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1 Introduction 

Many results regarding the impact of dependent errors on test statistics and 
coefficient estimates in the context of non stationary time series have been 
established via Monte-Carlo simulations. In an extensive empirical study for 
instance, 5chwert (1989) considered the distortions induced by the presence 
of moving average errors on various test statistics within a non stationary 
AR(l) model. More recently, Agiakoglou and Newbold (1992) studied the 
size properties of the ADF test under a moving average error structure. 5ince 
the rele\'ant asymptotic distributions are expressed in terms of stochastic 
integrals involving 'Viener processes, they are not directly usable for com­
putational purposes. This partly explains why most studies adopted the 
computational1y demanding simulation approach. 

However, since most quantities of interest are expressed in terms of ratios 
of stochastic integrals, which themselves are the limits of properly normal­
ized quadratic forms it is possible to obtain their exact moments using their 
joint moment generating function (MGF thereafter). The recent unit root 
literature contains m any attempts to obtain exact distributional results via 
the relevant characteristic function and the use of Gurland's (1948) inver­
sion theorem (Evans and 5avin (1981,1984), Perron (1989), Hisamatsu and 
Maekawa (1994) among others). Most of these studies however used the iid 
errors assumption and focused solely on the normalized OL5 estimate oí the 
autoregressive coefficient. More recently however, Perron (1994) considers 
MA and AR error structures in a near integrated framework. His objectives 
are different from ours since he focuses mainly on obtaining exact distribu­
tional results for the normalized OL5 coefficient and studying the adequacy 
of the asymptotic approximations. 

Typical1y, the two most irnportant quantities arising in the non-standard 
asymptotic distributions are J~ W(r) dW(r) and J~ W(r)2dr where W(r) de­
notes a standard Bro'Nniétn Motion. In this paper we will analyze the impact 
of the presence of dependent errors on autoregressive coefficient estimates and 
corresponding t-statistics by focusing on the infiuence oí the error process on 
the exact moments of the asymptotic distributions and indirectly on infer­
ences. Thus, we will establish theoretical1y and exactly various empirically 
observed facts with the aim of better understanding the behavior oí these 
asymptotic distributions when the error structure is not iid. Our íramework 
allows us to distinguish explicitely between different types oí error processes. 
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As a byproduet, we extend a result by Le Breton & Pham (1989) regarding 
the exact asymptotic bias of the OL5 estimate in a non stationary AR(1), to 
the case where the error process is not iid. In addition, we will investigate the 
conneetíon between the magnitude of the coefficients of the error process and 
the number of lags ofthe .dependent variable necessary to dampen their effects 
on the original asymptotic distribution. Our results can also be viewed as a 
preliminary step for the design of Bartlett corrections to the test statistics 
in the context of non stationary processes. 

The plan of this paper is as follows. 5eetion 2 presents the general frame­
work and the theoretical tools. Section 3 focuses on the quantitative results 
and Sedion 4 concludes. Al! proofs are gathered in the appendix. 

2 The Framework and Methodology 

\Ve consider the following first order autoregressive process 

6.Xt = aXt - 1 + Ut (1 ) 

</J(L)Ut - O(L)tt (2) 

where r/;(L) = 1 - pL, O(L) = 1 + OL and X o = O. We further assume that €t 

is iid Gaussian with mean zero and variance (1;, and the two polynomials in 
the lag operator L have no roots in cornmon and satisfy the usual stability 
assumptions. Por notational simplicity, and with no 10ss of generality we 
also put (1; = 1. The quantities of interest are the OL8 estimate of a 
in (1) and the corresponding t-statistic denoted tó ' In what follows, we 
distinguish between an AR(I) process for Ut (ie. () = O), an MA(1) and 
mixed ARMA(l ,1) respeetively. The various asymptotic distributions oí the 
quantities of interest when a =Oare gathered in the following lernma where 
"=?-" denotes convergence in distribution. 

Lernrna 2.1 

• Case p = O (M A(l) errors) 

.~ ... ~'J.T • J¿ lV(r)dW(r) () 1 
1. (a - a) =?- J¿ W(r)2dr + (1 + 0)2 J¿ W(r)2dr 
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(1 +O)� J¿ W(r)dW(r) O 1
2 t·:::}� +-:---:-:--:----,,...-:-..,..,.. -....,.-----­

• Q (1 +(2)1/2� (J¿ W(rPdr)1/2 (1 +0)(1 +(2)1/2 (JOl W(rPdr)1/2 

•� Case O= O (AR(l) errors)� 

~ J¿ W(r)dW(r) p 1� 
3.� T(a - a):::} J¿ W(r)2dr + 1 + p J¿ W(rPdr 

(1 + p)1/2 J¿ W(r)dW(r) p 1 
4. tex :::}� (1 _ p)1/2 (J¿ W(rPdr)1/2 +(1 - p)1/2(1 + p)1/2 (J¿ W(rPdr)1/2 

•� Case O=1- Oand p =1- O (ARM A(1, 1) errors)� 

~ Jol W(r)dW(r) 1� 
5. T(a -� a):::} J¿ W(r)2dr + Jl(P, O) J¿ W(r)2dr 

t.� O Jo
l 
W (r)d~V (r) (O 1 

6. Q:::} J2(P, ) (J¿ W(r)2dr)1/2 + J3 p, ) (J¿ W(r)2dr)1/2 

\\'here the functions Ji (i = 1,2,3) above are defined as follows 

(O + p)(1 + pO) 
= (1+p)(1+0)2' 

(1 + p)1/2 (1 +O) 
- (1 - p)1/2 (1 +O+2pO)1/2' 

(1 + 0)(1 +02+2pO)1/2(p +0)(1 + p - p2 +O)
h(p, O)� ­ (1 - p)9/2(1 + ho)3/2 

Noting that when the errors are iid the asymptotic distributions are 

J¿ W(r)dW(r) d J¿ W(r)dW(r) 
J¿ W2(r)dr an (J¿ W2(r)dr)1/2 

for T(& - 1) and tti respectively, the extra components illustrate the impact 
on inferences of dependent errors, when we mistakenly assume them to be iid. 
Clearly, the signs and magnitudes of the parameters oí the error processes 
\\'ill playa crucial role. 
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Al1 the aboye distributions are expressed in terms of ratios of stochastic 
integrals. Indeed letting Q1 = f¿ W(r) dW(r) and Q2 = f¿ W(r)2dr, the 
ratios of interest are Q1/Q2, Q1/ vr:¡;, 1/Q2 and 1/vr:¡; respectively. 

Lernrna 2.2 

The joint moment generating funetion </J( u, v) of Q1 and Q2 has the fol1owing 
representation 

\Ve can now apply a result due to Sawa (1958). Assuming P(Q2 > O) = 1, 
and letting </J(u, v) denote thejoint MGF of Q1 and Q2, the mth order rnornent 
of Q1/Q2 is given by 

provided the moments exist and where r(.) is the gamma funetion, and 
m is a positive integer. Given the form of the ratios of interest to us the 
aboye expression is not directly applicable for obtaining the exact mornents 
of quantities such as Qdvr;h or Q2m respectively. However, using a result 
in Davies et al. (1985), we can extend Sawa's result to the aboye cases as 
wel1. 

Lernrna 2.3 

'Ve can therefore use direetly the joint mornent generating funetíon of Ql 
and Q2 in Lernrna 2.2 to solve the aboye integrals. This is the objeetive of 
the next seetion, where we also investigate the behavior of the mornents with 
() and p. 
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3 Numerical Results 

3.1 Original (Non Augmented) Model 

The íollO\ving lernrna presents the exact nurnerical value oí the expectations 
(rnornents) oí the ratios oí interest. We use the following notational conven­
tion, letting J.LT denote E((~)ID). In what follows, we will focus solely on 

ll" 
the first rnornent and the variance. Higher order mornents can also be easily 
obtained using Lernrna 2.3. 

Lernrna 3.1 

Letting x = (_2V)1/2, we have 

Using the aboye Lernrna we can assess the exact impact of Oand p, on the first 
and second rnornents as well as the variance of the asyrnptotic distributions 
in Lernrna 2.1. Letting g1 (p, O) denote the ph rnornent of the distributions in 
cases f = 1,2,3,4,5,6 ofLemrna 2.1, we have 

O 
g~ (O) = -1.78143 + (1 +0)2 5.56286,� 

(1 +O) O� 
-0.42310 (1 + 02)1/2 + (1 +0)(1 +02)1/2 2.09211, 
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p
gj(p) = -1.78143 + ( ) 5.56286,

l+p 
(1 +p)1/2 P 

g~(p) -0.42310 (1 _ p)1/2 + (1 _ p)1/2(l + p)1/2 2.09211, 

= -1 78143 + (O + p)(l + pO) 556286g~(p, O) . (l+p)(l+0)2"� 

g~(p, O) - -0.42310 f2(P, O) + f3(p, O) 2.09211� 

for the pure autoregressive, moving average and ARMA processes respec­
tively. The íollowing tables illustrate in more detail the exact quantitative 
impact oí p and Oon the location and variance oí the asymptotic distribu­
tions. It is worth emphasizing the fact that our figures are exacto The use 
oí a purely numerical Monte-Carlo approach would have required days oí 
computing time in order to lead to numbers close to ours. We also believe 
that our approach leads to a better understanding oí the distinct impact oí 
the structure of the error process. 

Table 3.1.1: T(6: - 0:) 

(p,O) gt(O) g5(p) Vl(O) V3(p) 
-0.9 -502.4388 -51.8472 302104.71 3329.83 
-0.7 -45.0481 -14.7614 2528.36 297.00 
-0.1 -2.4682 -2.3995 15.23 14.67 
0.0 -1.7814 -1.7814 10.11 10.11 
0.1 -1.3217 -1.2757 7.32 7.06 
0.7 -0.4340 0.5092 3.34 1.18 
0.9 -0.3946 0.8536 3.21 0.92 

Table 3.1.2: tór 

(p,O) gHO) gHp) V2(O) V4(P) 
-0.9 -14.0270 -4.4167 53.9669 5.9559 
-0.7 -4.1031 -2.2284 5.2340 1.7764 
-0.1 -0.6102 -0.5930 0.9640 0.9625 
0.0 -0.4231 -0.4231 0.9626 0.9626 
0.1 -0.2739 -0.2575 0.9854 0.9893 
0.7 0.1165 1.0435 1.1598 2.4115 
0.9 0.1391 2.4754 1.1756 7.2124 
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In tables 3.1.1 and 3.1.2 above, ve(O) and ve(p) denote the variances in the 
MA(1) and AR(l) cases respectively. The number -1.78143 appearing in 
the row corresponding to p = O= O (Table 3.1.1) is the asymptotic bias oí 
the OL5 estimate in the unit root model with iid errors (Le Breton & Pham 
(1989)) and -0.4231 (Table 3.1.2) represents the mean oí the asymptotic dis­
tribution oí the t-statistic in the same contexto Clearly, both cases illustrate 
the more írequent occurence oí negative values due to the presence oí the 
unit root. 

Particularly interesting are the magnitudes oí the directions oí shift and 
the differences between the autoregressive and moving average error pro­
cesses. In Table 3.1.1, we can clearly observe the drastic shift to the leít oí 
the asymptotic distribution oí T(Q - 1) as Oand p tend towards -1 respec­
tively, the impact being much stronger in the case oí moving average errors 
as judged by both the mean and variance. Indeed, we can observe an impor­
tant infiuence oí the error structure on the distributional shiíts and variance 
changes. An autoregressive structure being much less distortionary than a 
moving average one when the parameters are negative and large in absolute 
value. 

These shiíts explain the severe size distortions occuring in the presence oí 
dependent errors when iníerences are based on the asymptotic distributions 
derived under the iid errors assumption. Both types oí error structures will 
produce severe size distortions, but íor realistic parameter values our results 
suggest that an MA process will be much more distortionary. 

Positive parameter values imply a shiít rightwards oí the asymptotic dis­
tributions and thereíore an easier wrong acceptance oí the unit root hypoth­
esis when the iid based distributions are used íor iníerences. Our results sug­
gest that íor the T( Q - a) statistic, the "undersizeness" will be more severe 
under an autoregressive error structure, where both the mean and variance 
are more severely modified relative to the MA case (see Table 3.1.1). 

When both p and Oare close to Ohowever their respective effeet on the 
asymptotic distribution is quite comparable in magnitude. 

The behavior oí the asymptotic distribution oí the t - statistic (Table 
3.1.2) displays less pronounced displacements with O or p. Although the 
directions are similar to the ones occuring in the T( Q - a) case, they are 
also weaker. Clearly, this supports the view that the t - statistic is more 
reliable than the normalized OL5 estimate íor making inferences in such 
írameworks. Although Dickey and Fuller (1979) suggested that the T(& - a) 
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statistic is more powerful than the t - statistic, our previous finding supports 
Schwert's (1989) Monte-CarIo based claim that the latter is more robust to 
model misspecifications. It will display better size properties when the model 
contains dependent errors. 

This point wi11 be reinforced in the next section where we analyze the 
impact of augmenting the model on the behaviour of the two test statistics. 
Regarding the differences in the impact of the two types of error processes, it 
is also worth observing that when the parameters are positive, their increase 
leads to a faster shift of the mean (rightwards) as well as a faster increase 
in the "ariance under an autoregressive error structure. On the other hand, 
when negative values are considered, the mean decreases and the variance 
increases faster under the MA process. 

Final1y, Tables 3.1.3-3.1.7 below focus on an ARMA(1,1) model for the 
error process. It is difficult to argue that such a mixed process will necessarily 
lead to more pronounced changes in the asymptotie distributions than in the 
pure AR or MA cases. Indeed, this will depend on the mix of values taken by 
() and p together and especially on their respective signs. It might happen for 
instance that a large positive p considerably dampens the infiuence of a large 
negative B, leading to distributions that remain closer to the iid case than say 
v,,.hen both Band pare moderate but negative. Overall, the t-statistic displays 
less pronounced deviations from the iid error based asymptotic distribution. 

Table 3.1.3 Both roots negative and close (10\ > ¡pI) 

(B,p) g~(p,O) gA(p,O) vs(p, O) v6(p,6) 
(-0.9,-0.8) -8134.6828 -169.9493 78878976.00 7831.78 
(-0.5,-0.4) -41.8340 -5.5308 2107.75 9.61 
(-0.2,-0.1) -4.7367 -1.1160 34.2074 1.19 
(0.0, 0.0) -1.78143 0.42310 10.11 0.9626 

Table 3.1.4 Both roots negative and close (Ipl > 1(1) 

(B,p) g~(p,O) gA(p,O) vs(p, O) V6(P, O) 
(-0.8,-0.9) -4068.2321 -161.0269 19729168 7036.32 
(-0.4 ,-0.5) -35.1586 -5.1903 1492.56 8.71 
(-0.1 ,-0.2) -4.4083 -1.0583 30.5023 1.17 
(0.0, 0.0) -1.78143 0.42310 10.11 0.9626 
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Table 3.1.5 Both roots positive and close (¡Ol > Ipl) 

(O,p) gHp,O) gA(p, O) vs(p, O) V6(P, O) 
(0.9,0.8) 0.7218 4.9240 5.99 35.75 
(0.5,0.4) 0.1258 0.7355 5.6161 3.05 
(0.2,0.1 ) -0.7068 -0.0253 6.5124 1.17 
(0.0, 0.0) -1.78143 0.42310 10.11 0.9626 

Table 3.1.6 Roots with opposite signs 

(O,p) gg(p,O) gJ(p,O) vs(p, O) V6(P,f)) 
(-0.9,0.8) -10.4348 -1.8387 139.44 1.66 
(-0.5,0.4) -3.0529 -0.7511 17.93 1.00 
(-0.2,0.1) -2.5558 -0.6350 14.41 0.98 
(0.0, 0.0) -1.78143 0.42310 10.11 0.9626 

Table 3.1. 7 Roots with opposite signs 

(O, p) gg(p,O) g~(p,O) vs(p, O) V6(P,O) 
(0.8,-0.9) -2.2622 -0.5721 12.61 1.01 
(0.4,-0.5) -2.2355 -0.5543 12.46 0.97 
(0.1,-0.2) -2.3446 -0.5820 13.10 0.97 
(0.0, 0.0) -1.78143 0.42310 10.11 0.9626 

3.2 Normal Approximations 

Given that we obtained the exaet mean and variance of the asymptotic dis­
tributions of te. and T(& - o), it is natural to inquire about the quality of 
a normal approximation to these non-standard distributions. The unit root 
literature has often raised this question by comparing the left tails of the 
Dickey-Fuller distributions to the ones of the standard normal. It would 
be more legitimate however to make the comparison with N(l-'oo,O'oo) where 
1-'00 and 0'00 are the mean and standard deviation of the correet non-standard 
asymptotic distributions. Indeed, for the te. statistic, we have 1-'1,00 = -0.4231 
and O'~,oo = 0.9626, and for T(& - o), 1-'2,00 = -1.78143 and O'~,oo = 10.11. 
Another motivation behind these calculations is to obtain approximate nu­
merical values for the magnitudes of the size distortions implied by the shifts 
in the moments when the iid based asymptotic distributions are used for 
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inferences. Theoretically, one could obtain the exact tail probabilities by 
inverting the relevant characteristic functions corresponding to MA, AR or 
ARMA errors. However, this is beyond the scope of this paper and to our 
knowledge has never been done for the more commonly used t-statistic. 

The follO\ving table displays the relevant normal and "exact" DF critical 
values 

Table 3.2.1: Normal Approximations2 

N(-0.4231,0.9626) DF1 N(-1.78143,10.11) DF2 

2.5% -2.35 -2.23 -8.01 -10.50 
5% -2.04 -1.95 -7.03 -8.10 
10% -1.68 -1.62 -5.85 -5.70 

Clearly, a suitable normalization leads to a very accurate normal approxima­
tion for the t-statistic at aH relevant percentage points. The eloseness of these 
distributions can partly justify the use of the normal approximation in order 
to obtain approximate estimates of the size distortions under different error 
structures. However, since the approximation for the normalised OL8 coeffi­
cient is less accurate, we will concentrate solely on the t-statistic. Obviously, 
we also need to check the validity of the approximation when the original 
DF distributions are shifted due to the presence of MA or AR errors. For 
this reason, the following tables also inelude direct DF based size estimates 
obtained via numerical simulations. The previously obtained moments of the 
various asymptotic distributions were very informative about the directions 
of shift of these distributions and gave an overall intuition about the seri­
ousness and magnitude of the distortions, however in order to obtain a more 
precise numerical value of say the probability of rejecting the null when true, 
we need to compute the relevant tail areas. 

Our main objective here is to illustrate the connection between the shifts 
in the moments and the implied "new tail area". Going back to our previous 
point, we saw for instance that when () = -0.7, we have /loo = -4.1031 and 
O"~ = 5.2340 for the standard t - statistic. We can therefore compute the 
implied size distortion via the following probability 

P(X ~ -1.95IX ~ N(-4.1031,5.2340)] 

2 D F I and D F2 denote the left tail 5% critical values of the non-standard (Dickey & 
Fuller) asymptotic distribution of te, and T(& - a) respe ctively. 
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where -1.95 corresponds to the 5% DF critical value (see Table 3.2.1). Similar 
probabilities can therefore be obtained for a whole range of values for O. The 
fol1owing table surnmarizes sorne of the implied approximate size estimates 
for the t-statistic under a 5% nominal size. The last two columns display the 
counterparts of the size estimates obtained by Monte-Carlo simulations with 
N=10000 replications and a sample size of 5000 observations. 

Table 3.2.2: Approximate & Empirical Size Estimates 

(p,B) SIZE (MA(l)) SIZE (AR(l)) DF(MA(l)) DF(AR(l)) 
-0.9 94.95% 84.38% 100% 86.48% 
-0.7 82.64% 58.32% 84.04% 52.86% 
-0.1 8.53% 8.69% 8.52% 7.96% 
0.0 5.94% 5.94% 5.01% 5.01% 
0.1 4.55% 4.46% 2.90% 2.89% 
0.7 2.74% 2.68% 0.56% 0.00% 
0.9 2.68% 4.95% 0.33% 0.00% 

The above numbers confirm that the undersizeness (due to both AR or MA 
error processes with (p, O) > O) is more serious when the errors are charac­
terized by an autoregressive structure. Gn the other hand an MA process 
leads to greater oversizeness when the parameters are negative. These re­
sults unanimously confirm our moments based analysis of section 3.1. In 
addition our results based on the normal approximation were also able to 
give an accurate description of the size distortions implied by the shifts in 
the moments, especially for the most relevant cases (negative or close to zero 
parameter values). 

3.3 Augmented Model 

In practice, in order to be able to continue using the the distributions corre­
sponding to O= O andjor p = Oeven when the error process is not iid, one 
adds lagged changes of the dependent variable to the right hand side oí (1). 
This has the effect of whitening the error process which can then be assumed 
to be approximatively iid. In applied work, an important issue is then the 
selection of the truncation lag. Indeed, in order for inferences to be based on 
QI/Q2 even when say () =f:. Oor p =f:. O, the lag length needs to satisíy certain 
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speed conditions (Said and Dickey (1984), Ng and Perron (1994)), and will 
therefore playa crucial role on the quality of inferences even asymptotical1y. 
In order to shed sorne light on this issue, we computed the asymptotic dis­
tributions of a and t ci in (1) when k = 1 and 2, and where k denotes the 
truncation lag. We can therefore analyze explicitIy the relationship between 
the lag length and the magnitudes of Oor p. The estimated model is given 
by 

!:lXt = a1 X t-1 + I:j=l í'j!:lXt - j + 'Ut 

The fol1owing lemma first presents the different distributions under the hy­
pothesis that al = Oand fo a given lag length. 

Lernrna 3.2 

• Case k = 1 and A1 A(1) 

• Case k = 1 and AR(1) 

1 
3.� T(a _ a ) => (1 _ ) fo W(r)dW(r)� 

1 1 P fol W(r)2dr� 

1
4 t. fo W(r)dW(r) 

• C» => (f: W(r)2dr)l/2 

• Case k = 2 and MA(1) 

1 

( A) lt92 fo W(r)dW(r) 93 1 
5. T al - al => ltOa2+9 fol W(r)2dr + (lt9)2(1+92-9)(l+92+9) fo! W(r)2 

. (1+9H1+92)(l-96)1/2 fo
1

W(r)dW(r) (93)(1_96)1/2 1 
6. tC>l => (1+92+9)(1-98)1/2 (fol W(r)2dr)1/2 +(1+92+9)(l+92-9)(lt9)(1-98)1/2 (fo! W(r)2)1/2 

• Case k = 2 and AR(1) 

1 
A� )7 T( _ (1 _ ) fo W(r)dW(r)� 

. al al => p fol W(r)2dr� 
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fol 
W(r)dW(r) 

8. tOl => (jo! W(r)2dr)1/2' 

\Ve can now compare the moments of the above distributions in order to 
quantify the strength of the lag length for a given magnitude of Oand p. The 
following table displays the first moments of the distributions under no lags 
added, one lag and two lags respectively in both the MA and AR cases. 

Table 3.3.1: T(al - a¡) 

(p,e) gi(eh=o gi(O)k=1 gi (e)k=2 g~(p)k=O 9~(ph=1 g1(ph=2 
-0.9 -502.45 -251.61 -167.99 -51.85 -3.38 -3.38 
-0.7 -45.04 -22.94 -15.61 -14.76 -3.03 -3.03 
-0.1 -2.47 -2.03 -1.98 -2.40 -1.96 -1.96 
0.0 -1.78 -1.78 -1.78 -1.78 -1.78 -1.78 
0.1 -1.32 -1.65 -1.62 -1.28 -1.60 -1.60 
0.7 -0.43 -1.58 -0.83 0.51 -0.53 -0.53 
0.9 -0.39 -1.59 -0.73 0.85 -0.18 -0.18 

The first three columns of the above table display the moments of the asymp­
totic distribution of T(al - a¡) under MA(l) errors when k=O,l and 2 re­
spectively. When e is negative and as we increase k, we get closer and closer 
to the moment of the iid errors based asymptotic distribution. The picture 
is very different when we focus on positive values for e. Indeed, in this latter 
case there is an initial improvement as we move from k=O to k=l, but as we 
go further to k=2, the situation deteriorates and hence adding lags will not 
always be beneficial when inferences are based on T(al - a¡). For instance 
when e> O, the optimal number of lags seems to be k=1. It is important to 
observe that this does not mean that usig k=3 or further will not lead to any 
improvement. The point is that an increase in k does not yield to a strict im­
provement. This phenomenon has also occured in Monte-Carlo results where 
the interest lied in determining the empirical size of the tests under MA(l) 
errors and as k was being increased (see Agiakoglou and Newbold (1992) pp. 
474-475 for instance). Indeed, an increase in the number of lags from say 
k=l to k=8 always improved the size but not always when we move from 
k=l to k=2 or 3 for instance. 

The last three colums above focus on the AR(l) errors case. ClearIy, 
much less lags are required for whitening the error process in this case for 
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similar magnitudes of p. The following table displays the equivalent numbers 
for the t statistic. 

Table 3.3.2: tcil 

(p,B) gHBh=o gHOh=1 gHO)k=2 g~(ph=o gHp)k=1 gHp)k=2 
-0.9 -14.0270 -8.075 -5.6858 -4.4167 -0.4231 -0.4231 
-0.7 -4.1031 -2.3010 -1.5695 -2.2284 -0.4231 -0.4231 
-0.1 -0.6102 -0.4410 -0.4249 -0.5930 -0.4231 -0.4231 
0.0 -0.4231 -0.4231 -0.4231 -0.4231 -0.4231 -0.4231 
0.1 -0.2739 -0.4380 -0.4216 -0.2575 -0.4231 -0.4231 
0.7 0.1165 -0.729 -0.2374 1.0435 -0.4231 -0.4231 
0.9 0.1391 -0.768 -0.1918 2.4754 -0.4231 -0.4231 

Again the three first columns above focus on the MA(l) case and the re­
maining on AR(1). Noting that if the true process is a simple random walk 
with iid errors and we instead fit the random walk by also adding one lagged 
change of the dependent variable to the right hand side, we implicitely have 
a random walk DGP with AR(l) errors. This is the reason why the col­
umn corresponding to AR(l) errors with k = 1 shows a perfect match of 
the first moment for any value of p. The same also happens with k=2, since 
asymptotically the inclusion of extra lags (beyond the true number) does not 
afi'ect the asymptotic distribution of the t statistic. An interesting point also 
arises by looking at the asymptotic distribution of T(al - a¡) under AR(l) 
errors when k=l or 2 (cases 3 and 7 in Lemma 3.2). Indeed, we can notice 
that although one lag is enough for the t-statistic to be brought to the iid 
distribution case (cases 4 and 8), the T(al - ad statistic will always remain 
displaced with respect to the iid distribution no matter how many lags we 
use. This can be intuitively explained by the fact that the latter statistic does 
not take the variance into account and clearly therefore its use will always 
lead to more severely distorted inferences. 

Again, for negative values of p the distortions are much less pronounced 
than in the MA errors case, but when e and pare positive, it is the au­
toregressive structure that leads to higher displacements of the asymptotic 
distributions. Focusing specifically on the MA(l) case, when eis not so large, 
the inc1usion of even one lag seems to adjust the distribution quite efficientIy 
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towards the iid one. The following table display the variances of the asymp­
totic distributions of the t-statistic in the MA(l) case for the augmented 
model 

Table 3.3.3: Voo(tóJ 

(p,O) v(Oh=o V(O)k=l V(Oh=2 
-0.9 53.967 18.332 9.422 
-0.7 5.234 2.136 1.397 
-0.1 0.964 0.961 0.963 
0.0 0.963 0.963 0.963 
0.1 0.985 0.962 0.963 
0.7 1.160 0.982 0.995 
0.9 1.176 0.990 1.008 

\Ve can now compute the implied size distortions using the normal approx­
imation. \Ve focus solely on MA errors since we previously showed that the 
distortions induced by the presence of AR errors are neutralized when the 
number of lags is equal to or greater than one. The first three columns of 
Table 3.3.4 below display the size estimates obtained via the normal approxi­
mation using the relevant mean and variance of the asymptotic distributions 
for various values of the lag length. The last three colunms are again the 
"exact" counterparts obtained via Monte-CarIo simulations using the correet 
Dickey & Fuller distribution. 

Table 3.3.4: Size Estimates (Normal vs Monte Carlo when MA(l)) 

o Nk=o Nk=l Nk=2 DFk=o DFk=l DFk=2 
-0.9 94.95% 92.36% 88.88% 100% 99.54% 94.64% 
-0.7 82.64% 59.48% 37.45% 84.04% 54.32% 35.46% 
-0.1 8.53% 6.18% 6.06% 8.52% 5.42% 5.24% 
0.0 5.94% 5.94% 5.94% 5.01% 5.00% 5.00% 
0.1 4.55% 6.18% 5.94% 2.90% 5.10% 4.80% 
0.7 2.74% 10.93% 4.27% 0.56% 10.70% 2.57% 
0.9 2.68% 11.70% 4.01% 0.33% 11.56% 2.26% 

It is again interesting to observe the evolution of the size estimates when 
O > O, where an increase from k=O to k=l seriously deteriorate the size 

16 

---------------------,--,---------------r-------------­



4 

properties of the t-statistic. This clearly highlights the importance of the lag 
length selection for carrying on ADF based unit root tests and reinforces our 
argument that an increase of the lag length does not always lead to a striet 
improvement of the size probabilities. 

Conclusion 

In this paper, our objective was to offer a complementary analysis to the usual 
Monte- Carlo simulations for evaluating the properties of distributions arising 
in non stationary autoregressions. More specifical1y, we investigated the im­
pact of the presence of dependent errors on the asymptotic distributions of 
the two most important quantities used for testing. We then focused on the 
properties of the standard method used for whitening the error process by 
analyzing the connection between the magnitude and sign of the parameters 
and the number of lags necessary in order to legitimate1y use the iid errors 
based distributions. Our framework allows us to distinguish specifical1y be­
tween the different types of error processes. In addition, we showed that a 
proper normal approximation to the non-standard asymptotic distributions 
could give valuable hints on the magnitudes of the size distortions. Our 
results can easily be generalized to the multivariate framework using a mul­
tivariate analogue of <p(u, v) recent1y obtained by Abadir and Larsson (1994). 
This can also open the way to multivariate Edgeworth type asymptotic ex­
pansions as in Knight and Satchel1 (1993). Finany, our results can also be 
used as a starting point for constructing Bart1ett corrections for unit root 
tests. This could be particular1y fruitful since the asymptotic distributions 
are often a poor approximation in moderately sized sample sizes. 
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Appendix 

Proof of Lernrna 2.1 

\Ve consider the distrihution of T( & - 1) and ta, in a non stationary 
AR(l) framework where the error process is given by tP(L)ut = O(L)f.t with 
<jJ(L) = 1 - pL and e(L) = 1 +eL. We assume that the f.t process is iid (0,1) 
and focus on the following statistics 

L Z e-l Uc 

• t 6: z J-_l--')'-:1"""""'72'--(9­= -(-¿:-T- )-1/-22

where 52 = LTu2. From Phillips (1987) we have, 

• J:X;:-IUI =c} <72
2 [lV(1)2 -;;] 

• ¿:;I-I =c} (]'2 JlV(r)2dr 

where (]'~ = limT_oo t ¿: E(un and (]'2 =limT_oo tE(Sj.) with St = E;=l Uj 

and W(r) is a standard Wiener process. Using the definition of (]'2 and (]'; 
for our specific error processes (ie. MA(l), AR(l) and ARMA(1,1)) and the 
contínuous mapping theorem, the results follow. 

Proof of Lernrna 2.2 

Assuming f.t to be iid, th~oint moment generating funetion of E Xt-1 tt 
and E Xt-I is tPT(U, v) = E[eU ~XI_l(I+V Ext_ 1 ] where (E Xt-1f.t)/T ~ JWdW(r) 
and (¿: xt-I)/T2 ~ JW2. Furthermore, from White (1958) limT_oo 4>T(u/T, v/T2) ­
1/;( u, v) where 1/J(u, v) is the joint moment generating function of Jo1 WdW and 
J¿ ly2. Using the expression for tPT in White (1958) and letting T ~ 00 in 
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it, the expression for t/J(u, v) follows immediately. 

Proof of Lemma� 2.3 

\Ve assume P [Q2 > O] = 1 and Jollow the same line of proof as in Mag­
nus (1986). We focus on E[Q;nQ~m/2] only since the proof for E[Q~m/2] 
will follow immediately. Letting 4>( u, v) denote the joint moment generating 
function of Q1 and Q2' We first have, . 

(l') Qm
l = [ame UQ1 

]
- ~u=o, 

(ii)� Q~m/2 = r-I( m) (inIt 
y 

vT-1-vQ2dv. 
2 Jo 

The result in (i) is straightforward. The expression for Q~m/2 in (ii) follows 
from the definition of the Gamma function f(a). Indeed, 

f(a) = foco ya-l e- Ydy, 

then making the change of variable y = VQ2 we have, 

r(a) = Q~ foco va-1e-vQ2dv, 

leading to� 

Q-a _ r-1(a ) Jorco a-l e-vQ2d�
2 - v v. 

Putting a = ';, we have the desired preliminary result in (ii). Therefore, 

By Fubini's theorem, we have 

E[Q~Q;T] = r-1(;) foco vT-1 E[Q~e-vQ2]dv. 

Now E[Q;ne- vQ2 ] = E[Q;neuQl-vQ2]u=0 = E[8me~~~-"Q2]u=0 =� 
( am:(u,;.-v)) , leading to the desired resulto� 

u u=o 
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Proof of Lernrna 3.1 

Follows directly from Lern:_ '.' ':L' n ob­
tained by numerical integratio:_ ·:natica. 

Proof of Lernrna 3.2 

Similar to Lemma 2.1. 

---.-------------"""TI""--------I""T--------­
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