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Abstract
In this paper, a combustion temperature retrieval approximation for high-resolution infrared ground-based measurements has been
developed based on a multilayer perceptron (MLP) technique. The introduction of a selection subset of features is mandatory due to the

problems related to the high dimensionality data and the worse performance of MLPs with this high input dimensionality. Principal

component analysis is used to reduce the input data dimensionality, selecting the physically important features in order to improve MLP

performance. The use of a priori physical information over other methods in the chosen feature’s phase has been tested and has appeared

jointly with the MLP technique as a good alternative for this problem.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This work concerns a method for the retrieval of physical
properties (temperature) in a combustion process, which is

region. These kinds of emissions are governed by the
radiative transfer equation (Goody and Yung, 1989)

Ri ¼ ðI0Þ tiðzoÞ þ

Z inf

BifTðzÞgKiðzÞdz, (1)

very useful to monitor and control these kinds of processes i

z0

order to minimise pollutant emissions and to optimise
energy losses also, for example in the industrial fuel-fired
furnace. The flame temperature appears, among others, as
a very important parameter to be monitored (Romero
et al., 2005; Thakur et al., 2001; Liu and Jiang, 2001; Lu
et al., 2004). Usually thermocouples have been used but are
intrusive and disturb the measurement, and they must
undergo the harsh furnace environment also. Remote
optical measurements are more suitable because they are
non-intrusive, and the interaction of electromagnetic
radiation with matter modifies to some extent the incident
wave. The infrared region is important because the
majority of the emission of hot gases in the flame are due
to CO2 and H2O, which exhibit important emission in this
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where i’s are the different channels.
This equation expresses the forward problem for the

channel. However, when we receive the measurement from
a spectroradiometer, we are faced with the inverse problem:
given the measurements of energy, guess what is the state
of the flame or the combustion in terms of spatial
temperature and constituents. This inversion problem of
Eq. (1) is ill-posed or under-constrained since we are trying
to retrieve TðzÞ, a continuous function from a finite
measurements (McCornick, 1992). Progress in optoelec-
tronics has helped to enlarge the amount of data obtained
in these kinds of measurements allowing a better approx-
imation solving the inverse problem. However, this amount
of data increases in a way that makes difficult the use of
conventional data regression techniques and also many
problems could be found in these kinds of retrievals,
related to data dimension or complexity of regression
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models, which implies a large number of operations to good enough and a pick peak selector has been developed
to
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solve it. Also this data dimensionality will lead to a
problem called the curse of dimensionality (Bellman, 1961),
which says in practice that we could find a certain point
beyond it; adding new features can actually lead to a
reduction in the performance of the machine learning
system. This encourages the use of new techniques for these
kinds of problems.

The artificial neural networks seem to be an interesting
alternative technique to be used in these retrieval problems.
One important advantage of neural networks in this field is
their speed. Once the neural network has been trained the
inversion method is almost instantaneous in comparison
with other models as physical iterative methods, which use
the negative gradient descent to find the true profile (Eyre,
2004). Advantages over other physical–statistical techni-
ques are that they do not need a good initial condition for
the inversion and do not need a rapid direct model for
iterative inversion algorithms.

The goal of this study is to present an inversion method
that retrieves the temperature profile of a hot gas cloud
composed by CO2 and water vapour from spectroradio-
metric measurements. This problem is related to ill-posed
problems and corresponds with inverse radiative problems
(McCornick, 1992). To do it, a multilayer perceptron
(MLP) approximation has been adopted as inverse model
for the radiative transfer equation (1).

In previous works, neural networks have been used to
retrieve the atmospheric temperature (Aires et al., 2001),
although the problem here is different because the
temperature ranges are bigger and hotter, and in atmo-
spheric retrieval some parameters are known a priori,
which simplifies the inverse model under some assump-
tions. In our case we have a complex relationship between
optical path and temperature whose influence varies in the
straightforward model following Beer’s law, and in the
inverse model we do not know how this relationship is
because both factors have a non-linear influence in all the
spectrum measurements.

As it has been previously mentioned, in this context the
data dimensionality is so high and it could influence the
performance capacity of MLP. Principal component
analysis (PCA) has been used to reduce the number of
input neurons of MLP. PCA is a multivariate statistical
analysis introduced by Pearson (1901), and developed
independently by Hotelling (1933). PCA involves a
mathematical procedure that transforms a number of
correlated variables into a smaller number of uncorrelated
variables called principal components. The first principal
component accounts for as much of the variability in the
data as possible, and each succeeding component accounts
for as much of the remaining variability as possible.

There are many different techniques to make the
selection of those variables which best represent the
variability of the data which is being studied. A generalised
method called B4 is widely used in many scenarios (Jollife,
2002). Here the results obtained with this method are not
make the selection of variables.
The rest of the paper is organised as follows: In Section
a context description of retrieval of temperature profiles
flames is made. Section 3 describes the retrieval

ethodology with high-resolution spectra. This section
cludes the use of PCA to reduce the dimensionality of the
put space for the MLP and an explanation of how
e selection of variables has been done. Section 4 describes
e physical characteristics of the data which fit the
mbustion processes we are working in, and the obtained
sults. Finally, conclusions are presented in Section 5.

Retrieval of temperature profiles in flames

In an industrial fuel-fired furnace, it is very important to
ave devices that monitor and control the combustion
rocess in order to minimise pollutant emissions as well as
optimise energy losses. Flame temperature appears,
ong others, as a very important parameter to be

onitored (Romero et al., 2005; Thakur et al., 2001; Lu
al., 2004; Liu and Jiang, 2001). Conventional tempera-
re monitoring devices such as thermocouples are
trusive and disturb the measurement, and they must
ndergo the harsh furnace environment. Remote optical
easurements are more suitable because they are non-
trusive. Ultraviolet, visible and infrared detectors have
een used in flame monitoring systems (Romero et al.,
05). Infrared sensing appears to be very promising,
ecause the hot gases in the flame, mainly carbon dioxide
O2) and water vapour (H2O), exhibit important emission
ands in the infrared region. A recent trend in flame
ermometry is based on spectrometric measurements that
iscriminate the received energy as a function of the
avelength. An example is the application of the so-called
ission–transmission method by using tunable infrared
ser and optical fibre (Lu et al., 2004). This technique is an
tive technique, because it uses an infrared source in
dition to the sensor system. These methods are very
nsitive, but their high cost and complexity make them not
ry suitable for routine operations in industrial furnaces.
This paper presents some results within the framework
f an author’s general proposal to use passive infrared
ectroscopy to recover the temperature profile inside a hot
s cloud composed of CO2 and water vapour, representa-
ve of a fossil fuel combustion. The experimental equip-
ent to be used is a sensor (for instance, a commercial
ectroradiometer) that measures directly the spectral
istribution of radiated energy by the flame in the infrared
ectral range. The selected spectral range is 3–5mm,
ecause carbon dioxide presents a strong emission band in
is region (Briz et al., 2003). Moreover, this range is
mmonly implemented in infrared systems, because
mospheric absorption is not very important.1

1Note the magnitude at the X-axis: it is common for spectroscopists to

e the wavenumber n instead of the wavelength l. Wavenumber is defined
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The problem to obtain the temperature profile from such
a spectrum is not straightforward. Energy emission at each

input neurons are merely fan-out and any processing takes
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Fig. 1. CO2 emission band calculated for: (a) a cell of width L ¼ 100 cm

and uniform temperature T ¼ 1000K; (b) a cell of width L ¼ 1 cm and

uniform temperature T ¼ 1000K; (c) a cell of width L ¼ 100 cm and a

temperature distribution (Gaussian profile).
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wavenumber depends in a non-linear way on parameters
like the spatial distribution of temperature and gas
concentrations, or the gas cloud width. Moreover, each
wavenumber emission depends in a different way on these
parameters. To illustrate these difficulties, Fig. 1 shows a
theoretical calculation of the CO2 emission band for three
different situations: a CO2 cloud 100 cm wide at 1000K,
the same cloud but 1 cm wide and a CO2 cloud 100 cm wide
with a temperature exponentially decayed from 1000 to
400K. It is very clear from the figure that the shape of the
temperature profile and the width of the cloud are key
parameters to understand the information involved in the
energy emission spectrum.

3. Retrieval methodology

Due to the non-linearity of the inverse problem the use
of MLP neural network as inverse model for the radiative
transfer equation (1) has been proposed. With this
approximation the physical properties in a parallel form
can be obtained trying to make useful the non-linear
correlations or dependencies among the channels and
helping to solve the ambiguity due to the dependence of
several constituents.

3.1. Multilayer perceptron

The MLP approximation constructs a unique model
composed of three layers: input, hidden and output layer.
Each layer consists of neurons or units which receive their
input from units from a layer directly below and send their
output to neurons in a layer directly above the unit. The

(footnote continued)

as the inverse of wavelength, and it is typically measured in cm�1 in the

infrared spectral region.
place in these units. The activation or output of the rest of
the neurons in the network—hidden and output neurons—
is a function f of the weighted inputs plus a bias value:

outi ¼ f
Xn

j¼1

wijxj þ bi

 !
, (2)

where xj, wij and bi are the inputs, weights and bias
associated to the neuron i, respectively. The function f is
called the activation function and the most often used are
the sigmoidal functions, given by the following equations:

f ðxÞ ¼
1

1þ e�x
. (3)

The output values, outi, serve as input to the next layer to
which the node is connected and the process is repeated
until output values are obtained in the output layer. The
activations of the units in the output layer are the outputs
of the MLP.
The adjustable parameters—weights and bias—have to

be determined to specify the network completely, which is
known as the training process of the network. At this
point, the learning rule comes into the operation using the
samples about the problem. Most learning rules are
formulated with a specific goal, e.g. move iteratively the
parameter vector to a position which minimises or
maximises some particular cost function. The parameters
in MLP are determined using a supervised learning
technique and they are generally adjusted to minimise the
error between the output vector of the network yk and the
desired output vector ydes

k for the kth training sample:

Error ¼
1

N

XN

k¼1

ðyk � ydes
k Þ, (4)

where N is the number of training samples.
As it was mentioned in the Introduction, neural net-

works have been used to retrieve the atmospheric
temperature (Aires et al., 2001) although in combustion
processes there are some differences as we do not have
information about the opposite level temperature from
where we take the measurement (the earth surface in
atmospheric problem), or the temperatures are hotter and a
priori know about the different levels.

3.2. High resolution spectral feature selection: PCA

It is known that high resolution leads a priori to a better
accuracy in the retrieval problem. However, working with
a huge dimensionality with mapping purposes conducts
towards the so-called problem, the curse of dimensionality,
as was mentioned above. For instance, spectral resolution
used in this work is 0:075 cm�1 in the range of
211022410 cm�1, which means a dimension of 4000.
Although a MLP could be trained with any input

dimension, practically this dimensionality affects the
results and the time processing either. The problem is to

3



find a transformation from the original high-dimensional 3.3. How to make a good selection of channels: pick peak
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Fig. 2. Scree graph for the correlation matrix.
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space to a low-dimensional one, which will retain as much
information as possible that is useful for our retrieval
purposes. There are different ways to make this reduction
of the dimensionality: feature extraction (linear or non-
linear), transformation of data (PCA projections) and
feature selection (Bishop, 1999). A PCA-based analysis has
been adopted to make a selection of the channels which
have the information about temperature without loosing
accuracy (even improving it). Thus it will make the method
faster because of the significant input dimension reduction
and will help to reach the best performance of MLP neural
network. Input reduction also decreases the number of
parameters in the regression model (i.e. weights in the
neural network) and consequently decreases the number of
degrees of freedom in the model.

In this work, we have used the feature selection based on
PCA. This selection will choose those channels that contain
most of the variance of the database which are also
sensitive to the combustion parameters. In ad hoc studies
the projections were used to make the reduction but
because the results were not promising this alternative was
discarded. The main idea of the statistical PCA is to reduce
the dimensionality of data set in which there are a large
number of interrelated variables, while retaining as much
as possible of the variation present in the data set. This
reduction is achieved by transforming to a new set of
variables, the principal components, which are uncorre-
lated, and which are ordered so that the first few retain
most of the variations present in all of the original variables
(Jollife, 2002).

Let C ¼ feM
1 ; . . . ; e

M
n g be a data set of n spectrum of

dimension M variables. Let S be the covariance matrix of
the data set C with dimension M �M. Let V the M �M

matrix with columns equal to eigenvectors of S and let L be
the diagonal M �M matrix with the M associated
eigenvalues (by definition S � V ¼ V � L).
The selection of m specific channels from M variables,

where m5M, allows to work with lower dimensionality.
This m subset of variables contains virtually all the
information available in M variables. The problem then
is to find the value of m, and to decide the subset or subsets
of m variables are the best. Here we want to find those
variables which best represent the internal variation of C to
find out which channels are significant (feature selection).
In other cases the linear correlation between principal
components (PCs) and channels are used to interpret the
physical meaning (Huang and Antonelli, 2001), or to get a
first retrieval approximation (Aires et al., 2002). To resolve
the question about how many m variables we have to
consider, we must check the number of PCs that account
for most of the variations in a spectrum eM

x of the data set
C. This can also be interpreted as finding the effective
dimensionality of eM

x . If eM
x can be successfully described

by only m PCs, then it will often be true that M can be
replaced by a subset m (or perhaps slightly more) variables,
with a relative small loss of information (Jollife, 2002).
gorithm

Regarding the choice of a subset of variables, a
nservative procedure has been adopted in a sense of
ot trying to find the optimum number for the reduction
ut seeing how this reduction improves the results obtained
ver without using it. Most of the variations in data set
ection 4.1) can be described by the first PCs, and often
ill be true that this variation could be replaced by a subset
f variables equal to those few PCs. The scree graph
lotted in Fig. 2 gives an approximation about how many
e they (Jollife, 2002). Looking at the figure, the ‘‘low
bow’’ shows that around the 5th PC the function reaches
ability, so the size of the subset would be 5 or 6.
A second way to decide how many variables must be
lected is to look at the accumulated variance (see Table 1)
d determine what is the percentage of reconstruction we

eed. Then the number of variables will be the number of
Cs needed to reach this percentage. In our case a
essimistic approach leads us to make a selection of
:9% which is associated to 15 PCs and consequently to
variables.
In previous studies with medium spectra resolution
arcı́a-Cuesta et al., 2005) a reduction of a factor of 15

as been reached with successful results and rather more,
e inputs reduction not only preserves the accuracy in
trieval but it could even improve it. However, in high
solution the results obtained with this number of
riables and the method B4 (Jollife, 2002) were not as
od as we got in previous works with medium resolution.
Afterwards, in order to introduce a priori knowledge of
e problem to help the MLP to learn and improve results,
study of the different eigen-spectrums is done to see



where the most relevant information is. From the physical
point of view, and closely related to the radiative

spectrums of the database in this eigenspectrums. Obser-

Using the methodology explained in Section 3, and the
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Table 1

Accumulated percentage of variance for spectrum data set generated

Number of PCA components Accumulated variance (%)

1 95.15

2 98.20

3 99.04

4 99.42

5 99.58

6 99.70

7 99.77

8 99.81

9 99.83

10 99.85

11 99.87

12 99.88

13 99.89

14 99.90
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transference equations solutions, appears the concept of
weighting function (Rogers, 2005). Information measured
in each channel of the spectrum is related to different
spatial depths inside the flame. For a given depth, the
weight functions show which channels are the most
sensitive to the energy emitted from this depth. Our
purpose is to use that physical information to figure out
the most relevant channels. This idea is going to be
exploited guiding the selection over all the possible
variables M, obtaining a subset of selected variables
FS 2 Rm : 1pmpM, using a pick peak selector over the
eigenspectrums V ¼ fvi : 1pipPCg where PCs are the
principal components. The pick peak selector will select
channels searching for maximum absolute values in the
eigenspectrums, but at the same time spreading the
selection according with previous information coming
from weighting function study. From this mixture of
physical information and statistical information it is
expected to improve the effectiveness of the selected
channels.

The first six eigenspectrums are shown in Fig. 3. Each
one gives specific information about different channels.
The first eigenvector represents an average of the whole
spectrum data set, so it is not casual that the most of the
variations of PCs belong to this eigenvector. The shape of
this first eigenvector is very similar to an average over all
the spectrums of the data set. The following five
eigenspectrums show the variations of the different
channels over this first eigenvector. Physically each of
these eigenspectrums do not contain only information
about the temperature of one area of the gas, but also show
information about the temperature and the spatial
distribution over the different channels.

The following eigenspectrum shapes begin to lose the
physical meaning and we cannot see a pattern related with
any physical characteristics. The same idea could be
inferred from the projections of each of our energy
ving the projections over these first PCs can be found out
some patterns related with temperature and total depth,
but after this it is very difficult to observe any pattern, it
seems a randomness more than information. This is why
the applicability of the peak selector will be these first five
eigenspectrums.
In order to select the most important variables of this

structure, we proposed here the use of the first five
eigenspectrums VS ¼ fVi : 1pip5g, and a pick peak
selector method to get the subset of variables
FS 2 Rm, where 1pmpM. This methodology agrees
with the method called B4 in Jollife (2002), but instead of
choosing only one variable per PC the pick peak
selector is used. With this purpose, a window win_thres 2

R2 is established, where first and second components
are the threshold height and width, respectively.
So, win_thres ¼ ðwin_ thres_height;win_thres_widthÞ. After-
wards, every peak that has a cumulative value (since the
last peak either positive or negative) greater than this
win_thres_height will be chosen (see pick peak selector
algorithm). This method is rough but it works quite well
with sharp peaks, such as in this case, and will allow us to
catch not only the most relevant information of each
eigenspectrum but mainly second, third,. . . and carry on
most important variables either. To limit the number of
peaks selected, the window thresholds also could be
adjusted. Pick peak selector algorithm.

FS ;

for each (vi 2 VS) do
for each(j : win_thres_widthpjpM � win_thres_width)

min _win MINðviw:j�win_thres_widthpwpjþwin_thres_widthÞ

if(min _winomin)
min ¼ min _win

end
if ( ðvij �minÞ4win_thres_height )

FS FS [ j

min ¼ vij

end
end

end

The final selected channels FS are shown in Fig. 4 and
are the ones we have used to make the test. The results are
shown in Section 4.

4. Results for retrieval of temperature profiles
data set generated for typical flame combustions scenarios
described in the next subsection 4.1, three different
approaches have been adopted. The profiles of temperature
are discretized to five cells, so the output layer will have six
neurons, one for each temperature cell and another one for

5



the total length.2 We must include the length because both
parameters, temperature and optical depth or total length,
have an influence on the composition of the spectrum in
ag
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Fig. 3. First six eigenspectrums of synthetic combustion simulations 211022410 cm�1.

Fig. 4. Selected channels by the pick peak selector in the range

211022410 cm�1. len
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reement with the Beer’s law. Different architectures of
LP varying the number of hidden neurons have been
ained until to reach the minimum value in validation
ror, not allowing overfitting. In these experiments, we
ve used a heuristic procedure to know what is the
mber of hidden neurons which best fits the general-
ation errors.

1. Scenarios

The data set is composed of a large number of synthetic
ission spectra generated with a computer code

2We are assuming in the discretization that all the cells have the same

gth so we do not include one per each cell.

6



developed at the University Carlos III called CASIMIR

sensor system. All the value ranges for temperature and
length have been chosen to be representative for hot

�
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Fig. 5. Temperature profiles variations for retrieval scheme.

E. Garcı́a-Cuesta et al. / Engineering Applications of Artificial Intelligence 21 (2008) 26–3432
(Atmosphere’s Calculus and SIMulation in IR) (Garcı́a-
Cuesta, 2003) based on the well-known HITRAN/
HITEMP spectral database (Rothman, 2003). This soft-
ware has been developed under line-by-line concept and
provides high spectral resolution taking into account the
fine structure of vibrational–rotational spectra of indivi-
dual molecules. The core of CASIMIR is based on the use
of the well-known Beer’s law to calculate the spectral
emissivity of the hot gases at each wavelength. Basic
information is read from the HITEMP database. After-
wards, corrections to temperature, gas concentration and
optical path length are performed. A line broadening
mechanism is taken into account by using a Lorentzian
broadening function. Finally, the computation of the
radiative transfer equation is performed to obtain the
spectrum of emitted energy by the flame.

The total number of cases simulated is 1040 covering
many possible scenarios of a typical flame combustion.
Data set generation has been performed under the
following assumptions:

� Synthetic spectra will correspond to energy emission of
hot gas cloud of width L. Temperature and gas

concentrations present gradients inside the cloud.
� The spectral range selected for this data set is

200022500 cm�1. Most of the commercial infrared
instruments have capabilities to measure in this range.

In this spectral range, the CO2 emission band is by far
the most important emission feature, being the water
emission nearly negligible. Due to this fact, only the
emission associated to the CO2 will be considered.
� For retrieval scheme, we have used a spatial discretiza-

tion in a basic case with five cells of equal width ðL=5Þ.
Each cell has an average value of temperature and gas

concentration.
� The objective of this study is to focus on the dependence

of the spectral energy distribution on temperature
profile and length. For this reason, the concentration
Our second approach was with a method called B4 in
profiles for carbon dioxide and water vapour will be
kept unchanged for the whole data set. Numerical
values for these concentrations have been selected from
typical combustion experiments.
� Four basic temperature profiles have been chosen to

simulate different temperature gradient. The step
between the temperature of two consecutive synthetic
flames is DT ¼ 50K, with a variation in the hottest cell

among 540 and 1140K. And for each of these variations
of temperature, a variation of cell’s length is done. These
variations have a step of Dw ¼ 0:02m for each cell
which means a total step variation DW ¼ 0:1m, cover-
ing a range between 0.1 and 2m. These profiles adjusted
to a spatial discretization of five cells can be seen in
Fig. 5. In these simulations the most unfavourable
situation from energy detection point of view has been
always chosen: the cell corresponding to the hottest part
of the cloud is located opposite from the location of the
gases clouds associated to fossil fuel combustion.
Experimental noise of spectra has not been simulated in
order to avoid the extraction of features associated with
it when PCA is being used.
4.2. Initial approach: without feature selection

First, a MLP has been trained using the whole spectrum.
In this case the experiments have been done with 4000
dimensions (high spectral resolution). In Table 2, the mean
square error over the trained and test data for different
architectures is shown. The table also included the mean
error per profile, the mean error on the hottest cell and its
standard deviation. In this case the MLP reach the
minimum in a few cycles and then begins the overfitting.
As it was expected the results were not good and also the

process was very high time consuming producing over-
fitting without reaching the results obtained with medium
spectral resolution (Garcı́a-Cuesta et al., 2005). The
standard deviation for the best case (30 hidden neurons)
in temperature is 13.22K, which is also a bad result.

4.3. B4 Selection method
Jollife (1972, 1973). This method has been applied over the
first 100 eigenspectrums taking the largest value of each
one. With this criterion a selection of 59 channels (not a
100 because there are duplications) has been tested and the
results obtained have improved the first one but it is not
good enough to accept it. The results are shown in the
Table 3.
Here, the best results also are obtained with 30 hidden

neurons, with a mean error of 9.76K over the profile and
8.31K on the hottest cell with a standard deviation of
6.69K, which although smaller than the previous one is
still not acceptable.

7



4.4. Refined approach: pick peak

The approach we suggest in Section 3.3 has obtained the

The representation of the results for the best and worst
cases obtained with this last method could be seen in the
Fig. 6.
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Table 2

Errors for the hot gas temperature retrieval using a MLP with 4000 inputs and different architectures

Hidden neurons MSE train MSE test Mean error per profile (K) Mean error hottest cell (K) Standard deviation

10 0.00418 0.02817 21.65 19.20 16.40

20 0.00178 0.03224 21.08 19.13 14.78

30 0.00099 0.02871 18.80 17.08 13.22

60 0.00989 0.03208 25.88 21.89 17.20

Table 3

Errors for the hot gas temperature retrieval using a MLP with B4 criteria

Hidden neurons MSE train MSE test Mean error per profile (K) Mean error hottest cell (K) Standard deviation

10 0.00377 0.00436 16.42 11.79 11.70

20 0.00239 0.00255 11.49 8.84 6.63

30 0.00163 0.00228 9.76 8.31 6.69

40 0.00177 0.00236 10.27 9.43 7.67

Table 4

Errors for the hot gas temperature retrieval using a MLP with pick peak selector algorithm

Hidden neurons MSE train MSE test Mean error per profile (K) Mean error hottest cell (K) Standard deviation

10 0.00058 0.00067 6.82 5.10 4.60

20 0.00021 0.00033 3.94 2.95 3.56

30 0.00024 0.00029 3.36 2.81 2.90

40 0.00022 0.00040 3.72 3.14 3.18

Fig. 6. The worst (a) and best (b) results obtained by the MLP with our method.
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best results. With the pick peak selector algorithm, 86
channels have been selected. In Table 4 we could see the
results per different architectures. The mean errors per
profile are 3.36K and 2.81K on the hottest cell with a
relative error of 0.34%. Also the relative error of length of
2.1% for the best case is acceptable and these results
improve quantitatively the ones obtained with 4000
variables and with B4 method.

There is also a significant difference in the standard
deviation of these errors because versus 2.89K deviation
obtained with peak selector criteria, are the 6.69K in the
B4 criteria and 13.22K with all the variables.
Conclusions and perspectives

We have developed a method based on a reduction of
imensionality and on the MLP as inverse model for the
trieval of temperature profiles in combustion processes.
his approach presents some advantages against the
assical physical–statistical techniques as higher speed,
tonomy of initial conditions and adaptability to other
nditions. Physically, this remote sensing approach to
ntrol combustion processes has one main advantage, it is
ot intrusive and does not disturb the measurement. But
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this is not the unique advantage. It allows to make
measurements in difficult access areas and also undergo
harsh environments.

As was expected the use of high spectral resolution
measurements versus medium has lead to better results. We
have improved the results over the hottest area in almost
3K and the mean profile error has been reduced almost to
a half. This has been possible due to the reduction done
over the whole dimensionality of the problem. The
reduction done is of factor 46 which helps in two different
ways. Firstly, it allows the use of MLP as inverse model
because with high dimensionality the time of calculus
grows geometrically to the input dimension. And secondly
it prevents the curse of dimensionality problem reducing
the working space and thus enlarges the number of
examples per dimension unit (the density), allowing better
results in the retrieval of temperature as we have seen in
Section 4.

We can conclude after these results that the mix between
MLP and a guide high spectral feature selection is
presented as a possible alternative on retrieval of tempera-
ture profile in hot gases combustion processes.

Until now we have been working with a low spatial
discretization but in near future we expect to make
retrievals with high spatial discretization which will
suppose fortunately new problems and challenges. We
think that in this new scenario the difference between using
high spectral resolution and medium or low spectral
resolution will be greater than in the results shown here,
and high resolution measurements will take more impor-
tance.
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