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Abstract

We analyse the finite sample properties of a QML estimator of LMSV models. We show up its poor
performance for realistic parameter values. We discuss an identification problem when the volatility has a unit
root. An empirical analysis illustrates our findings.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

High frequency financial time series of returns are often characterised by having excess kurtosis and
autocorrelated squared observations. Moreover, these autocorrelations tend to decay very slowly,
suggesting that squared returns could be characterised as a long memory process; see Ding et al.
(1993). This property was incorporated into Stochastic Volatility (SV) models by Harvey (1998);
Breidt et al. (1998), who propose Long-Memory SV (LMSV) models and suggest estimating the
parameters of these models by Quasi-Maximum Likelihood (QML) in the frequency domain. Breidt et
al. (1998) prove the strong consistency of this estimator and analyse its finite sample properties for
some of the parameters of the model in the stationary case concluding that the estimator behaves
properly. However, the parameter values they consider in their simulations are far from the parameter
values often estimated with real financial series. In this paper, we extend their study to all the
parameters of the model and to a bigger range of parameter values that include more realistic and
non-stationary cases and conclude that the properties of the QML estimator may be poor in some
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cases of interest. Finally, we illustrate the problems faced when estimating LMSV models analysing a
series of daily returns for the IBEX35 index.

2. QML estimation of LMSV models

The AutoRegressive Long Memory Stochastic Volatility (ARLMSV) model is given by:

y 5 s s ´ (1a)t * t t

d 2(1 2 fL)(1 2 L) log (s ) 5h (1b)t t

where s denotes the volatility of series y , s is a scale parameter, ´ is a Gaussian white noiset t * t
2process with unit variance, h is NID(0, s ) and independent of ´ , and d can be non-integer.t h t

Model (1a,b) encompasses several SV models previously proposed in the literature. When f 50,
model (1a,b) becomes the basic LMSV model in Harvey (1998); if d50 and uf u,1, we obtain the
ARSV (AutoRegressive SV) model in Harvey et al. (1994); when hd50, f 51j or hf 50, d51j,
model (1a,b) becomes the RWSV (Random Walk SV) model. Notice that in the last case, the
parameters of the ARLMSV model are not identified.

Model (1a,b) can be linearised as follows:

2 2log( y ) 5 m 1 log(s ) 1 j , (2)t t t

2 2 2 2where m 5 log(s ) 1 E(log(´ )) and j 5 log(´ ) 2 E(log(´ )). The QML estimator proposed by* t t t t

Harvey (1998) and Breidt et al. (1998) is obtained by maximising the discrete Whittle approximation
2to the likelihood function of log( y ) in the frequency domain, treating j as if it were Gaussian. Whent t

20.5,d,0.5 and uf u,1, the model is stationary and the QML estimator is consistent; see Breidt et
al. (1998). The asymptotic distribution of QML estimators for LMSV models is still unknown. If
0.5#d#1, the model is not stationary, but taking first differences in Eq. (2) yields a stationary series

2and QML estimation can then be carried out for D log( y ).t

Once the parameters of the model have been estimated, the underlying volatility at time t may be
˜ˆ ˆestimated by s exph0.5h j, where s is the sample standard deviation of the heteroscedasticity* t / T *

˜corrected observations, as suggested by Harvey and Shephard (1993), and h is the smoothedt / T

estimated log-volatility series obtained using the algorithm in Harvey (1998).

3. Finite sample properties of QML estimator

In this section, we analyse the finite sample properties of the Whittle estimator of the parameters of
the ARLMSV model by means of several Monte Carlo experiments. As ´ is assumed to be Gaussian,t

2the variance of j is known to be p /2 and is not estimated. For each model design and sample sizet

considered, T51024, T54096 and T58192, we generate 3000 replicates. Table 1 displays the bias
and standard deviations for some selected ARLMSV models.

In the basic stationary LMSV models (f 50,d,0.5), we observe that the QML estimator of d has a
2large negative bias and its variance decreases as d increases. On the other hand, the estimator of s ish
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Table 1
Simulation bias and standard deviation (in parenthesis) for the spectral QML estimators under several ARLMSV models

2Parameters f d s h

2(f, d, s ) T51024 T54096 T58192 T51024 T54096 T58192 T51024 T54096 T58192h

(0, 0.2, 0.1) – – – 20.026 20.027 0.000 0.121 0.056 0.036
(0.171) (0.157) (0.148) (0.265) (0.149) (0.115)

(0, 0.4, 0.5) – – – 20.009 20.002 20.001 0.069 0.030 0.021
(0.094) (0.052) (0.037) (0.330) (0.171) (0.124)

(0, 0.4, 0.1) – – – 20.100 20.026 20.011 0.137 0.061 0.035
(0.178) (0.111) (0.081) (0.265) (0.137) (0.095)

(0, 0.45, 0.1) – – – 20.101 20.032 20.017 0.141 0.060 0.034
(0.161) (0.086) (0.063) (0.258) (0.124) (0.083)

(0, 0.49, 0.1) – – – 20.105 20.043 20.027 0.149 0.064 0.039
(0.141) (0.068) (0.048) (0.250) (0.111) (0.071)

(0, 0.75, 0.1) – – – 0.044 0.020 0.015 0.053 0.012 0.004
(0.152) (0.081) (0.056) (0.156) (0.064) (0.040)

(0.2, 0.4, 0.1) 0.167 0.073 0.027 20.136 20.070 20.034 0.116 0.057 0.041
(0.520) (0.478) (0.425) (0.189) (0.131) (0.092) (0.271) (0.156) (0.121)

(0.2, 0.45, 0.1) 0.174 0.072 0.026 20.161 20.065 20.032 0.120 0.059 0.044
(0.530) (0.471) (0.424) (0.181) (0.117) (0.081) (0.271) (0.155) (0.123)

(0.9, 0.2, 0.1) 20.052 20.013 20.003 20.024 20.020 20.016 0.071 0.024 0.013
(0.190) (0.089) (0.050) (0.171) (0.122) (0.088) (0.177) (0.071) (0.041)

(0.99, 0.2, 0.1) 20.022 20.018 20.018 0.224 0.275 0.286 20.065 20.087 20.090
(0.019) (0.010) (0.007) (0.139) (0.070) (0.049) (0.052) (0.018) (0.013)

positively biased. Regarding the non-stationary model with d50.75, it seems that the QML estimator
behaves better than in the stationary cases, with small standard deviations and smaller, but positive,

2ˆ ˆbias for d and smaller bias for s . Fig. 1 represents kernel estimates of the simulated probabilityh
2 2 2densities of the QML estimates of d and s for models with hd50.4, s 50.1j, hd50.4, s 50.5jh h h

2and hd50.75, s 50.1j. For the first two models, the QML estimators are not adequate at all whenh

ˆT51024. The distribution of d has always a concentration of mass at d50.5 and the situation
2becomes not much better, even with T58192, when s 50.1. For this model, we also observe that theh

2 2ˆ ˆsample distribution of s is shifted towards zero, so that we will estimate s ¯0 with highh h
2probability. The estimation only improves considerably with the sample size when s 50.5, that is ah

value clearly bigger than the values often estimated with real data. Regarding the LMSV model with
d50.75, the empirical distributions are such that inference is reliable, even when T54096.

ˆIn the ARLMSV models (0,d,0.5, uf u,1), there is always a negative bias in d and a positive
2ˆbias in s , both decreasing the bigger is T, except for the model with f 50.99. In this case, the biash

2ˆ ˆof d is positive and quite large and the bias of s is negative, and none of them decreases with T.h

When the parameter d is near the boundary of non-stationarity (d50.5), the parameter f is largely
overestimated and has much dispersion, while d is always underestimated. It seems that the QML
estimator cannot distinguish whether the non-stationarity comes from the autoregressive polynomial
(f 51) or from the fractional integration (d50.5). This could be expected as the parameters of the
ARLMSV model are not identified when the volatility process has a unit root. Fig. 2 displays the

2 2results for two ARLMSV models, hf 50.99, d50.2, s 50.1j and hf 50.2, d50.4, s 50.1j. Whenh h
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2Fig. 1. Estimated densities of spectral QML estimators of d (top panels), and s (bottom panels) for three LMSV models, left to right:h
2 2 2hd50.4, s 50.1j, hd50.4, s 50.5j, hd50.75, s 50.1j. Vertical line drawn on each graph indicates the true parameter value.h h h

f 50.99, none of the parameters of the ARLMSV model can be estimated with enough precision.
ˆWhen d50.4, the distribution of f has a concentration of mass close to one greater than expected,

explaining the positive and large bias reported in Table 1.
Therefore, the finite sample properties of the QML estimator are such that inference on the

parameters of ARLMSV models based on it may not be reliable. This conclusion contradicts the
2results in Breidt et al. (1998). However, they only consider s 51 and d5h0.2, 0.4j, where the QMLh

estimator behaves quite well.

4. Empirical analysis of IBEX35

Fig. 3 represents daily returns of the IBEX35 index of the Madrid Stock Exchange from 7/1 /87 to
30/12/98 (2991 observations) after having removed some small correlation structure in the mean. The
kurtosis of this series is 8.321 and the Box–Ljung statistic for the first ten autocorrelations of the
squares is Q (10)51129.1, which is highly significant. The squared and log-squared returns have2

4



2Fig. 2. Estimated densities of spectral QML estimators of f (left), d (center) and s (right) for ARLMSV models with parametersh
2 2hf 50.99, d50.2, s 50.1j (top panels) and hf 50.2, d50.4, s 50.1j (bottom panels).Vertical line drawn on each graph indicates the trueh h

parameter value.

Fig. 3. Returns of IBEX35 observed daily from 7/1 /87 to 30/12/98.
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Fig. 4. Sample autocorrelations of squared returns (left) and log-squared returns (right) of IBEX35.

significant autocorrelations, even for very high lags, with a very slow decay, especially remarkable in
the log-squared returns; see Fig. 4.

Consequently, we have first estimated the ARSV model by the QML method of Harvey et al.
(1994). The estimated parameters together with their standard deviations, computed using the
formulae in Ruiz (1994) and Harvey and Shephard (1993), appear in Table 2. As expected, the
autoregressive parameter is estimated very close to one. The results of fitting a RWSV model are also
reported in Table 2.

Regarding long memory models, we have first fitted a LMSV model, obtaining an estimate of d on

Table 2
Estimated parameters (standard deviation in parenthesis) and sample moments of observations standardised using smoothed

a,bvolatility from several ARLMSV models

Model ARSV RWSV LMSV ARLMSV
2 2 2 2ˆ ˆ ˆ ˆEstimated s 50.0168 s 50.0099 s 50.0906 s 50.0155h h h h

Parameters (0.0057) (0.0024)
ˆ ˆf50.9898 f50.6632

] ]
(0.0042)

ˆ ˆd50.7538 d50.7035
] ]
ˆ ˆ ˆ ˆs 50.9297 s 50.9484 s 51.5112 s 51.5484* * * *

(0.0374) (0.0436)
Mean 0.0101 0.0074 0.0113 0.0122
Variance 1.0000 1.0000 0.9999 0.9999
Skewness 20.0284 20.0441 20.0183 20.0127
Kurtosis 3.5620 3.7070 3.3941 3.4380
Q (10) 43.15 80.06 17.89 15.502

Q (50) 101.70 144.61 71.37 68.432

Q (100) 150.41 198.87 117.67 113.392

a Q (k) denotes the Ljung–Box statistic for the first k autocorrelations in the squared observations.2
b No standard deviation of QML estimators is displayed for the long memory models, because their asymptotic

distribution is still unknown.
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ˆthe boundary of non-stationarity (d50.5). As Harvey (1998) suggests this could be indicating that a
non-stationary model is preferable, so a model with d.0.5 has been estimated. Finally, we have also
fitted an ARLMSV model. The results appear in Table 2.

Several sample moments of the standardised observations from the models previously estimated are
also displayed in Table 2. The fit from long memory models is better than from the other models, with
correlations in the squares being no longer significant at the 1% level. However, looking at the
diagnostics on the residuals, it is difficult to distinguish between both long memory models. Notice
that the implications of both models in terms of forecasting future volatilities are different because the
variance of the unpredictable component in the LMSV model is bigger than in the ARLMSV model,
which has an AR component that could be predicted.

In order to choose between both long memory models, and given that the asymptotic distribution of
the QML estimators for these models is still unknown, we have carried out a likelihood ratio test to
gauge the significance of the AR component. Recall that the ARLMSV model nests the basic LMSV

ˆ ˆmodel (f 50). The value of the test statistic is LR 5 2[log L(c ) 2 log L(c )] 5 1.0885, which does0
2clearly not reject the null compared to the x distribution. Therefore, the LMSV model seems to be1

preferable.
In Fig. 5, we plot the implied smoothed volatility of the IBEX35 returns for the four estimated

models. As expected there is no difference between the volatilities estimated by the ARSV and the
RWSV models. Moreover, the volatility implied by the two long memory models also show the same
pattern. Comparing the long memory volatilities with the volatility implied by the ARSV and the

Fig. 5. Smoothed estimates of IBEX35 volatility from several SV models.
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RWSV models, it is possible to observe that the fit of the former is better, especially in the high
volatility periods.

5. Conclusions

We have shown that the finite sample properties of the spectral QML estimator for ARLMSV
models are poor when the volatility evolves smoothly over time and/or is close to be non-stationary.
Even worse, in the unit root case, the parameters of the ARLMSV model are not identified so
inference is not reliable at all. When modelling the volatility of the IBEX35 index, it seems that this
can be represented by a long memory process but it is difficult to establish the adequate specification
of that process.
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