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ABSTRACT

Time series analysis using nonlinear dynamics systems theory and multilayer neural networks

models have been applied to the time sequence of water level data recorded every hour at ‘Punta

della Salute’ from Venice Lagoon during the years 1980–1994. The first method is based on the

reconstruction of the state space attractor using time delay embedding vectors and on the

characterisation of invariant properties which define its dynamics. The results suggest the existence

of a low dimensional chaotic attractor with a Lyapunov dimension, DL, of around 6.6 and a

predictability between 8 and 13 hours ahead. Furthermore, once the attractor has been

reconstructed it is possible to make predictions by mapping local-neighbourhood to

local-neighbourhood in the reconstructed phase space. To compare the prediction results with

another nonlinear method, two nonlinear autoregressive models (NAR) based on multilayer

feedforward neural networks have been developed.

From the study, it can be observed that nonlinear forecasting produces adequate results for the

‘normal’ dynamic behaviour of the water level of Venice Lagoon, outperforming linear algorithms,

however, both methods fail to forecast the ‘high water’ phenomenon more than 2–3 hours ahead.
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INTRODUCTION
Unusually high tides, or sea surges, result from a combi-

nation of chaotic climatic elements in conjunction with the

more normal, periodic, tidal systems associated with a

particular area. The prediction of such events has always

been the subject of intense interest to mankind, not only

from a human point of view, but also from an economic one.

The most famous example of flooding in the Venice Lagoon

occurred in November 1966 when, driven by strong winds,

the Venice Lagoon rose by nearly 2 m above the normal

water level. The damage to the city’s homes, churches

and museums ran into hundred of millions of Euros.

The complex behaviour of tides is still not properly

understood. The exact prediction of the oceanic response

to the forcing functions of astronomic and atmospheric

agents has so far proved intractable. While the former

(astronomic) is a periodic predictable phenomenon

caused by the relative motion of the earth, the moon and

the sun, the latter is a complex phenomenon usually

treated as stochastic. In fact, the problem has been

approached either through numerical models or statistical

methods. The first approach consists of solving the

hydrodynamic equations by means of finite-difference

techniques to obtain the variations in sea level induced by

the sea tides, and by wind and atmospheric pressure fields

acting over the waters of the sea. One and two-

dimensional numerical models have been developed to

forecast the ‘high waters’ phenomenon in Venice

(Accerboni et al. 1971; Accerboni & Manca 1973; Tomasin

1973). However, these models require the computation of

the meteorological forcing functions at each point of the

finite difference grid and, hence, they are computationally

expensive; (see Vieira et al. 1993 for a description of the

model and the obtained results). On the other hand, linear

stochastic models are suitable for online forecasting since

they are simple and their computational burden is low.

ARMA (autoregressive moving average) models using data
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of pressure and level at Venice, or using data of the

Adriatic sea level at different places, are currently used to

forecast the water level at Venice Lagoon (see Tomasin

1972, Michelato et al. 1983, and Moretti & Tomasin 1984,

among others).

The advent of nonlinear time series analysis and the

mathematical theorems associated with chaotic dynamics,

in the late 1980s, are now making it possible not only to

qualify, but also to quantify the behaviour of some

complex systems. The techniques, which consist of

representing complex system dynamics in multi-

dimensional phase-space as a geometrical object, have

had some success at predicting chaotic behaviour.

A preliminary study on the application of nonlinear

time series analysis using delay coordinate embedding on

the tidal data from the Venice Lagoon from 1980 to 1984,

was carried out by Vittori (1992 1993). The results obtained

show that the a-periodic component, which is super-

imposed on the periodic (astronomical) one, possesses a

chaotic-deterministic character. The time delay was

empirically calculated and a value of 200 hours was

selected for most of the calculations. Thereafter, the

embedding dimension was calculated using the corre-

lation dimension (Grassberger & Procaccia 1983) as the

invariant property and a value of 6 was obtained. With

these two values, the largest Lyapunov exponent and,

hence, the predictability window, was computed using the

algorithm developed by Wolf et al. (1985) which gave a

value of approximately 40 hours. However, there were

some open questions: a time delay of 200 hours seems too

long to assume that some correlation between the data

exists, and the predictability window given as 40 hours,

using only water level data, disagrees with the actual

estimation methods. Furthermore, there were no standard

errors in the water level forecasting so it is not possible to

make a comparison with the previous linear stochastic

techniques.

In a recent work, Bergamasco et al. (1995) studied

wind-driven surface wave data on an offshore platform

about 20 km from Venice in the northern Adriatic Sea.

Even though they found a finite value for the correlation

dimension (approximately 7) and a positive value for the

largest Lyapunov exponent (approximately 0.0015 bit/

sec), Bergamasco et al. (1995) concluded that the correct

interpretation was that the data are essentially stochastic,

and that the correlation dimension and Lyapunov

exponents result from the anomalous statistical behaviour

of certain near-Gaussian random processes.

In this work we have tried to develop further this

nonlinear time series analysis using delay coordinate

embedding by applying recently developed numerical

algorithms (Abarbanel 1996; Kantz & Schreiber 1999) in

an effort to understand the nonlinear dynamic behaviour

of the system and to provide an early warning prediction

of unusually high water.

We are also interested in comparing the results

obtained from applying nonlinear dynamic systems theory

with generalised nonlinear autoregressive models, also

named NARmodels. In this case, the time series behaviour

can be captured by expressing the value x(k + 1) as a

nonlinear function of the n previous values of the time

series, x(k), . . ., x(k − n), that is:

x(k + 1) = F[x(k), . . . , x(k − n)], (1)

where k is the time variable and F is some function

defining a very large and general class of time series.

The explicit form of the function F is usually unknown

and it must be determined using approximation tech-

niques. The present study deals with long-term or multi-

step prediction, i.e. how to achieve predictions several

steps ahead into the future, x(k + 1), x(k + 2), . . . ,

x(k + h), starting from information at time k. Hence

the goal is to approximate the function F such that the

model given by Equation (1) can be used as a multistep

prediction scheme.

The development of mathematical analysis has led to

the discovery of important classes of approximation func-

tions which can be used to obtain F. These include poly-

nomials, trigonometric series, orthogonal functions,

splines, etc. Other additional families of functions are

artificial neural networks. Different authors (Cybenko

1989; Hornik et al. 1989) have shown independently that

multilayer neural networks, with as few as one hidden

layer and with an arbitrarily large number of neurons in

the hidden layer are capable of approximating any non-

linear continuous function. In this work, the class of

functions associated with a multilayer perceptron and
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with one hidden layer has been considered to approximate

the functional F in Equation (1).

In the following section the experimental data are

presented and briefly analysed. The data can be seen as the

sum of the periodic and predictable astronomic effects

with the weather effects superimposed. The periodic com-

ponent may be removed from the time series. In the next

section we discuss the idea of reconstructing the phase

space of the system by the use of time delays of observed

data. We discuss methods of determining the appropriate

time delay to use in practical reconstruction of phase

space, as well as the dimension of the phase space in

which we must work. We apply the techniques to the data

from Venice Lagoon. Once the state space has been recon-

structed, methods to calculate the invariant quantities

preserved by phase space reconstruction are discussed.

Principally, we are interested in the calculation of the

Lyapunov exponents since they will give us an idea of

the predictability window and the type of dynamics of the

system. Furthermore, the dynamic degrees of freedom of

the water level at Venice Lagoon are also obtained as a

first step to develop a model able to reproduce the

observed signal. After we have established ways of classi-

fying the physical system leading to the observations, we

move on to a discussion of model building to make

numerical predictions. Concerning the nonlinear autore-

gressive models, we first introduce the two neural models

based on multilayer feedforward networks used during

this study. Thereafter, we discuss how it is possible to

reduce the neural network complexity during the training

step and, finally, we compare the forecasting results

produced by both methods.

The results show that both nonlinear predictors give

accurate results for short- and long-term predictions dur-

ing ‘normal’ periods, but fail in predicting more than

4 hours ahead the ‘high waters’ phenomenon.

WATER LEVEL DATA AT VENICE LAGOON

Figure 1 shows the water level of Venice Lagoon between

1980 and 1994 sampled every hour, the high-water

level, i.e. no less than 110 cm, is also shown. The high

water phenomenon has a characteristic behaviour

during the year, November and December being the

months in which the phenomenon is more pronounced

whereas during the summer it has never been observed

(Moretti & Tomasin 1984). The analysis of the power

spectrum of these data, see Figure 2, indicates the

existence of periodicities related to the diurnal and

semidiurnal tides with a period of 12 and 24 hours,

Figure 1 | Water level at the Venice Lagoon from 1980 to 1994.

Figure 2 | The Fourier power spectrum for the data from Figure 1.
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respectively and a broadband spectrum typical of noise or

chaotic systems.

Assuming that the total sea level is simply the linear

superposition of tidal oscillations and weather-induced

oscillations (Michelato et al. 1983), then the deviation of

the sea level L(t) from the mean sea level value can be

expressed as:

L(t) = T(t) + S(t) + N(t), (2)

where T(t) is the tidal complex, S(t) is the surge, i.e. the

meteorological induced perturbation, and N(t) is the noise

term which is the residual variation not explicitly account-

able and with zero mean value. The residual R(t) can now

be defined as:

R(t) = L(t) − T(t) = S(t) + N(t). (3)

If one supposes that surge-tide interactions in the

northern Adriatic basin can be neglected, the term R(t)

depends essentially on meteorological parameters. The

tidal oscillations produced, which are mainly due to the

relative motion of the earth, moon and sun, can be decom-

posed in a sum of sine functions, each one with its own

periodicity. The sum of these sine functions will produce

T(t) that can be subtracted from the original signal to

obtain R(t). Figure 3 shows this term for the Venice

Lagoon between 1980 and 1994 whereas in Figure 4 its

power spectrum is shown. As can be seen the periodicities

of 12 and 24 hours have practically disappeared and the

power spectrum is broadband. Tidal prediction can be

performed accurately by several well established methods

and, hence, the prediction of the term R(t) is the critical

point of the problem.

Hurst coefficient of time series

The Hurst exponent is a measure of the long-time corre-

lations in a time series and was originally used to charac-

terise flow in rivers and dams (Hurst 1951). The Hurst

exponent has the characteristic that allows classification

of time series since it is able to distinguish the existence

of long-range correlations from random noise. In this

method, also called rescaled range analysis (R/S analysis),

the span of a random process is divided by its variance,

resulting in a new variable that depends on the length of

the data record. Let us define the time average of the time

series L(t) over the interval of time t:

Figure 3 | Residual term, R, at the Venice Lagoon from 1980 to 1994.

Figure 4 | The Fourier power spectrum for the data from Figure 3 (small figure: power

spectrum of the subtracted tidal oscillations).
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Let us also define A(t), the accumulated departure of L(t)

from the mean as:

so that the span of the process is defined by:

Let us also introduce the standard expression for the

variance:

The rescaled Hurst analysis consists in studying the prop-

erties of the ratio:

The dependence of R(t) on the number of data points

follows an empirical power law described as R(t) = R0tH

obtained over a wide range of time lengths t, where H is

the Hurst exponent. The Hurst exponent, 0 ≤ H ≤ 1, is
equal to 0.5 for random, white noise series, <0.5 for rough

anticorrelated series, and >0.5 for positively correlated

series.

The deficiencies in time-series analysis for identify-

ing, describing and modelling long-range correlations

was pointed out by Mandelbrot & Van Ness (1968).

Mandelbrot (1983) using the theory of fractional Brownian

motion (fBm), showed that fractional Brownian motion

could provide an explicit statistical realisation of the

power law scaling, supporting the interpretation of natural

phenomena in terms of fractal functions.

Estimating the Hurst coefficient of time series

Several methods are available for estimating the Hurst

coefficient of a one-dimensional time series: scaled

windowed variance, dispersional analysis, Hurst rescaled

range analysis, autocorrelation measures, and power

spectral analysis. Bassingthwaighte & Raymond (1994)

have demonstrated that the last three methods for estimat-

ing H are highly biased and variable. For example, for a

series of 512 points, a 95% confidence interval for H,

based upon a re-scaled range estimate of H = 0.5 will

include every H from 0.2 to 0.9. Autocorrelation analysis

estimates are highly biased towards H = 0.5. Fourier

spectral analysis based on the periodogram also has a high

variance in its estimates.

In this work we have used the scaled windowed

variance method (Cannon et al. 1997). The scaled

windowed variance methods measure variability at differ-

ent scales in order to estimate H. A signal is repeatedly

divided into windows, but instead of computing the

standard deviation of the means within the windows, the

means of the standard deviations within the windows are

used to obtain an estimate of H (Cannon et al. 1997). Short

data sets are difficult to characterise. Noise present in a

real time series can mask long-range correlations among

the signal elements. In the case of white noise, it would

induce a bias toward H = 0.5. In this case it is possible to

detect this by excluding small window sizes when comput-

ing the linear regression of log (R(t)) versus log (t). In case

of coloured noise, it is not known presently how to distin-

guish between a simple fractal signal and a signal that is

the sum of two simple fractal signals.

We have estimated the Hurst coefficient, using the

Venice Lagoon level data points (H = 0.83) and the

residual terms (H = 0.90). We have used the bridge

detrended (BD) scaled windowed method which has been

recommended for series longer than 212 data points, the

algorithm is described in Cannon et al. (1997). As can

be seen from Figures 5 and 6 the analysed time series

show long memory effects, H > 0.5, even when the tidal

component has been removed.

Noise, nonstationarity and nonlinearity in

Venice Lagoon data

It is known that some types of noise, that are clearly not

associated with low dimensional chaotic systems, are able

to fool the algorithms that characterise the structure of

chaotic attractors (see Tsonis & Elsner 1992). For this

reason, the standard time delay embedding techniques and
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invariants calculation should not be used without a careful

evaluation of the conditions for their applicability, and an

examination of the consistency of the results obtained.

This is more evident in the case of complicated time series

from natural systems as in the case of the Venice Lagoon

data. The first test to apply under such circumstances is to

repeat the analysis increasing the length (number of

points) of the signal used. Non-consistency in the results

should warn of misleading conclusions.

Another useful technique to distinguish between

low-dimensional dynamics and randomness is the space-

time separation plot introduced by Provenzale et al.

(1992). In this technique one usually draws lines of con-

stant probability per time unit of a point to be a neighbour

(distance less than e) in the reconstructed phase space of
the current point, when its time distance is dt. This helps
in identifying temporal correlations inside the time series.

In the case of power-law noises the only points with small

spatial separation are dynamically near neighbours, i.e.

the series is non-recurrent in phase space. As can be seen

in Figure 7 there are clear correlations in the Venice

Lagoon data. However, even if this preliminary analysis is

encouraging, it should be emphasised that there is no

simple test for indicating automatically and unequivocally

the presence or absence of chaotic dynamics.

Many techniques for analysing time series assume in

their application that the series under investigation is

stationary. In the case of chaotic time series this means

that the system has reached the attractor. However, one

of the most difficult problems in nonlinear time series

Figure 5 | Estimation of the Hurst coefficient for the level data from Figure 1. Selected

points have been excluded from the calculation (see Cannon et al. 1997,

Table 2).

Figure 6 | Estimation of the Hurst coefficient for the residual term data from Figure 3.

Selected points have been excluded from the calculation (see Cannon et al.

1997, Table 2).

Figure 7 | Space-time separation plot of the Venice Lagoon level data. Lines of constant

probability density of a point to be e-neighbour of the current plot if its

temporal distance is dt (relative time) are shown. Probability densities are

1/20 to 1 with increments of 1/20 from bottom to top. Clear correlations are

visible (calculations were carried out using the stp routine of the TISEAN

package, http://www.mpipks-dresden.mpg.de/∼tisean).
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analysis is the problem of nonstationarity. Unfortunately,

although a precise asymptotic definition of stationarity

exists, there is no clear and unambiguous method for

determining stationarity in real finite time series (see for

example Isliker & Kurths 1993; Manuca & Savit 1996 and

Schreiber 1999, for some recent works).

Normally, the methods proposed in the literature are

based on the estimation of a certain parameter, for

example variance, power spectrum, etc., using different

parts of the time series and studying whether the observed

variations are found to be significant, i.e. outside the

expected statistical fluctuations. The Venice Lagoon level

time series is not stationary since the mean sea level from

1923 to 1998 has been continuously increasing, which is

probably because of the fact that Venice is slowly moving

down. However, we can assume that during the studied

period the mean sea level is practically constant.

Related to noise is the problem of nonlinearity. Most

of the methods discussed here are most appropriate where

the data show strong and consistent nonlinear determin-

istic signatures. If a moderate amount of noise is present

then it is possible that predictability will be limited. To test

for nonlinearity we have applied the concept of surrogate

data (Theiler et al. 1992). This method consists of generat-

ing an ensemble of ‘surrogate’ data sets, which are similar

to the original time series but consistent with the null

hypothesis which in our case is that the data has been

created by a stationary Gaussian linear process, and of

computing a discriminating statistic, which in our case is

based on the forecasting error, for the original and for

each of the surrogate data sets. The results for the Venice

Lagoon data set show that the null hypothesis may be

rejected at the 95% level of significance, since the predic-

tion error of the data is found to be smaller than that of the

surrogate data sets. However, the differences are signifi-

cantly small and, hence, it seems that there is a consider-

able amount of noise present in the signal, as one may

expect from such a system.

FINDING THE PHASE SPACE

State space reconstruction is the first step in nonlinear

time series analysis of data from chaotic systems. Let us

consider a system of d ordinary differential equations:

where x(t) = [x1(t), x2(t), . . . , xd(t)] in Rd and F = [F1, F2,

. . . , Fd] is a smooth (i.e. C
1) nonlinear function of x.

A time series is a list of numbers, which are assumed to

be measurements of an observable quantity over time,

which, in the absence of noise, is related to the dynamic

system by

s(t) = h(x(t)). (10)

The system on which the observable quantity is being

measured is evolving with time. The phase space recon-

struction problem is that of recreating states when the

only information available is contained in a time series, i.e.

how to go from scalar or univariate observations to the

multivariable state space or phase space which is required

to study the system? Typically, F and h are both unknown,

so we cannot hope to reconstruct states in their original

form. However, we may be able to reconstruct a state

space that is equivalent to the original in the sense that

differential properties are preserved.

Work by Takens (1981) and improvements by Sauer

et al. (1991) have shown that if the dynamics are based on

a d-dimensional Euclidean space, an embedding of the

system can be obtained with a 2d+1-dimensional recon-

structed state space using derivatives or delay coordinates.

The basic idea of this reconstruction is that if one has an

orbit seen projected onto a single axis s(t), then the orbit,

which we presume came from an autonomous set of

equations, may, by virtue of the projection, overlap with

itself in the variables s(t). There is no overlap of the orbit

with itself in the true set of state variables according to the

uniqueness theorems about the solution of autonomous

differential equations. If we can unfold the orbit by pro-

viding independent coordinates for a multidimensional

space made out of the observations, then we can undo the

overlaps coming from the projection and recover orbits

which are not ambiguous.

The currently used possibilities for state space recon-

structions include (Breeden & Packard 1994), among

others, delay coordinates, {s(t), s(t − T), s(t − 2T), . . . ,

s(t − (dE − 1)T}, derivative coordinates, {s(t), s~(t), s̈(t), . . .},

67 J. M. Zaldı́var et al. | Forecasting high waters Journal of Hydroinformatics | 02.1 | 2000



and global principal value decomposition. The method of

reconstruction can make a big difference in the quality of

the resulting coordinates, but in general it is not clear

which method is the best (Casdagli et al. 1991). The lack of

a unique solution for all purposes is due in part to the

presence of noise and the finite length of the data set.

In this work delay coordinates have been used. A

delay coordinate, often referred to as a lag, is simply

the observed variable some time T in the past. Delay

coordinates are easy to work with and can be effective

for very high dimensional cases where it may not be

practical to calculate the required number of derivatives.

Most of the research on the state-space reconstruction

problem has centred on the problems of choosing the time

delay, T, and the embedding dimension, dE, for delay

coordinates.

Finding the time delay

The first step in phase space reconstruction is to choose an

optimum delay parameter T. Different prescriptions have

appeared in the literature to choose T but they are all

empirical in nature and do not necessarily provide

appropriate estimates:

First passes through zero of the autocorrelation

function

In earlier works (Mees et al. 1987) it was suggested to use

the value of T for which the autocorrelation function

first passes through zero which is equivalent to requiring

linear independence.

First minimum of the average mutual information

Fraser & Swinney (1986) suggested using the average

mutual information (AMI) function, I(T), as a kind of

nonlinear correlation function to determine when the

values of s(n) and s(n + T) are sufficiently independent of

each other to be useful as coordinates in a time delay

vector, but not so independent as to have no connection

which each other at all. For a discrete time series, I(T) can

be calculated as,

where P(s(n)) refers to individual probability and

P(s(n),s(n + T)) is the joint probability density. Following

the method developed by Abarbanel (1996), to determine

P(s(n)) we simply project the values taken from s(n)

versus n back onto the s(n) axis and form a histogram of

the values. Once normalised, this gives us P(s(n)). For

the joint distribution of s(n) and s(n + T) we form the

two-dimensional histogram in the same way.

In general, the time lag provided by I(T) is normally

lower than the one calculated with C(T), TAMI < Tcorrel,

and provides the appropriate characteristic time scales for

the motion. Even though C(T) is the optimum linear

choice from the point of view of predictability in a least

squares sense of s(n + T) from knowledge of s(n), it is not

clear why it should work for nonlinear systems and it has

been shown that in some cases it does not work at all.

Choosing the embedding dimension

The dimension, where a time delay reconstruction of the

system phase space provides a necessary number of co-

ordinates to unfold the attractor from overlaps on itself

caused by projection, is called the embedding dimension,

dE. This is a global dimension to unfold the dynamics

which can be different from the real dimension. Further-

more, this dimension depends on the time series measure-

ment, and hence, if we measure two different quantities

from some system, there is no guarantee that the dE from

time delay reconstruction will be the same from each of

them.

The usual method for choosing the minimum embed-

ding dimension is to compute some invariant of the attrac-

tor. By increasing the embedding dimension used for the

computations, one notes when the value of the invariant

stops changing. Since these invariants are geometric

properties of the attractor, they become independent of d

for d ≥ dE, i.e. after the geometry is unfolded.

68 J. M. Zaldı́var et al. | Forecasting high waters Journal of Hydroinformatics | 02.1 | 2000



In this work, we have used two methods: False

Nearest Neighbours and the E1 & E2 method.

False Nearest Neighbours

The method of False Nearest Neighbours (FNN) was de-

veloped by Kennel et al. (1992). In this case, the condition

of no self-intersection states that if the attractor is to be

reconstructed successfully in Rd, then all the neighbour

points in Rd should also be neighbours in Rd + 1. The

method checks the neighbours in successively higher em-

bedding dimensions until it finds only a negligible number

of false neighbours when increasing the dimension from d

to d + 1. This d is chosen as the embedding dimension.

It was found by Kennel et al. (1992) that if the data set

is clean from noise, the percentage of false nearest neigh-

bours will drop from nearly 100% in dimension one to

strictly zero when dE is reached. Further, it will remain

zero from then on since the attractor is unfolded. If the

signal is contaminated with noise (infinite dimension sig-

nal) we may not see the percentage of false nearest neigh-

bours drop to near zero in any dimension. In this case,

depending on the signal to noise ratio, the determination

of dE will degrade. In the case of a random number

generator, the larger the number of data used, the sooner

the percentage of false nearest neighbours rises to nearly

100% as we increase d.

E1 & E2 method

The method of FNN has some subjectivity for saying that a

neighbour is false since two parameters have to be defined

(Kennel et al. 1992). To improve this situation, Cao (1997)

developed a similar method, which is based on evaluating

the mean value of the distance between time-delay

vectors, E1, and on another quantity, E2, that checks

whether future values are independent of past values. If

E2 = 1 for any embedding dimension then the signal is a

stochastic signal (white or coloured noise). The E1 & E2

method depends only on the time delay, and the embed-

ding dimension is calculated, as in the other methods,

when the values of E1 and E2 reach saturation. Cao (1997)

showed that the method does not strongly depend on how

many points are available, provided there are enough;

it can clearly distinguish between deterministic and

stochastic signals; and it works well for time series from

high-dimensional attractors.

Reconstructing phase space for Venice Lagoon data

In this work the 15-year time series of the Venice Lagoon

level, as well as the residual term, has been divided into

two parts: the first one consists of 10 years, from 1980 to

1989, and the second contains the past 5 years. These time

series have been analysed independently to check the

validity and coherence of the results for the reasons

previously discussed. Furthermore, some tests have been

performed on the complete time series.

Finding the time delay

The water level data at the Venice Lagoon from 1980 to

1989 was used to calculate the autocorrelation function,

Equation (11), and the average mutual information func-

tion, Equation (12). As can be seen in Figure 8 the first

zero of the autocorrelation function for the level data

occurs at T = 6 hours, whereas for the residual level data

(see Figure 9), the intersection through zero occurs at 609

hours (25.4 days). A time delay reconstruction of the

Figure 8 | Autocorrelation function for the Venice Lagoon data from 1980–1989. C(T) has

its first zero at T=6 hours, and this tells us when the measurements s(n) and

s(n+T) are linearly independent.
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phase space using this time as the lag would reveal little

since this is clearly too long for any dynamic corre-

lations in this system to persist. An identical result was

reported by Abarbanel (1996) analysing the chaotic

volume fluctuations of the Great Salt Lake.

Similar results were obtained using the data from

1990–1994. In this case T = 6 hours for the level data and

there is no intersection through zero for the residual data

after as long as 1000 hours (41.7 days).

Figures 10 and 11 show the average mutual infor-

mation for the above mentioned data set. In this case T = 4

and 8 hours, respectively. Similar results were obtained

using the data from 1990–1994 and using all the time

series data, i.e. 1980–1994. In the first case, using the AMI

function, T = 5 and 6 hours for the level and residual data,

respectively, whereas with the complete time series T = 4

and 10 hours, respectively.

Choosing the embedding dimension

Using a time lag T = 6 hours, the percentage of false

nearest neighbours for the water level data from 1980–

1989 shows a sharp drop close to zero at dE = 7, after

which the percentage of false neighbours remains approxi-

mately constant, see Figure 12. This provides the evidence

that we are dealing with a low dimensional system. The

strength of this conclusion is enhanced when similar

results are obtained using the complete time series data,

i.e. 1980–1994, or the second part, i.e. 1990–1994. In

contrast, when carrying out the same procedure for the

residual level data, see Figures 13 and 14, it is possible to

Figure 9 | Autocorrelation function for the residual data from 1980–1989. C(T) crosses

through zero at 609 hours (>25 days). This is one of the cases where the

autocorrelation function fails to find an adequate time delay.

Figure 10 | Average mutual information function for the Venice Lagoon data from

1980–1989. I(T) has its first minimum at T=4 hours.

Figure 11 | Average mutual information function for the residual Venice Lagoon data

from 1980–1989. I(T) has its first minimum at T=8 hours.
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observe the characteristic behaviour of noisy data with the

percentage of false nearest neighbours increasing with the

dimension. This fact is accentuated when more data points

are included; this is also a generic characteristic of noisy

time series data (see Figure 14).

The method E1 & E2 has been also applied to the

water level and residual data, respectively, using the same

time delays as in the FNN method. The results are shown

in Figures 15 and 16. In the first case, E1 and E2 stabilise

around an embedding dimension of 8, whereas in the case

of the residual time series dE ≥ 13. In this case, the results
suggest that the residual time series is not stochastic, as it

seems from the FNN method. Furthermore, in principle,

this method is also able to detect between coloured noise

and chaotic signals. Similar results were obtained using all

the time series data.

It has long been known that the filtering of chaotic

time series data may change the dynamic properties of

interest. In fact, Badii et al. (1988) discovered that an

infinite impulse response (IIR) filter can affect the esti-

mation of the dimension of the original attractor and of

invariant measures such as fractal dimension and

Lyapunov exponents. Badii et al. (1988) found that when

the contraction rates associated with the filter were too

slow then the reconstructed attractor can have a higher

fractal dimension than the original. This can be seen in

terms of an increase in the dimension of the system due to

the additional filter dynamics. However, for FIR filters

mathematical theorems exist which say that the delay

coordinate properties are unchanged by the filter (see Ott

et al. 1994). Of course, the practical use of this information

must be tempered with the knowledge that an IIR filter is

a limiting case of a FIR filter. In a recent work Davies

Figure 12 | False nearest neighbours for the water level data at Venice Lagoon

1980–1989, dE=7.

Figure 13 | False nearest neighbours for the residual data at Venice Lagoon 1980–1989.

Figure 14 | False nearest neighbours for the residual data at Venice Lagoon 1980–1994.
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(1997) proved that, in theory, one may obtain the same

Lyapunov exponents from the filtered dynamics.

In the case of Venice Lagoon data, the residual level is

obtained by subtracting a sum of sine functions, each one

with its own periodicity, which correspond to the relative

motion of the earth, moon and sun. This is equivalent to

performing multiple IIR filtering, and hence the residual

level data may have different properties from the original

attractor under study. Furthermore, this treatment may

increase the noise:signal ratio and hence it may make it

difficult to obtain reliable invariants.

Choosing the dynamic dimension for the Venice

Lagoon data

Once one has determined the global number of

dimensions required to unfold the attractor, there remains

the problem of the number of dynamic degrees of freedom,

dL, which are active in determining the evolution of the

system as it moves around the attractor. To calculate this

dynamic dimension we have used the method proposed by

Abarbanel & Kennel (1993) which consists of evaluating

the percentage of local false nearest neighbours.

Using the same idea as the FNN method, Abarbanel &

Kennel (1993) proposed a method to study the local

structure of the phase space to see if locally one requires

fewer dimensions than dE to capture the evolution of the

orbits as they move on the attractor. Their approach was

to work in a dimension, dL < dE, large enough to ensure

that the attractor has been unfolded. In this space, they

studied for some data point y(k) what subspace of dimen-

sion dL < dE allows the construction of accurate local

neighbourhood to neighbourhood maps of the data on the

attractor. In fact, for a specified number of neighbours,

NB, of y(k), they provided a local rule for calculating how

these points evolve in one time step into the same NB

points near y(k + 1). When the percentage of bad predic-

tions becomes independent of dL and is also insensitive to

the number of neighbours NB, it is possible to say that the

correct local dimension for the active degrees of freedom

has been identified.

In the case of Venice Lagoon level data, the per-

centage of bad predictions seen in Figure 17 becomes

independent of the number of neighbours NB and of the

local dimension at dL = 8, telling us that this attractor may

be adequately described by eight degrees of freedom. Simi-

lar results are obtained using the second portion of the

time series, i.e. 1990–94, or the whole data, i.e. 1980–

1994. This means that models for simulating the dynamic

behaviour of water level at Venice Lagoon should have

local eighth-dimensional dynamics regardless of the

dimensions of the overall space in which the model is

built.

Figure 15 | E1 & E2 method for the level data at Venice Lagoon 1980–1994.

Figure 16 | E1 & E2 method for the residual data at Venice Lagoon 1980–1994.
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For the residual data we found the percentage of

bad predictions becomes independent of the number of

neighbours NB and of the local dimension at dL = 10, see

Figure 18.

INVARIANT CHARACTERISTICS OF THE
DYNAMICS

Three classes of tools now exist for the analysis of data

generated by chaotic dynamic systems. These involve met-

ric, dynamic and topological invariants. Metric methods

depend on the computation of various fractal dimensions

or scaling functions (Grassberger & Procaccia 1983).

Dynamic methods rely on the estimation of local and

global Lyapunov exponents and a Lyapunov dimension, as

well as on entropy (Eckmann & Ruelle 1985). Finally,

topological methods involve determination of specific

topological invariants of the attractor as relative rotation

rates for the unstable periodic orbits embedded in the

attractor (Gilmore 1998).

In this work we have used the dynamic invariants to

characterise the Venice Lagoon data, i.e. Lyapunov expo-

nents and a Lyapunov dimension. Lyapunov exponents

quantify how orbits on the attractor move apart (or

together) under the evolution of the dynamics. They are

invariant under the evolution operator of the system and

thus are independent of changes in the initial conditions

of the orbit, and they are independent of the coordinate

system in which the attractor is observed. This means that

it is possible to evaluate them reliably in the reconstructed

phase space made of time delay vectors. Thus it is possible

to evaluate them from experimental data.

Global Lyapunov exponents

Lyapunov exponents describe the action of the dynamics

defining the evolution of trajectories. Given a continuous

dynamic system in d-dimensional phase space, i.e.

Equation (9), it is possible to monitor the evolution of an

infinitesimal d-sphere of initial conditions. This d-sphere

will become a d-ellipsoid due to the locally deforming

nature of the flow, see Figure 19. The jth one-dimensional

Lyapunov exponent, lj, is then defined in terms of the

length of the ellipsoidal principle axes at time t, pj(t), as

(Wolf et al. 1985):

The Lyapunov exponent monitors the behaviour of two

closely neighbouring points in a direction of the phase

Figure 17 | Local false nearest neigbours for water level data at Venice Lagoon from

1980–1989. From this view dL=8 might be chosen (recall dE=8).

Figure 18 | Local false nearest neighbours for residual level data at Venice Lagoon from

1980–1994. From this view dL=10 might be chosen.
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space as a function of time. If the points expand away from

each other, the Lyapunov exponent will be positive, if they

converge, the exponent becomes negative, if the two

points stay the same distance apart, the exponent stays

near zero. Since the orientation of the ellipsoid changes

continuously, the directions associated with a given expo-

nent vary too. Hence, there is not a fixed direction associ-

ated with a given exponent. Normally lj are ordered with
respect to their magnitude, i.e. l1 ≥ l2 . . . ≥ ld and the set
of all lj are called Lyapunov spectra. In general it is

possible to use other bases of the logarithm. If base 2 is

used, the exponents are measured in bits of information

for second (continuous system) or for iteration (discrete

system).

The Lyapunov exponents give us a sense of dimension.

When the system evolves, the linear extent of the ellipsoid

grows (reduces) as 2l1(t)·t; the area defined by the first two

principle axes grows (reduces) as 2(l1(t) + l2(t))·t; the volume

defined by the first three principle axes grows (reduces) as

2(l1(t) + l2(t) + l3(t)).t; and so on. In general, in a phase space of

a higher dimension, the calculation of the volume will be:

V(t) = 2(l1(t) + l2(t) + . . . + ld(t))t V(0) . (14)

Lyapunov dimension

As shown above, for dissipative systems the sum of all

exponents is negative, so somewhere there must be a

combination of exponents which can be associated with a

volume in phase space which neither grows nor shrinks.

Kaplan & Yorke (1979) suggested that this be used to

define a Lyapunov dimension as:

Invariant characteristics for the

Venice Lagoon level data

The local false neighbours for the water and residual level

data become nearly independent of both parameters (NB

and d) near dL = 8 and dL = 10, respectively. After that

they start to fluctuate, see Figures 17 and 18. This tells us

that we should use eight differential equations to model

the dynamics of the level of the Venice Lagoon for predic-

tion, and also that this should be the number of true

Lyapunov exponents we can expect from these types of

systems. Given that the maximum Lyapunov exponent is

related to the predictability of the system it also gives an

indication of the maximum predictability we can expect

from any model we may make.

Table 1 shows the eight computed local Lyapunov

exponents for the water level at Venice Lagoon. The Table

shows that three Lyapunov exponents are positive, one is

close to zero and the others are negative. The Lyapunov

exponents tell us, on average, around the attractor, how

Figure 19 | A schematic representation of the evolution of a dynamic system in the

phase space.

74 J. M. Zaldı́var et al. | Forecasting high waters Journal of Hydroinformatics | 02.1 | 2000



well we can predict the evolution of the system m steps

ahead of wherever we are. Secondly, if the data we are

analysing comes from a set of differential equations, then

one of the exponents must be zero (Eckmann & Ruelle

1985). Thirdly, the values of li, at their limit, become
invariant and they provide us with a tool to characterise

our system. Similar results have been obtained using

the two parts of the time series non-sequentially and the

complete set. Table 1 also gives the total sum of the

Lyapunov exponents, which is negative, as expected for a

dissipative system. Furthermore, the Lyapunov dimension,

Equation (15), is calculated in the last row which gives

values between 6.01 and 6.58.

The determination of the local dimension of the

dynamics by the local false neighbours test, or forward-

backward local Lyapunov exponents, tells us how many

dimensions we should use to model the dynamics for

purposes of prediction and control. It also tells us how

many true Lyapunov exponents we should evaluate for the

system. Since Lyapunov exponents are invariants of the

attractor, they serve to characterise the system as well as

give us an indication of the predictability of any model we

might make. The largest Lyapunov exponent gives an

indication of how far into the future reliable predictions

can be made, and the dynamic dimension gives an indi-

cation of how complex a model for making predictions

must be. Since the predictability time is about ts/l1, ts
being the sampling time, this means that models for the

Venice Lagoon level data could allow predictions that lie

between 8 and 13 hours ahead. Hence we can expect

that for any given prediction time in exceedence of this

range, the intrinsic instabilities of the system will make

predictions highly unreliable.

We have tried to recover the same invariants (Davies

1997), i.e. Lyapunov exponents, from the residual data

but, as can be seen in Table 1, there are differences between

both time series and, hence, the filtering has affected

the structure of the attractor. In this case the Lyapunov

exponents are higher and the predictability is reduced to

2 hours.

Table 1 | Calculated Lyapunov exponents for the Venice Lagoon level and residual data.

Lyapunov
exponents

Level data Residual data

Forwards Backwards Forwards Backwards

1 0.1023 0.0788 0.4959 0.4827

2 0.0710 0.0397 0.3942 0.3736

3 0.0336 0.0157 0.2776 0.2751

4 0.0062 − 0.0071 0.1866 0.1649

5 − 0.0262 − 0.0277 0.0488 0.0364

6 − 0.0916 − 0.0808 − 0.1083 − 0.1371

7 − 0.1962 − 0.1920 − 0.3739 − 0.3784

8 − 0.5930 − 0.5267 − 0.9656 − 1.0460

Sum − 0.5930 − 0.5267 − 0.0446 − 0.2288

DL 6.58 6.01 7.95 7.78
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FORECASTING HIGH WATERS AT VENICE
LAGOON USING CHAOS THEORY TECHNIQUES

Having characterised the dynamic behaviour of the water

level at Venice Lagoon as well as the predictability limits,

the idea is to use this information to model and predict its

evolution.

The idea for making short-term predictions in chaotic

time series was first introduced by Farmer & Sidorowich

(1987). Since we have information on the temporal evol-

ution of orbits y(k), and these orbits lie on a compact

attractor in phase space, each orbit has near it a whole

neighbourhood of points in phase space which also evolve

under the dynamics to new points, see Figure 20. We can

combine this knowledge of the evolution of whole neigh-

bourhoods of phase space to enhance our ability to predict

in time by building local or global maps with parameters

a: y→F(y,a), which evolve each y(k)→y(k + 1). Using the

information about how neighbours evolve, we use phase-

space information to construct the map, and then we can

use the map to extend the evolution of the last points in

our observations forward in time.

There are different approaches, see Casdagli (1989), to

find a predictor F. These approaches can be divided,

mainly, into local and global models. In local models,

one considers maps from local neighbourhood to local

neighbourhood, whereas in global models one tries to fit

all the data points in the reconstructed phase space at

once.

Local models

Local models map local-neighbourhood to local-

neighbourhood in the reconstructed phase space. We start

with a specified local functional form for the dynamics

x→F(x,k) in the neighbourhood of the observed point y(k):

This y(k) evolves to y(k + 1) through:

These m(x) functions can be polynomials, radial basis

functions or other types of functions. The discussion of

which type of functions to use is related to the problem

being treated and the quantity of data points available. To

determine the coefficients in the model, the NB nearest

neighbours are located and the error minimised. This is a

Figure 20 | The point for which we want to predict its dynamic behaviour is shown

together with its nearest neighbours in reconstructed state space. By

interpolating the more appropriate neighbours it is possible to predict the

trajectory and then reconstruct the time series.

Table 2 | Root mean square (in cm) prediction error obtained using local linear and

quadratic map models for the Venice Lagoon level data.

Number of steps
ahead (h) P=1 P=2

1 8.86 9.59

4 12.86 13.54

12 13.70 14.13

24 15.20 15.57

28 17.72 17.90
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linear least-squares problem which can be solved ef-

ficiently using standard techniques. In this way an optimal

polynomial (or other function) predictor of a given degree

d is obtained. When the c(m,k) coefficients have been

determined, it is possible to construct a lookup table for

interpolation and hence, there will be a local model

associated with each observed y(k) point on the attractor.

To predict ahead from a new point z(0) we search through

the y(k) to find one nearest to z(0), y(J). We now look up

the model local to y(J). This is F(x,J) and it should be valid

as an interpolating function in the neighbourhood of y(J)

and z(0). Next we evaluate F(z(0),J), and this gives us the

next point on the orbit which starts with z(0) as initial

condition: z(1) = F(z(0),J). Next find the nearest neighbour

of z(1), call it y(K), and look up the required local map

F(x,K) to proceed to z(2) = F(z(1),K). This procedure is

called iterative forecasting (Abarbanel 1996).

The root mean square error in this forecast should

scale, in going from z(1) to z(L) in L steps, approximately

(Farmer & Sidorowich 1987; Casdagli 1989) as:

where N is the number of points learned, P is the

maximum order of the polynomials used and h is the

metric entropy which is equal to the sum of the positive

Lyapunov exponents. In the most favourable situation, the

scaling law will be proportional to l1 which is the largest
Lyapunov exponent:

Global models

The collection of local maps (polynomial functions

or other) form a model which is useful over the whole

attractor. The shortcomings of such a local model are its

discontinuities from neighbourhood to neighbourhood

and the large number of adjustable parameters. For poly-

nomial models of order M in dL local dimensions we have

approximately dML parameters at each time step. At the

same time it would be nice to have a relatively simple

continuous model describing the whole collection of data.

In a sense, this is similar to what has been described for

local models but the data fitting is applied over the whole

attractor. However, in this case, owing to the extremely

large number of data points we need to use rather high-

order polynomials, with the associated stability problems.

Brown (1993) has suggested an alternative approach based

on orthogonal polynomials whose weights are determined

by the invariant density on the attractor, whereas Casdagli

(1989) used radial basis function and neural networks.

An overview and a comparison between different

global nonlinear modelling techniques for modelling and

forecasting hydrological time series can be found in

Babovic (1998).

Forecasting water level at Venice Lagoon

Table 2 shows the root mean square error for local linear,

quadratic and cubic polynomial prediction functions. The

computation was done using 68,000 data points in a

reconstructed phase space dE = 8 and local maps with

dL = 8. Two thousand different initial conditions were

Figure 21 | Observed (continuous) and predicted (dashed) water level values from

Venice Lagoon, 1 and 12 hours forecasting. The predictions were made

using local linear polynomial predictors whose coefficients were learned

from 68,000 data points. These were embedded in dE=8 using a dL=8

dimensional model.
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examined, and we have displayed the average over these

starting locations. As can be seen, surprisingly, the predic-

tions using quadratic predictors are worse than, or equal

to, those using linear predictors. Casdagli (1989) pointed

out that for complicated systems with a large number of

data points there are no advantages in using quadratic

predictors over linear predictors.

Different specific predictions for the Venice Lagoon

level are shown in Figures 21 and 22. In both figures

forecasting results 1 and 12 hours ahead are presented. As

can be seen from Figure 21 the evolution of the water level

data is well predicted for the two cases. On the other

hand, in Figure 22 the prediction fails for extraordinarily

high tides. The fact that predictions are similar at 1 and

12 hours is in contradiction with the findings in the

calculation of the Lyapunov exponents, since an

exponential decrease in our forecasting ability is expected.

Nonlinear prediction methods have been used to

distinguish between deterministic chaos and uncorrelated

(white) noise added to periodic signals (Sugihara & May

1990). The idea behind using nonlinear prediction as a

signature of chaos is simple. Chaotic systems obey certain

rules. The limited predictive power of chaotic dynamic

systems is because they are sensitive to initial conditions

and because we cannot have infinite precision measure-

ments. This property can be used to differentiate between

chaos and additive uncorrelated noise. Additive noise

produces a fixed amount of error regardless of the predic-

tion time, as has been demonstrated. From the analysis of

the water level data of the Venice Lagoon, this decrease of

predictive power with time steps into the future we are

forecasting has been observed, see Figure 23. However,

this decrease does not scale as an exponential function of

the largest Lyapunov exponent, as expected for a chaotic

signal. In our case it seems that as we have a superimposed

predictable periodic signal then the limiting case for our

predictions should be the mean square error of the differ-

ence between this periodic signal and the water level data.

In fact, calculating the root mean square (in cm) predic-

tion error obtained using only the periodic signal, the

error would be 25.9 cm, which is close to the values we

obtain for predictions a long time ahead.

We have also fitted a global polynomial function

(second-order polynomials) to the reconstructed phase

space. As the embedding dimension is 8 then the number

of adjustable parameters is 45 (Casdagli 1989). The model

Figure 22 | Observed (continuous) and predicted (dashed) water level values from

Venice Lagoon, 1 and 12 hours forecasting. The predictions were made

using local linear polynomial predictors whose coefficients were learned

from 68,000 data points. These were embedded in dE=8 using a dL=8

dimensional model.

Figure 23 | Standard errors for local linear and local quadratic map models for the

Venice Lagoon water level data in units of the size of the attractor. The

coefficients for the polynomials were learned from 68,000 data point. The

slopes of a and b represent the scaling laws given by Equations (18) and

(19), respectively.
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was also trained using 68,000 data points by minimising

the error: ∑[y(k + 1) − fp(y(k))]
2. The root mean square (in

cm) prediction error obtained with a prediction of 1 hour

ahead is 10.84 cm, i.e. 1 or 2 cm higher than those

obtained with local predictors.

NONLINEAR NEURAL MODELS

In order to compare the prediction results obtained from

nonlinear time series analysis with other nonlinear tech-

niques, two different nonlinear models based on multi-

layer neural networks have been developed. The models

are built up with the purpose of multistep prediction, i.e.

starting from the information at instant k, x(k −m), . . . ,

x(k), the goal is to predict the behaviour of the time series

in the future, x(k + 1), . . . , x(k + h + 1), where h is a

natural number named prediction horizon.

First neural approach: predicting the time interval

[k+1, k+h+1]

The first nonlinear neural model consists of approximat-

ing the function F appearing in Equation (1) by a multi-

layer feedforward neural network (Rumelhart et al. 1986)

as follows:

x̃(k + 1) = F̃(x(k), . . . , x(k–d), W1), (20)

where W1 is the parameter set of the model, which is

obtained using the backpropagation algorithm (Rumelhart

et al. 1986). The update of the parameter set is based on the

local difference between the measured and predicted

values at the current instant, i.e.

When the model given by Equation (20) has to predict

the behaviour of the time series in the future, i.e. along the

interval [k + 1, k + h + 1], its structure has to be modified.

The model has to be used in a recurrent form because the

predictive network output must be fed back as an input for

the next prediction. If the aim is to predict h sampling

times in the future, the input layer of the network is

formed by a group of h neurones that memorise previous

network outputs, and the remaining neurones in the input

layer receive the original or measured time series data.

Thus, the predicted model outputs along the interval

[k + 1, k + h + 1] are given by the following equations:

x̃(k + 1) = F̃(x(k), . . . , x(k −m), W1) (22)

x̃(k + 2) = F̃(x̃(k + 1), x(k), . . . , x(k −m + 1), W1) (23)

. . .

x̃(k + h + 1) = F̃(x̃(k + h), . . . , x̃(k + 1),

x(k), . . . , x(k −m + h), W1) . (24)

Second neural approach: predicting the prediction

horizon x(k+h+1)

The structure of the second neural model consists of using

a multilayer feedforward network to predict, directly, the

time series value at instant k + h + 1 from the information

available at the current instant k, x(k), . . . , x(k −m),

instead of using the immediate d previous values as in the

first model, see Equation (20). In this case, the nonlinear

model is written as follows:

x̃(k + h + 1) = F̃(x(k), . . . , x(k −m), W2), (25)

where h is the prediction horizon. The set of parameterW2

is updated using the backpropagation algorithm and fol-

lowing the negative gradient direction of the error

measured at instant k + h + 1, i.e.

Comparative study between both neural models

The neural approaches presented above are two different

alternatives when a multistep prediction problem is

formulated.
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The main disadvantage of the first model when it is

used for multistep prediction is that the parameter set has

been obtained with the purpose of one-step prediction,

i.e. to minimise the local errors given by Equation (21).

During the training phase, the model captures the relation

between the actual observations of the original time series,

x(k), . . . , x(k −m) and the next sampling time, x(k + 1).

However, when the model is acting as a multistep predic-

tion scheme a group of the input neurones receives the

earlier approximated values, see Equations (22)–(24).

Hence, errors which occur for the predicted output

network at some instant may be propagated to future

sampling times and the quality of the approximations at

next instants may be affected by those errors.

The number of the predictive network outputs feed

back as the input of the network is given by the prediction

horizon value. Therefore, the capability of the first

neural model to predict the future may decrease when

the prediction horizon is increased.

The second neural approach directly provides the

prediction of the time series at instant k + h + 1 from

the information at instant k + 1, see Equation (26). Hence,

the inputs to the network when the model is used to

predict the future are measured time series values and no

outputs of the network must be fed back into the input

network. Thus, the problem concerning the propagation of

errors disappears when the second model is used as a

nonlinear multistep prediction scheme.

A disadvantage of the second model is relative to the

structure of the model. As previously mentioned, in this

case the model predicts directly the time series value at

instant k + h + 1. The inputs to the model may not contain

sufficient information about the time series in order to

predict that instant. That is, the input vector, x(k), . . . ,

x(k −m), may be very distant in the time from the predic-

tion horizon, k + h + 1, and it may not have any relation

with that instant. In this case, the second neural model

cannot be used to predict the future. This structure only

has sense when a relation exists between the information

available at the current instant and the prediction horizon.

On the other hand, it is necessary to point out that the

second model, Equation (26), has only been prepared to

predict the time series value at instant k + h + 1, while the

first neural model can be used to predict each sampling

time until the prediction horizon is reached. Thus, if the

purpose is to predict the overall prediction interval [k + 1,

k + h + 1], h different neural models of the second

approach must be trained.

Forecasting water level at Venice Lagoon using NAR

models

In this section, the nonlinear neural approaches have been

used to predict the dynamic behaviour of the water level in

the Venice Lagoon in the future.

As the analysis of the power spectrum of the water

level time series indicates the existence of periodicities

related to the diurnal and semidiurnal tides with periods

of 12 and 24 hours, respectively, it has been decided to

consider NAR models owning information about those

periodicities in the time series. Furthermore, as from the

nonlinear time series analysis we know the predictability

then, we considered as a first approach NAR models in

which the current value x(k + 1) is expressed as a func-

tion of the 24 previous values of the time series, which

corresponds to the values measured 24 hours earlier, i.e.

x(k + 1) = F(x(k), . . . , x(k − 24)). (27)

However, the model given by Equation (27) has a large

number of input variables. The immediate question that

arises is whether the model may be simplified. After

training NAR models with a different number of input

variables, it has been observed that some input variables

can be eliminated because they did not provide the model

with useful information and because they did not provide

better predictions of the water level in the Venice Lagoon.

As a consequence, the NAR models used in this work to

predict the dynamic behaviour of the water level have the

following structure:

x(k + 1) = F(x(k), x(k − 4), x(k − 8), x(k − 12),

x(k − 16), x(k − 20), x(k − 24)). (28)

The functional F has been approximated by multilayer

feedforward networks. The networks had one hidden layer

and the number of the neurones in this layer was fixed at

seven.
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For the first model structure, the parameters have been

determined to approximate the immediate sampling time,

x(k + 1); after that, the model has been used to predict the

water level in the Venice Lagoon for several prediction

horizons (h = 1, h = 4, h = 12, h = 24 and h = 28) using the

recurrent structure presented above. In the second approach,

five neural networks have been trained to approximate the

water level at instants k + 1, k + 4, k + 12, k + 24, k + 28,

respectively, using the structure given by Equation (26).

To train the neural models, data of the water level in the

Venice Lagoon corresponding to normal situations as well as

abnormal situations (‘high waters’ phenomena) have been

used; these data correspond to a period of two months (1,440

data points). Other data sets corresponding to two months

were also used as test patterns. The prediction errors obtained

by the two structures of neural models for the different predic-

tion horizons are shown in Table 3, whereas in Figures 24 and

25 different specific predictions for the Venice Lagoon level

are shown. In both figures forecasting results of 1 and 12

hours ahead are presented for the case of ‘high waters’. As can

be seen from Figures 24 and 25 the evolution of the water level

data is well predicted for the first case, i.e. 1 hour ahead but

fails in predicting the high tide 12 hours in advance.

CONCLUSIONS

Where once time series analysis was shaped by linear

systems theory, it is starting now to be possible to

recognise when an apparently complicated time series has

been produced by a low-dimensional nonlinear system, to

characterise its essential properties, and to build a model

that can be used for forecasting. Although the actually

developed nonlinear time series analysis works nicely in

applications to well-controlled laboratory experiments, or

Table 3 | Root mean square prediction error (in cm) using NAR models for the Venice

Lagoon level data.

Number of steps
ahead (h)

First neural
model

Second neural
model

1 3.30 3.30

4 9.75 9.55

12 12.38 11.38

24 13.15 11.64

28 16.91 15.74

Figure 24 | Observed (continuous) and predicted (dashed) water level values from

Venice Lagoon. Model 1 neural network predictions, 1 and 12 hours

forecasting.

Figure 25 | Observed (continuous) and predicted (dashed) water level values from

Venice Lagoon. Model 2 neural network predictions, 1 and 12 hours

forecasting.
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simulations from systems having a limited degree of

complexity, the situation is not so clear for complicated

natural (uncontrolled) systems. In this case, the literature

is full of claims and counterclaims for low-dimensional

attractors on one side or ‘coloured’ noises with power law

power spectra or nonlinear stochastic processes on the

other side.

From the analysis of these results, it seems that apart

from the tidal oscillations due to the relative motion of the

earth, moon and sun, there is another dynamic factor

which is not white noise. The analysis using the standard

time-delay embedding techniques seems to indicate low

dimensional chaotic dynamics. Furthermore, the space-

time separation plots and the E1 & E2 method seem to

indicate that it is not random coloured noise, even though

the anomalous scaling of the nonlinear prediction does

not follow the typical exponential dependence of chaotic

systems. But this is probably due to the coexistence of

chaos, noise and ordered motion. In this case, as the

dynamic behaviour of the system is much more complex

than usual situations, a scaling with a power law function

might occur (Mannella et al. 1994).

It is always possible to define a time-delayed vector

from a time series, but this certainly does not mean that it

is always possible to identify meaningful structure in the

embedded data. Because the mapping between a delay

vector and the system’s underlying state is unknown, the

precise value of an embedded data point is insignificant. In

this sense, it is important to point out the differences

found when analysing the level and the residual (level

minus the astronomic tide) data, since usual data treat-

ment techniques, such as filtering, should be carefully

applied when dealing with nonlinear time series.

Nonlinear predictions seem to follow accurately the

‘normal’ behaviour of the water level in the Venice

Lagoon. However, they fail to recognise the ‘high waters’

phenomenon more than a few hours ahead. This is prob-

ably due to the predictability limit of the system. Neural

networks perform better than local (linear and quadratic)

and global polynomial predictors (see Tables 2 and 3).

However, if one considers that the time delay of the

Venice Lagoon water level was T = 4, and the embedding

dimension was 8 and compares these results with

Equation (28), it is easy to see that the results of applying

nonlinear time series analysis are identical to the neural

network pruning approach. Since the definition of the

neural network architecture, i.e. number of neurons and

connections, is a tedious iterative procedure, it seems that

for the case of nonlinear time series prediction, phase

space reconstruction techniques could be employed to

speed up the whole procedure. In this case the neural

network acts as a global predictor, similar to the one

described in the nonlinear prediction section using

chaos theory techniques. The main difference, with

the global polynomial function used there, lies in the

number of adjustable parameters – 56 against 45 – and the

characteristics of the basis functions used—polynomials

against sigmoidal functionals.

Similar results, time delay and embedding dimension

have been obtained by Keijzer & Bavobic (1999) using the

residual errors made by a deterministic model (MIKE 21)

when forecasting the water level at Venice Lagoon.

Nonlinear forecasting results probably can be

improved, as in the case of ARMA methods, using more

data, i.e. atmospheric pressure, water levels at different

locations along the Adriatic Sea, etc. Our present research

is continuing along these lines.
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