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Abstract

Random coefficient regression models have been applied in different fields during recent years
and they are a unifying frame for many statistical models. Recently, Beran and Hall (1992)
opened the question of the nonparametric study of the distribution of the coefficients. Non-
parametric goodness of fit tests were considered in Delicado and Romo (1994). In this paper
we propose statistics for parametric goodness of fit tests and we obtain their asymptotic dis-
tributions. Moreover, we construct bootstrap approximations to these distributions, proving

their validity. Finally, a simulation study illustrates our results.
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1 Introduction and preliminaries

Random coeflicient regression models have been applied in different fields during recent
years; their general form is

Y, =A; + X;B;, 121, (11)

where Y; and A; are p x 1 random variables, B; is a ¢ X 1 random variable and X; is a
p X ¢ random matrix. The triples {(A;, B;, X;) : i > 1} are independent and identically
distributed and, for each #, (A, B;) is independent of X;. The distribution of (A;, B;, X;)
is not known and we can observe the n pairs (Y;,X;), 1 < ¢ < n. These models include
well known situations as random effects in ANOVA (see, e.g., Scheffé (1959)), deconvolution
models (Fan (1991), van Es (1991)), location-scale mixture models or some heteroscedastic
linear models. Their applications can be found in several fields (biology, econometrics, im-
age compression) and Raj and Ullah (1981), Chow (1983), Nicholls and Quinn (1982), and
Nicholls and Pagan (1985) survey this work. All this literature is focused on moments esti-

mation, essentially mean and variance.

Beran and Hall (1992) began a nonparametric approach by considering the estimation of
the joint distribution F4p of the random parameter (A, B). Beran (1991) introduced a mini-
mum distance estimate and constructed prediction intervals for Y. Beran and Millar (1991)
construct a n!/?-consistent minimum distance estimate of the coefficient distribution. Del-
icado and Romo (1994) present goodness of fit tests, obtain their asymptotic distributions
under the null hypothesis and propose bootstrap approximations, proving their asymptotic

validity.

In this paper, we study whether the distribution Fsp belongs to a parametric family
{Fs | 6 € © C RV}. The article is organized as follows. First, Section-1.1 contains the
framework and the preliminary results needed for the rest of the paper. Section 2 gives the
asymptotic distributions of the test statistics. In Section 3 we provide a bootstrap resampling
strategy to approach these distributions and we prove their validity. Finally, a simulation
experiment is carried out in Section 4 to check the performance of these tests.

1.1 Preliminaries

In model (1.1), the joint distribution Fyx = P(Fap, Fx) of (¥;, X;) depends on both the dis-
tribution F4p and the distribution Fx of X;. Let P, = 2% &y, x,) and Fx, = 1 TLL, 6x,
be the empirical distributions associated to the observations (Y, X;) and X;, respectively.
For the parametric family {F; | § € © C RV}, we want to study the test

Hy : Fup€{F,|6€0CRV} (1.2)
Hy : Fapé€{F;|6€0CR}.




We will assume identifiability in model (1.1), i.e., P(F4p, Fx) = P(Fap, Fx) implies Fyp =
Fyp; sufficient conditions for identifiability were given by Beran and Millar (1991). To con-
struct the corresponding statistics, we will use the empirical processes

Dﬂ = \/H(Pn—P(FABaFX))a
Jn = \/H(Pn - P(FABaFX,n)) and
j‘n = \/H(P‘n-’P(Fé"an,n))v

where 6, is an estimator of the true value fo in the parametric family {F; | 6 € ® C RV}.
Consider the class J = {I,; = (—00,s] X (=00,%] : s € R’,t € R**} of (p + pq)-dimensional
semiintervals. Given s € R?,t € R™, ‘

Ju(s,t) = Ju(I) = Vn (/R,ﬂ,q T-co (s (¥, 2)dPr(y, )~
= fors PraslA+ 2B < 5)1(_w,,](x)de,n(x)) =
Vi fopom (Timit(®) = Pras(A+ 2B < 9)) Ii-coq(a)dPu(3,2) =
= Vn fst(y, 2)dPo(y, ) = VnPa(fsr),

Rp+P

where f3(y,2) = (I(-oo.)(y) = Pros(A + 2B < 5)) I(=co(x). Observe that P(Fap, Fx)(fu)
= 0. Thus, it turns out that, for each s,t, J,(s,t) = Dn(fs:). Consider F = {fs | s € R?,
t € RP1}. We refer to Giné and Zinn (1986) for the definitions of the classes F', F?, F.F,
and for the notions of weak convergence in I°°(F), Vapnik-Cervonenkis and Donsker classes

of functions.
An envelope for a class F of functions f : X — R is a measurable function F such that
|f(2)] £ F(z) for every z € X and f € F. If A C X is a finite set and € > 0, let
D(¢,A,F,F) = min{k| thereexist fi,...,fx € F such that

sup oip, 2. (f(@) — file)) < € gF(x)’}

and define D(e, F,F) = sup{D(¢e, A, F,F)|A C X, A finite}, where F is an envelope for F.
The corresponding entropy is H(e, F, F) = log D(e, F, F).

We will use the following hypotheses in some of our results:
(a) Pp,,(A+ 2B = s) =0 for all z € Supp(X) and all s € R?, and
(b) the distribution of (A, B) is discrete.

The next theorem gives the asymptotic behavior of D,, in the case of one-dimensional de-

pendent variable Y.




THEOREM 1.1. (Delicado and Romo, 1994). If either (a) or (b) hold then

Dy —w Zp(r,p,Fx) (1.3)

in 1°(F), where Zp(r,p rx) is the P(Fup, Fx)-brownian bridge with covariance structure
gtven by

Cov(fst, fuv) = / (Pr,s(A+ 2B <sAu)—

{z<tAv}
—Pr,p(A+ 2B < 8)Pr,,(A+ 2B < u))dFx(z).

If the dimension of Y is larger than one, the following result provides conditions guaranteeing
the convergence of the empirical processes.

THEOREM 1.2. (Delicado and Romo, 1994). Assume that Supp(X) is compact and that
Y. = A+ zB is absolutely continuous for all € Supp(X). Suppose also that the func-
tion h(z,s) = Pp,,(A+ 2B < s) has uniformly bounded partial derivatives:

oh
na—x(xas) SMI ’ xequa SERP,

Oh
[

<M, , z€ERM s€R

Then

(1) The family of probability measures {Py,, z € Supp(X)} is tight: for all ¢ > 0 there
exists a compact C(e) such that Py, (C(e)) > 1 —¢, z € Supp(X). C(e) can be chosen
to be of the form -

-

C(e) = [l(e),u(e)], = {s € R? | I(e) < s < u(e)}.

(i) D(e.F, ) < 17 (55) " Vol([i(e), ue)]y).
(iii) If 1
J, tog (Vollt(e/2), u(e/2) + 1,5-15)) de < o0 (1.4)

then [} H(e, F,F,)de < oo and also [, H(e, F,F)de < 0o, where F = 1.

Finally, we recall three results on weak convergence. The first two relate weak and uniform
convergence for a measure p and a sequence {g, : n € N} of measures defined on the Borel

o-algebra B in a metric space X.

THEOREM 1.3. (Ranga Rao, 1962). {p, :n € N} converges weakly to p if, and only if, for
any uniformly bounded and equicontinuous class of functions F defined on X,

[ 1= [ 1au] =0.

lim sup
n—+00 fE}-




THEOREM 1.4. (Billingsley and Topsge, 1967). Let F be a class of continuous functions
on X. Then

lim sup
n—oo fej_-

[ fdun= | sau| =0
if, and only if,

(1) wr(X) < 00, and

(i) lims_osupser P{z|ws(S(z,6)) > €} =0, foralle >0,

where wg(B) = sup{|f(z) — f(y)|,f € F,z,y € B} for B € B, ws(B) = w(;(B) and
S(z,8) is the ball with center x and radius 6.

The next result is due to Rubin and it can be seen in Billingsley (1968), Theorem 5.5.

THEOREM 1.5. Let {h, : n € N} and h be measurable functions from X to the metric space
X' Let E = {z € X|3{z,} — z, and h,(z,) 7 h(z)}. Assume that E is a measurable
subset of X with u(E) = 0. Then p, —, p implies that u,h;t —,, uh™t,

2 Asymptotic distribution of the test statistics

To obtain the asymptotic distribution of the statistics used to test if Fyp belongs to the
parametric family {Fy | § € © C RV}, we will assume that the model is continuous with
respect to the parameter, i.e., Fp, —, Fp, if 8, — 60,00 € O.

Let 6, be an estimate of 8, based on the sample (Y;, Xi),i=1,...,n, from model (1.1)
with p > 1. Our goodness of fit statistics will be of either Kolmogorv-Smirnov or Cramér-von

Misses type based on the empirical process
o= (P = P(F;,, Fxn))-

Let us recall the definitions of regular families and estimators (see, e.g., Shorack and Wellner
(1986), p. 229).

DEFINITION 2.1. Let A = (Ay,...,An) with Aj(8,2) = 0F3/06;, j = 1,...,N. We say
that {F; |6 € © C RN} in R? is regular in 0 if

N
Fo(z) = Fy(2) + Y _(8; — 6;)A;(6,2) + R(6,6', 2)
J=1
where |R(8,6',)||co = 0(||0 — &'||]2) and Aj,j =1,...,N are uniformly bounded in z.

Essentially, { Fg} is regular if Fp(z) is uniformly differentiable with respect to 8. If Fy(z)
has bounded partial derivatives with respect to  and the function (8/06)F.(-) is uniformly
continuous (or even {(8/00)F.(z),z € RP?} is equicontinuous) then {F;} is regular (see
Pollard (1984), p. 119).




DEFINITION 2.2. Let {Z; : i € N} be independent random variables with distribution Fj.
The sequence of estimators {0, : n € N} is regular if, for all j,

V(b —8,) = h;(6, Z;) + op(1),

n
=1

S

where Eh;(0,Z;) = 0 and V(h;(0, Z;)) = o?

Efficient estimators and M-estimators, for instance, are regular ones.

For z € R™, let F(z,0,s) = P(A+ 2B < s) be the distribution function of Y, =

A + zB when (A,B) ~ F,, with partial der1vat1ves A;(z,0,s) = 0F(z,0,s)/30;. Let us

denote by 6y the true value of 6. Define the class H = {hg : RP*?? — R | hy(y,z) =

i Li(s,t,00)k;(60,y,2),s € RP,t € RP?}, where L;(s,t,0) = E[A;(X,0,5)]c0(X)] and
hJ are the functions in the definition of regular estimators for the parameter 6.

THEOREM 2.1. Suppose {(Y;,X;),1 > 1} are i.i.d. variables from model (1.1) with Fyp =
Fy,. Let {F(z,0,s)} be regular in 6 for all z and let 0, = (Y1, X1,Ys, Xo,...,Y,, X))
be a regular sequence of estimators of 6. Assume that A;(X;,60o,5) has finite expectation
uniformly bounded in s and that

1< .
;’l— Z Aj(Xi7 00) S)I(—-oo,t](Xi) - Lj(sa ta 00) = OP(l)a J= 13 ey Ns
i=1
uniformly in s and t. Suppose that hypotheses in either Theorem 1.1 or 1.2 hold for either
p=1orp>1, respectively. Then F + M is a Donsker class for P(Fy,, Fx) and

Dn —y Z'P(Feova) in loo(]'--*- H), -

where Zp (Fag Fx) is the brownian bridge with the corresponding covariance structure deter-
mined by P(Fe,, Fx). Moreover, Dn(fo+hy) = Jn(s,t)+0p(1), for s € RP,t € RPI uniformly

ins andt.

PROOF: The regularity of {F(z,6,s)} and the linearity of P imply that

P(Fén’FA'yﬂ)(S’t) = _EP Fo ’51\’.)(3 t EF Xngnas)-[(—oo t](X)

1—1

12 ,

= ;ZF(X,-,oo,s)I(_oo,,](A;)+

i=1
N A

+E(0’U -— 001) ( ZA X,, 00,3)](_00 t](X ))
=1 i=1
1E& P

+;ZR(X1')00) 971) s)](—oo,t](Xi) =

1=1




N
= P(Faos Fxn)(5,1) + 2 (0n; — 00) E [Aj(X, 00, 8) I -eog(X)] +
i=1
N n

1 "
+ 2 _(6nj = 00;)0p(1) + = 3" R(X:, 80,0, 8) (- o0 .g(X:),

n =1

where the last équality follows because EA; is finite. Thus,
Ja(s:t) = Ju(Iy) = Vi (P~ P(Fy , Fxn )) (s,8) =

\/-(P P(F007FAn Z\/- nj 00_7) (S,t,go)—

—Z\/- m-—001)0p ——Z\/-R Xn0070n73)1( oot](‘x)( 5)

1-1

The regularity of {én} allows us to study the convergence of the terms in (2.5): firstly,
the third term is op(1) uniformly in s and ¢ because \/n(6,; — 6o;) = Op(1); second,

sup Z\/-R Xtaaoaanas)-[( oot] Z\/-o(' ”9 _00”)

s,t

1
=-Eo" (I — o)) = -

n T n
since \/ﬁ(én — 6y) = Op(1); and finally,

V(0,5 — 00) =

Xn:o' ) = op(1),

=1

1 n
\/—ﬁzhj(ao, Y, Xi) +op(1) =
=1

=Vt (Po = P(Fu, Fx)) (hj(0o,,-)) + 0P (1) = Da(h;(bo,,")) +0p(1),
because P(Feo, F,\')(hj(ao, ‘Y )) = 0.
By the uniform boundedness of EA;, ||L;(s,t,60)|lc = sup,,|L;(s,t,60)] < oo and so
N

. N
Ju(s,t) = Ja(s,t)+ 3. Lj(8,1,60) Du(hi(60, 7)) + 3 Li(s,,80)0p(1) + op(1) =

j=1 j=1

= -Dn(fst + hst) + OP(]-)

where h,, = N, Li(s,t,00)h;(00,7,-) € H = {h : RPtP" — R | h(y, ) 21—1 i(s,t,60)

=1
hi(fo,y,z), s €RP,t €RP'} CH = {h: R — R| h(y,z) = T}, ejhj(6o,y,7),; € R}.

H is a Vapnik-Cervonenkis class of functions because the dimension of H' is finite (see,
e.g., Pollard (1984), p. 30). Delicado and Romo (1994) obtain a bound for the entropy of
the class F, so there exist positive constants A and w (see, e.g., Pollard (1984), p. 40, and
Chapter II, Lemma 36) such that

D(e,F+ H,F +H) < Ac™",

6




where F = 1 and H(z,y) = f’ﬂ 1L;(s,t,00)|lochj(60,y,x) are envelopes for F and H,
respectively.

Obviously, the function H has finite second moment. Moreover, since the functions h;
are measurable, the class M is permissible (see Pollard (1984), p. 196). Proposition 2.1 in
Delicado and Romo (1994) gives that F is permissible under the conditions established in
Section 1. So, the central limit theorem in Pollard (1982) leads to

-Dn _')w ZP(FGO,Fx)
in I®(F +H). ' o

The following corollary gives the asymptotic behavior of both the Kolmogorov-Smirnov
K, and Cramér-von Misses M, test statistics.

COROLLARY 2.1. For the statistics

A

. . . 1/2
Ko = sup Jo(s, )| and 1, = (/RW( n(s,t))de(s,t)) ,

it holds that

K, —, |1Zp (R, Fx) |l 741, and

Aln — ”Z‘P(Feo,Fx) ”2:Q'

3 Bootstrap approximations

-

It turns out that the asymptotic distributions obtained in Section 2 are not easy to handle.
Resampling techniques —and, in particular, the bootstrap— provide a way to overcome this

problem.

A straightforward bootstrap scheme based on resampling the pairs (Y;, X;) cannot be
implemented here because the functions fy + hy are not known: h,, depends on the true
value @y of the parameter §. However, since Hy gives a parametric specification of the
distribution of (A, B), we propose a resampling strategy based on parametric bootstrap.
The algorithm for the bootstrap hypothesis test of Hy using, e.g., K, is the following:

1. Obtain the value K,, = sup, ; |Jn(s,1)| and estimate 6 by a regular statistic 6, from the
sample (¥;, X;),i=1,...,n.

2. Generate (Y;*, X}),7 = 1,...,n using parametric bootstrap:
2.1. Obtain a sample (A}, B}),2 = 1,...,n from Fj; .

2.2. Obtain a sample X,7 =1,...,n from Fx .

7




2.3. Calculate the pseudo-values Y;* = AT + X B?,i=1,...,n

. Compute the bootstrap empirical process for Jo: j *=./n (}5" 'P(Fe. B X n)) where

Pr and F3 X . are, respectxvely, the empirical distributions obtained from (Y;*, X}) and

Xt =1,...,n, and 0; is the bootstrap replication of the estimate obtained from
.

. Calculate I& from J *

5. Iterate steps 2, 3 and 4 B times to have Ii’,’:’b, b=1,...,B.
6. Reject Ho if Ky, is larger than the a-th upper quantile of the distribution of f\",':,b, b=

1,...,B.

Our next Proposition gives the relationship between the bootstrap versions of J, and
D,: Jr=/n (P; - ’P(Fé’.‘,l:}m)) and D7 = \/n (f’,: - P(Fya, FX,'n.))- This is the key step
that will allow us to establish below the validity of our bootstrap statistics.

PROPOSITION 3.1. Suppose that the conditions in Theorem 2.1 hold and that the functions

L;(8,s,t) are derivable with respect to § around the true value 6. Assume that the functions

hi(8,y,z),7 = 1,...,N are derivable with respect to 6 in a neighborhood of 6y and the

derivative at § = 6y is continuous and bounded as a function of (y,z) except, possibly, in a
null measure set. Then, for all s € RP, t € R™,

J2(s,1) = Di(fat + hat) + 0p(1),

uniformly in s and t.

Proor: We have that

Di(fo+ ha) = Di(fa) + Di(hs).

In the proof of Theorem 2.2 in Delicado and Romo (1994) it is shown that

Dy(fu) = vn (B} = P(F;,, F3,)) (s,).

Let us consider now the second term:

~

Dy(ha) = u(P;—P(F;,Fx,)) (h [ =

v (P; = P(F;,, Fx.)) ZL (s,1,00)h;(60, Y, X)).

The hypothesis on the derivatives of h; allows us to approximate this last expression by

using

=1

a one term Taylor expansion around 6, to obtain

1 &, s N , ,
(WZ hj(0in*,X5')) Lj(s,t,00) = > L;(s,t,80)vV/nP(F;_, Fx,n)(h;(6n, Y, X))—
" =1

j=1

8




- Z L;(s,t,00)v/n(6 — 60)' [(B} = P(Fy,, Fxn)) Hi(0o,Y, X)| + 0p(1), (3.6)

where H; is the vector of partial derivatives of h; with respect to 8 at 6. By the definition of
regular estimator, the second term is zero (the distribution of k; has zero mean and variance

equals to §3(8, Fx) if (Y, X)) ~ P(Fy, Fx)).

Since 6, —p 0o, the continuity of the distributions with respect to 8 gives that for any
distance d metrizing weak convergence, d(Fj , Fy,) —p 0. Proposition 2.1 in Beran and
Millar (1991) and the fact that d(Fx n, Fx) —..,. 0 imply that d(P(F;_, Fx ), P(Fy,, Fx))
converges to zero in probability. By Theorem 2 in Beran, Le Cam, and Millar (1987) it fol-
lows that d(Pz,P(Fy,, Fx)) —p 0 and the hypothesis on the derivatives of h ; implies that H;
is continuous and bounded a.e. if (Y, X) ~ P(Fy,, Fx); so, (P,;‘ - P(F;,, Fx,n)) H;(6,,Y,X)
converges to zero in probability. This proves that the second factor in (3.6) is op(1). Since the
first factor is Op(1), the whole term is op(1). Noting that 82 =T, (Yy", X7, Yy, X3,...,. Y7, X7)
conditioned on the sample is a regular estimator of 6,,, we obtain that

Zf Li(st,60) + op(1).

Using now the condition on L;,

N

D;(hst) = Z \/ﬁ(é;_y - énj)Lj(s3t30n) -
i=1

N " ,0L;
~Z\/ﬁ(9;j—9nj)( n = bo)' 50 —2-(5,¢,80) + 0p(1) =

= Z\/_ 6rs)L;(s,t,6,) + 0p(1) =
= Z V(b = 8n) E[D5(X, by )] (-o0.(X)] + 0p(1) =

N -~ A
= Y Vn(b;; - ZA (X7, 00, 8) (oo (X]) + 0p(L).
J=1

By the regularity of the distribution family and reasoning as in the first part of the proof of
Theorem 2.1, we get D% (fy + hst) = \/E(P,;‘ - P(Fé;,F)‘(,n)) (s,1) = Ji(s,t) +0p(l). O

The following two theorems provide the asymptotic validity of the bootstrap version D:
under two different sets of assumptions. Consider the following hypotheses:

(i) h;(60,y,z),j=1,...,N are bounded in (y,z) and continuous a.e. (P(Fgy, Fx))-
(ii) Let G(a,b) = {g : R" — R | g(z) = f(a + zb,z), f € F}. As in Proposition 2.2 in
Delicado and Romo (1994), it can be shown that G(a, b) (and also the classes G(a. b)h;.

9




J = 1,...,N) is a Donsker class for Fx. So, the functions %i(a,d) = ||Fx,. —
Fx||g(ap)n; tend to zero in probability for all (a,b). Let & = {(a,d) | I(an, bn) —
(a,b) and ¥?(an,b,) # 0}. Assume that Pr,, (V) = 0.

(i1)’ With the notation in (i), 1 tends to zero uniformly over compact sets, j = 1,..., N.

(iii) hj,j=1,. , N are uniformly continuous.

(ii)’ h;, = 1,...,N, are uniformly continuous except in a set whose closure has null
probability under P(Fy,, Fx): there exists I'y, such that P(Fg,, Fx)(T4,) = 0 and for
all € > 0 there exists 6 > 0 so that if (yo,z0) € I's; and (¥',2') € S((yo,20),6) then
|hi(y, =) = hi(y',2)| <e.

(iv) For all € > 0 there exists § > 0 such that ||(a,b)— (¢/,¥)|| < 6 implies Pr, ({z | a+2zb <
s, a' + b £ s}) < g, for all s € RP.

(v) A = {as(z) = F(z,00,5) | s € RP} is uniformly equicontinuous: for all ¢ > 0 there
exists 6 > 0 such that if ||z — z'|| < é then |as(z) — as(z')| < ¢, for all s € R?.

(vi) P(Fg, Fx) is absolutely continuous with density function fp(r, Fy) and there exists a
largest mode where the density achieve its maximum.

THEOREM 3.1. Suppose that the conditions in Theorem 2.1 and Proposition 3.1 hold. If (i),
either (i) or (i), (iii) and (iv) are true then

D: —, Zp(Fe, Fx) in probability.

ProoF: The proof relies on Corollary 2.7 in Giné and Zinn (1991). From that result, it
follows that if {R,} are random measures and ||R, — Rollg — 0 almost surely, then
d( n(';c(k) g Zgr,) — 0 almost surely for any distance d metrizing weak convergence, where

vl is the empirical process based on the probability measure R (see Giné and Zinn, 1991).
Now, if ||Rn — Ro|lg — p 0 then any subsequence of R, Rcontains a further subsequence such
that || Rp,) — Ro”g — 0 almost surely and thus, d(v n(k 1 ,ZRO) — 0 almost surely; this

implies that d(v7, Zg,) —p 0 and we will say that v*» — Zp in probability.
Take Dy = vf», with R, = P(F; ,Fx.), and Ry = P(Fy,, Fx). We have to show that

|Rn — Rollg —p 0, where G =G1 UG, UGs UGy, and Gi = F + H, G = (F+ H)?, Ga =
(F+ M), Gs= ((F + H)')%. Note that

|R. — Rollg, < ||Rn = Rollx + |[Rn — Rolln,

|Rn — Rollg; £ ||Rn — Rollz7 + || Rn — Roll#w + 2| R — Rol|7x,
IRy — Rollg, < 2||Rn — Roll + 2||Rn — Rolln,

IR, — Rollg, < 3||R. — Ro|l7zx + 3||Rn — Rollnn + 4||Rn — Rol|7n-

We need to show that | R,—Ro||c —p 0, where C is any of the classes F, H, FF, HH, FH.

10




(a) |1 Bn — Roll7 —p 0

It holds that Ro(fy) = 0 (see proof of Theorem 2.2 in Delicado and Romo (1994)).
Moreover,

RBolfn) = [|f fulv.2)iP(F, 6] dFx =
= / [Pr, (A+2B < s) = Pr, (A+ 2B < 8)] I(coo(2)dFx 0.

The regularity of the distribution of ¥, implies that the quantity between brackets is

N
2(9"1 - eoj)Aj(za 90$3) + R(‘Ta 90,911’ 3),

i=1
and so

. 18 s
(071]' - 901‘) {;ZAJ'(X,',%, S)I(_oo,t](Xi)} + O(P)(l) =

1=1

|
M=

Ry (fst)

G,
I
—_

(B = 605) L;(s,1,80) + 027 (1),

I
M=

[
H‘

The notation og) (1) indicates that the term depends on s; the hypothesis of regularity
- for Y, ensures that the supremum in s of these quantities is op(1).

The hypothesis on L; in Theorem 2.1 guarantees that the supremum in (s,¢) of ogt)(l)

is op(1). This, together with the uniform boundedness of L; and the fact that énj—Hoj =

op(l),7 =1,..., N, gives that

IR, — Ro||x = ||Rx||# — 0 in probability.

(b) [[Rx — Rol|lx —p 0

Let M = maxy<j<n sup,, |L;(s,t,60)|, which is finite due to the hypothesis on EA;.

Thus,
Since én —p by, We have that d(an,Fg) —p 0. The continuity of functional P (see
Beran and Millar (1991), Proposition 2.1) implies that R, —,, Ry in probability; hy-

pothesis (i) gives that [(Rn — Ro)(h;)| —p 0.

(¢) 1B — Rollxn —p 0
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The argument in (b) applies to any finite-dimensional class of functions of the form

N
C={> ajh;|le;| < K}

J=1

when the functions h; satisfy (i); in particular, this holds for the class HH and so,
|Rn — Ro|lnn —p 0.

|R. — Rol|lrr —p O

From Theorem 2.2 in Delicado and Romo (1994), it follows that Ro( fs: fuv) = Fx(Tstuv)s
where 75, (2) = (F(z,00,u A 8) — F(z,00,u)F(z,60,$)) I(~c0,tav)(Z), and that the class
R of these functions is Donsker for Fx. Now, for R, we have that

Ralfufu) = [ { [ Fisv,2) uuly, 2)P(Fy, 82) } dFx

and the expression inside the first integral is
Er, [I-couna(A+zB) = Pr, (A+ 2B < u)l(—co (A + 2B)-

—Pr, (A+ 2B < 8)(_oo(A+2B) + P, (A+ 2B < u)Pr, (A+ 2B < )|

I( oot/\v](l') =
[F (z 0, u A s) F(m,én,u)F(m,Go,s)—
)

—F(2,00, 8)F(2,80,u) + F(,80,8)F (2, 80,u)]| J(-aotn(z) =

N
= Poruy + Z — 60;)A;(z,60,u A s) + R(z, b, 0., u A s)

7=1

—Z ni = 00;)2;(z, 00, w)F (2,00, 8) + R(z,00, 0, u)F(z, 00, )~

7=1
- Z(énj - 00j)Aj($30033)F($5003u) + R(f'«',ao,éms)F(l',ao,u) I(—oo,t/\v](:r)'
Thus,

(Rn e RD)(fstfuv) = (FX,n - FX)(rstuv) +
N n
430 (0ns — 005) | = 30 A5 (X o, A )] Coon(Xe)

=1
12 .
_'7; Z Aj(Xia 003 u)F()‘ta 003 S)I(-—oo,t/\v](Xi) -
=1
LS A (X, B0, 8) F (X, 0, 0) L —amanag(Xi) | + 08 (1).
=1
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So,

IN

N
|Rr — Roll== |1 Fxn = Fxllr + ) |6n; — bo; sup [|L;(u A s, Av,60)| +

Jj=1
+|L;(u,t A0, 80)| + |Lj(s,t Av,8)] + 0™ (1)] + 0p(1) =
= |[Fxn = Fx|l= + op(1),

(the supremum over (s,t,u,v) of 0%™)(1) is op(1)), and this tends to zero in proba-
bility because R is Donsker for Fy.

(¢) [[Bn — Rollr —p 0

From the definition of M,
|Bn — Rollsn < NM Jpax, |Rn — Ro|7n;5

where the class Fh; is the one obtained by multiplying the elements of F by the
function h;.

We will show that ||R. — Rol|x» —p 0, where h is any of the functions A;,1 < j <N,
for 0 equals to the true value 6q: h(y,z) = h;(6o,y,z). Let S, = P(F; ,Fx). Then

|Rr = Rollzn < ||Rn = Sallzn + |Sn — Rol|#h,

and we will check that both of these elements tend to zero in probability.
We have that

-

-

(B = S fuh) = [ U fula + 2b,2)h(a + b, 2)d(Fx.n — FX)(x)] dF; (a,).

The functions ¥,(a,b) = ||[Fxn — Fx|lg@a)» tend to zero in probability for all (a,b)
Ynla, b)] < 2||F)|||2||, where F is an envelope for F. Either hypothesis (it) or (i)’
allow us to apply Theorem 1.5 to obtain

and

|Ba = Sullzn < [ n(a,8)dF; —p [0dFs, =0,

since én —p 6y and so Fén — Fi,, in probability.
Now, for ||S» — Ro||#h, we have that

(S~ Ro)(fuh) = [ U fula + zb,2)h(a + zb,z)de(z)] d(F; — Fi)(a,b).

Let Ay(a,b) = [ fo(a + zb,2)h(a + zb,2)dFx(z). The class D = {),} is uniformly
bounded. Let us show that is also equicontinuous and then apply Theorem 1.3. For a

13




function A, J

Iat(a, b) = (d,¥)| < / |fet(a + zb, 2)h(a + b, z) —
—fa(a’ + zb', z)h(ad' + 2V, 2)|dFx(z) <
/C |h(a + zb,z) — h(a' 4 zb',z)|dFx(z) +

+ /02 |h(a + zb,z)|dFx (z) + /Cs |h(a + z¥, z)|dFx (z),

IA

where Ci(s,a,b,d',b') = {z | a4+ zb < s, @' + 2 < s}, Ca(s,a,b,a',b) = {z |a4+2b<
s, a'+ zb' £ s} and Cj(s,a,b,d’,b') = Cy(s,a’, ¥, a,b).
Given € > 0, from (77) we can find 7 such that if ||(a,b) — (a’, ¥’)|| < 7 then

|Ast(a, 8) — Age(a', )] < € + ||h)|ooPry (Ca(s, a, b, @', ') U Cs(s, a, b,a’, b))

and hypothesis (iv) gives the equicontinuity of the family. Finally, Theorem 1.3 implies
that

/ AsdFy — / AstdFy,| = 0 in probability.

lim sup
n—od S,t

The next result gives the same conclusion under a different set of hypotheses.

THEOREM 3.2. Suppose that conditions in Theorem 2.1 and Proposition 3.1 hold. If (i),
either (iii) or (i3)’, (v) and (vi) are true then

D; —y Z’p(]:‘eo’]:‘x) in probability.

e

PRroOF: The proof is the same except for claim (e). So, it is enough to show part (e)
under the present hypotheses. We use Theorem 1 in Billingsley and Topsge (1967) (see
Theorem 1.4) and we have to prove that Fh is a P(Fy,, Fx)-uniform class, where h(:,-) is
any of h;(6o,+,+),7 =1,...,N. Hypothesis (i) in Theorem 1.4 holds because F4 is uniformly
bounded; let us check (%) in that theorem.

Let (yo,z0) € RPP9. If S((yo,20),6) is the open ball with center (yo,zo) and radius 9,
define A® = Uyc45(a,8). We have to establish that for all € > 0,

lim sup Pp(r, Fx) {(yo,.ro) : sup | forly, 2)h(y, 2) — fuly', 2)A(Y', &) > 5}:0.
§=0 s eF (v,2),(v",2")€S((¥0,20),¢)

For (y, x)a (yla 'T,) € S((yo’ :1:0),5),
fst(y3 x)h(y3 .T) - fst(y’a z’)h(y’a z’) =
=[I1=,9)(4) = F(z, 00, )| Iicooq (@), 7) —[I(—o0q(¥) = F (', o, 9)| Icoon(@ (Y, ') =

14




[0 , s gtz L1t

F(z',00,8)h(y',z') — F(z,00,)h(y, ) , et ' <tyLs,y<Ls
(1 - F(z,00,8))h(y,z) = (1 = F(a',60,8))h(y',2") , €<t 2’ Sty<s,y <s
(1= F(z,60,5))h(y,z) + F(2',00, $)h(y', z’') , eS8t Sty<s,y L
= { —F(z,00,9)h(y,2) = (1= F(z',80,9)h(y',a)  , c<t,a' StyLs,y <s
—F(z,60,8)h(y,z) , <t LtyLs
F(z',00,8)h(y,z") , e€te’ <t,y'<Ls
(1 — F(z,00,8))h(y,x) , t<t,r’' Lt,y<s
—(1 = F(z',00,5))R(y",2") , et <ty <s

As (iii) implies (iii)’, we will assume that (iii)’is true. So, the class Ak is uniformly
equicontinuous except a set I', with null probability, where A was defined in (v).

Let T(s,1,6) = {({(3,2) < (5,)} N {(3,2) £ (5,)}) UT4}’. Given (s,1), let (3o, 20) &
I'(s,t,6). For § < 6,

[for(y, 2)h(y, @) = for(y', 2 )Ry, 2') <€, (y,2), (¥, 2") € S((y0,20),6).

So, for all € > 0, there exists 6, such that for all (s,t), § < 6, implies

P'P(Feo,Fx) ((yO’xO) : Sup |fst(y,:c)h(y,:c) - fst(y’az’)h(y’a 17’)' > 6) <

(y,:z:),(y’,:c’)éS((yo,:co),6)
< Pp(r,, Fy) (I'(s,1,6)).
Now, let us see that (vi) gives that

P—r»r(l) SBtP PP(Feo’Fx) (T(s,2,6)) = 0.

Indeed. given n > 0, there exists a closed hypercube K,, C RP*?? with probability larger than
(1 — n) and such that

Pr (o, ) (T(8:4,8)) < Pr(ry ) (T°) + 1 + fr(Foy Fx) (Ym» Tm )V (6)),
where (Y., zm) is the largest mode of the density of the distribution P(Fy,, Fx), and
V(6) = Vol({(y,2) < (,)} N {(y,2) £ (5,1)})° N Ky) < (p + pg) Ané,
where A, is the surface of one of the faces of K. So,
%1_{1;1)5:1}) Pp (R, Fx) (T(8:1,8)) < Pp(ryy k) (Th) + 1 =1,
for any n > 0, and the result follows. O

Condition (v) follows, for instance, from the hypothesis in Theorem 1.2 (see Delicado
and Romo (1994)). The next corollary provides the asymptotic validity of the statistics K>

and M.
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COROLLARY 3.1. For the statistics K =sups,,|j;(s, t)| and M2 = (pr+q(j,';(s,t))2dQ(s,t))%
it holds that

K —, 1 Zo(Fe, Fx) 74w @5, and

My —u | ZpFs Fx)llFin2g as.

The strategy outlined in this paper can be also used to test one of the most relevant hypoth-
esis in random coefficient regression models: the constancy of coefficients. This would entail
to test that the distribution of B is degenerated with parameters being the corresponding
constant value, and assuming a parametric especification for the distribution of A.

4 A simulation study

We have conducted a Monte-Carlo experiment to study the size and power of these tests
in practice. The data have been generated with the following algorithm. First, simulate
independent (A;,e;),t = 1,...,n with A; ~ Fy, e; ~ F,, A; and ¢; independent, and
construct B; = by + pA; + €;,1 = 1,...,n. Then, take independent X;,2 = 1,...,n with
distribution Fyx and, finally, calculate the observations Y; = A; + X;B;,i = 1,...,n. by is

alw&ys equal to 1.

We label normal a model generated using variable A with distribution N(0,1) and e
normally distributed such that E(e) = 0 and the standard deviation of B is a specified
value og. The collection of simulations labelled Cauchy is constructed from A with Cauchy
distribution with zero median and interquantile semirange s4 equal to one and B is obtained
from a Cauchy variable e independent from A such that the interquantile semirange of B
is a fixed value sg. In our simulation study, we have considered each of this two situations
with two sample sizes and two distributions for X (N(0,1) and N(2,1)).

[Table 1 about here]

Table 1 contains all the situations we have studied. They differ in the distribution of

(A, B), in the null and alternative hypotheses or in the parameters to be estimated.

In situations 1 to 4, the coefficients A and B are independent under Hy (Hp : p = 0); in
5 and 6, B is degenerated under Hy, i.e., we are testing constancy of B. Third column in
Table 1 specifies the unknown parameter in each situation; when they act as known values,
we have taken p= pp =mua=0,up=mp=04=0p =354 = sg = 1. In cases 1 to 4, p has
taken values in the set S} = {—0.9,-0.6,-0.4,-0.2,0.2,0.4,0.6,0.9} under H,4 and in cases
5 and 6, the scale parameter of B belongs to the set S% = {0.2,0.4,0.6,0.8,1,1.3,1.6,2}.
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We have used sample sizes n = 50 and n = 100 and we have simulated 500 samples for each
combination of distributions and parameters and the number of bootstrap replications in
each case was B = 500.

We present with some detail the estimation procedure corresponding to case 4. The
model is

Yi=Ai+ XiBi =my + Ximp + ¢,
where A, B have independent Cauchy distribution and ¢; = (4; — ma) + Xi(B; — mp),i =
1,...,n, are also Cauchy. The median of ¢; is 0 and its scale parameter s; = s4 + | Xi|sB

is unknown. We propose here an estimator of the parameters of A and B in the spirit of
Hildreth and Houck (1968), but based on minimum absolute deviations regression.

First, we obtain initial minimum absolute deviations estimations of m4 and mp from the
pairs (Y;, X;) and calculate the estimated residuals €; = Y; — vy — X;mp. Note that

~

€] = med(|é&]) + (|é] — med([£;])) ~
~ med(lg)+v; =8 4v =
= 84+ |X;|sp + v;,

where v; is a random variable with zero median.

Second, estimate the scale parameters of A and B by using minimum absolute deviations
from the regression
|é,‘ =385+ |X,‘|SB +v,t=1,...,n.

Let §4 and 55 be these estimates. Now, estimate the scale of e; by using §; = §4 + |Xi|35.

Third, calculate the generalized minimum absolute deviations estimates of m, and mp

as the minimum absolute deviations of the regression

Y, 1 Xi €4
—=Tma+ mp+ .
S; S; S; S;

Table 2 presents the empirical sizes of the described simulation experiment. The sizes
obtained in situations 1, 3 and 4 are very satisfactory: only 2 out of 72 are significantly
different from the theoretical sizes at 95%. In situation 2, the estimated sizes are more
often significantly different from the theoretical ones, specially for & = 0.05 and when X is
centered at 2. Testing for constant coefficients (5 and 6) gives empirical sizes which are very
different from the expected ones: when A has a normal distribution, they are much lower
than the nominal sizes and the opposite happens for a Cauchy coefficient A.

[Table 2 about here]
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Finally, we described the results on the power of the tests against models with different
values of one parameter. Figures 1 and 2 contain two types of graphs: some of them represent
the empirical power functions and the remainder ones are multiple box-plots; each of these
represents estimates of the unknown parameters corresponding to a value of the parameter
under either the null or the alternative. We give some results for n = 100 (the results for
n = 50 are qualitatively similar but with lower power and larger dispersion for the parameter
estimations).

[Figure 1 about here]

Figure 1 corresponds to situation 3 in Table 1. With X ~ N(0,1), we see the same
behavior for K., for both positive and negative values for p and lack of identifiability for M,
with negative values of p. Also, lack of identifiability appears for X ~ N(2,1) and p positive
(see Figure 1.(b)). For all values of p, we get unbiased estimations of mp with dispersion
increasing with the absolute values of p, except when p is positive and X ~ N(2,1) because

this case cannot be distinguished from p = 0.
[Figure 2 about here]

The graphs in Figure 2 give the results for situation 4 in Table 1. Now, we are estimating
four parameters and so the empirical powers are lower than the ones obtained in Figure 1,
when we were estimating just one parameter; this is especially clear for negative p and X ~
N(2,1). When X is centered at zero, the power functions for both K, and M,, are similar; this
didn’t happen for tests different from this one only in the number of estimated parameters.
The multiple box-plots show that all the estimations, especially for scale.“‘parameters are
very sensitive to the value of p used to generate the data; let us recall that the procedure is
designed to act correctly under the null hypothesis (p = 0).

[Figure 3 about here]

Finally, Figure 3 contains the power functions for the different specified situations. Part
(a) corresponds to normal (A, B) with X ~ N(2,1) and this is better than the result we
obtained when X ~ N(0,1). Moreover, comparing with other results available from our
simulations, we got slightly higher powers for estimated parameters in this case. In part (b),
we estimate the parameters p4,up,04 and op and X ~ N(0,1); the power is larger when
we estimate four parameter than when none or just one parameter is estimated. The results
in part (c) are slightly better than the ones we obtained for X ~ N(0,1) and the same
phenomenon happens with the Cauchy situation in part (d) with respect to the case with
X ~ N(2,1). To end, we may also report that the power is low when the four parameters

are estimated in the Cauchy case.
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Situation | (A, B) model Unknown Specified para- Specified para-
parameters | meters under H, | meters under Hy4
1 Normal UB p=0 p €Sy
2 Normal LA B, OA, OB p=0 p €S,
3 Cauchy mp p=0 pES)
4 Cauchy M4, mB,S4,8B p=0 p €S
5 Normal LAy 1B, O A og =0 op € §%
6 Cauchy M4, Mp, S84 sg=10 sp € S%

-

-

Table 1: Simulation design for estimated parameters.
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X ~N(0,1) X ~N(2,1)
Situation n =250 n = 100 n =250 n = 100
M, K, M, K,| M, K, M, K,
.002 .006 016 .012 | .014 .012 016 .018
1 .046 .048 056 .068 | .044 .072 .060 .056
104 .118 Jd12 .114 4 .092 .126 Jd12 112
.036 .022 .026 .018 | .036 .020 040 .024
2 .068 .060 046 .042 | .084 .060 104 .056
Jd14 114 J12 084 | .146 .108 200 .136
.010 .014 006 .012 | .020 .002 010 .008
3 062 .044 .044 .054 | .050 .046 .060 .052
114 .102 082 .124 | .100 .100 126 .116
.006 .016 .014 .008 | .014 .012 004 .004
4 052 .066 050 .042 | .042 .036 040 .034
092 .096 .092 .084 | .116 .076 .090 .088
.000 .000 .000 .000| .002 .002 .002 %000
5 000 .004 000 .0061 .012 .008 004 .012
004 .010 .006 .018 | .026 .022 004 .028
042 .020 .022 .000| .090 .082 .068 .052
6 072 .056 080 .052 | .150 .134 142 1132
120 .110 140 110 | .208 .186 220 .198

Table 2: Empirical sizes. The three values appearing in each cell are the empirical sizes

corresponding to the theoretical ones of .01, .05 and .1, from top to the bottom.
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Figure 1: Estimation 3. Power function for Hg : p = 0 against different values of p, with estimated mp.
(A.B) are Cauchy and a = 0.05. X ~ N(0,1) in the left hand side and X ~ N(2,1) in the right one.
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Figure 2: Estimation 4. Power function for Ho : p = 0 against different values of p, with estimated
ma,mp,sa,sp. (A, B) are Cauchy, a =0.05 and X ~ N(0,1)
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Figure 3: Power functions for:

(a) Ho : p = 0 against different values of p, with estimated up. (A4, B) are normal, « = 0.05and X ~ N(2,1).
(b) same, with estimated pa,pB,04,08 and X ~ N(0,1).
(c) Hy : 05 = 0 against different values of o5, with estimated p4,p5,04. (A, B) are normal, « = 0.05 and
X ~ N(2,1).
(d) Hy : sg = 0 against different values of sg, with estimated m,4,mp,s4. (A, B) are Cauchy, o = 0.05 and
X ~ N(2,1).
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