QML, maximizing the Whittle discrete approximation to the

Gaussian likelihood function of log(y2t ) in the frequency domain, given by

~L(� j y) = �
1

2T

T�1X
j=1

�
log f(�j ; �) +

I(�j)

f(�j ; �)

�
; (11)

where f(�j ; �) is the spectral density, �j =
2�j
T

the corresponding frequen-

cies and I(�j) the sample spectrum. Breidt et al. (1998) demonstrates that

the QML estimator is strongly consistent. Furthermore, Deo (2002) proves the

asymptotic normality of the QML estimator obtained maximizing the time do-

main likelihood. He conjectures that this result may also hold for the Whittle
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estimator. Breidt et al. (1998) also analyze the �nite sample properties of the

Whittle estimator, concluding that it performs properly. However, their param-

eter design is not very realistic and P�erez and Ruiz (2001) extend their analysis

and conclude that, when parameters are close to non-stationarity (d � 0:5)

and/or to homoscedasticity (�2� � 0), the properties of the QML estimator are

very poor, so that huge sample sizes are needed to obtain reliable inferences.15

Harvey (1998) suggest an algorithm to obtain the smoothed estimates of the

volatility. The empirical implementation of the algorithm is developed in P�erez

(2000) and applied to a real series in P�erez and Ruiz (2001).

Estimation of LMSV models has also been carried out by means of Bayesian

procedures. Hsu and Breidt (1997) obtain the posterior distribution of the pa-

rameters and the smoothed estimates of the volatilities of LMSV processes by

means of a Gibbs sampling based algorithm. So (1999) develops a new algo-

rithm based on the state space formulation of Gaussian time series models with

additive noise where full Bayesian inference is implemented through MCMC

techniques. This algorithm can be applied to model outliers in long memory

time series and long memory stochastic volatility models. The performance of

the algorithm for �nite samples is not checked. So (2002) applies the algo-

rithm to S&P500 data. Finally, Chan and Petris (2000) propose a Bayesian

approach to perform inference in the time domain based on the truncated likeli-

hood method in Chan and Palma (1998) where the LMSV model is expressed as

a linear state space model. Nevertheless, there is no �nite sample Monte Carlo

analysis, so that the behavior of this procedure compared with other methods

is unknown.

All three Bayesian based approaches are computationally intensive and not

easy to generalize to more complicated models, for example, when the log-

volatility equation has an ARMA component.

Deo and Hurvich (2001) suggest a semiparametric estimator of the param-

eter d based on the GPH estimator of Geweke and Porter-Hudak (1983) for

ARFIMA models and derive its asymptotic bias and variance. Under certain

15Notice that, in the unit root case the parameters of the ARLMSV model are not identi�ed.
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conditions, the corresponding asymptotic distribution is normal, although the

convergence rate is
p
m, where m is the number of Fourier frequencies used in

the corresponding log-periodogram regression. Furthermore, the generalization

to the ARLMSV case has not been proposed. A small Monte Carlo experiment

is carried out for a unique sample size of T = 6; 144.

Finally, Wright (1999) proposes a GMM estimator of LMSV models and

demonstrates its consistency and asymptotic normality, provided that -1=2 <

d < 1=4: However, numerous studies have found that usually the estimates of d

for high frequency returns are between 0.3 and 0.47; see, for example, Andersen

et al. (2001). Therefore, the case d � 1=4 is most interesting from an empirical

point of view. In fact, no application with real data is shown. Monte Carlo

experiments comparing the GMM and the frequency domain estimators show

that the asymptotic distribution in GMM is not a very good approximation

for �nite samples, even for the biggest sample size considered, T = 4; 000.

Furthermore, it can be observed that, although both estimators have similar

standard errors, the biases are bigger for GMM. Deo (2002) shows that, with

the moment conditions that have been commonly used, the rate of convergence

of the GMM estimator is T 1=2�d. Alternatively, he proposes a new set of moment

conditions based on the linear transformation log(y2t ) and shows that, in this

case, the GMM estimator is
p
T consistent and asymptotically normal.

Table 6 provides a summary of the main characteristics of the estimators

proposed for LMSV models.

4 Empirical application

In this section, the ARSV(1) model is �tted to daily observations of the S&P

500 stock price index. The series is observed daily from 19 February 1997 to 15

February 2002 and T = 1; 30316. The prices, pt; are transformed to returns, rt;

in the usual way, i.e. rt = 100 � log(pt=pt�1), and centered around the sample

mean. Figure 4 plots the series of returns and the corresponding autocorrelations

16The series is obtained from: http://www.spglobal.com/indexmaineuro350.html.
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of the squared returns. Table 7 reports several sample moments of the daily and

squared returns. As usual, returns are leptokurtic and uncorrelated although

not independent given that squared returns have signi�cant autocorrelations.

However, there is not evidence of long memory in squared returns. Therefore,

we �t the short memory ARSV model to the series rt.

Table 8 shows the parameter estimates of the ARSV model obtained by

GMM, JPR, QML, MCL and KSC. It can be observed that the estimates of the

persistence parameter, �, are rather similar being the smallest 0.93 obtained

when the MCL estimator is used and the biggest 0.96 when the parameters are

estimated by GMM or JPR. However, the corresponding standard errors are

rather di�erent. When the parameters are estimated by JPR, MCL or KSC,

the standard errors are approximately 0.02 but when are estimated by GMM

or QML, they are much bigger, being 0.05 and 0.07 respectively. With respect

to the estimates of the variance of volatility, �2� , there are important di�erences

depending on the estimator used. For example, if the parameters are estimated

by JPR or QML, the estimates are approximately, 0.01 and, consequently, the

evolution of the volatility is very smooth. However, when the parameters are

estimated by GMM, MCL or KSC, the variance is much bigger, 0.05 and, there-

fore, the volatility is more volatile. Notice, that these di�erences on the esti-

mates of the variance are also re
ected on the corresponding estimates of the

C:V: that go from 0.1164 to 1.0006 when the parameters are estimated by QML

or GMM respectively. In this example, the standard errors of the estimates of

�
2
� are rather similar. Finally, looking at the estimates of the scale parameter,

��, all of them are around 1. Once more, the main di�erences appear in the

standard errors although, in this case, the smallest corresponds to GMM and

the biggest to JPR.

The estimates of the volatility obtained by the QML, JPR, MCL and KSC

procedures are plotted in Figure 5. All four volatility estimates detect the

dynamic evolution of the latent variable, although the QML procedure produces

smoother estimates than MCL and KSC which are rather similar. The variance

of volatility is too small so that this could be expected. The smoothness of MCL
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estimates can be controlled by the number of replications in the importance

sampler. The sharpy form of KSC volatility estimates is a direct consequence

of the Bayesian approach used and was also observed in the simulated data.

Finally, as the GMM procedure does not generate estimates of the volatility, we

have obtained these estimates using the QML, JPR and MCL �lters with the

parameters �xed at the GMM estimates. The results appear in �gure 6, where

it can be observed that, once the parameters are �xed at the GMM estimates,

all the �lters give similar estimates of the volatility.

5 Summary and conclusions

In this paper, the main estimation procedures of the ARSV(1) and LMSV mod-

els have been revised. For each method we describe, when they are available, the

asymptotic and �nite sample properties of the estimators, the main advantages

and limitations and possible generalizations of these procedures.

There are several methods that seem to match the benchmark e�ciency es-

tablished by the MCMC procedure of Jacquier et al. (1994), like MCL, SML,

ML of Fridman and Harris (1998) or the NFML approach of Watanabe (1999)

being, at the same time, simpler and, consequently, easier for empirical imple-

mentation. On the other hand, there are very simple methods as, for example,

QML that, although are not e�cient, can be easily implemented in real time se-

ries and, consequently, generalized to more complicated models as, for example,

multivariate systems. Whether the lost of e�ciency for the sample sizes usually

encountered in �nancial time series, compensates of using the more computa-

tionally demanding methods is still an open question. It seems that the MCL

method could be a reasonable compromise between e�ciency and computational

simplicity. Despite that, there is no detailed comparative study that analyze

all those methods. In fact, some of the Monte Carlo experiments are so re-

strictive that they are only available for one set of parameter values. It seems

worth to carry out an extensive and detailed comparison between the estimation

methods of SV models that have proven to be more attractive both in terms of
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their asymptotic and �nite sample properties and their simplicity for empirical

applications.

With respect to results on the properties of the alternative procedures to

estimate the latent volatilities, only Jacquier et al. (1994) compare volatility

estimates calculated by MCMC with Kalman �lter estimates obtained using

as parameters for the �lter the QML and GMM estimates. In this paper, we

also compare the estimates of volatility obtained by the alternative algorithms

considered, using both, simulated and real data. It seems that the estimates

obtained by the simplest QML �lter are too smooth while, on the other hand,

the estimates of the KSC algorithm are too sharp. In between, the JPR and

MCL �lters give similar estimates. Finally, we have observed that when the

�lters are run with the parameters �xed at the GMM estimates, all of them give

similar estimates.

The main conclusion is that, at the moment, it is not possible to recommend

any of the methods to estimate SV models. Further research should be carried

out to compare the e�ciency of the estimates of the parameters and the volatil-

ity, the 
exibility of the procedure to more general situations as asymmetries or

multivariate systems, the robustness of the method and the ease of computation.
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d
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d
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;
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e
la
te
n
t
v
o
la
ti
li
ti
es
.

42



Table 4: Estimation results for one series generated by ARSV(1).

JPR GMM QML MCL KSC

�=0.95
0.9510

(0.0357)

0.7376

(1.3524)

0.9267

(0.0557)

0.9429

(0.0300)

0.9578

(0.0216)

T = 500 �
2
�=0.05

0.0461

(0.0465)

0.0168

(0.3967)

0.0656

(0.0664)

0.0571

(0.0315)

0.0398

(0.0188)

��=1.0
0.8480

(0.0855)

0.9837

(0.0304)

0.9275

(0.0461)

0.9318

(0.0920)

0.9865

(0.1301)

�=0.95
0.9652

(0.0310)

0.9622

(0.1491)

0.9511

(0.0254)

0.9496

(0.0174)

0.9576

(0.0134)

T = 1500 �
2
�=0.05

0.0456

(0.0296)

0.0501

(0.0749)

0.0496

(0.0204)

0.0570

(0.0194)

0.0459

(0.0141)

��=1.0
0.9754

(0.0770)

1.0013

(0.0035)

1.0973

(0.0314)

1.0694

(0.0784)

1.0830

(0.0770)

�=0.95
0.9612

(0.0140)

0.9510

(0.0276)

0.9527

(0.0112)

0.9622

(0.0073)

0.9632

(0.0069)

T = 5000 �
2
�=0.05

0.0406

(0.0121)

0.0541

(0.0163)

0.0443

(0.0130)

0.0371

(0.0072)

0.0363

(0.0072)

��=1.0
0.9887

(0.0372)

0.9993

(0.0074)

1.0136

(0.0159)

1.0037

(0.0382)

1.0080

(0.0394)

Standard errors in parenthesis
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Table 5: Estimation results for one series generated by ARSV(1).

JPR GMM QML MCL KSC

�=0.98
0.9700

(0.0318)

0.9836

(2.5064)

0.9535

(0.0474)

0.9718

(0.0171)

0.9742

(0.0156)

T = 500 �
2
�=0.02

0.0111

(0.0265)

0.0084

(1.3450)

0.0235

(0.0322)

0.0207

(0.0121)

0.0186

(0.0097)

��=1.0
0.9068

(0.0759)

0.9979

(0.3169)

0.8744

(0.0434)

0.8784

(0.1011)

0.9348

(0.1307)

�=0.98
0.9871

(0.0197)

0.9909

(0.1586)

0.9890

(0.0056)

0.9864

(0.0058)

0.9861

(0.0056)

T = 1500 �
2
�=0.02

0.0186

(0.0162)

0.0066

(0.0301)

0.0112

(0.0060)

0.0158

(0.0055)

0.0173

(0.0047)

��=1.0
0.9596

(0.0444)

0.9997

(0.0118)

1.1276

(0.0323)

1.0908

(0.1511)

1.0820

(0.1253)

�=0.98
0.9891

(0.0085)

0.9759

(0.1284)

0.9905

(0.0027)

0.9895

(0.0026)

0.9895

(0.0025)

T = 5000 �
2
�=0.02

0.0184

(0.0074)

0.0182

(0.0227)

0.0102

(0.0029)

0.0121

(0.0022)

0.0124

(0.0019)

��=1.0
0.9661

(0.0217)

0.9978

(0.0035)

1.0089

(0.0158)

1.0000

(0.0369)

1.0070

(0.0739)

Standard errors in parenthesis
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Table 7: Summary statistics of rt

Mean SD SK Kurtosis Max. Min. Q (10)

rt 0.000 1.249 -0.232 .813� 4.965 -7.136 13.777

r
2
t 1.560 3.425 7.270 82.469 50.926 0.000 82.799�

�(1) �(2) �(3) �(4) �(5) �(6) �(7) �(8) �(9) �(10)

rt -0.005 -0.049 -0.046 0.006 -0.021 -0.020 -0.048 0.000 0.000 0.052

r
2
t 0.162 * 0.118 * 0.042 0.019 0.076 * 0.074 * 0.051 0.043 0.060 * 0.041

* Signi�cant at the 5% level

Table 8: Empirical estimates of ARSV model for the S&P 500

ARSV

GMM JPR QML MCL KSC

b� 0:9602

(0:0479)

0:9596

(0:0203)

0:9401

(0:0699)

0:9288

(0:0249)

0:9392

(0:0237)

b�2� 0:0541

(0:0219)

0:0172

(0:0196)

0:0128

(0:0222)

0:0499

(0:0190)

0:0405

(0:0168)

C:V: 1:0006 0:2427 0:1164 0:4381 0:4099

�̂�

1:0005

(0:0157)

0:9673

(0:0639)

1:2051

(0:0371)

1:1248

(0:0542)

1:1260

(0:0619)
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Figure 2: Estimated volatilities of a simulated series with � = 0:95 and

�
2
� = 0:05 and T = 1; 500.
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Figure 3: Estimated volatilities of a simulated series with � = 0:95 and �2� = 0:05

estimated by JPR, QML and MCL using estimates obtained by GMM. T = 1; 500.

4
9



0 200 400 600 800 1000 1200

-6
-4

-2
0

2
4

Lag

0 20 40 60 80 100

-0
.1

0
0
.0

0
.0

5
0
.1

5

Figure 4: S&P 500 Stock Index returns observed dayly from 19 February 1997

to 15 February 2002 and correlogram of the squared returns.
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Figure 6: Estimated volatilities of S& P 500 by JPR, QML and MCL using estimated parameter values obtained by GMM.
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