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Exact goodness-of-fit tests for censored data
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Abstract

The statistic introduced in Fortiana and Grané (2003) is modified so that it can
be used to test the goodness-of-fit of a censored sample, when the distribution
function is fully specified. Exact and asymptotic distributions of three modified
versions of this statistic are obtained and exact critical values are given for
different sample sizes. Empirical power studies show the good performance of
these statistics in detecting symmetrical alternatives.

Keywords: Goodness-of-fit, censored samples, maximum correlation, exact dis-
tribution, L-statistics.

AMS subject classification: 62G10, 62G20, 62G30, 62E15, 62N05.

1 Introduction

The usual way to measure system reliability is to test completed products or compo-
nents, under conditions that simulate real life, until failure occurs. One may think
that the more data available, the more confidence one will have in the reliability level,
but this practice is often expensive and time-consuming. Hence, it is of special inter-
est to analyze product life before all test units fail. This situation leads to censored
samples, that are encountered naturally in reliability studies. The present paper
is concerned on goodness-of-fit tests for this type of data with particular censoring
schemes.
Let y1, . . . , yn be independent and identically distributed (iid) random variables with
cumulative distribution function (cdf) F and consider the ordered sample y(1) <
. . . < y(n). In the following we adopt the notation of Stephens and D’Agostino
(1986). When some of the observations are missing the sample is said to be censored.
If all the observations less than y(s) (s > 1) are missing the sample is left-censored
and if all the observations greater than y(r) (r < n) are missing, it is right-censored;
in either case the sample is said to be singly-censored. If the observations are missing
at both ends, the sample is doubly-censored. Censoring may occur for random values
of s or r (Type I or time censoring) or for fixed values (Type II or failure censoring).
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In Fortiana and Grané (2003) we proposed a goodness-of-fit statistic for complete
samples to test the null hypothesis H0 : F (y) = F0(y), where F0(y) is a completely
specified cdf, or equivalently to test that x1, . . . , xn, where xi = F0(yi), are iid ran-
dom variables uniformly distributed in the [0, 1] interval. The statistic is based on
Hoeffding’s maximum correlation (see the definition below) between the empirical cdf
and the hypothesized. When there is no censoring, we found out that the test based
on the proposed statistic can advantageously replace those of Kolmogorov-Smirnov,
Cramér-von Mises and Anderson-Darling for a wide range of alternatives.
Here this statistic is modified so that it can be used to test the goodness-of-fit of a
certain proportion of the data, e.g., the sample may be (singly- or doubly-) censored.
The paper proceeds as follows: in Section 2 the exact distributions of three modifica-
tions of the statistic are deduced and exact critical values are obtained for different
sample sizes and different significance levels. In Section 3 we give some conditions
under which the convergence to the normal distribution can be asserted. In Section 4
we study the power of the exact tests based on these statistics for five parametric fam-
ilies of alternative distributions with support contained in the [0, 1] interval, where
we conclude that the tests based on our proposals have a good performance in detect-
ing symmetrical alternatives, whereas the tests based on the Kolmogorov-Smirnov,
Cramér-von Mises and Anderson-Darling statistics are biased for some of these al-
ternatives. In Section 5 we give some examples of applicability in the engineering
context.

2 Exact distributions

We start by introducing Hoeffding’s maximum correlation and recall how the Qn

statistic is obtained in the case of complete samples.
Let F1 and F2 be two cdf’s with second order moments. Hoeffding’s maximum
correlation between F1 and F2, henceforth denoted by ρ+(F1, F2), is defined as the
maximum of the correlation coefficients of bivariate distributions having F1 and F2

as marginals:

ρ+(F1, F2) =
1

σ1 σ2

(∫ 1

0
F−

1 (p)F−
2 (p) dp − µ1 µ2

)

, (1)

where F−
i is the left-continuous pseudoinverses of Fi, µi and σ2

i are, respectively,
the expectation and variance of Fi, i = 1, 2 (see, e.g., Cambanis, Simons, and Stout
1976). Since ρ+(F1, F2) equals 1 if and only if F1 = F2 (almost everywhere) up to a
scale and location change, it is a measure of proximity between two distributions and
yields a goodness-of-fit test statistic when considering the empirical and hypothesized
distributions.
In Fortiana and Grané (2003) we studied the test of uniformity based on

Qn =
sn

√

1/12
ρ+(Fn, FU ), (2)

where Fn is the empirical cdf of n iid real-valued random variables, sn is the sample
standard deviation and FU is the cdf of a uniform in [0, 1] random variable. The
exact distribution of Qn was obtained and its small and large sample properties
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were studied (see also Grané and Tchirina 2009, where local Bahadur asymptotic
optimality domains for Qn are obtained).
In the following we deduce the expressions of the modified Qn statistic for singly- and
doubly-censored samples and obtain their exact probability density functions (pdf’s)
under the null hypothesis of uniformity. For all the statistics we give tables of exact
critical values for different sample sizes and different significance levels.

2.1 Right-censored samples

Let y(1) < . . . < y(n) be the ordered sample. Suppose that the sample is right-
censored of Type I; the yi-values are known to be less than a fixed value y∗. The set
of available transformed xi-values (xi = F0(yi)) is then x(1) < . . . < x(r) < t, where
t = F0(y

∗). If the censoring is of Type II, there are again r values x(i), with x(r) the
largest and r fixed.

Proposition 2.1 Under the null hypothesis of uniformity:

(i) The modified Qn statistic for Type I right-censored data is

1Qtn =
r+1
∑

i=1

ai x(i), (3)

where ai = 6((2i − 1)(r + 1) − n2)/(n2(r + 1)), for 1 ≤ i ≤ r and ar+1 =
6r(n2 − r2 − r)/(n2(r + 1)).

(ii) The modified Qn statistic for Type II right-censored data is

2Qrn =
r

∑

i=1

ai x(i), (4)

where ai = 6((2i − 1)r − n2)/(n2r), for 1 ≤ i ≤ r − 1 and ar = 6(r − 1)(n2 −
r(r − 1))/(n2r).

Proof:

(i) For type I right-censored data, suppose t (t < 1) is the fixed censoring value. This
value can be added to the sample set (see Stephens 1986), and the statistic can be
calculated by using x(r+1) = t. Note that it is possible to have r = n observations
less than t, since when the value t is added the new sample has size n + 1.
From formulas (2) and (1) we have that

Qn = 12

(∫ 1

0
F−

n (p)F−
U (p) dp − 1

2
xn

)

. (5)

Noticing that the pseudo-inverse of the empirical cdf is

F−
n (p) =

{

x(i),
i−1
n < p ≤ i

n , 1 ≤ i ≤ r,

x(r+1),
r
n < p ≤ 1,
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for 0 ≤ p ≤ 1, the first summand of (5) is

∫ 1

0
F−

n (p)F−
U (p) dp =

r
∑

i=1

∫ i/n

(i−1)/n
x(i) p dp +

n
∑

i=r+1

∫ i/n

(i−1)/n
x(r+1) p dp

=
1

2n2

r
∑

i=1

(2i − 1)x(i) +
1

2n2
(n2 − r2)x(r+1)

and subtracting the (available) sample mean, the part of (5) between parenthesis is

1

2n2(r + 1)

r
∑

i=1

((2i − 1)(r + 1) − n2)x(i) +
r(n2 − r2 − r)

2n2(r + 1)
x(r+1).

(ii) For Type II right-censored data the pseudo-inverse of the empirical cdf is

F−
n (p) =

{

x(i),
i−1
n < p ≤ i

n , 1 ≤ i ≤ r − 1,

x(r),
r−1
n < p ≤ 1,

for 0 ≤ p ≤ 1. Proceeding analogously, the part of (5) between parenthesis is

∫ 1

0
F−

n (p)F−
U (p) dp =

1

2n2

r−1
∑

i=1

(2i − 1)x(i) +
1

2

(

1 − (r − 1)2

n2

)

x(r)

and subtracting the (available) sample mean, the part of (5) between parenthesis is

1

2n2r

r−1
∑

i=1

((2i − 1)r − n2)x(i) +
(r − 1)

2n2r
(n2 − r(r − 1))x(r).

2

Under the null hypothesis, 1Qtn and 2Qrn are linear combinations of selected or-
der statistics from the [0, 1]-uniform distribution. Therefore their exact probability
density functions can be obtained with the following algorithm, proposed by Dwass
(1961), Matsunawa (1985) and Ramallingam (1989).
For Type I right-censored data, let

bi =
r+1
∑

l=i

al =
6

n2
(2i − i2 − 1) +

6

r + 1
(i − 1), i = 1, 2, . . . , r + 1,

let k be the number of distinct non-zero bi’s, and (ν1, . . . , νk) be the corresponding
multiplicities of (b1, . . . , bk). Defining on C the functions:

G(s) =





k
∏

j=1

(

s +
1

bj

)νj





−1

, Gl(s) =

(

s +
1

bl

)νl

G(s), l = 1, 2, . . . , k,

the exact pdf of 1Qtn statistic, under H0, is given by f
1Qtn

(s) =

k
∑

l=1

νl
∑

m=1

sign(bl)C♯
l,mχ

(

s

bl

)

χ

(

1 − s

bl

)

sm−1

(

1 − s

bl

)n−m
/

B(m, n − m + 1)
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where χ(x) is the indicator of the interval [x > 0], B(a, b) is the Beta function,

C♯
l,m =





k
∏

j=1

(bj)
−νj



Cl,m, Cl,m =
G

(νl−m)
l (−1/bl)

(νl − m)!
,

and G
(j)
l denotes the j-th derivative of Gl.

Analogously, for Type II right-censored data, the pdf of 2Qrn is found by applying
the previous algorithm, taking into account that in this case

bi =
r

∑

l=i

al =
6

n2
(2i − i2 − 1) +

6

r
(i − 1), i = 1, 2 . . . , r.

Remark 1 For left-censored data, note that from the r largest observations one
can compute the values x∗

(i) = 1 − x(n+1−i), for i = 1, . . . , r, so that the sample
becomes right-censored. In Type I censoring the left-censoring fixed value converts
to t∗ = 1 − t, to be used as the right-censoring fixed point.

Mathematica programs implementing this algorithm are available from the author.
As an illustration of its application, critical values for 5% and 2.5% significance levels
are computed to test the null hypothesis of uniformity. They are reproduced in
Table 1.

Table 1: Lower- and upper-tail critical values of 1Qtn and 2Qrn for p proportions of
data in the sample.

5% significance level 2.5% significance level
p n = 10 n = 20 n = 30 n = 10 n = 20 n = 30

0.3 0.2221 1.4577 0.3563 1.3467 0.4288 1.2751 0.1692 1.6314 0.3009 1.4778 0.3760 1.3828
0.4 0.3566 1.6455 0.5260 1.5568 0.6133 1.4925 0.2874 1.8059 0.4590 1.6805 0.5514 1.5952
0.5 0.4867 1.7344 0.6820 1.6820 0.7788 1.6315 0.4071 1.8725 0.6088 1.7917 0.7128 1.7239
0.6 0.5980 1.7228 0.8095 1.7167 0.9104 1.6853 0.5142 1.8326 0.7356 1.8076 0.8450 1.7631
0.7 0.6751 1.6095 0.8935 1.6554 0.9937 1.6465 0.5939 1.6875 0.8243 1.7240 0.9335 1.7067
0.8 0.6994 1.4005 0.9172 1.4956 1.0125 1.5103 0.6278 1.4500 0.8580 1.5414 0.9619 1.5516
0.9 0.6337 1.1368 0.8547 1.2518 0.9443 1.2876 0.5789 1.1735 0.8101 1.2817 0.9067 1.3886

critical values for 1Qtn

5% significance level 2.5% significance level
p n = 10 n = 20 n = 30 n = 10 n = 20 n = 30

0.3 0.0999 1.1678 0.2714 1.2105 0.3659 1.1861 0.0684 1.3418 0.2240 1.3423 0.3172 1.2940
0.4 0.2221 1.4577 0.4418 1.4621 0.5531 1.4284 0.1692 1.6314 0.3800 1.5905 0.4938 1.5334
0.5 0.3566 1.6455 0.6066 1.6303 0.7267 1.5943 0.2874 1.8059 0.5359 1.7478 0.6615 1.6906
0.6 0.4867 1.7344 0.7503 1.7110 0.8712 1.6773 0.4071 1.8725 0.6760 1.8119 0.8051 1.7604
0.7 0.5980 1.7228 0.8579 1.6983 0.9722 1.6701 0.5142 1.8326 0.7857 1.7784 0.9098 1.7364
0.8 0.6751 1.6095 0.9141 1.5876 1.0145 1.5666 0.5939 1.6875 0.8493 1.6446 0.9602 1.6141
0.9 0.6994 1.4005 0.8993 1.3818 0.9789 1.3889 0.6278 1.4500 0.8469 1.4180 0.9367 1.4600

critical values for 2Qrn

2.2 Doubly-censored samples

Let x(s) < . . . < x(r), with 1 < s < r < n, be the available xi-values from a Type II
doubly-censored sample.
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Proposition 2.2 Under the null hypothesis of uniformity, the modified Qn statistic
for Type II doubly-censored data is

2Qsr,n =
r

∑

i=s

ai x(i), (6)

where as = 6(s − n2/(r − s + 1))/n2, ai = 6((2i − 1) − n2/(r − s + 1))/n2, for
s + 1 ≤ i ≤ r − 1 and ar = 6(n2 − (r − 1)2 − n2/(r − s + 1))/n2.

Proof: Since in this case the pseudo-inverse of the empirical cdf is

F−
n (p) =











x(s), 0 < p ≤ s
n ,

x(i),
i−1
n < p ≤ i

n , s + 1 ≤ i ≤ r − 1,

x(r),
r−1
n < p ≤ 1,

for 0 ≤ p ≤ 1, the first summand of (5) is equal to

∫ 1

0

F−

n (p)F−

U (p) dp =

s
∑

i=1

∫ i/n

(i−1)/n

x(s) p dp +

r−1
∑

i=s+1

∫ i/n

(i−1)/n

x(i) p dp +

n
∑

i=r

∫ i/n

(i−1)/n

x(r) p dp

=
1

2n2
s x(s) +

1

2n2

r−1
∑

i=s+1

(2i − 1)x(i) +
1

2n2

(

n2 − (r − 1)2
)

x(r).

Subtracting the (available) sample mean, the part of (5) between parenthesis is

1

2n2

[

(

s − n2

r − s + 1

)

x(s) +
r−1
∑

i=s+1

(

(2i − 1) − n2

r − s + 1

)

x(i) +

(

n2 − (r − 1)2 − n2

r − s + 1

)

x(r)

]

.

2

For Type II doubly-censored data, the pdf of 2Qsr,n is found by applying the algorithm
described in Section 2.1, taking into account that now

bi =
r

∑

l=i

al =

{

6
n2 s(1 − s), i = s,
6
n2 (2i − i2 − 1) + 6

r−s+1(i − s), i = s + 1 . . . , r.

Analogously, it is possible to obtain tables of critical values for different values of r and
s and different sample sizes. A Mathematica program implementing this algorithm is
available from the author. As an illustration of its application, critical values for 5%
and 2.5% significance levels are computed to test the null hypothesis of uniformity,
for symmetric double-censoring, where p = r/n, q = s/n and p = 1 − q. They are
reproduced in Table 2.
Concerning to the Mathematica programs implementing the pdf’s of 1Qtn, 2Qrn and

2Qsr,n, it should be mentioned that the original formula (2.3) of Ramallingam (1989)
for the pdf consists on a sum of terms, containing indicator functions of overlapping
intervals. There we obtain an alternative expression taking disjoint intervals which
saves computational resources in calculating the critical values. If k is the number of
distinct non-zero bi’s and we consider these coefficients ordered in ascending order,
b(1) < . . . < b(k), then the pdf is defined by parts over the partition 0 < b(1) < . . . <
b(k), if all the bi’s are positive or either over the partition b(1) < . . . < b(k) if there are
negative bi’s. In all cases, the support of these pdf’s is determined by the interval
[min{0, b(1)}, b(k)].
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Table 2: Lower- and upper-tail critical values of 2Qsr,n for different values of p = r/n
and q = s/n, where p = 1 − q.

n = 10
p 5% sig. level 2.5% sig. level

0.80 0.4458 1.3152 0.3798 1.3978
0.90 0.6994 1.4005 0.6278 1.4500

n = 20
p 5% sig. level 2.5% sig. level

0.80 0.5297 1.1458 0.4790 1.2065
0.85 0.6518 1.2051 0.6006 1.2535
0.90 0.7627 1.2378 0.7136 1.2750
0.95 0.8547 1.2518 0.8101 1.2817

n = 30
p 5% sig. level 2.5% sig. level
0.80 0.5707 1.0752 0.5278 1.1253
0.833 0.6498 1.1195 0.6072 1.1631
0.867 0.7239 1.1519 0.6824 1.1891
0.90 0.7912 1.1736 0.7517 1.2048

2.3 Expectation and variance

In this Section we obtain expressions for the exact expectation and variance of 2Qrn

and 2Qsr,n under the null hypothesis of uniformity. In matrix notation, these statistics
can be written as

2Qrn = a′ xr, (7)

where xr = (x(1), . . . , x(r))
′, a = (a1, . . . , ar)

′, with ai = 6((2i − 1)r − n2)/(n2r), for
1 ≤ i ≤ r − 1 and ar = 6(r − 1)(n2 − r(r − 1))/(n2r),

2Qsr,n = a′ xsr, (8)

where xsr = (x(s), . . . , x(r))
′, a = (as, . . . , ar)

′, with as = 6(s − n2/(r − s + 1))/n2,
ai = 6((2i− 1)− n2/(r − s + 1))/n2, for s + 1 ≤ i ≤ r − 1 and ar = 6(n2 − (r − 1)2 −
n2/(r − s + 1))/n2.
It is straightforward to prove that when s = 1 and r = n the previous statistics
coincide with the Qn statistic for complete samples (see Proposition 3 of Fortiana
and Grané 2003).

Proposition 2.3 Under the null hypothesis of uniformity the exact expectation and
variance of 2Qrn are given by

E(2Qrn|H0) =
(3n2 + r − 2r2)(r − 1)

n2(n + 1)
, var(2Qrn|H0) = a′Cra,

where a is the vector of coefficients of (7) and matrix Cr = (cij)1≤i,j≤r is defined by
the covariances

cij = cov((x(i), x(j))|H0) =
1

(n + 2)(n + 1)2
{(n + 1)min(i, j) − ij} , 1 ≤ i, j ≤ r.

Proposition 2.4 Under the null hypothesis of uniformity the exact expectation and
variance of 2Qsr,n are given by

E(2Qsr,n|H0) =
1

n2(n + 1)

(

(1 + 3(n − r) − 3n2 − 4(n − r)2)(n − r)

+ (3n2 − 1)r + 3r2 − 2r3
)

,

var(2Qsr,n|H0) = a′Csra,
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where a is the vector of coefficients of (8) and matrix Csr = (cij)s≤i,j≤r, with covari-
ances cij defined as in Proposition 2.3, but for s ≤ i, j ≤ r.

Proof: (of Propositions 2.3 and 2.4). Formulae for the expectation and variance of
xr under the null can be found in David (1981). Expressions for the expectations
and variances of 2Qrn and 2Qsr,n are obtained from (7) and (8), respectively, after
some easy but tedious computations. For example, to get the expectation of 2Qrn

substitute E(xr|H0) =
(

1
n+1 , . . . , r

n+1

)′
for xr in formula (7). 2

3 Asymptotic distributions

In this Section we give conditions under which the asymptotic normality of 1Qtn,

2Qrn and 2Qsr,n can be established. With the same notation of Section 2 and under
the null hypothesis of uniformity:

Proposition 3.1 If r = o(n), the statistic 2Qrn is asymptotically normally dis-
tributed, in the sense of

sup
−∞<t<∞

|P (2Qrn < t) − Φµn,σn(t)| → 0, (n → ∞),

where Φµn,σn is the cdf of a normal random variable with expectation and variance

µn =
(3n2 + r − 2r2)(r − 1)

n2(n + 1)
,

σ2
n =

6(r + 1)

5n4(n + 1)2r

(

5n4(2r − 1) − 15n2(r − 1)r2 + r2(6r3 − 9r2 + r + 1)
)

.

Proof: The proof is based on Theorem 4.4 of Matsunawa (1985). Since the as-
sumptions of that theorem hold, to assert the convergence of 2Qrn to the normal
distribution we must prove that

max1≤i≤r |bi|
(n + 1)σn

→ 0, (n → ∞), (9)

where coefficients bi’s were defined as bi = 6
n2 (2i− i2 − 1)+ 6

r (i− 1) for i = 1, 2 . . . , r.
From formulas (4.6) and (4.7) of Matsunawa (1985), we obtain

µn =
1

n + 1

r
∑

i=1

bi =
(3n2 + r − 2r2)(r − 1)

n2(n + 1)
,

σ2
n =

1

(n + 1)2

r
∑

i=1

b2
i =

6(r + 1)(5n4(2r − 1) − 15n2(r − 1)r2 + r2(6r3 − 9r2 + r + 1))

5n4(n + 1)2r
.

If r = o(n), condition (9) is fulfilled, since

max
1≤i≤r

|bi| ≤ max
1≤i≤r

(

6

n2
(i − 1)2 +

6

r
(i − 1)

)

= 6(r − 1)

(

r − 1

n2
+

1

r

)

.

2

8



Corollary 3.1 Under the assumptions of Proposition 3.1, an analogous result can
be established for the statistic 1Qtn with

µn = (3n2r − 3r2 − 2r3 − r)/(n2(n + 1)),

σ2
n = 6r(5n2(2r + 1) − 15n2r(r + 1)2 + (r + 1)2(6r3 + 9r2 + r − 1))/(5n4(n2 + 1)(r + 1)).

Proof: The proof is analogous to that of Proposition 3.1, but taking into account
that for Type I right-censored data coefficients bi’s are bi = 6

n2 (2i−i2−1)+ 6
r+1(i−1)

for i = 1, 2, . . . , r + 1. 2

Proposition 3.2 If r = o(n), the statistic 2Qsr,n, where s = n− r, is asymptotically
normally distributed, in the sense of

sup
−∞<t<∞

|P (2Qsr,n < t) − Φµn,σn(t)| → 0, (n → ∞),

where Φµn,σn is the cdf of a normal random variable with expectation and variance

µn =
1

n2(n + 1)

(

(1 + 3(n − r) − 3n2 − 4(n − r)2)(n − r) + (3n2 − 1)r + 3r2 − 2r3
)

,

σ2
n =

6

5n4(n + 1)2(n − 2r + 1)

(

19n6 − 4n5(21 + 37r) + 10n4(9 + 44r + 47r2)

−10n3(3 + 34r + 90r2 + 76r3) + n2(1 + 80r + 470r2 + 940r3 + 640r4)

+2r(1 + 2r + 5r2 + 40r3 + 69r4 + 18r5) +

− n(1 + 4r + 60r2 + 310r3 + 540r4 + 258r5)
)

.

Proof: To prove the convergence of 2Qsr,n to the normal distribution is equivalent
to proving that (see Theorem 4.4. of Matsunawa 1985)

maxs≤i≤r |bi|
(n + 1)σn

→ 0, (n → ∞). (10)

In the case of doubly-censored samples, coefficients bi’s were defined as

bi =

{

6
n2 s(1 − s), i = s,
6
n2 (2i − i2 − 1) + 6

r−s+1(i − s), i = s + 1 . . . , r.

Introducing s = n − r, we have that

max
s≤i≤r

|bi| = max
s+1≤i≤r

|bi| =
6

n2(2r − n + 1)
max

s+1≤i≤r

∣

∣

∣
−(i−1)2(2r−n+1)+n2(i−n+r)

∣

∣

∣
.

The function inside the absolute value is a polynomial of second order in i with a
negative leading term. If i takes values from 1 to n−1, this function is always positive
and the maximum is attained at i∗ = [1 + n2/(2(2r − n + 1))], where [·] denotes the
nearest integer. However, since i takes values from s + 1 to r, it is possible that the
maximum is attained at a certain i < i∗. In fact, we have that

if r < i∗ ⇒ max
s≤i≤r

|bi| = |br| < |bi∗ |,

if r ≥ i∗ ⇒ max
s≤i≤r

|bi| = |bi∗ |.

9



In both cases it holds that

max
s≤i≤r

|bi| ≤ |bi∗ | =
3

(

4 + 5n2 + 12r + 8r2 − 4n(2 + 3r)
)

2(n − 2r + 1)2
.

Expressions for the expectation and variance are obtained after applying formulas
(4.6) and (4.7) of Matsunawa (1985):

µn =
1

n + 1

(

s bs +
r

∑

i=s+1

bi

)

, σ2
n =

1

(n + 1)2

(

s b2
s +

r
∑

i=s+1

b2
i

)

.

Finally condition (10) is fulfilled since σ2
n = O(1/n). 2

Remark 2 Note that in Propositions 3.1 and 3.2 the expectation of the limit distri-
bution is the exact expectation of the statistic. Asymptotic critical values for 2Qrn

and 2Qsr,n can be computed from the limit distribution using the corresponding
asymptotic variance given in Propositions 3.1 and 3.2, or either the corresponding
exact variance given in Propositions 2.3 and 2.4 (see Theorem 4.3 of Matsunawa
1985). In Table 3 we show the relative error (percentage of its absolute value) with
respect to the 5%-exact critical values of 2Qrn in either situation, for several p pro-
portions of data in a sample of size n = 30.

Table 3: Relative error (percentage of its absolute value) of the 5%-asymptotic critical
values of 2Qrn computed from the limit distribution using (a) the exact variance of
the statistic and (b) the asymptotic variance of the statistic, with respect to the exact
critical values, for p proportions of data in a sample of size n = 30.

(a) exact (b) asymp.
p lower upper lower upper

0.3 13.69% 3.48% 29.73% 1.47%
0.4 6.73% 2.30% 22.78% 3.91%
0.5 3.39% 1.46% 19.93% 6.08%
0.6 1.47% 0.78% 18.76% 8.20%
0.7 0.25% 0.20% 18.54% 10.45%
0.8 0.56% 0.32% 19.02% 13.00%
0.9 0.95% 0.86% 20.19% 14.04%

4 Power study and comparisons

In this section we study the power of the tests based on 2Qrn and 2Qsr,n for a set
of five parametric families of alternative distributions with support contained in the
[0, 1] interval. They have been chosen so that either the mean or the variance differs
from those of the null distribution, which in each case is obtained for a particular
value of the parameter.

A1. Lehmann alternatives. Asymmetric distributions with cdf Fθ(x) = xθ, for 0 ≤
x ≤ 1 and θ > 0.

10



A2. Centered distributions having a U-shaped pdf, for θ ∈ (0, 1), or wedge-shaped
pdf, for θ > 1, whose cdf is given by

Fθ(x) =

{

1
2 (2x)θ, 0 ≤ x ≤ 1/2,

1 − 1
2 (2(1 − x))θ, 1/2 ≤ x ≤ 1.

A3. Compressed uniform alternatives in the [θ, 1 − θ] interval, for 0 ≤ θ < 1/2.

A4. Centered distributions with parabolic pdf fθ(x) = 1 + θ(6x(1 − x) − 1), for
0 ≤ x ≤ 1 and −2 ≤ θ ≤ 1.

A5. Centered distributions with pdf given by

fθ(x) =

√
6θ

√
π eθ/2 erf

(

√

3θ/2
) exp{θ(6x(1 − x) − 1)},

for 0 ≤ x ≤ 1 and θ > 0, where erf(x) = 2√
π

∫ x
0 e−t2dt is the error function.

The power of the tests increases with the proportion of data in the sample. To illus-
trate this finding in Figure 1, we depicted the power functions of the 5% significance
level test based on 2Qrn, for p = 0.4, 0.6, 0.8 proportions of data in the sample. For
each value of the parameter, the power was estimated from N = 1000 simulated
samples of size n = 10 from alternatives A1–A3 as the relative frequency of values of
the statistic in the critical region. We used the exact critical values listed in Table 1.

Figure 1: Power functions of the 5% significance level test based on 2Qrn, for different
p proportions of data in samples of size n = 10, for (a) A1 alternative, (b) A2
alternative and (d) A3 alternative.
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We have compared the power of the test based on 2Qrn with those based on classical
statistics such as the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling.
Modified versions of these statistics for censored samples, as well as their critical val-
ues, can be found in Barr and Davidson (1973), Pettitt and Stephens (1976) and also
in Stephens (1986). Figure 2 contains the power functions obtained from N = 1000
Type II right-censored samples of size n = 25 and a proportion of data of p = 0.8 for

11



A1–A5 alternatives. We have denoted by 2Drn, 2W
2
rn and 2A

2
rn the modified versions

of the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling statistics, re-
spectively. Sample size and data proportion values of n = 25 and p = 0.8 were
chosen so that the critical values reproduced in Stephens (1986) were appropriate
for comparison. For the test based on 2Qrn we computed the exact critical regions.
From Figure 2 we can observe the good performance of the 2Qrn statistic in detecting
symmetrical alternatives.

Figure 2: Power functions of the 5% significance level tests based on 2Qrn, 2Drn,

2W
2
rn and 2A

2
rn for a p = 0.8 proportion of data in a sample of size n = 25, for (a)

A1 alternative, (b)-(c) A2 alternative, (d) A3 alternative, (e) A4 alternative and (f)
A5 alternative.
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We also compared the power of the test based on 2Qsr,n with those based on the
Cramér-von Mises and Anderson-Darling statistics. Critical values for the modified
versions of these statistics for doubly-censored samples were computed by Pettitt
and Stephens (1976). Figure 3 contains the power functions obtained from N = 1000
Type II doubly-censored samples of size n = 20 and p = r/n = 0.9 (q = 1−p, s = q/n)
for A1–A5 alternatives. We have denoted by 2W

2
rs,n and 2A

2
rs,n the modified versions

of the Cramér-von Mises and Anderson-Darling statistics, respectively. For the test
based on 2Qsr,n we computed the exact critical regions, whereas for 2W

2
rs,n and 2A

2
rs,n

we considered the asymptotical ones, since Pettitt and Stephens (1976) concluded
that the distributions of these statistics converge quickly to the asymptotical ones.
From Figure 3 we can observe the good performance of the 2Qsr,n statistic in detecting
symmetrical alternatives. Note also that the modified versions of the Cramér-von
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Mises and Anderson-Darling statistics are biased for A2–A5.

Figure 3: Power functions of the 5% significance level tests based on 2Qsr,n, 2W
2
sr,n

and 2A
2
sr,n for n = 20 and p = 0.9, for (a) A1 alternative, (b) A2 alternative, (c) A3

alternative, (d) A4 alternative and (e) A5 alternative.
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5 Data analysis and applications

In this section we perform goodness-of-fit tests based on 1Qtn and 2Qrn, to show their
applicability for, respectively, Type I and Type II right-censored data coming from
reliability analysis in engineering.

Data Set 1 Example 5.2.4 of Lawless (1982): Number of thousand miles at which
different locomotive controls failed in a life test involving 96 controls. The test was
terminated after 135,000 miles, at which time 37 failures had occurred. The failure
times for the 37 failed items are: 22.5, 37.5, 46.0, 48.5, 51.5, 53.0, 54.5, 57.5, 66.5,
68.0, 69.5, 76.5, 77.0, 78.5, 80.0, 81.5, 82.0, 83.0, 84.0, 91.5, 93.5, 102.5, 107.0, 108.5,
112.5, 113.5, 116.0, 117.0, 118.5, 119.0, 120.0, 122.5, 123.0, 127.5, 131.0, 132.5, 134.0.
It is concluded that the lognormal distribution provides a reasonable fit for this data.

The hypothesized null distribution is the lognormal F0(y) = Φ((log(y) − 5)/0.7),
y > 0, where Φ is the cdf of the standard normal distribution, with censoring value
at y∗ = 135.0. After transforming the data with xi = F0(yi), for i = 1, . . . , 37, and
the censoring value t = F0(y

∗) = 0.4462, we compute the test statistic (3) and obtain
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1Qtn = 1.1127. We cannot reject the hypothesis of lognormality for a 5% significance
level, since the exact critical values are cv0.025 = 0.734049 and cv0.975 = 1.356186.

Data Set 2 Mann and Fertig (1973) give failure times of aircraft components sub-
jected to life test. Thirteen components were placed on test, but the test was termi-
nated at the time of the tenth failure. Failure times of the 10 components that failed
were 0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 1.54, 1.76, 2.50, 3.00. Engineering considera-
tions indicated that the data should come from a Weibull distribution.

In this example we have Type II right-censoring data with n = 13 and r = 10 and the
hypothesized null distribution is a Weibull with scale parameter λ = 0.5 and shape
parameter β = 1.5. Transforming the data we get 0.0358, 0.1175, 0.2531, 0.2978,
0.4150, 0.4186, 0.4912, 0.5620, 0.7528, 0.8407, and computing the test statistic (4)
we obtain 2Qrn = 1.5250. For a 5% significance level, the exact critical values are
cv0.025 = 0.682397 and cv0.975 = 1.728394. Hence we agree that the data may follow
a Weibull distribution.

Other applications The test based on 2Qrn turns out to be useful in detecting the
Weibull family of distributions from the standard exponential. This fact is specially
interesting since the Weibull distribution is perhaps the most widely used lifetime
distribution model. We illustrate this behavior in Figure 4, where we depict the
power functions obtained from N = 1000 Type II right-censored samples of size
n = 25 and p = 0.8 to test the null hypothesis of standard exponentiality versus the
alternative of a Weibull distribution with scale parameter λ = 1 and shape parameter
θ > 0.

Figure 4: Power functions of the 5% significance level goodness-of-fit tests based on

2Qrn 2Drn, 2W
2
rn and 2A

2
rn for a p = 0.8 proportion of data in a sample of size n = 25,

to detect the Weibull alternative from the standard exponential.
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Concluding remarks

We adapt the goodness-of-fit test based on Qn, introduced in Fortiana and Grané
(2003), for censored samples. We give tables of exact critical values for different
sample sizes and significance levels making these tests easy to implement. The tests
based on the modifications of Qn are consistent for all the families of alternatives
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studied, and are more powerful than those based on classical statistics, such as the
Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling statistics in detecting
symmetrical alternatives.

References

Barr, D. R. and T. Davidson (1973). A Kolmogorov-Smirnov test for censored
samples. Technometrics 15, 739–757.

Cambanis, S., G. Simons, and W. Stout (1976). Inequalities for E k(x, y) when the
marginals are fixed. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte
Gebiete 36, 285–294.

David, H. A. (1981). Order statistics (2nd ed.). New York: John Willey & Sons,
Inc.

Dwass, M. (1961). The distribution of linear combinations of random divisions of
an interval. Trabajos de Estad́ıstica e Investigación Operativa 12, 11–17.
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