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ABSTRACT

In economies with public goods, we provide a necessary and sufficient con-
dition for the existence of cost monotonic selections from the set of Pareto opti-
mal and individually rational allocations. Such selections exist if and only if the
preferences of the agents satisfy what we call the equal ordering property. This
requirement is very restrictive in the context of more than one public good. How-
ever, whenever it holds any such mechanism must choose an egalitarian equivalent
allocation.
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1 INTRODUCTION

Consider the question of finding the optimal allocation of a bundle of public
goods, and the way in which its cost should be shared by the agents who
consume it. Most of the literature has concentrated on two aspects of this
problem. Firstly, there is the controversy of designing mechanisms which
induce the agents to reveal their utilities; one would expect that, in most
cases, the agents have strong incentives to hide their true utility regarding
the public goods. Secondly, as in the present work, there is the issue of
selecting an optimal bundle of public goods and distributing the cost involved
in financing the production plan among the members in the Economy.

To address this problem we adopt the normative approach: The solution
is determined by considering some “equitable” properties which are agreed
upon by the agents and express their sense of fairness. Once the relevant
“ethical guidelines” have been acknowledged, one tries to pinpoint a solution
complying with them. If one is found, then it is applied to the problem at
hand.

A universally accepted property is Pareto optimality. Allocations for
which it is possible to improve the welfare of some agents without making the
rest worse off, should not considered. However, Pareto efficiency by itself has
one major drawback; it does not determine a unique allocation. Even worse,
it contains proposals such as “one agent absorbs all the surplus” which are
objectionable on grounds of non equitability.

Individual rationality is another of the most widely accepted require-
ments for a solution to have. Since the technology is jointly owned by all
members of the society, it seems reasonable to require that the optimal pro-
duction plan and its financing should possess a certain degree of unanimity.
In this framework, this corresponds to individual rationality; a possible al-
location will be objected to by some member who operating the technology
on his own, could improve his utility.

The same objection to the one considered above for Pareto optimality
also applies to the latter solution concept: quite often, the set of individually
rational allocations, even with the added requirement of Pareto optimality,
turns out to be a very large set. And there is no obvious way of picking an
appropriate selection from it because there seems to be no single universal
solution which would satisfy everyone’s sense of fairness. This naturally leads
to the question of finding relevant situations in which there is a suitable one-
point selection process.



Another property considered in the literature as being desirable is “cost
(or technological) monotonicity,” i.e., if the publicly owned technology gets
better, then no agent should be worse off. Technological monotonicity was
introduced by J. Roemer ([12]) and has been subsequently used to study
some solution concepts (see, for example, [7, 9, 13]).

In the case of just one public good, H. Moulin ([6]) has characterized
the egalitarian-equivalent solution, proposed originally by E. A. Pazner and
D. Schmeidler (11}, as the only selection from the set of Pareto efficient
allocations which satisfies cost monotonicity and the Core property. Due
to the interest of this result, it seems very natural to ask whether it can be
extended to wider contexts.

In the present work, we characterize when such an extension is possible.
We find that in a setting very similar to the one in (6], but with several public
goods, the axioms we have just discussed are not always compatible when
taken together. As we prove in Section 4, under some mild assumptions,
there is a mechanism satisfying the three properties above if and only if the
preferences of the agents satisfy the equal ordering property. This latter con-
dition, which is very natural in the context of one public and one private good
(as in [6]), is severely restrictive in general. For example, with quasilinear,
strictly increasing preferences in public goods, the equal ordering property
is equivalent to the assertion that all the agents have the same ordinal (but
not necessarily cardinal) preferences on public goods.

Thus, with several public goods, one needs to impose additional restric-
tions on the preferences of the consumers in order to find cost monotonic and
individually rational selections from the set of Pareto efficient allocations.

On the other hand, when such a mechanism exists, then: (1) It must
pick an egalitarian equivalent allocation; (2) the latter form a subset of the
core; and (3) all cost monotonic mechanisms are equivalent, i.e., they provide
the same utility profile to the agents. Thus, the results in {6] cover essentially
all the cases for which a cost monotonic selection mechanism from the set of
Pareto optimal and individually rational allocations is possible.

The difference between just one and several public goods is that, in
the first case, there is no conflict of interests: everybody likes more of the
public good. Nevertheless, with more than one public good to choose from,
different agents might differ in their opinions about which should be given
priority over the others creating, thus, a possible source of conflict. Clearly,
under the equal ordering property, these discrepancies in priority do not arise.



2 THE MODEL

We consider economies with one private good and, possibly, more than one
public good. The space of public goods is X = RTY, with m > 1. These
are produced at a cost which is financed by the members of the society.
The technology available to produce the public goods is described by a cost
function ¢ : X — RR,. Given y € X, the cost, in terms of the private good,
needed to produce the bundle y of public goods is c(y). In addition, the
technology is jointly owned by all the agents and only one bundle of public
goods is eventually produced.

We will assume that whatever technology we consider, it exhibits some
bounded returns to scale when producing very large bundles of public goods.
Of course, this does not preclude having arbitrarily large increasing returns
to scale for public goods within some compact set.

Assumption 2.1 The technology c : X — Ry is conlinuous, nondecreas-
ing, satisfies c(0) = 0 and
llyll

limsup — < +o0.
lvli—+e0 ()

We use the Euclidean norm ||y|| = /S ¢=; y2. For the purposes of com-
puting the lim sup we adopt the following convention: Consider the extended
real line R* = R U {+00, —00}. We also extend the usual ordering on R
to R* by defining —00 < £ < +oo for any real number z € R and we let
llyll/c(y) = +o0 whenever c(y) = 0. '

As usual, the ordering in Euclidean space is defined as follows. Given
two vectors £,z € RY, £ > z (resp. & >> z) means that z; > z (resp.
z; > z;) for every i = 1,...,m; the notation & > z indicates that z > z and

T #z.

We let N = {1,...,n} denote the set of agents. The initial endowment
of private good for agent ¢ € N is w; € Ry (w; = 400 is allowed). Each
agent ¢ € N has preferences over public and private goods represented by a
utility function u; : X x Y; — R, where ¥; C R is his consumption set of
private good. By abuse of notation and for simplicity, we will write u;(y,t)
rather than u;(y,w; —t) . In other words, for each i =1,...,n, u(y,t) is the
utility obtained by agent ¢ when the bundle y of public goods is implemented
and he has to contribute the amount ¢t from his private endowment towards
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its financing. The payment t could be negative, meaning that agent i € N
receives some compensation from other agents for accepting the bundle y
instead of another one he might have preferred to y.

We use the notation £(S) = ¥ ;cs xi for a non empty subset S C N and
a vector z € R9, with SCQ C N.

Assumption 2.2 For each agent i € N, the following assumptions hold:

(i) Yi = [~w(N),w].

(i) The utility function u; : X x Y; — R is conlinuous non-decreasing in
the first argument (public goods) and strictly decreasing in the second
(the private good).

(iti) Given a given bundle of public goods y € X, there is one and only one
pi(y) € Y: such that u(y,i(y)) = w(0,0) = 0. The mapping vi(y)
verifies

lim sup #i(y) =0.
Iyl—+eo ¥

By (ii) and (iii) there are no public bads and the amount of private good
which agents are willing to provide for the consumption of a fixed bundle of
public goods is limited. Note that u;(y,t) is decreasing in the private good
to indicate that t denotes a payment. For convenience, we have normalized
%;(0,0) =0 foreachi=1,...,n.

Part (i) says that no agent can contribute more than his own endowment
to fund the construction of the public good; thus restricting total investment
towards the construction of the public good to w(N). In case w; = +oo,
for some ¢ € N then we take w(N) = +00. As mentioned above, agents
are allowed to transfer part or all of their endowments to other agents to
encourage them to accept a particular bundle of public goods. The results
below will still hold whenever transfers of private good are not allowed, as
long as the utility functions are (strictly) monotone in public goods. One
needs only to modify the argument in Remark 5.1 in an easy way.

It follows from (ii) and (iii) that, for i = 1,...,n, the mappings p; are
non decreasing and satisfy ¢;(0) = 0.

We let Y = [T, Y; and extend the utility functions of the agents to
X xY, by wi(y; t) = ui(y, t;), with (y;t) = (y;t1,...,ta) € X xY and i € N.
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The utility profile of the agents is the mapping u : X x Y — R" given
by u(y;t) = (ui(y,t),...,un(y,ts)). Likewise, we will also write p(y) =
(‘Pl(y)) seey ¢ﬂ(y))

From now on, we fix the set Y and a profile of utilities satisfying as-
sumptions 2.2. An economy is a pair (u,c) consisting of an utility profile
and a technology. Since the utilities of the agents are fixed throughout the
paper, we will use the notation c instead of (u,c) to denote an economy. An
allocation is a pair (z;t) € X x Y. The allocation (z;t) is feasible in the
economy ¢ for a non empty coalition S C N if ¢(z) < t(S) with ¢t € [T;es Yi.
We will simply say that (z;t) is feasible whenever it is feasible for the grand
coalition N.

Given a technology ¢, an allocation (z;t) is said to be Pareto optimal
in the economy c if it is feasible and u(z;t) = u(y; s) for any other feasible
allocation (y; s) such that u(z;t) < u(y; s). The set of Pareto optimal allo-
cations is denoted by P(c). A nonempty coalition S C N can improve upon
an allocation (2;t) if there is another allocation (y; s), feasible for S, such
that wi(y; s) = ui(z;t) for each i € S with at least some strict inequality.
An allocation (z;t) is individually rational (resp. in Core{c)) if no agent can
improve upon it (resp. if no coalition can improve it). :

3 Egalitarian equivalent allocations

One of the principles we will be considering to determine the allocation which
is “optimal” for the society is cost monotonicity. As we will see, if a solution
satisfying this requisite exists, then it has to select an egalitarian equiva-
lent allocation. In the present section, we review this notion. Consider a
technology ¢ : z — R, satisfying assumption 2.1.

Definition 3.1 The set of egalitarian equivalent allocations is defined to be

EE(c) = {(z;t) € P(c) : there is z € X with u(z;t) = u(z;0)}.

The bundle of public goods z appearing in the definition of EE(c) is
the reference bundle. The egalitarian equivalent solution was proposed by
E. A. Pazner and D. Schmeidler ([11]) and has been characterized in [2] and
[6]. An alternative procedure to describe the set EE(c) (more appropriate
for the present set up) is given in the following construction.



Let S™! = {z € R™: |z|| = 1} denote the m — 1 sphere and
consider its positive orthant

SP'=8"'"nX and ST;'=S"'NRT,.
Given o € ST~} define

Falc) = {AN € Ry : thereis (y;t) € X X Y with
cly) <t(N)  and u(y;t) = u(Aa; 0)}
and the application H, : Fy(c) — R" by Ha(A) = u(\a;0). Note that

Fyu(c) # 0, since 0 € F,(c). The function H, is nondecreasing because u is
nondecreasing as well.

The set of egalitarian levels along the ray a € ST~! in the economy ¢
is defined as

EL,(c) = {Aa: A € argmax H,}
and the set of egalitarian levels is

EL(c)= (J ELa(c).

aeSf"
The feasible allocations supporting the egalitarian levels are the sets

AEL,(c) = {(z;t) e X xY : ¢(y) < t(N) and there is
z € EL4(c) with u(z;t) = u(z;0)}.

The relationship between the two concepts presented above is given by
the following observation.

Remark 3.2 Suppose assumplions 2.2 hold and let ¢ : X — R, satisfy
assumption 2.1. Then

(J AEL.(c) CEE(c)C |J AELq(c).

m -1 m-1
Q€S aeSy

The second inclusion might be strict whenever preferences are constant
on the boundary of the positive orthant (e.g. Cobb-Douglas preferences).
In such cases, the boundary of the positive orthant is contained in the set
of egalitarian levels and typically will not be supported by Pareto optimal
allocations. Remark 3.2 combined with the next straightforward result shows
that under rather weak assumptions, egalitarian equivalent allocations exist.
The proof of it is in the Appendix.
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Proposition 3.3 Suppose assumptions 2.2 hold. Then, EL,(c) # 0, for any
c: X — R, salisfying 2.1 and any o € "" .

As the following example shows, when the number of public goods is
greater than one, there are two problems associated with the egalitarian
equivalent allocations: firstly, in many cases there is a continuum of egali-
tarian equivalent allocations which are not individually rational. Secondly,
the ones which are individually rational, form a continuum of allocations;
furthermore, there does not seem to be a natural procedure for selecting any
one of them, since they yield different utilities to the agents.

Example 3.4 The economy c consists of two public goods (so X = R%) and
two consumers with quasx-lmear preferences in money given by the utility
functxons ~ :

umit) =2/m+2Vl -t wyit) =2/F -t
where ¥y = (11,%2) € X. The cost of producing the bundle ¥ € X of public
goods is
c(y) =y + v
It is easy to compute ({6, 8]) that the set of egalitarian levels is

EL(c)={ye X :4/y1 +2\/y2 =5

Only a strict subset of the egalitarian equivalent allocations are individu-
ally rational. The set of utilities given by individually rational egalitarian
equivalent allocations is

U= {(v,v2) : vi +va=5,v1 2 vp,v; > 2,03 2 1}.

Hence, not all the egalitarian levels provide individually rational allocations
and, furthermore, there are several distributions of utilities in the set U.

4 Cost monotonic mechanisms

One way to overcome the difficulties mentioned at the end of the last section
is to consider alternative properties to those of optimality and technological
monotonicity in order to narrow down the solution to the cost allocation
problem. In this section, we consider whether any obstructions exist to con-
sidering individual rationality as a third axiom compatible with the other
two just mentioned.
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A mechanism R will be defined below to be a mapping assigning to
each economy c¢ a feasible allocation. In order to give a precise definition we
need to specify the domain of R. As a first step, we consider the following
set for the admissible technologies.

Ey = {c: X — R, /c satisfies assumption 2.1 }

However, there are cost functions ¢ € Eq for which the economy ¢ does
not have any allocation which is individually rational for the agents. In
order to avoid such economies, we will consider only technologies satisfying
the condition

Ey={c€ Ey:c(zVy) <c(z)+c(y)}.

where, given any two vectors £ = (£1,...,Zm), ¥ = (¥1,...,Ym) in R™ we
denote zVy = (max{z1,%1},...,max{Zm,Ym}). The requirement c(zVy) <
c(z) + c(y) guarantees that agents can benefit from cooperating.

Remark 4.1 We observe that for any ¢ € E) the set of individually rational
and feasible allocations of ¢ is non-empty. Indeed, let ¢ € E; and suppose
that for each agent ¢ = 1,...,n, the vector (z%,t;) € X x Y; is a solution to
the problem

max{ui(z,7): (z,r) e X x Y;, ¢(2) =7}
Assumptions 2.1 and 2.2 guarantee that there is a solution to the maximiza-
tion problem. Let z = z' V2 V... v z". Then

(@) < 3 ela) = t(N)
=1
Hence, (z;t) is feasible for the grand coalition in the economy ¢ and every
agent i € N will be at least as well off with (z;t) as with (', t;).

The domain E; still includes some technologies which might be con-
sidered unreasonable like cost functions which are constant on arbitrarily
large sets. We will eventually show the non existence of mechanisms satisfy-
ing certain normative axioms. Of course, showing the non existence of such
mechanisms for the smaller domain, immediately implies the same result for
the larger one. Thus no loss of generality is entailed in restricting further the
domain of R to

E ={c€ E;: ¢(z) > c(y) whenever z > y}
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Definition 4.2 A mechanism is a mapping
R:E—Xx]]Y:
ieN
assigning to every technology c € E an allocation, R(c), feasible in the econ-
omy c..

A mechanism R is Pareto efficient (resp. egalitarian equivalent) if
R(c) € P(c) (resp. R(c) € EE(c)) for every ¢ € E. It is individually rational
if R(c) is an individually rational allocation in the economy c. The mecha-
nism R is said to be cost monotonic if, given two cost functions ¢;,¢c; € E
such that ¢;(y) < cy(y) for every y € X, it assigns allocations R(c;), for
j = 1,2, such that u(R(c;)) 2 u(R(cz)).

In the context of one public and one private good, H. Moulin ([6])
has proved the existence of cost monotonic, individually rational and Pareto
efficient mechanisms. He also shows that such a mechanism must select an
egalitarian equivalent allocation. It is easy to check that ¢, Ve, € E whenever
c1,¢2 € E, where (c1 V c2)(y) = max{ci(y),c2(y)}. Using this remark, one
can verify that the same proof that is used in [6], also applies here to obtain
the following result. ‘

Lemma 4.3 Let R be a Pareto oplimal and cost monotonic -mechanism.
Then for each ¢y, c; € E we have that either u(R(c1)) 2 u(R(c2)) oru(R(c;)) <

u(R(cz))

We address now the main issue: given a fixed set of agents, are the ax-
joms of cost monotonicity, Pareto efficiency and individual rationality com-
patible? The key to answering this question lies in the equal ordering prop-
erty.

Definition 4.4 We say that the agents order the bundle of public goods
equally (or that the profile of ulilities u salisfies the equal ordering prop-
erty) whenever for each bundle of public goods y,z € X if u;(y,0) > ui(z,0)
for some agent i € N then u;(y,0) > u;(z,0) for every other agent j € N.

In other words, the equal ordering property is fulfilled whenever given
¥,z € X, either u(y,0) > u(z,0) or else u(z,0) > u(y,0). So, if a consumer
prefers to take the bundle of public goods z for free, rather than choosing
bundle 3, then so do all the other agents. This property eliminates the
possible sources of disagreement among players in ranking the bundles of
public goods. It clearly holds in the case of one public good.
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Example 4.5 We illustrate this notion in the case of quasilinear utility func-
tions. The utility of each agent i € N is given by

ui(y,t) = bi(y) — ¢

where b; : X — IR is the utility obtained by agent ¢ € N whenever he enjoys
the bundle of public goods y € X for free. The equal ordering property
is equivalent to the following statement: for each pair of bundles of public
goods y, z € X, either b;(y) > b;(z) for every agent i € N or else b;(z) > bi(y)
for every agent i € N.

We can now answer the question posed above concerning the compati-
bility of cost monotonicity, Pareto efficiency and individual rationality. The
result stated below makes precise the conditions under which there is a so-
lution satisfying these three properties.

Theorem 4.6 Let N = {1,...,n} be a set of agents whose profile of utilities,
v = (uy,...,U) : X XY — R, salisfies assumptions 2.2. Then, there
is a cost monolonic, Parelo efficient and individually ralional mechanism
R: E — X xY if and only if u verifies the equal ordering property.

Furthermore, if such a mechanism R : E — X x Y exists, then for
every lechnologyc € E,

(i) R(c) € EE(c).

(i) The map u(-,0) is constant on EL(c). In fact, u(a,0) = u(R(c)) for
any a € EL(c).

(i1i) EE(c) C Core(c).

As a consequence, such a mechanism exists only if the agents have
exactly the same ordinal preferences when the bundles of public goods are
free. This condition, which clearly holds for economies with one public good,
is very restrictive in the case of several types of public goods. Thus, the first
part of Theorem 4.6 limits severely the existence of individually rational and
cost monotonic selections from the set of Pareto optimal allocations.

The second part makes explicit that, whenever the equal property holds,
we are back in the setting of [6]. Namely, part (i) implies that Pareto op-
timal, individually rational and cost monotonic mechanisms coincide with
the egalitarian equivalent correspondence and by part (ii) all of them are
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equivalent, since the agents are indifferent between them. Finally, it follows
from (iii) that any such mechanism is also a selection from the Core of the
economy and that the egalitarian allocations are individually rational and do
not allow private transfers among the agents.

There is a related literature, in the context of monotonicity with respect
to changes in resources ([14], {10]). The conclusion therein is that Pareto
optimality and resource monotonicity are incompatible with other normative
properties such as individual rationality from equal division or envy-free.
The egalitarian equivalent solution has also been characterized by Pareto
efficiency, monotonicity and a certain notion of fairness with respect to some
commodity ([2]). These authors also show that the equity axiom cannot be
imposed on more than one commodity; thus their results show the strength
of the monotonicity axiom in another setting. ’

We finish this section with two remarks. Firstly, we could extend the
domain of the mechanism to allow for changes in the number of agerits. With
this modification we could also consider the axiom of population monotonic-
ity: roughly speaking, when the number of players increases, the cost of
financing the optimal bundle of goods is shared among more agents. Thus,
population monotonicity requires that by increasing the number of players
everybody should be no worse off as before. It is easy to argue that the axioms
of population monotonicity and Pareto optimality imply the Core property
and, hence, individual rationality. Therefore, Theorem 4.6 also holds when
we replace “individual rationality” with “population meonotonicity.”

Secondly, if assumptions 2.2 hold, then there are plenty of cost mono-
tonic, Pareto efficient (but of course, not individually rational) mechanisms
defined on Ep. It is straightforward to check the following result: Fix
a € STt Then, the map R which assigns to each ¢ € Eg any allocation
R(c) = (y;t) € EE(c) such that u(y;t) = u(Aa;0), with A € R satisfying
Aa € EL(c), is cost monotonic. The problem, as remarked above, is that for
some technologies ¢ € E, the allocation R(c) = (y;t) will not be individually
rational. This example also shows that the axiom of cost monotonicity alone
cannot discriminate among the different egalitarian equivalent allocations.
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5 PROOFS
We first make a simple but useful observation.

Remark 5.1 Let § C N be a non empty coalition, let (y;t) € X x Y be an
allocation feasible for S and let v € RS such that v; > ©;(0,0) for each i € S.
Suppose that for every i € S we have u;(y,t;) > vi, with some inequality
being strict. Then, r € Y'S exists such that the allocation (y;r) is feasible

for S and, for every i € S, w(y, 1) > vi.

Indeed, assume without loss of generality that u,(y,¢) > v; 2 1(0,0) =
ui(y,1(v)). Then, t; < p1(y) < wy, so we can find € > 0 small enough
so that 1 = t; + ¢ < vi(y), w(y,r) > viand fori € S\ {1}, n =
t; — €/(|S] = 1) > —w(N). Therefore, r € Y5, ¢(S) = r(S) and wi(y,m:) > v
for every i € S. a

The following Lemma shows that in the definition of F,(c) one can
replace u(y; t) = u(Ax; 0) by u(y; t) € u(Aa;0). It will be used in the subse-
quent proofs.

Lemma 5.2 Let ¢ € Ey, v be a vector in R"™ such that v > u(0;0) and
(y;7) € X x Y be a feusible allocation such that

u(y;r) 2 v 2 u(0;0)
Define L: R — Y by
L) ={teY :c(hy) < t(N) and u(Ay;t) > v}

and let A, = sup{A € R: L(\) # 0}. Then, A, < +o0o, L(A.) # 0 and for
any s € L(A,) we have that u(\.y; s) = v.

Proof
First, note that L(1) # 0. Let {\:}52, be an decreasing sequence converging
to A.. For each k = 1,...,00, let s* € L();) such that (\.y; s*) is feasible
and
w(0;0) = u(My; (M) S v < u(My; 8¥)
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In particular, we have that p(A\y) > s* for every k = 1,...,00. We claim
that A, is finite. Otherwise, the sequence {A\;}$2, diverges to infinity and,

by assumption 2.2, foreachi=1,...,n
s
‘pt( ky)
lim sup <limsup 57— =10
hQIMwH e Ty |
Therefore,
. c(My) Z-eN st
0 < limsup <limsup T—— =
k=0 MY 7 kmeo |l Ayl

but this contradicts assumption 2.1.

We conclude that {A;}s is a bounded sequence and A, is finite. Since

s* < p(Ay) < p(Ay) for every k = 1,2..., we also have that the sequence

{s*}2, is bounded. Taking an appropiate subsequence we may assume that

(Mey; s*) converges to, say (M\y;s,). Since Y is a closed set and ¢ is con-

tinuous, then (A y;s.) € X x Y is also a feasible allocation. In addition,
u(A.y; s.) 2 v, because u is continuous. Therefore, s, € L(A,) # 0.

Finally, let s € L(\.) and suppose that u(A.y; 8) > v. Say, u;(A.y; 81) >
vy 2 141(0,0). Then, 8; < 1(A.y), so we can find r; € Y} with 5; <1} <
e1(Ay) and still uj(Ay;71) > v, Take ty =rjand ;= s;, fori=2,...,n
Then, t € Y and t(N) > s(N) 2 ¢(A.y). By continuity and Assumption 2.1,
we can find A > A, such that ¢(A\y) < t(N). Then, (Ay;t) € X XY is feasible
and u(\y;t) > v contradicting the definition of A,. Therefore, u(A.y; s) = v.

0

Proof of Remark 3.2: The second inclusion is clear. To prove the first
one, let @ € ST and let (z;7) € AEL,(c) be a feasible allocation supporting
the egalitarian level Ao € EL,(c) with Ay € Ry4; that is u(z; 1) = u(loe, 0).
We only need to show that (2;7) € P(c). Suppose not. Then, there is another
feasible allocation (y;t) € X x Y such that

u(y;t) > u(Aor; 0) > u(0;0)
By Remark 5.1 above, we can find » € Y such that ¢(y) = r(N) and
u(y; ) >> u(Agey; 0)

Let X = sup{X € R : u(y; ) >> u(Ae;0)}. Since, r(N) = c(y) > 0, there
is some ip € N such that r;, > 0. Hence, uo(Act,0) > uio(y,75,), whenever

Aa > y. Therefore, Ao < A < 0.
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It cannot be the case that u(y;r) >> u(Aa; 0) because if it were we
may find u > A such that u(y;r) >> u(uc; 0). Hence, we must have that

u(y; ) > u(Ae; 0) > u{Xoex; 0)

Applying now lemma 5.2 with v = u()q;0) we find A, € R and s* € Y such
that (A.y; s°) is feasible and u(\.y; s*) = u(Ae; 0). But this contradicts that
o € EL,(c).

We are now in a position to prove the existence of ega.lxtanan equivalent
allocations.

Proof of Proposition 3.3:

Letc € Eand o € ST, '. Consider anon decreaéing sequence { A\ }52, C
Fy(c) such that 7 .
lim M = sup(F,(c)).

For each k € IN there is an allocation (y*;t*) € X x Y feasible in c such that
u(Are; 0) = u(y*; t*).

Assume that the sequence {y*}, is unbounded. We may find an increas-
ing unbounded subsequence which, for simplicity, we also denote by {y*}.
Using that u is non decreasing in public goods, we have that

u(y*;t*) = u(ee; 0) 2 u(0;0) = u(y*; w(¥")).

Hence, t* < p(y*) for every k € IN and assumption 2.2 implies that for any
agenti=1...,n,

k
eilv®) _

limsup — < hm sup 5.1
TP T < ] &1

by adding these equations we get

(yk) LieN t¥

0 <limsup —— = limsup =——+ = 5.2
YA = P T 63

which contradicts assumption 2.1
Hence, {y*}x must be bounded. It follows now from Equation 5.1 that

for each i € N, the sequence {t}, is bounded above and, thus from Equa-
tion 5.2, there is also an infinite subsequence of {t¥}, bounded below.

18



By taking appropriate subsequences we may assume {y*}, converges to
a limit, say y and {t*}, converges to, say t*. By continuity, the allocation
(y;t*) is feasible.

Suppose first that sup(F,(c)) = +o0o. Then the sequence {A\:}2, is
unbounded. Fix ko, A € R such that Ay > y and A > Ay,. Given k € R
large enough so that A; > A, we have

u(y;0) < u(Ae; 0) < u(Aie; 0) = u(y*;t*)

By taking limits as k tends to infinity, we obtain the inequality u(y;0) <
u(Aa; 0) < u(y;t*). Let t; = max{t],...,t;}. Since 0 < c(y) < t*(N), we
must have t; > 0. On the other hand, since preferences are decreasing in
the amount paid and u;,(y;0) < w,(y; ¢;,), we must also have that ;) < 0.
Therefore, t; =0 and ¢* = 0.

It follows that u(y; 0) = u(Ac; 0) whenever A > Ai,. Hence, the map-
ping H, is continuous and constant for A 2> Ay, so it must attain its maxi-
mum.

If sup(Fu(c)) = limg—oo Ax = A a finite number, then

u(Ae; 0) = kli.n;u(/\ka; 0)= ngx; u(y*; t*) = u(y; t*),

Next, we start the preliminaries to prove Theorem 4.6.

Lemma 5.3 Leti € N and y € X. Then, there is a continuous, non-
decreasing function d; : Ry — Ry such that

(1) If A < 1, then, di()\) = 0.
(i) If A > 1, then, ui(Ay,di(A)) = w(y,0).
Proof

Fix A > 1 and let 1 : Ry — R Le defined by h(s) = u;(Ay, @i(sy)). Then,

h(X) = w(Ay, (M) = w(0,0) < w(y,0)

and
h(0) = ui(Ay, ¢i(0)) = ui(Ay, 0) 2 wi(y,0)
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Since h is continuous, there is s(A) € [0, A] such that h(s())) = ui(Ay, pi(s(N)y)) =
u;(y,0). We define di(A) = pi(s(A)y). Note that d;(A) is uniquely defined
because u is strictly increasing in the second argument. Also, 0 = d;(1) <
di()) < pi(Ay), since @; is increasing.

In addition, d; is continuous and non-decreasing, since is defined im-
plicitely by the equation

u;(y, 0) = wi( Ay, di(A))

Thus, we can extend d;()\) continuously to [0, 1] by requiring that it vanishes
in that interval. o

Lemma 5.4 Let y € R, be a bundle of public goods in the interior of
X. Then, a technology ¢, € E, exists such that u(z;t) = u(y;0) for any
(2;t) € X XY which is an individually rational and Parelo efficient allocation
in the economy c,.

Proof

Let G = 8([0, M\y]) be the boundary of the set {z € X : 0 <z < Ay}.
(The boundary is taken as a topological subset of X.) For each i € N choose
d; as in Lemma 5.3 and let

d=d;V---Vd,

Define now ,
cy(x) = 2nmax{d(A), A — 1}

where ) is the unique point in R, such that £ € G,. Note that ¢,(z) = 0 if
z < y so, in particular, (y;0,...,0) is feasible in ¢,. In addition, ¢(z) > 0 if
z€ Gy withA>1.

20



Ay

— Gy

For each z € G5 we have || z |[< A || v || and ¢, (z) 2 (A —1). So,

. hzll o Ayl
limsup — < limsup ——— < 400
lzli—too Cy(E) T Amteo A=1
Let z € G,,, z € G,,. Assume, without loss of generality, that A; > A.
Then z < My and z < Ay < A\yy. Hence, zVz < AiysozVz € G, and
c(z V z) = c(z) < c(x) + ¢(z). Therefore, ¢, € Eh.

Let now (z;t) = (z; ¢, ...,ts) be an allocation which is individually ra-
tional and Pareto efficient in ¢, with z € G,. Denote by t;, = max{t;,...,tn}.
Suppose that z < y and t;, = 0. Then, t = 0 and u(z;t) < u(y;0). Hence,
by Pareto optimality, u(z;t) = u(y;0) and the proposition is proved. If
z < yand t;, > 0, then u;,(2;t) < ui,(y,0) with y feasible for 5. But, this
contradicts that (z;t) is individually rational.

Otherwise, z ¢ [0,y], so A > 1. Again, by feasibility, 0 < ¢,(z) < t(N).
Therefore,

It follows that, t;, > 2d()\) > 2d;,()\). Assume that d;,(A) > 0, then
ti, > d,o(A) and
ul’o(z»tt'o) < uio(:»dio(’\)) < uio(’\yrdio(’\)) = u,-o(y, 0)
so (z;t) cannot be individually rational because agent iy would be strictly

better off by deviating to the allocation (y;0), which is feasible for him.

Hence, we must have that d;,(A\) = 0. But then u;,(Ay,0) = ui(y,0),
so
Uiy (3/1 0) = uio(’\:’/r 0) 2 uio(Z: 0) 2 Uiy (z: tio)
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By individual rationality, u;(y,0) = u(2,t,) = ui(2,0). Hence, t;; = 0
and it follows that ¢;(z) = 0. But this contradicts that z € G, with A > 1.
O

We say that sequence {c*}$2, C Eg converges to ¢ € Ep, whenever for
every z € X, we have lim;_,, c*(z) = ¢(2).

Lemma 5.5 Let {c*}2, C E, be a sequence converging to ¢ € Eg and let
{(z%;t5)}2, € X xY be a sequence of allocalions such that for every k € IN,
u(z¥; t*) > u(0,0) and (*;t*) is individually rational and Pareto optimal
in the economy c*. Suppose that {(z*;t*)}32, converges to (z;t). Then, the
allocation (z;t) is individually rational and Pareto optimal in the economy c.

Proof
The allocation (z;t) is feasible because for each k € IN we have that c*(z*) <

t*(N) with t* € Y. Since the latter set is closed, by taking limits we have
that ¢(z) <t(N)and teY.

Note also that, by continuity, u(z;t) > u(0;0). Suppose (2;t) is not
Pareto optimal. Then, there is another allocation (z,r) € X x Y which
satisfies c(z) = (V) and u(z;7) > u(z;t). By remark 5.1 we may assume
there is another feasible allocation (z; s) € X XY such that u(z; s) >> u(z;t).
By increasing s slightly, we may also assume that s(N) > ¢(z).

Since the sequence {(z*;t")}%2, converges to (z;t), there is Ny € N
such that whenever k > Ny we have

u(x; s) >> u(z*;t*)
The sequence c*(x) converges to c(x) < s(/N) so, by a continuity argu-
ment, we can take N; € IN, N} > Ny such that for every £k > N; we have

c(z) < s(N) and u(z;s) >> u(z*; t*). But this contradicts that (z¥;t*) is
Pareto optimal in c.

A similar, but simpler argument shows that (z; t) is individually rational
in the economy c. O
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Remark 5.6 Let ¢ € £y and consider the set
A ={mt) eX XY :c(y) =D i, u(y;t) >0} (5.3)
=1

From assumptions 2.1 and 2.2 we have that for any technology ¢ € Ey and
any agent i € N,

lim sup &y) =0

Iyl—oe €(y)

Thus, if ¢ € Ey, (y;t) is feasible and ||y|| is large enough, there must be
some agent ig € N such that t;; > c(y)/n > @i (y). Therefore, ui(y,t;,) <

uio(yxV’io(y)) = uio(010) =0

It follows that there is M € R such that |ly]| £ M whenever (y;t) €
A(c). In addition, since c(y) = Y0 ,t; > 0 and t; < @i(y) for each i =
1,...,n, we conclude that the set A(c) is bounded and has compact closure.
Note that the set of feasible and individually rational allocations is a subset

of A(c).
Now we can prove the “only if” part of Theorem 4.6.

Proposition 5.7 Let R be a cost monotonic, Pareto efficient and individu-
ally rational mechanism. Then,

(i) For any function c € E, R(c) € EE(c).

(i) For every technology ¢ and a € EL(c) we have that u(c,0) = u(R(c)),
i.e. the map u(-,0) is constant on EL(c).

(iti) The utility profile u = (uy,...,u,) satisfies the equal ordering property.

Proof
(i) Fix a technology ¢ € E and suppose R(c) = (z;t). Let z € RT, be bundle

of public goods which is strictly positive. We will prove that u(R(c)) =
u(Xoz; 0) for some Ay € R,.

Given A € R, we may apply Lemma 5.4 with y = Az to construct
¢x: € Ey. Clearly, for each £ € (0, 1], the technologies

c5; =ec+ (1 —€)ex,
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belong to E.

The set A(cp), defined by equation 5.3, with ¢g(f) = min{c(),cx.(6)}
is a bounded subset of X X Y. The set of feasible and individually rational
allocations of all the economies ¢§, with € € [0,1], being a subset of A(cp),
is also bounded. By a compactness argument, there is a sequence {ex}2,
contained in (0, 1), converging to 0 and such that the sequence {R(c}*)}2,
converges to a feasible allocation, say (Z;1), in the economy cy,.

Since R is Pareto efficient and individually rational, so is (Z;%). By
Lemma 5.4 we have that

lim u(R(c3t)) = u(Z; 1) = u(Az;0).

k—oo

For each k € IN, we may apply now Lemma 4.3 to obtain that either
u(R(c)) = u(R(c5)) or else u(R(c)) < u(R(c:)). By a limiting argument
we conclude that for each A € R, '

either u(R(c)) > u(Az;0) or u(R(c)) < u(Az;0). (5.4)

Let A be large enough so that Az > z. Since 0 < ¢(z) < %, t;, there must be

i=1
some agent, say 49 € N, such that t;; > 0. Therefore, u;j(Az,0) > u;(z,t,)
and hence u(Az; 0) > u(R(c)). Observe also that u(0;0) < u(R(c)). Let

Ao =inf{A: w(R(c)) L u(rz,0) forall i=1,...,n}

By continuity, u;(R(c)) < ui(Xz,0), for each i = 1,...,n. Suppose some
inequality is strict, say

u1(R(c)) < ui(Xoz,0).

Again, by continuity, there is ' < Ay close enough to Ag such that we still
have u;(R(c)) < u;(N'2,0). On the other hand, recalling the definition of
infimum, there must be some index, say ¢ = 2, such that

u(R(c)) > u‘,()\"z, 0).

The last two equations contradict equation 5.4. Therefore, u;(R(c)) = u;(Ao2,0)
foralli=1,...,n. ‘

(i1) Let now z € EL(c) and A € R;; by taking y = Az in Lemma 5.4,
we may construct ¢y, as in part (i) above and we may find A € R, such that

u(R(c)) = u(rz;0)
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Since z € EL(c) and R(c) is feasible, then u(2;0) > u(R(c)). But R(c) is
Pareto optimal, so u(z;0) = u(R(c)). This proves (ii) for bundles of public
goods in EL(c). A simple continuity arguments can be used to extend the
result to all bundles of public goods in EL(c).

(iii) Let i € N be an agent, and let y, z € R, be two bundles of public
goods. Suppose that u;(y,0) > u(z,0). Construct, as above, cf*, ci* such
that limg_.. u(R(cj*)) = u(y;0) and lim;,o u(R(cf*)) = u(z;0).

By Lemma 4.3, for each k € NN, either u(R(cj*)) > u(R(c*)) or
u(R(c{*)) < u(R(c*)). By assumption,

Jim ui(R(cj*)) = w(y,0) > ui(z,0) = lim ui(R(c*)).

-— OO —+00

Thus, for large enough k, u(R(cj*)) > u(R(c;*)) and, taking limits we obtain
u(y;0) 2 u(z;0).

Hence, the equal ordering property holds for y,z € RT,. A simple
continuity argument extends this property to y,z € X = R}.

To finish we prove the converse of Theorem 4.6. The equal ordering
property is a sufficient condition for the existence of cost monotonic mecha-
nisms. This property by itself also guarantees that the egalitarian equivalent
allocations are in the Core of the economy.

Proposition 5.8 Suppose the equal ordering property holds. Then,

(i) Any egalitarian equivalent mechanisin is cost monotonic.

(i) EE(c) C Core(c).

Proof
(i) Let R be an egalitarian equivalent mechanism and let ¢; < ¢; be two

technologies in E. For each i = 1,2, let R(¢;) = (¢';z') € EE(c;) with
u(z%0) = u(y'; 2*) for some 2* € X.
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By the equal ordering property, either u{R(c;)) = u(z'; 0) > u(R(cp)) =
u(2%0) or else u(R(c,)) < u(R(cy)). But, ¢1(¥?) < c(y?) = x*(N), so the
allocation R(c;) is feasible in the economy c;. Since R(c;) is Pareto optimal
in ¢;, we cannot have that u(R{c;)) < u(R(cz)). Therefore, u(R(c;)) >

u(R(c2)).

~ (ii) Let = € EL(c) and (y;t) € EE(c) so that u(y;t) = u(z;0). Suppose
that there is a nonempty coalition S C N and an allocation (2;7) € X x Y'¥
such that ¢(z) = 7(S) and u;(z,7%) 2> ui(z,0) for i € S with some inequality
being strict. Consider the allocation (z;7) € X XY, wherer; =0ifi € N\ S
and r; =1} if i € S. Then, ¢(z) = (W), so (z;r) is feasible for N.

By the equal ordering property, either u(z;0) > u(z; 0) or else u(z;0) <
u(z;0). However, u(z;0) > u(r;0) is not possible, because we would have
that u(z; ) > u(z; 0) contradicting that the egalitarian equivalent allocations
are Pareto optimal.

Hence, we must have that u(z;0) < u(x;0). Then, for each i € S we
have the inequalities u;(z;0) < u;(x,0) < w(z,7;). Therefore, r; < 0 for
everyi € S. But 0 < ¢(z) = r(S), so r; = 0 for every i € S. Hence, ¢(z) =0,
z = 0 and 4(0,0) = w(z,7) = wi(x,0) > %(0,0) for i € S with some
inequality strict, which is a contradiction. o
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