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Abstract

This article considers testing that a time series is uncorrelated when it possibly ex-

hibits some form of dependence. Contrary to the currently employed tests that require

selecting arbitrary user-chosen numbers to compute the associated tests statistics, we

consider a test statistic that is very simple to use because it does not require any user

chosen number and because its asymptotic null distribution is standard under general

weak dependent conditions, and hence, asymptotic critical values are readily available.

We consider the case of testing that the raw data is white noise, and also consider the

case of applying the test to the residuals of an ARMA model. Finally, we also study

finite sample performance.

Keywords: Gaussianity, nonparametric, autocorrelation, periodogram, bootstrap,

nonlinear dependence.
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1 Introduction

One of the statistical problems that historically has attracted more attention in statistics

and econometrics with time series data has been testing for lack of serial correlation. Early

references include Yule (1926), Bartlett (1955), Grenander and Rosenblatt (1957) or Durbin

and Watson (1950). Most of this literature assumed Gaussianity and, hence, identified lack

of serial correlation with independence. In general, an uncorrelated series is not necessarily

independent since dependence can be reflected in other aspects of the joint distribution such

as higher order moments. The distinction between independence and lack of correlation

has been stressed recently. In fact, during the last years a variety of models designed to

reflect nonlinear dependence has been studied in the econometrics literature. For instance,

in empirical finance, ARCH and bilinear models have been widely studied, see Bera and

Higgins (1993, 1997) and Weiss (1986) for a comparison. Following the time series literature

we will use the term white noise to denote an uncorrelated series that can present some form

of dependence.

Tests for white noise have been proposed both in the time domain and in the frequency

domain. Next, we briefly review both approaches. In the time domain the most popular

test (apart from the Durbin-Watson which is designed to test for lack of first order serial

correlation using regression residuals) has been the Box-Pierce Qp test. The Qp test is

designed for testing that the first p autocorrelations of a series (possibly residuals) are zero.

Note that under the assumption of independence, the asymptotic covariance matrix of the

first p autocorrelations is the identity matrix, justifying the χ2
p asymptotic null distribution

of the Qp test statistic. However, when the series present some kind of nonlinear dependence,

such as conditional heteroskedasticity, this asymptotic null covariance matrix is no longer the

identity. Hence, for this general case the Qp test is invalid and the literature has proposed

the following two modifications of the Qp test. The first one is to modify the Qp statistic by

introducing a consistent estimator of the asymptotic null covariance matrix of the sample

autocorrelations, so that the modifiedQp statistic retains the χ
2
p asymptotic null distribution.

The main drawback of this approach is that in order to estimate consistently this matrix a

bandwidth number has to be introduced (Lobato, Nankervis and Savin (2002)). The second

modification has been studied by Horowitz, Lobato, Nankervis and Savin (2002) who employ

a bootstrap procedure to estimate consistently the asymptotic null distribution of the Qp test

for the general case. This solution presents a similar problem, though, namely the researcher
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has to choose arbitrarily a block length number. In addition, since in the time domain the

null hypothesis states that all the autocovariances (not just the first p) of the considered

process are zero, the previous tests present the additional problem of selecting the number

p. Hence, the practical problem for these tests is that statistical inference can be sensitive to

the two arbitrarily chosen numbers, namely, the order of the serial correlation tested, and the

bandwidth or block length. Hong (1996) has proposed a consistent test in the time domain

for the general null hypothesis for the case of regression residuals. However, notice that Hong

restricted to the independent case and introduced a bandwidth number in order to handle

the fact that the null hypothesis implies an infinite number of autocovariances. Hong and

Lee (2003) have extended Hong’s procedure to allow for conditional heteroskedasticity, but

their framework still restricts the sample autocorrelations to be asymptotically independent.

Francq, Roy and Zakoïan (2003) have considered goodness-of-fit tests for ARMA models

with uncorrelated errors, but they need to introduce a bandwidth whose selection is not

addressed.

In the frequency domain the null hypothesis is stated in terms of the spectral density

instead of the autocorrelations. Hence, the problem of selecting p does not appear. The null

hypothesis implies that the spectral density is constant and the most common statistics have

been based on the standardized cumulative periodogram (see Bartlett (1955), Grenander

and Rosenblatt (1957), Durlauf (1991) or Deo (2000)). Under the assumption of indepen-

dence, Bartlett and Grenander and Rosenblatt showed that the standardized cumulative

periodogram converges to the Brownian bridge. Durlauf further showed that this result still

holds when the independence assumption is relaxed to martingale difference sequence (MDS)

with conditional homoskedasticity. For the MDS case with conditional heteroskedasticity

(and some moment conditions), Deo slightly modified this statistic so that the standardized

cumulative periodogram retained the convergence to the Brownian bridge. Notice that in

this setup there is no need of introducing any user-chosen number since under the stated

assumptions (see condition A in Deo (2000, p. 293) the autocorrelations are asymptotically

independent. As Deo comments, his assumption (vii) is the main responsible for the diag-

onality of the asymptotic null covariance matrix of the sample autocorrelations. However,

for many common models, such as GARCH models with asymmetric innovations, EGARCH

models and bilinear models, Deo’s condition (vii) does not hold and the autocorrelations

are not asymptotically independent under the null hypothesis. Hence, for the general case,

Deo’s test is not asymptotically valid.
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For the general case, the frequency domain is still useful, though. In fact, Chen and

Romano (1999) have proposed to employ the bootstrap to derive asympotically valid proce-

dures for testing for white noise in the general case. A main obstacle of Chen and Romano’s

procedure is that, similar to the bootstrap procedure commented above, the proposed boot-

strap requires the selection of a block length.

Summarizing, testing for white noise presents two challenging features. The first aspect

is that the null hypothesis implies that an infinite number of autocorrelations are zero. This

feature has been addressed successfully in the frequency domain under severe restrictions on

the dependence structure of the process. The second feature is that the null hypothesis allows

the white noise series to present some form of dependence beyond the second moments. This

dependence entails that the asymptotic null covariance matrix of the sample autocorrelations

is not diagonal, so that it has n2 non-zero terms, where n is the sample size (contrary to

Durlauf (1991) and Deo (2000) who consider a diagonal matrix, and hence, it has only n

non-zero elements). This aspect has been handled by introducing some arbitrary user-chosen

numbers whose selection complicates statistical inference.

The purpose of this paper is to introduce a simple test for white noise under general

weak dependent assumptions. The proposed test statistic has already been considered in

Milhøj (1981) as a goodness of fit test. However, Milhøj did not address our problem. He

studied goodness of fit for linear processes with i.i.d. innovations and provided an informal

analysis. We view Milhøj’s test statistic as a classical Cramer-von Mises (CVM) statistic and

consider briefly the corresponding Kolmogorov-Smirnov (KS) test. This KS test is related

to Fisher’s test for hidden periodicities, Fisher (1929). However, the KS test presents a

slow rate of convergence to the asymptotic null distribution. This is a serious theoretical

drawback because it implies that the test is not able to detect local alternatives that tend

to the null at the parametric rate. In addition, the KS test present a worse performance in

finite samples. Hence, the practical recommendation is the use of the CVM test. We stress

that both tests are straightforward to use since the test statistics are very simple functions

of the periodogram and, furthermore, their asymptotic null distributions are standard and

therefore, the user does not need to provide any arbitrary number such as a bandwidth or

a block length to estimate these asymptotic null distributions.

The plan of the paper is the following. Section 2 introduces notation and the tests,

Section 3 provides the asymptotic theory, Section 4 addresses the case of testing for white

noise for residuals of ARMA models. Section 5 study the finite sample performance, Section
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6 reports an empirical example and Section 7 concludes. The technical material is in the

Appendix.

2 Framework and test statistic

Let yt be a weakly dependent strictly stationary time series. Denote its mean by µ, its

centered moments of order k by µk = E(xt − µ)k, its autocovariance of order k by γk =

E[(yt − µ)(yt+k − µ)], its autocorrelation of order k by ρk = γk/γ0 and define the spectral

density f (λ) by

γk =

∫
Π

f(λ) exp(ikλ)dλ k = 0,1, 2, . . .

where Π = [−π, π]. The sample mean is denoted by y, the sample autocovariance is γ̂k =

n−1
∑n−|k|

t=1 (yt − y)(yt+|k| − y), the sample autocorrelation of order k is ρ̂k = γ̂k/γ̂0 and the

periodogram is I(λ) = |w(λ)|2 where w(λ) = n−1/2
∑n

t=1 xt exp(itλ). Also, call T = [2−1(n−
1)]. In addition, we denote the q-th order cumulant of y1, y1+j1, . . . , y1+jq−1 as κq(j1, . . . , jq−1)

and the marginal cumulant of order q as κq = κq(0, . . . , 0). Finally, the q-th order cumulant

spectral density is denoted by fq(λ), where λ ∈ Πq−1 and Π = [−π,π], see expression (2.6.2)
in Brillinger (1981, p.25).

The null hypothesis of interest is that γk = 0 for all k = 1,2, ... The alternative hypothesis

is the negation of the null, that is, there exists some k such that γk �= 0. Equivalently, in

terms of the spectral density, the null hypothesis states that f(λ) = γ0/2π for λ ⊂ Π, and

the alternative is that there exists some interval Ω ⊂ Π such that f (λ) �= γ0/2π for λ ⊂
Ω. Note that assumption A in the next section imposes that f(λ) is continuous and smooth

under the null hypothesis.

The classical approach in the frequency domain involves the standardized cumulative

periodogram, that is,

Zn(λ) =
√
T

(∑[λT/π]
j=1 I(λj)∑T
j=1 I(λj)

− λ

π

)
.

Based on Zn(λ), the two classical tests statistics are the Kolmogorov-Smirnov

max
j=1,...,T

|Zn(λj)| ,

and the Cramer von Mises
1

T

T∑
j=1,

Zn(λj)
2.
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These tests statistics have been commonly employed (see Bartlett (1955) and Grenander and

Rosenblatt(1957)) because when the series yt is not only white noise but also independent,

it can be shown that the process Zn(λ) converges weakly in D[0, π] (the space of cadlag

functions in D[0, π]) to the Brownian bridge process (see Tanaka (1996, pp.39-40) for the

definition of Brownian bridge and see Dahlhaus (1985) for the convergence result). Hence,

asymptotic critical values are readily available for the independent case. In fact, Durlauf

(1991) has shown that the independence assumption can be relaxed to MDS with conditional

heteroskedasticity.

However, under general weak dependent assumptions (see Dahlhaus (1985)) the asymp-

totic null distribution of the process Zn(λ) is no longer the Brownian bridge but, in fact, it

converges weakly in D[0, π] to a zero mean Gaussian process with covariance given by

πG(π)

F (π)2

{
G(λ ∧ µ)
G(π)

+
F (λ)F (µ)

F (π)2
− F (λ)G(µ)

F (π)G(π)
− F (µ)G(λ)

F (π)G(π)

+
F4(λ, µ)

G(π)
+
F4(π, π)

G(π)

F (λ)F (µ)

F (π)2
− F4(µ, π)

G(π)

F (λ)

F (π)
− F4(λ, π)

G(π)

F (µ)

F (π)

}
,

where F (λ) denotes the spectral distribution function, F (λ) =
∫ λ

0
f (ω)dω,

G(λ) =

∫ λ

0

f(ω)2dω,

and

F4(λ, µ) =

∫ λ

0

∫ µ

0

f4(ω,−ω,−θ)dωdθ. (1)

The important message from the previous complicated covariance is that the asymptotic

null distribution depends on the nature of the data generating process of yt. Since no as-

ymptotic critical values are available, Chen and Romano (1999, p.628) propose to estimate

the asymptotic distribution by means of either the block bootstrap or the subsampling tech-

nique. Unfortunately, these bootstrap procedures require the selection of some arbitrary

number and in our framework no theory is available about their optimal selection. Alterna-

tive bootstrap procedures which do not require the selection of a user-chosen number such

as resampling the periodogram as in Franke and Hardle (1992) or in Dahlhaus and Janas

(1996) will not estimate consistently the asymptotic null distribution because of the fourth

cumulant terms.

Hence, in this paper we consider an alternative approach. Rewrite the null hypothesis

as
2πf(λ)

γ0
− 1 = 0 for λ ⊂ Π,
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and write down the sample analog of the left hand side

I(λ)

γ̂0
− 1

(given our definition of the periodogram, note that EI(λ) = 2πf (λ) see Brockwell and

Davies (1991), for instance). Now, in order to derive consistent tests, our proposed test

statistic is based on applying the Cramer von Mises functional to I(λ)/γ̂0 − 1, leading to

the following test statistics

Mn =
1

T

T∑
j=1

(
I(λj)

γ̂0
− 1

)2

=
p2n
p21n

− 1,

where pin=T
−1
∑T

j=1 I(λj)
i, i = 1, 2, using that γ̂0 = p1n.

Milhøj (1981) has already employedMn as a general goodness of fit test statistic for time

series. Milhøj informally justified the use of this statistic for testing the adequacy of linear

time series models, but since he identified white noise with i.i.d. (see p. 177), he neither

addressed our problem nor provided a formal analysis of it, that is, he did not derive the

asymptotic properties of Mn under general dependence conditions.

Deo and Chen (2000) have proposed a continuous version ofMn and study its properties

for Gaussian processes.

An alternative toMn would be to employ as test statistic one based on the Kolmogorov-

Smirnov functional applied to I(λ)/γ̂0 − 1, leading to the following test statistic

Tn = max
j=1,...,T

∣∣∣∣I(λj)

γ̂0
− 1

∣∣∣∣ .
This statistic is related to Fisher’s statistic

T S
n = max

j=1,...,T

I(λj)

γ̂0
.

Fisher (1929) introduced it to test that yt is a Gaussian white noise against the alternative

that yt contains an added sinusoidal deterministic component of an unspecified frequency.

Similarly to Tn, this statistic is in the KS spirit. However, notice that T S
n is not consistent

for our null hypothesis since a sharp trough can not be detected.

We will not pursue the use of Tn as a test because it could be shown that under the null

hypothesis and regularity conditions, (Tn + 1 − log T ) →d Λ where Λ denotes the Gumbel

distribution. Hence, this test presents a slow rate of convergence to the asymptotic null
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distribution. This is a serious theoretical drawback because it implies that the test is not

able to detect local alternatives that tend to the null at the parametric rate. In addition,

this test present a worse performance in finite samples, as we will see in Section 5.

We finish this section by describing briefly the corresponding test statistics in the time

domain. The continuous version of Mn is proportional (or equivalent?) to (see Milhøj

(1981/5, p.178) and Deo and Chen (2000, p.162))

Mn =
n−1∑
j=0

r2j ,

whereas the corresponding KS statistic would bemaxj |rj|. We will not pursue these statistics

since deriving the asymptotic properties in the time domain is especially challenging given

that rj are not asymptotically independent under the null hypothesis.

3 Asymptotic Theory

We state the assumption for deriving the asymptotic null distribution of Mn.

Assumption 1. The process xt satisfies Ex
8
t <∞, and for q = 2, 3, . . . , 8

∞∑
j1=−∞

· · ·
∞∑

jq−1=−∞

|κq(j1, . . . , jq−1)| <∞, (2)

∞∑
j=1

[
E
∣∣(E(x0 − µ)4 | �−j

)− µ4
∣∣2]1/2 <∞, (3)

where �−j denotes the σ-field generated by xt, t ≤ −j, and,

E[(x0 − µ)4 − µ4]
2 + 2

∞∑
j=1

E
(
[(x0 − µ)4 − µ4][(xj − µ)4 − µ4]

)
> 0. (4)

Assumption 1 is a weak dependent assumption that implies that the higher order spectral

densities up to the eighth order are bounded and continuous. Notice that the weak condition

imposed by Assumption 1 allows for time series where the asymptotic null covariance matrix

of the sample autocorrelations is not diagonal. Instead of summability of cumulants, we could

have employed alternative mixing conditions allowing for nondiagonality of the asymptotic

covariance matrix of the sample autocorrelations under the null hypothesis.

Theorem 1. Under Assumption 1 and the null hypothesis

√
T (Mn − 1)→d N (0, 4) .
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The proof is omitted since it is a straightforward application of the delta method to the

vector (p1n, p2n)
′ that under Assumption 1 obeys

√
T

(
p1n − (2π)−1σ2

p2n − (2π2)−1σ4

)
→d N

((
0

0

)
,

1

4π2

(
σ4 + πf4 2σ6 + 2σ2πf4

2σ6 + 2σ2πf4 5σ8 + 4σ4πf4

))
(5)

where f4 = F4(π, π), and F4 has been defined in (1). The previous CLT (5) can be derived

using Theorem 3 in Rosenblatt (1985)

4 Testing for white noise in regression residuals

In the previous sections, we have considered the case of testing that raw data are white

noise. In this section, we will see that our test can also be employed as an specificication

test for ARMA models. In particular the considered null hypothesis is that the selected

orders for the AR and MA components are correct. As we will see next, this null can be

tested consistently by applying our test to the residuals of the assumed ARMA model.

Franq et al. (2003) have also consider goodness-of-fit tests for ARMA models with

uncorrelated errors. However, they did not state clearly their null hypothesis, they introduce

a bandwith

Milhøj (1981) has considered using the same statistic for testing the correct specifica-

tion of linear models. However, Milhøj provided a heuristic analysis and assumed i.i.d.

innovations with all their moments finite. Obviously, these are very restrictive assumptions

that would rule out most economic and financial applications, sucha as ARMA models with

arch-type innovations.

Hong and Lee (2003)

We do not consider the case of testing for the correct specification of nonlinear time

series models because our test statistic only uses the information contained in the auto-

covariances, hence the only misspecifications it can detect are misspecifications that are

reflected in non-zero autocovariances. Since many different nonlinear processes possess the

same autocovariance structure (see Tong (1994) for many examples, such as bilinear and

arch-type processes), any test based exclusively on autocovariances has trivial power to

detect an alternative model with the same autocovariance structure.

Let introduce some notation. Let say that the stochatic process yt satisfies an ARMA(p, q)
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model, when for all t ∈ Z,
yt =

p∑
i=1

φiyt−i +

q∑
j=1

θjεt−i

where εt is a white noise process that satisfies Assumption 1 in the previous section and the

polynomials φ(L) = 1−φ1L− ...− φpL
p and θ(L) = 1+ θ1L+ ...+ θqL

q have all their roots

outside the unit circle and no roots in common.

Then, introduce the following

Assumption 2. The stochastic process yt is strictly stationary and satisfies the ARMA

model with p = pv and q = qv. (and some moment and weak dependence conditions for εt

such as assumption 1).

We assume that consistent estimators of the parameters φ′s and θ′s are available. For

instance least squares estimators (see reference?). Let call ε̂t to the residuals of this fitted

model.

Consider testing the null hypothesis

H0 : p = pv and q = qv

where (p, q) are the orders of the ARMA model that the researcher chooses. Then, denote

M r
n the Mn test applied to ε̂t.

Theorem 2. Under the null hypothesis and assumption 2

√
T (M r

n − 1)→d N (0,4) .

5 Finite Sample Behavior

This section considers the finite sample behavior of the proposed tests. We consider experi-

ments under both the null and under the alternative hypothesis. Under the null hypothesis

we compare the performance of our tests with two of the tests considered in Durlauf (1991)

and Deo (2000). As commented in the introduction, Durlauf and Deo developed testing

procedures for the null hypothesis of white noise rather than for the martingale difference

hypothesis as the titles of their papers suggest. Deo acknowledges this fact in p.292. Testing

the martingale hypothesis is a very challenging task; for a review of statistical procedures
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to test the martingale difference hypothesis, see section 2 in Dominguez and Lobato (2003).

Durlauf considered a variety of tests for testing for white noise for the case when the as-

ymptotic covariance matrix of the sample autocorrelations is the identity, and Deo extended

Durlauf’s approach to the case where the previous matrix is diagonal but not the identity.

We consider both the Cramer von Mises and the Kolmogorov-Smirnov statistics and follow-

ing Deo’s notation, they will be denoted by CVM , KS, CVMc and KSc; the subindex c

denotes the correction proposed by Deo.

Under the null two white noise processess are considered, one that is an MDS example

and another one which is non-MDS. Both models are white noise, but not independent and

they are covariance stationary with finite eighth moment.. The null hypothesis is tested at

nominal levels 0.05 and 0.10. The estimates (empirical rejection probabilities) are calculated

using 5,000 replications for sample sizes n = 100 and 500.

The MDS example is the ARCH (1) model, yt = zt · σt where zt is a sequence of IID

N(0,1) and σ2t = 1+0.3y2t−1. For this process, the asymptotic covariance matrix of the sample

autocorrelations is diagonal but not the identity, so Durlauf’s procedures (CVM and KS)

do not asymptotically control properly the type I error, contrary to Deo’s tests (CVMc and

KSc). The results are reported in Table I. In this example the sample autocorrelations are

asymptotically independent but heteroskedastic, hence the tests CVM and KS are not able

to control properly asymptotically the type I error. Table I indicates precisely the magnitude

of these distortions. Notice that even for n = 100, these distortions are considerable. On

the contrary, the tests CVMc, KSc, Mn and Tn control properly the type I error, especially

for n = 500. Notice that in this particular MDS example the asymptotic covariance matrix

is diagonal, but as commented in the introduction, for many MDS models this matrix is

non-diagonal (cf. assumption (vii) in Deo). Notice that KSc, Mn and Tn are somewhat

conservative for n=100.

The non-MDS example is the bilinear model: yt = zt + 0.5zt−1yt−2 where {zt} is a

sequence of iid N(0, 1) random variables. For this process, the sample autocorrelations are

not asymptotically independent, hence the tests CVM, KS, CVMc and KSc are not able to

control properly asymptotically the type I error. Table II indicates precisely the magnitude

of these distortions. These distortions are considerable for CVM and KS. The only tests

that are able to control the type I error are Mn and Tn that are a bit conservative for

n = 100, as above.

Notice that for example I, CVMc controls the type I error better than KSc; this is the
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typical case when comparing the Cramer von Mises versus the Kolmogorov-Smirnov test.

In spite of that, the test Tn, which is in the Kolmogorov-Smirnov spirit, controls better the

size that Mn, which is a Cramer von Mises-type statistic.

Next we reports the empirical powers of the Tn andMn tests in a small Monte Carlo study

where the time series are generated by...MA(1) and AR(1): Tn es mucho menos potente que

Mn, pero con el modelo yt = a cos(0.3πt) + etdonde et es iidN(0,1) y a es una realización de

una N(0,σ2); de tal forma que para una replica a es fijo, ahora Tn es comparable o mejor

que Mn,
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7 Tables

Table 1. Percentage of rejections at nominal 10% and 5% levels. The DGP is the ARCH

(1) model yt = zt · σt where zt is a sequence of IID N(0,1) and σ2t = 1+ 0.3y2t−1. The sample

sizes are 100 and 500. The number of replications is 5000.
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n 100 500

% 10 5 10 5

CvM 19.1 11.9 21.7 13.3

KS 12.0 7.34 17.2 10.7

CvMc 11.1 5.12 10.0 4.60

KSc 7.50 3.80 8.10 4.12

Mn 6.92 4.26 8.84 5.24

Tn 8.32 3.60 9.46 4.62

Table 2. Percentage of rejections at nominal 10% and 5% levels. The DGP is a bilinear

model, yt = zt + 0.5zt−1yt−2, where {zt} is IID N(0,1). The sample sizes are 100 and 500.

The number of replications is 5000.

n 100 500

% 10 5 10 5

CvM 20.5 12.8 24.8 16.4

KS 14.0 8.54 20.9 13.6

CvMc 14.5 7.98 14.8 8.10

KSc 10.2 5.56 12.8 6.90

Mn 8.16 5.14 9.58 5.30

Tn 8.66 4.10 9.80 4.64
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