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In recent years, spatial and spatio-temporal modelling have become an impor-
tant area of research in many fields (epidemiology, environmental studies, disease
mapping, ...). However, most of the models developed are constrained by the large
amounts of data available. We propose the use of Penalized splines (P -splines)
in a mixed model framework for smoothing spatio-temporal data. Our approach
allows the consideration of interaction terms which can be decomposed as a sum
of smooth functions similarly as an ANOVA decomposition. The properties of the
bases used for regression allow the use of algorithms that can handle large amount
of data. We show that imposing the same constraints as in a factorial design it is
possible to avoid identifiability problems. We illustrate the methodology for Eu-
rope ozone levels in the period 1999-2005.
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1 Introduction

In recent years, there has been an enormous growth of data with spatio-temporal struc-
ture. This type of data arise in many contexts such as, meteorology, environmental
sciences, epidemiology or demography, among others. This wide variety of settings
has generated a considerable interest in the development of spatio-temporal models.
However, the complexity of the models needed and the size of the data sets has made
this a challenging task. Our methodological development is motivated by the analysis
of ozone levels collected at several monitoring stations in Europe between 1990 and
2005. Figure 1 presents the locations of the monitoring stations, and the seasonal pat-
tern in ozone levels in four different countries (Spain, Sweden, Austria and UK). The
plots show that the stations cover a large area where spatial trends are likely to ap-
pear (mostly due to climate conditions), and a clear seasonal pattern is present along
the years. Therefore, a smoothing spatio-temporal models seems suitable to estimate
simultaneously the spatial and temporal trends.

Here, we consider the use of penalized splines (Eilers and Marx, 1996) for smooth-
ing spatio-temporal data (Lee and Durbán, 2008). Recent papers outline the use of
these methods in several applications for Gaussian and non-Gaussian responses in
one or more dimensions (see for example Currie et al., 2004). In the multidimensional
case, the common extension is the use of tensor product of B-splines bases (Currie
et al., 2006; Eilers et al., 2006; Wood, 2006b). The work by Currie et al. (2006) intro-
duced a methodology based on the development of generalized linear array methods,
or GLAM, with a compact notation in which the data are arranged in an array struc-
ture or regular grid. The GLAM algorithms take advantages of the structure of the
data, avoiding computational issues in storage and allow managing huge amount of
data also with high speed and efficient computations in model estimation (see Currie
et al., 2006, Section 3). When data are scattered (as is the case of spatial data), Eilers
et al. (2006) proposed the use of the “row-wise” kronecker or box-product of individual
B-spline basis.

Most of the common approaches in spatio-temporal smoothing are considered in
the additive models framework. They extend the geoadditive models proposed by
Kammann and Wand (2003), or assume a smooth function to model non-linear time
effects (MacNab and Dean, 2001; Fahrmeir et al., 2004; Kneib and Fahrmeir, 2006). This
formulation implies that the response variable y is modelled as the sum of spatial and
temporal effects of the form:

E[y] = f(x1,x2) + f(xt) .

This additive model, does not account for the space-time interaction effect, and there-
fore, can not reflect important features in the data. In general, this assumption implies
a spatio-temporal correlation structure given by separable covariance terms for a spa-
tial and temporal components respectively. This approach is computationally very
attractive but results too simplistic in real situations. From a Bayesian perspective,
recent works (Gössl et al., 2001; Banerjee et al., 2004) present non-separable hierarchi-
cal models based on Markov random fields in which both dependence structures are
incorporated through the prior. In these models the interaction is modelled by kro-
necker products of precision matrices. This approach assumes isotropic processes, i.e.
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(a) Monitoring stations. (b) Time series plot in four countries.

Figure 1: (a) sample of 43 monitoring stations over Europe. (b)O3 levels in four selected
countries.

the same correlation in any spatial direction (which is unrealistic in many cases), and
can be computationally intensive for large data sets.

In contrast, we propose more realistic models which allow for the consideration of
the 3d interaction effect. We describe non-separable models for smoothing across spa-
tial and temporal dimension simultaneously, which explicitly consider the interaction
between space and time, and may easily be set into GLAM framework. Models with
functional form given by:

f(space, time). (1.1)

We allow for different amount of smoothing for spatial coordinates, and also for tempo-
ral dimension, and extend model (1.1) to explicitly consider different smooth additive
terms for space and time, and space-time interaction.

The paper is organized as follows. In section 2 the mixed model representation of
multidimensional P -splines is described. Section 3 develops a general methodology to
represent interaction models using ANOVA decompositions. In section 4, the methods
of previous sections are applied to the case of spatio-temporal data, and section 5 il-
lustrates the techniques with the analysis of ozone levels in Europe from 1990 to 2005.
Concluding remarks are given in section 6. We defer to the Appendix some technical
details of ANOVA decompositions.
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2 P -splines for spatial data

Given a response y and covariate x, a non-parametric model for the data would be
given by:

y = f(x) + ε, ε ∼ N (0, σ2I),

where f(·) is a the smooth function and ε is a Gaussian error term with variance σ2I .
The method proposed by Eilers and Marx (1996) consider f as a sum of local basis func-
tions, i.e. Bθ, where B = (B1(x),B2(x), ...,Bc(x)) is an n × c matrix of B-splines (c
depends on the degree and number of knots of the B-spline) constructed from the co-
variate x, and θ is the vector of regression coefficients. Although other bases could be
considered, we choose the use of B-splines because they have better numerical prop-
erties, and allow for an easy representation as mixed models and multidimensional
smoothing.

The P -spline approach minimizes the penalized sum of squares

S(θ;y, λ) = ‖y −Bθ‖2 + θ′Pθ, (2.1)

where P is a discrete penalty matrix which depends on a smoothing parameter λ.
This penalty term controls the smoothness of the fit applying penalties over adjacent
coefficients. We define the c× c matrix P , as

P = λD′D,

whereD is a difference matrix applied directly to the regression coefficients (a common
choice is to consider a second order difference, which defines a quadratic penalty).
Then, for a given value of λ, the minimization of (2.1), yields:

θ̂ = (B′B + P )
−1
B′y , (2.2)

The choice of λ is, in general, subject to a certain criteria (AIC, BIC, CV or GCV).

In the multidimensional case, let’s suppose that we have spatial data (x1i,x2j,yij),
where x1 and x2 are respectively geographic longitude and latitude and y is the re-
sponse variable. A smooth model for the data would be given by:

y = f(x1,x2) + ε = Bθ + ε , ε ∼ N (0, σ2I) , (2.3)

where B is the regression basis constructed from the spatial covariates (x1,x2). As
we pointed out before, we use B-splines bases since their extension to two or more
dimensions can be easily done by using tensor products. For data in a regular grid
(as mortality life tables or images), the regression matrix B is constructed from the
Kronecker product of marginal bases:

B = B2 ⊗B1 , n1n2 × c1c2

(see Currie et al. (2004, 2006)). In the spatial smoothing context, Lee and Durbán (2009)
proposed the use of the “row-wise” Kronecker product, or Box product, defined in
Eilers et al. (2006) (denoted by 2 symbol):

B = B22B1 = (B2 ⊗ 1′c1)� (1′c2 ⊗B1) , n× c1c2 , (2.4)
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where � is the “element-wise” matrix product and 1c1 and 1c2 are vectors of ones of
length c1 and c2 respectively.

It is worth mentioning that the use of the products depends on the data structure
(grid or scattered), and it affects the model basis and its product (Kronecker or Box), but
the penalty used is the same in both cases. This penalty is applied over the regression
coefficients which can be always set into array form. Let Θ, c1 × c2, be the matrix
of regression coefficients, where θ = vec(Θ), c1c2 × 1. The penalty matrix for a 2d P -
spline model is:

P = λ1Ic2 ⊗D′1D1 + λ2D
′
2D2 ⊗ Ic1 , (2.5)

where Dq, q = 1, 2, is again a difference matrix. Then, (2.5) applies the discrete penal-
ties over the rows and columns of Θ, and allows for anisotropic smoothing (λ1 6= λ2),
since the amount of smoothing can be different in each dimension (longitude and lati-
tude).

2.1 Mixed models representation of multidimensional P -splines

In recent years, smoothing techniques based on splines have become very popular,
mostly due to their inclusion in the linear mixed model framework. The interest on this
representation is due to the possibility of including smoothing in a large set of models
(random effects models, correlated data or longitudinal studies, survival analysis), and
the use of the methodology already developed for mixed models for the estimation and
inference (see Brumback and Rice, 1998; Verbyla et al., 1999; Wand, 2003; Welham et al.,
2007, among others).

The goal here is to set a new basis which allow the representation of a P -spline
model and its associated penalty as a mixed model:

y = Xβ +Zα+ ε, α ∼ N (0,G), ε ∼ N (0, σ2I), (2.6)

whereG = σ2
αΛ, is the variance components matrix for the random effects α, for some

definite positive matrix Λ, andX andZ are the fixed and random effects matrices. This
representation decomposes the fitted values as the sum of a polynomial/unpenalized
part (Xβ) and a non-linear/penalized (Zα) smooth term. The formulation as a mixed
model is based on a reparameterization of the original non-parametric model. There
are several alternatives depending on the bases and the penalty used, for example,
Wand (2003) described the representation with truncated power functions as bases,
and Currie and Durbán (2002) described the representation using B-splines bases.

Since this transformation is not unique, in this paper we choose a similar approach
to Currie et al. (2006) and Durbán et al. (2006). The smoothing parameter becomes the
ratio λ = σ2/σ2

α, and variance components can be estimated by residual or restricted
maximum likelihood (REML) of Patterson and Thompson (1971).

We use here the spatial model (2.3) to illustrate the construction of the transforma-
tion, but the methodology will extend to any number of covariates. We will find a
one-to-one (orthogonal) transformation, T , such that,BT = [X : Z],Bθ = Xβ +Zα,
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and [X : Z] has full rank, i.e.:

BTT ′θ = [X : Z] T ′θ︸︷︷︸
ω

, ω′ = (β′,α′).

Under this conditions, the penalty θ′Pθ becomes α′Fα, for some block-diagonal ma-
trix F .

The transformation we propose is based on the singular value decomposition (SVD)
of the penalty matrix (2.5), and the simultaneous diagonalization of D′1D1 and D′2D2.
Let U 1Σ1U

′
1 be the SVD of D′1D1, assuming a second order penalty, the diagonal ma-

trix of eigenvalues has two zeroes and c1 − 2 positive eigenvalues, then Σ1 = diag(0, 0, Σ̃1).

We take U 1n = [1∗1 : u∗1] as the eigenvectors corresponding to the null space of the
SVD, where 1∗1 is (1, ..., 1)′/

√
c1 and u∗1 is the vector (1, ..., c1) centered and scaled to

have unit length. The matrix, U 1s is the sub-matrix which corresponds to the positive
eigenvalues Σ̃1 (the definitions of U 2n, U 2s and Σ̃2 are similar).

Then, the transformation is defined as T = [T n : T s] as :

T n = [U 2n ⊗U 1n] and
T s = [U 2n ⊗U 1s : U 2s ⊗U 1n : U 2s ⊗U 1s] ,

T is orthogonal, and the new coefficients are given by:

β = T ′nθ and α = T ′sθ.

Using some matrix algebra results (Liu, 1999) it can be shown that the mixed model
matrices X and Z calculated as BT , are in fact, the tensor product of the marginal
basis:

X = X22X1 and (2.7)
Z = [X22Z1 : Z22X1 : Z22Z1] , (2.8)

where Xq = BqU qn and Zq = BqU qs, q = 1, 2 (this is an important result because we
can avoid, in practice, the calculation of matrix T ). Furthermore, since β is unpenal-
ized, we may replaceXq = Bq[1

∗
q : u∗q] by [1 : xq], where 1 is a vector of ones and xq, is

the qth covariate.

The expressions forX and Z given above can be expanded as:

X ≡ [1n : x1 : x2 : x22x1] and
Z ≡ [Z1 : Z2 : Z22x1 : x22Z1 : Z22Z1] ,

This is a key result for the rest of the paper, since it allows the representation of the
fitted surface in terms of three components: a term for x1, a term for x2, and an inter-
action term. It can be shown that the penalty is a block-diagonal matrix, F = T ′PT ,
defined by:

F =


04

λ1Ic2 ⊗ Σ̃1

λ2Σ̃2 ⊗ Ic1

λ2Σ̃2 ⊗ Ic1−2 + λ1Ic2−2 ⊗ Σ̃1

 ,
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where 04 is a 4 × 4 matrix of zeros corresponding to the unpenalized fixed part, and
with blocks corresponding to each smooth term, and the variance components matrix
in mixed model (2.6) is given byG = σ2F−1.

3 Smooth-ANOVA decomposition models

In the context of multidimensional smoothing, sometimes the interest lies in fitting
complex models with functional form given by

E[y] = f0 +
d∑

i=1

fi(xi) +
∑
i<j

fij(xi,xj) + · · ·+ f1,...,d(x1, ...,xd), (3.1)

where f0 is a constant term and f(·) are smooth functions of the covariates. The de-
composition in (3.1) can be viewed as a classical analysis-of-variance (additive models
(Hastie and Tibshirani, 1990) are a special case of model (3.1) when only main effects
are included). These models have been considered in the literature in the context of
Smoothing Splines, as SS-ANOVA models (see Chen, 1993; Wahba and Luo, 1995; Gu,
2002). However, their use has been limited, mostly due to issues related to identi-
fiability constraints and computational cost. As an alternative, we propose the use
penalized splines in models of the form (3.1). P -splines are based on low-rank bases
functions, and so, they present an advantage over the SS-ANOVA approach. We also
develop a method to construct identifiable models based on the mixed model repre-
sentation introduced in the previous Section. There are other alternatives to avoid the
identifiability problems: (i) add a ridge penalty on the system of equations in (2.2) as
in Marx and Eilers (1998), or (ii) identify and impose the constraints numerically (see
Wood, 2006a). However, the first alternative implies a correct definition of the penalty
matrix, and the second method is difficult to extend in the case of more than 2-way
interactions.

For simplicity, we will illustrate the procedure in the 2d spatial case:

y = γ + f1(x1) + f2(x2) + fs(x1,x2) + ε , (3.2)

the model is defined in terms of two main effects for geographic coordinates (i.e f1 and
f2), and a spatial (2-way) interaction, fs. The B-spline basis for this model is:

B = [1n : B1 : B2 : Bs] , (3.3)

where 1n is a column of ones of length n, for the intercept term,B1 andB2 theB-spline
basis for the coordinates, and Bs is the spatial, n × c1c2, basis defined in (2.4). Then,
model (3.2) can be written as:

y = Bθ + ε = γ1n +B1θ1 +B2θ2 +Bsθs + ε ,

where θ = (γ,θ′1,θ
′
2,θ

′
s)
′ is the vector of regression coefficients. We impose smoothness

on the coefficients by a block-diagonal penalty of the form:

P =


0

λ1D
′
1D1

λ2D
′
2D2

τ2D
′
2D2 ⊗ Ic1 + τ1Ic2 ⊗D′1D1

 , (3.4)
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However, the regression matrix (3.3) (of dimension n× (c1 + c2 + c1c2)) is not full
rank, (rank(B) = c1c2), so there are (1 + c1 + c2) linearly dependent columns, and model
(3.2) should be carefully considered in order to preserve the identifiability. Wood
(2006b) pointed the need to construct appropiate model bases and penalties, and im-
pose constraints to maintain the model identifiability, and Wood (2006a, chap. 4), sug-
gested the use of the QR decomposition in order to numerically identify any linear
dependent columns of model bases and remove them. In contrast, we propose a more
elegant way to construct identifiable model bases and penalties, based on the formula-
tion as a mixed model.

Following the results in Section 2.1, we apply the SVD over the penalty matrix P ,
and obtain the mixed model reparameterization. For the additive terms corresponding
to covariates x1 and x2, we have the mixed model matrices:

f1(x1) ≡ [X1 : Z1] = [1n : x1 : Z1] , and (3.5)
f2(x2) ≡ [X2 : Z2] = [1n : x2 : Z2] , (3.6)

and for the interaction term:

fs(x1,x2) ≡ X22X1 : X22Z1 : Z22X1 : Z22Z1

≡ [1n : x2]2[1n : x1] : [1n : x2]2Z1 : Z22[1n : x1] : Z22Z1 . (3.7)

The reparameterization used allow us to identify the linearly dependent columns
in the bases (the columns of (3.5) and (3.6) are already contained in (3.7)). Therefore,
we can solve the identifiability problems by simply removing the vector 1n in (3.7). In
the main effects, we also remove one 1n vector. Then, the fixed and random effects
matrices are:

X = [1n : x1 : x2 : x22x1], and (3.8)
Z = [Z1 : Z2 : x22Z1 : Z22x1 : Z22Z1]. (3.9)

The mixed model representation will not be complete unless we give an expression
for the variance-covariance matrixG = σ2F−1. In order to obtainF we use the fact that
F = T ′PT , and so, we need a transformation T that takes into account the reduction
in the dimension of matrices X and Z (details on the construction of T are given in
Appendix A).

The new transformation matrix T has dimension (1 + c1 + c2 + c1c2)× c1c2, and
leads to the mixed model penalty:

F = blockdiag(04,F 1,F 2,F s) , (3.10)

where
F 1 = λ1Σ̃1 ,

F 2 = λ2Σ̃2 , and
F s = blockdiag(τ1Σ̃1, τ2Σ̃2, τ1Ic2−2 ⊗ Σ̃1 + τ2Σ̃2 ⊗ Ic1−2) .

Our aim is to show that the effect of removing the column of 1n’s in the fixed effects
matrices is equivalent to impose the usual constraints on the model coefficients, i.e.,

8



solving the identifiability problems in the mixed model results in transforming the
original penalty (or the original coefficients). This can be easily proved by recovering
the penalty of the original parametrization using the fact that

P̆ = TFT ′ = TT ′PTT ′,

for P and F given in (3.4) and (3.10). However, the matrix T in the ANOVA case is no
longer orthogonal. Then, if we defineK = TT ′, it is easy to show thatK is a centering
matrix:

K =


1 · · · 0
... K1

K2

0 K2 ⊗K1

 , (3.11)

whereKq = (Icq − 11′/cq), for q = 1, 2 (see Appendix A for details).

Then, the penalty that takes into acount the identifiability constraints is:

P̆ = KPK , (3.12)

with rank(P̆ ) = c1c2 − 4.

In terms of the regression parameters, the matrix K apply constraints over the θ
coefficients, from (3.12), we have

θ′P̆ θ = θ̃
′
P θ̃ ,

where

θ̃ = Kθ =


γ · · ·
... K1θ1

K2θ2

(K2 ⊗K1)θs

 . (3.13)

The coefficients of the 2-way interaction (K2 ⊗K1)θs can be written in array form,
K1ΘK2, and so, we are centering the coefficients matrix Θ by rows and columns.
These constraints are exactly equivalent to those applied in a factorial design with two
main effects and a 2-way interaction, i.e.:

c1∑
i

θ1i =

c2∑
j

θ2j = 0 , for main effects and (3.14)

c1∑
i

Θij =

c2∑
j

Θij = 0 , for 2-way interactions . (3.15)

Durbán and Currie (2003) used a similar approach in additive models context. To
achieve identifiability, they proposed centering the B-spline basis matricesBq leading
toB∗q = (In − 11′/n)Bq, for q = 1, 2. This result premultiplies the basis by a n× n cen-
tering matrix, which centers theB-spline basis by rows. The approach presented in this
Section, improves their results, we have that Bθ̃ is equal to B̃θ, where B̃q = BqKq, is
centered by columns, which is computationally more efficient.
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Table 1: Set of regression coefficient constraints in a full 3d P -spline ANOVA-type
model in (3.16).

Constraints
Main effects

∑c1
i θ

(1)
i =

∑c2
j θ

(2)
j =

∑c3
k θ

(3)
k = 0

2-way interaction
∑c1

i θ
(1,2)
ij =

∑c2
j θ

(1,2)
ij =

∑c1
i θ

(1,3)
ik =

∑c3
k θ

(1,3)
ik =

∑c2
j θ

(2,3)
jk =

∑c3
k θ

(2,3)
jk = 0

3-way interaction
∑c1

i θ
(1,2,3)
ijk =

∑c2
j θ

(1,2,3)
ijk =

∑c3
k θ

(1,2,3)
ijk = 0

Several nested models can also be considered from this approach, for instance if we
consider only one additive term and the interaction, e.g. f1(x1) + fs(x1,x2), following
the methodology proposed in this Section, it is easy to show that we have to remove the
first column of X2 in order to avoid identifiability problems. Then the mixed models
bases are:

[X : Z] = [1n : x1 : x22X1 : Z1 : x22Z1 : Z22X1 : Z22Z1] ,

and penalty:

F = blockdiag(04, λ1Σ̃1, τ1Σ̃1, τ2Σ̃2 ⊗ I2, τ1Ic2−2 ⊗ Σ̃1 + τ2Σ̃2 ⊗ Ic1−2) .

This model is equivalent to apply constraints over the main effect,
∑c1

i θi = 0, and over
the columns of matrix Θ for the 2-way interaction, i.e.

∑c2
j Θij = 0.

This methodology can be extended for more dimensions. For example, in the 3d
case a full ANOVA-type decomposition with terms:

y =γ + f1(x1) + f2(x2) + f3(x3)+

+ f1,2(x1,x2) + f1,3(x1,x3) + f2,3(x2,x3)+

+ f1,2,3(x1,x2,x3) + ε , (3.16)

where all main effects, 2-way and 3-way interaction are included in the model. For
model (3.16) these constraints are shown in Table 1.

4 Spatio-temporal P -splines models

We start by proposing non-separable models of the form:

E[y] = f(x1,x2,xt) . (4.1)

The regression basis for a 3d interaction model (4.1) is:

B = Bs ⊗Bt, nt× csct , (4.2)

where Bs is the spatial B-spline basis defined in (2.4), of dimension n × cs, where
cs = c1c2, andBt is t× ct marginal B-spline basis for time.
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Model (4.1) and basis given by (4.2) can easily be set into GLAM framework, since
we can express the data in a compact notation. We replace the nt × 1 response vector
y, by the matrix Y of dimension t×n, and the coefficient vector θ of length csct × 1, by
an array of coefficients Θ, of dimension ct × cs.

In matrix notation, the model can be written as

E[Y ] = BtΘB
′
s . (4.3)

Smoothness is imposed via a penalty matrix P based on second order difference ma-
tricesD1,D2 andDt. Then, the penalty term in 3-dimensions is:

P = λ1 D
′
1D1 ⊗ Ic2 ⊗ Ict + λ2 Ic1 ⊗D′2D2 ⊗ Ict + λt Ic1 ⊗ Ic2 ⊗D′tDt , (4.4)

which implies placing penalties over each dimension of the 3d-array Θ. The penalty
(4.4) allows spatial anisotropy, and also a smoothing parameter λt, for the temporal
component.

For the mixed model representation, we proceed as in Section 2.1 and use the SVD
over the penalty (4.4). Then, we obtain the mixed model model matrices, which in
compact notation can be written as:

X = Xs ⊗X t , and (4.5)
Z = [Zs ⊗X t : Xs ⊗Zt : Zs ⊗Zt] , (4.6)

whereXs andZs are the fixed and random effects matrices for the spatial part defined
in (2.7) and (2.8). For time dimension, we have the fixed and random matrices defined
as X t = [1t : xt] and Zt = BtU ts. The block-diagonal penalty in the mixed model is
then:

F = blockdiag(08,F (1),F (2),F (1,2),F (t),F (1,t),F (2,t),F (1,2,t)) , (4.7)

where 08 is a diagonal matrix of zeroes corresponding to the unpenalized fixed part
and the remaining seven blocks are the penalty terms for the random part:

F (1) = λ1I2 ⊗ Σ̃1 ⊗ I2

F (2) = λ2Σ̃2 ⊗ I2 ⊗ I2

F (1,2) = λ1Ic2−2 ⊗ Σ̃1 ⊗ I2 + λ2Σ̃2 ⊗ Ic1−2 ⊗ I2

F (t) = λtI2 ⊗ I2 ⊗ Σ̃t

F (1,t) = λ1I2 ⊗ Σ̃1 ⊗ Ict−2 + λtIc2 ⊗ Ic1−2 ⊗ Σ̃t

F (2,t) = λ2Σ̃2 ⊗ I2 ⊗ Ict−2 + λtIc2−2 ⊗ I2 ⊗ Σ̃t

F (1,2,t) = λ1Ic2−2 ⊗ Σ̃1 ⊗ Ict−2 + λ2Σ̃2 ⊗ Ic1−2 ⊗ Ict−2 + λtIc2−2 ⊗ Ic1−2 ⊗ Σ̃t .

The construction of the mixed model bases (4.5) and (4.6) allows us to represent
the fitted values in terms of the sum of additive components plus interactions (2-way
and 3-way interactions). For spatio-temporal data, this decomposition may be very
useful in terms of the interpretability of the model fit, since we can decompose the
overall fit not only as main effects of latitude and longitude, (or other covariates effects)
but also the spatial effects (2-way interaction) and specially the interaction between
space and time (3-way interactions). However, in terms of model formulation, it does
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not account for independent and separate penalties since we have three smoothing
parameters λ1, λ2 and λt for each of the dimensions of the model. That is, the amount
of smoothing used for the additive terms is also used for the interactions. In some cases
(as we will show in the analysis of the Ozone data), this is not realistic, and so, we will
apply the P -spline ANOVA methodology to the spatio-temporal setting.

4.1 P -spline ANOVA model for spatio-temporal smoothing

The Smooth-ANOVA model formulation presented in previous Section allows us to
consider more realistic models for spatio-temporal smoothing:

y = γ + fs(x1,x2) + ft(xt) + fst(x1,x2,xt) + ε , ε ∼ N (0, σ2) , (4.8)

where we explicitly consider a smooth term for the spatial surface, for temporal smooth
trend, and a smooth term for space-time interaction.

The B-spline basis for model (4.8) is:

B = [1nt : Bs ⊗ 1t : 1n ⊗Bt : Bs ⊗Bt] , (4.9)

and vector of regression coefficients θ = (γ,θ(s)′,θ(t)′,θ(st)′)′.

For each smooth term in model (4.8), the mixed model bases are:

fs(x1,x2) ≡ [1n : x1 : x2 : xs : Zs]⊗ 1t (4.10)
ft(xt) ≡ 1n ⊗ [1t : xt : Zt] and (4.11)

fst(x1,x2,xt) ≡ [1n : x1 : x2 : xs]⊗ [1t : xt] : Zs ⊗ [1t : xt] : [1n : x1 : x2 : xs]⊗Zt : Zs ⊗Zt ,
(4.12)

where xs = x22x1. It is easy to see that terms (4.10) and (4.11) also appear in (4.12).
To avoid this linear dependency, we remove the columns of (4.12) that are already
included in the previous smooth terms, as we did in the spatial case. Again, this can
be easily done by removing the column vectors 1n and 1t from (4.12), thus we define
for the spatio-temporal interaction:

fst(x1,x2,xt) ≡ [x1 : x2 : xs : Zs]⊗ [xt : Zt] (4.13)

We also need to remove the vector 1t in the temporal smooth term (4.11), which lead
us to the time main effect constraint. We rewrite the full mixed model bases as:

X = [1n : x1 : x2 : xs]⊗ 1t : 1n ⊗ xt : [x1 : x2 : xs]⊗ xt , (4.14)
Z = Zs ⊗ 1t : 1n ⊗Zt : Zs ⊗ xt : [x1 : x2 : xs : Zs]⊗Zt . (4.15)

Finally, the mixed model penalty for the ANOVA model is of the form:

F = blockdiag(08,F (s),F (t),F (st)) . (4.16)

The blocks F (s) and F (t) correspond respectively to the spatial and temporal mixed
model penalty terms, with smoothing parameters λ1, λ2 and λt. And the last block
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F (st) is the penalty term for the spatio-temporal interaction with smoothing parameters
τ1, τ2, and τt, which is constructed once we remove the linear dependency (see the
details of the construction of (4.16) in Appendix (B.1)).

For the ANOVA spatio-temporal model (4.8), the resultant mixed model reparam-
eterization is equivalent to apply constraints over the temporal main effect coefficient,
i.e
∑ct

t=1 θ
(t)
t = 0, and constraints over the spatio-temporal array of coefficients, Θ(st), of

dimensions ct × c1 × c2.

c1∑
i

θ
(st)
t,ij =

c2∑
j

θ
(st)
t,ij =

c1∑
i

c2∑
j

θ
(st)
t,ij = 0. (4.17)

See the details in Appendix (B.2).

5 Application to ozone levels in Europe: period 1999-
2005

A repeated exposure to ozone pollution ground-level may cause important damages
to human health (including asthma, reduced lung capacity or susceptibility to respira-
tory illnesses), ecosystems and agricultural crops. The formation of ozone is increased
by hot weather and in urban industrial areas, and the concentrations over Europe also
present a wide variation and large differences due to climate conditions over the con-
tinent. Therefore, it is expected that ozone concentrations around Europe present a
spatio-temporal pattern.

The harmful effects of ozone have become an important issue the development of
new policies. The European Environment Agency (EEA) has established a program to
monitor changes in ozone levels in the last decade. The EEA presents annual evalua-
tion reports of ground-level ozone pollution in Europe from April-September, based on
information submitted to the European Commission on ozone in ambient air. Accord-
ing to this annual reports, although emissions of ozone precursors have been reduced
over the last decade, ozone pollution levels has not changed significantly in the period
1999-2005. The analysis of the data will confirm this statement, but it will show that
different countries reach the largest values of ozone at different time points.

We analyzed monthly averages of air pollution by ground-level ozone (in µg/m3

units) over Europe from January 1990 to December 2005. The data were collected in
43 monitoring stations in 15 EU countries. Following the methodology described in
previous sections, we fitted 3 models to the data: (i) spatio-temporal ANOVA model; (ii)
3d interaction model and (iii) space-time additive model. The three models formulation are
then:

i. ANOVA: fs(x1,x2) + ft(xt) + fs,t(x1,x2,xt)
ii. Interaction: fs,t(x1,x2,xt) , and

iii. Additive: fs(x1,x2) + ft(xt)

In order to fit the models, we set up theB-splines bases, using the following param-
eters: (1) the number of (equidistant) internal knots, ndx; (2) the degree of the P -spline,
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Table 2: AIC and estimated degrees of freedom of fitted models.

Model AIC d.f.
ANOVA 14280.73 366.03

Interaction 14537.22 765.05
Additive 16506.28 65.98

bdeg; and the order of the penalty, pord. We selected one knot for every four or five ob-
servations. The parameters were: bdeg = 3 (cubic B-splines), pord = 2 (second order
penalty) and ndx(s) = (10, 10) for both spatial dimensions, and ndx(t) = 21 for time, in
order to have enough flexibility to capture the seasonal time trend. Then, the spatial
basesB1 andB2 are of dimension 43× 13, andBt has dimension 84× 24.

The mixed model formulation is straightforward following the methodology pro-
posed in the paper: we construct matricesX and Z, and the block-diagonal penalty F
for each model. We compared the performance of the models in terms of the Akaike
Information Criteria (AIC), and the effective degrees of freedom (d.f.) of the model,
measured as d.f . = trace(H) (i.e. the trace of the hat-matrix). The results are summa-
rized in Table 2. There is a superior performance of ANOVA and interaction models
with respect to the additive model. This could be expected since it is unrealistic to force
the spatial pattern of ozone concentrations to increase and decrease similarly in all lo-
cations. The interaction model, although giving a better fit, uses a large amount of edf.
This is due to the fact that model has a single smoothing parameter for the temporal
component. Then, the strong seasonal trend forces the model to use a small smoothing
parameter (large d.f.). The ANOVA model performs better. It uses less d.f. because
the model allows a different the amount of smoothing in the additive temporal term
and the spatio-temporal component, and, as we could expect, the temporal smoothing
in the interaction does not need to be so strong. This results in a more parsimonious
model.

Figure 2a shows the smoothed spatial surface for the ozone levels of the ANOVA
model. The estimated spatial trend surface reflects a non-uniform picture across Eu-
rope, since the highest concentrations are observed in Southern Europe in Mediter-
ranean countries as Spain, France and Italy, and the lowest levels are in North West
Europe and the UK. The seasonal cycle of ozone levels is captured by the temporal
trend shown in Figure 2b, where the highest levels are recorded during spring and
summer months (April-September). The highest peak corresponds to the heat-wave
occurred in Europe during summer 2003. The spatio-temporal ANOVA model also al-
lows the explicit modelling of the space-time interaction in addition to the spatial and
temporal trends. Figure 3 shows this interaction from April to September 2001. As it
can be seen from the sequence of figures, there are differences between north west and
southern and Mediterranean countries throughout the summer period.

The differences between additive and ANOVA models can be seen in Figure 4. We
plotted the fitted values for four different monitoring stations against the raw ozone
levels data. The additive model, ignores the interaction and assumes a spatial smooth
surface over all monitoring stations that remains constant over time. The fitted val-
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ues vary smoothly according to a seasonal pattern, but maintain the same differences
among locations (Figure 4a). In contrast, the spatio-temporal ANOVA model fit, is
able to capture the individual characteristics of the stations throughout time. Figure
4b shows the particular phase and amplitude given the geographic and seasonal inter-
annual variations of four monitoring stations . The high and low season for ozone
concentrations are different, depending on the location, and the cycle changes over
time.

6 Discussion

We have presented a flexible modelling methodology for spatio-temporal data smooth-
ing. We extend the P -spline approach to consider the smoothing over spatial and tem-
poral dimensions by the construction of the model basis with the appropriate B-spline
low-rank bases products, and proposed an easy and direct procedure to avoid the iden-
tifiability problems based on the mixed model reparameterization of the model. This
methodology allowed us to construct ANOVA-type models. This procedure is equiv-
alent to apply constraints over the P -spline regression coefficients, and therefore, the
connection with the classical ANOVA decomposition is straightforward. The array
formulation of multidimensional P -spline models (Currie et al., 2006) yields a uni-
fied framework for d-dimensional smoothing. It is possible represent a d-dimensional
c1 × c2 × · · · × cd array of coefficients by Θ, an apply the corresponding constraints.
The interpretation of the constraints is also easier using the array form, since they are
applied over each of the dimensions of the coefficients array. The array Θ is flattened
onto the dimension in which the constraints are applied, and reinstated in vector form
(see Currie et al., 2006; Eilers et al., 2006, for software considerations).

(a) Spatial surface: fs(x1,x2) (b) Time trend: ft(xt)

Figure 2: Spatial and temporal smooth terms for ANOVA model.
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Figure 3: Spatio-temporal interaction fit for the spatio-temporal ANOVA model, from
April to September 2001.

In practice, our approach does not require the construction of the transformation
matrix T . Since, as shown in Section 3, given the smooth-ANOVA model it is much
more easier to construct the mixed model matricesX andZ, removing the correspond-
ing vector column of 1n’s, and then construct the associated block-diagonal penalty F
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(a) additive model fit (b) spatio-temporal ANOVA model fit

Figure 4: Comparison of fitted values for monitoring stations in Spain, Sweden, Aus-
tria and UK.

with its smoothing parameters. It is also easy to extend the model by the incorporation
of other relevant covariates as smooth additive terms or as interactions.

One of the main benefits of the spatio-temporal ANOVA model proposed is the
interpretation of the smoothing and the ability of visualize each of the terms of the
decomposition in descriptive plots. The ANOVA model also gives a direct interpreta-
tion in terms of their smoothing parameters and regression coefficients, since we set
independent and separate penalties and coefficients for each smooth term.

With large datasets, the computational implementation of the analyses of spatio-
temporal data are very intensive and require efficient computational methods. In the
P -spline approach, the dimension of the bases involved in the smoothing depends
basicly on the number of knots, and therefore the dimensionality of the problem is re-
duced by setting a moderate number for each covariate dimension. However, when
data often present a strong seasonal trend (which is very common in environmental
problems), the size of the basisBt has to be large (between 20 and 40 equidistant knots)
in order to have enough degrees of freedom to capture the temporal structure. In this
paper, we found adequate a number of 4 knots for each of the seven years consid-
ered. If a larger sample of monitoring stations would have been considered in the
study during a larger time period, the number of parameters in the interactionBs⊗Bt

could easily be of the order of thousands, and the computational burden prohibitive.
Nevertheless, the GLAM methods also have an important role in the algorithms im-
plementation, since allow us to store the data and model matrices more efficiently and
speed up the calculations. This computational aspect is a topic of current research.
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Appendix

A Transformation matrix T to impose identifiability con-
straints

For model (3.2), the transformation matrix T is defined by blocks. The procedure of
removing the vector column 1n in the mixed model bases, is equivalent to remove the
first column of the null space eigenvectors U 1n and U 2n, i.e. 1∗1 and 1∗2 in the transfor-
mation matrix T . Then, the model is reparameterized by considering the transforma-
tion T = [T n : T s], with:

T n =


1 · · · 0
... u∗1

u∗2
0 u∗2 ⊗ u∗1

 and T s =


0 · · ·
U1s

... U2s

u∗2 ⊗U1s : U2s ⊗ u∗1 : U2s ⊗U1s

 , (A.1)

The definition of T given above is based on the SVD decomposition of the penalty
matrix of second order, D′D = UΣU ′, where U = [Un : U s]. We consider for the null
space: Un = [1∗ : u∗], the c × 2, matrix of eigenvectors, where 1∗ = 1c/

√
c, with 1 a

vector of ones of length c× 1 and u∗ is the vector (1, 2, ...c) centered and scaled to have
unit length.

The identity c× c matrix Ic can be decomposed as the sum:

Ic = UnU
′
n +U sU

′
s , (A.2)

where UnU
′
n = 1∗1∗′ + u∗u∗′. Then,

U sU
′
s = Ic − 1∗1∗′ − u∗u∗′ (A.3)

where 1∗1∗′ = 11′/c. From (A.3), we have

U sU
′
s + u∗u∗′ = Ic − 11′/c (A.4)

Using equation (A.4) and the definition of T given in (A.1) it is inmediate to prove
that TT ′ = K in (3.11).

B Spatio-temporal Smooth-ANOVA

B.1 Mixed model penalty

The penalty matrix corresponding to basis (4.9) would be:

P = blockdiag(0,P (s),P (t),P (s,t)) , (B.1)
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whereP (s) is the penalty matrix for the spatial 2d-smooth term as in (2.5), with smooth-
ing parameters λ1 and λ2. The penalty matrix for the temporal dimension is P (t) =
λtD

′
tDt , and for the space-time interaction the penalty P (s,t) is similar to (4.4) with

smoothing parameters τ1, τ2, and τt. However, basis (4.9) is not of full rank, so we pro-
ceed as in Section 3, and define a matrix T that will enable us to calculate the mixed
model penalty as F = T ′PT . In this case: T = [T n : T s], and removing the appropiate
null space eigenvectors, we have:

T n =
[

blockdiag(1 , [1∗2 ⊗ u∗1 : u∗2 ⊗ 1∗1 : u∗2 ⊗ u∗1] , u∗t )
[1∗2 ⊗ u∗1 : u∗2 ⊗ 1∗1 : u∗2 ⊗ u∗1]⊗ u∗t

]
and (B.2)

T s =
[

blockdiag(0 , [U2n ⊗U1s : U2s ⊗U1n : U2s ⊗U1s],U ts)
[U2n ⊗U1s : U2s ⊗U1n : U2s ⊗U1s]⊗ u∗t : [1∗2 ⊗ u∗1 : u∗2 ⊗ 1∗1 : u∗2 ⊗ u∗1]⊗U ts

]
. (B.3)

Then, F is the block-diagonal matrix:

F = blockdiag(08,F (s),F (t),F (st)) , (B.4)

with blocks:

F (s) = blockdiag(λ1I2 ⊗ Σ̃1, λ2Σ̃2 ⊗ I2, λ1Ic2−2 ⊗ Σ̃1 + λ2Σ̃2 ⊗ Ic1−2) ,
F (t) = λtΣ̃t ,

F (s,t) =

 blockdiag(τ1I2 ⊗ Σ̃1, τ2Σ̃2 ⊗ I2, τ2Σ̃2 ⊗ Ic1−2 + τ1Ic2−2 ⊗ Σ̃1)
blockdiag(τ3I3 ⊗ Σ̃3, τ1Σ̃1 ⊗ Ict−2 + τtIc1−2 ⊗ Σ̃t, τ2Σ̃2 ⊗ Ict−2 + τtIc2−2 ⊗ Σ̃t)

τ1Ic2−2 ⊗ Σ̃1 ⊗ Ict−2 + τ2Σ̃2 ⊗ Ic1−2 ⊗ Ict−2 + τtIc2−2 ⊗ Ic1−2 ⊗ Σ̃t

 .

B.2 Linear constraints over coefficients in the spatio-temporal case

To demonstrate how to obtain the constraints for the space-time interaction in (4.17),
we use the relationship between T and F given above, and the penalty in the origi-
nal parametrization taking into account the identifiability constraints (3.12). For the
coefficient vector θ(st) (or in array form Θ(st), ct × c1 × c2), the penalty becomes:

P̆ (s,t) = τ1 Ic2 ⊗D
′
1D1 ⊗Kt︸ ︷︷ ︸
(a)

+ τ2 D
′
2D2 ⊗ Ic1 ⊗Kt︸ ︷︷ ︸

(b)

+ τt (Ic2 ⊗ Ic1 − 11′2/c2 ⊗ 11′1/c1)⊗D
′
tDt︸ ︷︷ ︸

(c)

,

(B.5)
where (a) and (b) impose the constraints:∑c1

i θ
(st)
t,ij = 0 and

∑c2
j θ

(st)
t,ij = 0 .

The last term (c), can be rewritten as Ks ⊗D′tDt, where Ks is a centering matrix over
dimension cs = c1c2, i.e.

Ks = (Ics − 11′s/cs) ,

which leads to the constraint:

∑c1
i

∑c2
j θ

(st)
t,ij = 0 .
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