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Abstract _ 

Random coefficient regression models have been applied in different fields during recent years
 

and they are a unifying frame for many statistical models. Recently, Beran and Hall (1992)
 

opened the question of the nonparametric study of the distribution of the coefficients. Non­


parametric goodness of fit tests were considered in Delicado and Romo (1994.). In this paper
 

we propose statistics for parametric goodness of fit tests and we obtain their asymptotic dis­


tributions. Moreover, we construct bootstrap approximations to these distributions, proving
 

their validity. Finally, a simulation study illustrates our results.
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1 Introduction and preliminaries 

Random coefficient regression models have been applied in different fields during recent 
years; their general form is 

Yi = Ai + XiBi, i;::: 1, (1.1 ) 

where Yi and Ai are p x 1 random variables, Bi is a q x 1 random variable and Xi is a 

p X q random matrix. The triples {(Ai,Bi,Xi) : i ;::: I} are independent and identically 

distributed and, for each i, (Ai, Bi) is independent of Xi. The distribution of (Ai, Bi, Xi) 
is not known and we can observe the n pairs (Yi, Xi), 1 =:; i =:; n. These models include 

well known situations as random effects in ANOVA (see, e.g., Scheffe (1959)), deconvolution 

models (Fan (1991), van Es (1991)), location-scale mixture models or some heteroscedastic 

linear models. Their applications can be found in several fields (biology, econometrics, im­

age compression) and Raj and Ullah (1981), Chow (1983), Nicholls and Quinn (1982), and 

Nicholls and Pagan (1985) survey this work. All this literature is focused on moments esti­

mation, essentially mean and variance. 

Beran and Hall (1992) began a nonparametric approach by considering the estimation of 

the joint distribution FAB of the random parameter (A, B). Beran (1991) introduced a mini­

mum distance estimate and constructed prediction intervals for Y. Beran and Millar (1991) 

construct a n1
/ 

2-consistent minimum distance estimate of the coefficient distribution. Del­

icado and Romo (1994) present goodness of fit tests, obtain their asymptotic distributions 

under the null hypothesis and propose bootstrap approximations, proving their asymptotic 

validity. 

In this paper, we study whether the distribution FAB belongs to a parametric family 

{Fe I () E e ~ RN}. The article is organized as follows. First, Section....1.1 contains the 

framework and the preliminary results needed for the rest of the paper. Section 2 gives the 

asymptotic distributions of the test statistics. In Section 3 we provide a bootstrap resampling 

strategy to approach these distributions and we prove their validity. Finally, a simulation 

experiment is carried out in Section 4 to check the performance of these tests. 

1.1 P1'eliminaries 

In model (1.1), the joint distribution Fyx = P(FAB , Fx) of (Yi, Xi) depends on both the dis­

tribution FAB and the distribution Fx of Xi. Let Pn = ~ L:?:1 8(Yi'X;) and FX,n = ~ L:i=l 8Xi 

be the empirical distributions associated to the observations (Yi, X;) and Xi, respectively. 

For the parametric family {Fe I () E e ~ RN}, we want to study the test 

Ho : FAB E {Fe I () E e ~ RN} 
(1.2)

{ HI: FAB f/. {Fe I () E e ~ RN}. 
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We will assume identifiability in model (1.1), Le., P(FAB , Fx ) =P(FAB , Fx ) implies FAB = 
FAB ; sufficient conditions for identifiability were given by Beran and Millar (1991). To con­

struct the corresponding statistics, we will use the empirical processes 

Dn - vn (Pn -� P(FAB , Fx )), 

I n - vn (Pn -� P(FAB , Fx,n)) and 

in - vn (Pn -� P(Fen ,Fx,n)) , 

where On is an estimator of the true value 00 in the parametric family {Fe I 0 E e ~ RN}. 
Consider the class .:r = {Ist == (-00, s] X (-00, t] : s E RP, t E Rpq} of (p +pq )-dimensional 

semiintervals. Given s E RP, t E Rpq, 

In(s,t) == In(Ist)� == vn(kp+pqI(-oo,(s,t)j(y,x)dPn(y,x)­

- kpq PFAB(A + xB ~ s)I(_oo,tj(x)dFx,n(x)) == 

vn Jw+ pq (I(-oo,sj(Y) - PFAB(A +xB ~ s)) I(-oo,tj(x)dPn(y,x) == 

vn [ Ist(Y, x)dPn(y, x) == vnPn(fst),
JW+ pq 

where Ist(Y, x) == (I(-oo,sj(Y) - PFAB (A +xB ~ s)) I(-oo,tj(x). Observe that P(FAB , Fx )(fst) 
== O. Thus, it turns out that, for each s, t, In(s, t) == Dn(fst). Consider F == {1st I s E RP, 

t E Rpg}. \Ve refer to Gine and Zinn (1986) for the definitions of the classes F', F 2, FF, 
and for the notions of weak convergence in [oo(F), Vapnik-Cervonenkis and Donsker classes 

of functions. 

An envelope for a class F of functions 1 : X ~ R is a measurable fun~tTon F such that 

If(:r)1 ~ F(x) for every x E X and 1 E F. If A C X is a finite set and e > 0, let 

D(c, A, F, F) ==� min{ k I there exist Ill".,Jk E F such that 

sup l~i~k L(f(x) - Ij(x))2 ~ e2 L F(x)2}, 
fEY - - xEA� xEA 

and define D(c,F,F) == sup{D(e,A,F,F)IA ~ X,A finite}, where F is an envelope for F. 
The corresponding entropy is H(c,F,F) == log D(e, F,F). 

We will use the following hypotheses in some of our results: 

(aJ PFAB(A + xB� == s) == 0 for all x E Supp(X) and all s E RP, and 

(bJ the distribution of (A, B) is discrete. 

The next theorem gives the asymptotic behavior of D n in the case of one-dimensional de­

pendent variable Y. 
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THEOREM 1.1. (Delicado and Romo, 1994). If either (a) or (b) hold then 

(1.3) 

in 100 (F), where Zp(FAB,Fx) is the P(FAB , Fx )-brownian bridge with covariance structure 
given by 

- [ (PFAB(A +xB ~ s 1\ u)­
J{xs,uw} 

-PFAB(A +xB ~ S)PFAB(A +xB ~ u)) dFx(x). 

If the dimension of Y is larger than one, the following result provides conditions guaranteeing 
the convergence of the empirical processes. 

THEOREM 1.2. (Delicado and Romo, 1994). Assume that Supp(X) is compact and that 

Yx = A + xB is absolutely continuous for all x E Supp(X). Suppose also that the func­

tion h(x,s) = PFAB(A +xB ~ s) has uniformly bounded partial derivatives: 

11 ~: (x, s) 11 ~ M, , x ER", s ERP, 

1~~(x,s)1 ~M2 , xER",sERP. 

Then 

(i) The family of probability measures {PYz ' x E Supp(X)} is tight: for all c > 0 there 

exists a compact C(c) such that PYz (C(c)) 2: 1 - c, x E Supp(X). C(c) can be chosen 
to be of the form 

c(c) = [I (c), u (c)] p = {s E RP I I(c) ~ s ~ u (c)} . 

(ii) D(c, F, Fp) ~ pP (2lt2) -p Vol([I{c), u{c)]p). 

(iii) If 
11log ( Vol([l{c/2) , u{c/2) +1p ;)p)) de < 00 (lA) 

then f~ H(c, F,Fp)dc < 00 and also f~ H{c, F,F)dc < 00, where F = 1. 

Finally, we recall three results on weak convergence. The first two relate weak and uniform 

convergence for a measure p, and a sequence {P,n : n E N} of measures defined on the Borel 
a-algebra B in a metric space X. 

THEOREM 1.3. (Ranga Rao, 1962). {P,n: n E N} converges weakly to p, if, and only if, for 
any uniformly bounded and equicontinuous class of functions F defined on X, 

lim sup If fdp,n - f fdP,1 = o. 
n-oo fE:F 
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THEOREM 1.4. (Billingsley and Tops\1le, 1967). Let J=' be a class of continuous functions 
on X. Then 

Hm sup IjfdJ-tn - jfdJ-t1 = 0 n-oo JeF 

if, and only if, 

(i) WF(X) < 00, and 

(ii) lim6_osuPJeFP{xlwJ(S(x,b)) > E} = 0, for all E> 0, 

where wF(B) = sup{lJ(x) - f(y)l,f E J=',x,y E B} for B E B, wJ(B) = w{j}(B) and 
S(x, b) is the ball with center x and radius b. 

The next result is due to Rubin and it can be seen in Billingsley (1968), Theorem 5.5. 

THEOREM 1.5. Let {hn : n E N} and h be measurable functions from X to the metric space 

X'. Let E = {x E XI3{x n} ---+ x, and hn(xn) f+ h(x)}. Assume that E is a measurable 

subsfi of X with f-l(E) = O. Then f-ln ---+w f-l implies that J-tnh;;,I ---+w J-th-1 . 

Asymptotic distribution of the test statistics 

To obtain the asymptotic distribution of the statistics used to test if FAB belongs to the 

parametric family {Fe I fJ E e ~ RN}, we will assume that the model is continuous with 

respect to the parameter, i.e., Fen ---+w Feo if fJn ---+ fJo, fJo E e. 
Let en be an estimate of fJo based on the sample (Yi, Xi), i = 1, ... , n, from model (1.1) 

with p 2: 1. Our goodness of fit statistics will be of either Kolmogorv-Smirnov or Cramer-von 

Misses type based on the empirical process 

Let us recall the definitions of regular families and estimators (see, e.g., Shorack and Wellner 

(1986), p. 229). 

DEFINITION 2.1. Let ~ = (~l"",~N) with ~j(fJ,z) = 8Fej8fJj , j = 1, ... ,N. We say 
that {Fe I fJ E e ~ RN} in Rd is regular in fJ if 

N 

Fe,(z) = Fe(z) +L(fJj - fJj)~j(fJ,z) +R(fJ,fJ',z) 
j=l 

where I/R(fJ,fJ"')lloo = o(I/fJ - fJ'112) and ~j,j = 1, ... ,N are uniformly bounded in z. 

Essentially, {Fe} is regular if FB(z) is uniformly differentiable with respect to fJ. If FB(z) 
has bounded partial derivatives with respect to fJ and the function (8j8fJ)F(·) is uniformly 

continuous (or even {(8j8fJ)F(z),z E RP9} is equicontinuous) then {Fe} is regular (see 

Pollard (1984), p. 119). 

4 



DEFINITION 2.2. Let {Z; : i E N} be independent random variables with distribution Fe. 

The sequence of estimators {On: n E N} is regular if, for all j, 

A� n1 
vn(()nj - ()j) = In tr hj ((), Z;) + op(l), 

where Ehj((), Z;) = 0 and V(h j((), Zi)) = uJ. 

Efficient estimators and M-estimators, for instance, are regular ones. 

For x E Rpq, let F(x,(),s) = P(A + xB 5 s) be the distribution function of Yx ­

A + xB when (A, B) '" Fe, with partial derivatives Aj(x, (), s) = 8F(x, (), s )/8()j. Let us 

denote by ()o the true value of (). Define the class 1f. = {hat : Rp+pq --+ R I hat (y, x) = 
2:,%1 Lj(s,t,()o)hj(()o,y,X),s E RP,t E Rpq}, where Lj(s,t,()) = E[Aj(X,(),s)I(oo,t](X)] and 

hj are the functions in the definition of regular estimators for the parameter (). 

THEOREM 2.1. Suppose {(Yi,X;),i ~ I} are i.i.d. variables from model (1.1) with FAB = 
Foo . Let {F(x,(),s)} be regular in () for all x and let On = ()(YllXllY2,X2' .. ',Yn,Xn) 

be a regular sequence of estimators of (). Assume that Aj(X;,()o,s) has finite expectation 

uniformly bounded in s and that 

uniformly in sand t. Suppose that hypotheses in either Theorem 1.1 or 1.2 hold for either 

p = 1 or p > 1, respectively. Then F +1f. is a Donsker class for P(Feo , Fx ) and 

wh ere ZP(Feo ,Fx) is the brownian bridge with the corresponding covariance structure deter­

mined by P(Foo , F.'I.)' ~Moreover, DnUat+hsd = In(s, t)+op(l), for s E RP, t E Rpq uniformly 

in sand t. 

PROOF: The regularity of {F(x, (), s)} and the linearity of P imply that 

1 n� 1 n A 

P(FOn ' Fx,n)(s, t) = - L: P(FOn ' OxJ(s, t) =- L: F(X;, ()n, S )I(-oo,t] (X;) =� 
n ;=1 n ;=1� 

=� .!. f.,F(X;,()o,s)I(-oo,t](X;) + 
n ;=1 

+~(en; - 00;) (;;-t, A;(X" 00 , s )I(_oo,.j(X,)) + 
1 n A 

+- :LR(X;,()o,()n,s)I(-oo,t](X;) = 
n ;=1 
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N 

- P(Foo , Fx,n)(s, t) + ~(l~nj - ()oj)E [~j(X, ()o, s)I<_oo,tj(X)] + 
;=1 

N A 1 n A 

+ L(()nj - ()OJ )op(l) +- L R(Xi , ()O, ()n, S)I<-oo,tj(Xi ), 
j=l n i=l 

where the last equality follows because E~j is finite. Thus, 

In(s,t) = In(Ist) - vn(Pn-P(Fon,Fx,n))(S,t)= 
N 

= vn (Pn - P(Foo,Fx,n)) (s, t) - L vn(Onj - ()oj)Lj(s, t,()o)­
j=l 

N A 1 n A 

- L vn( ()nj - ()OJ )op(l) - - L vnR(Xi , ()o, ()n, s )I<-oo,tj(Xi ).(2.5)
j=l n i=l 

The regularity of {On} allows us to study the convergence of the terms in (2.5): firstly, 

the third term is op(l) uniformly in sand t because vn(Onj - ()OJ) = Op(l); second, 

sup
s,t 

since vn( On - ()o) = Op(l); and finally, 

= Vii (Pn - P(Foo , Fx ))(hj(()o, ., .)) +op(l) = Dn(hj(()o, .,.)) +':Op(l), 

because P(Foo,Fx)(hj(()o,"')) = o. 
By the uniform boundedness of E~j, IILj(s, t,()o)lloo = sUPs,t ILj(s, t, ()o)1 < 00 and so 

N N 

In(s,t)+ LLj(s,t,()o)Dn(hj(()o,"')) +LLj(s,t,Bo)op(l)+op(l) = 
j=l j=l 

Dn(fst + hst ) +op(l) 

where hst = L:f=l Lj(s,t,()o)hj(()o,"') E 'H = {h : Rp+pq ---t R 1 h(y,x) = L:f:,1 Lj(s,t,()o) 
hj(()o,y,x), s E RP,t E Rpq} c 'H' = {h: Rp+pq ---t RI h(y,x) = L:f:,1 ajhj(()o,y,x),aj ER}. 

'H is a Vapnik-Cervonenkis class of functions because the dimension of 'H' is finite (see, 

e.g., Pollard (1984), p. 30). Delicado and Romo (1994) obtain a bound for the entropy of 

the class F, so there exist positive constants A and w (see, e.g., Pollard (1984), p. 40, and 

Chapter Il, Lemma 36) such that 

D(e,F +H,F + 'H) < Ae-w 
, 
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where F = 1 and H(x, y) = Lf::l IILj(s, t, Bo)lloohABo,y, x) are envelopes for :F and 11., 
respectively. 

Obviously, the function H has finite second moment. Moreover, since the functions hj 

are measurable, the class 11. is permissible (see Pollard (1984), p. 196). Proposition 2.1 in 

Delicado and Romo (1994) gives that :F is permissible under the conditions established in 

Section 1. So, the central limit theorem in Pollard (1982) leads to 

in� /00(:F + 11.). o 

The following corollary gives the asymptotic behavior of both the Kolmogorov-Smirnov 

Kn and Cramer-von Misses AIn test statistics. 

COROLLARY 2.1. For the stat£stics 

£t� holds that 

i<n -+w IIZp(FBo ,FxlIIF +11 ' and 

KIn -+w IIZp(FBo ,FxlIl2,Q' 

Bootstrap approximations 

It turns out that the asymptotic distributions obtained in Section 2 are nert easy to handle. 

Resampling techniques -and, in particular, the bootstrap- provide a way to overcome this 

problem. 

A straightforward bootstrap scheme based on resampling the pairs (Y;, Xd cannot be 

implemented here because the functions fst + hst are not known: hst depends on the true 

value Ba of the parameter (). However, since Ho gives a parametric specification of the 

distribution of (A, B), we propose a resampling strategy based on parametric bootstrap. 

The algorithm for the bootstrap hypothesis test of Ho using, e.g., Kn is the following: 

1.� Obtain the value i<n = sUPs,t \In(s, t)1 and estimate () by a regular statistic On from the 

sample (Yi, Xi), £= 1, ... ,n. 

2.� Generate (}i*, Xn, i = 1, ... , n using parametric bootstrap: 

2.1. Obtain a sample (Ai, Bn, i = 1, ... , n from Fen' 

2.2. Obtain a sample Xt, i = 1, ... , n from Fx,n. 
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2.3. Calculate the pseudo-values Yi* = Ai +XiBi, i = 1, ... , n. 

3.� ~omputeA the bootstrap empirical process for In: J~ = ..;n (P; - P(Fe:., Fx,n)) , where 

p~ and Fx,n are, respe:tively, the empirical distributions obtained from (Yi*, Xt) and 

Xi, i = 1, ... , n, and ()~ is the bootstrap replication of the estimate obtained from 

(}i*,Xr). 

4.� Calculate i<~ from J~. 

5.� Iterate steps 2, 3 and 4 B times to have f<~,b' b = 1, ... , B. 

6.� Reject Ho if i<n is larger than the a-th upper quantile of the distribution of i<~,b' b = 
1, ... ,B. 

Our next Proposition gives the relationship between the bootstrap versions of I n and 

Dn: J~ = ..;n (P; - P(Fe:.,Fx,n)) and iJ~ = ..;n (P~ - P(Fe:., Fx,n)). This is the key step 
that will allow us to establish below the validity of our bootstrap statistics. 

PROPOSITION 3.1. Suppose that the conditions in Theorem 2.1 hold and that the functions 

LJo((}, s, t) are derivable with respect to () around the true value (}o. Assume that the functions 

hj((},y,x),j = 1, ... ,N are derivable with respect to () in a neighborhood of(}o and the 

derivative at () = (}o is continuous and bounded as a function of (y, x) except, possibly, in a 

null measure set. Then, for all s E RP, t E Rpq, 

J~(s, t) = iJ~(Jst + hst) +op(l), 

uniformly in sand t. 

PROOF: \Ve have that 

In the proof of Theorem 2.2 in Delicado and Romo (1994) it is shown that 

Let us consider now the second term: 

iJ~(hst) VTi(P: -P(Fen,Fx,n)) (h st ) = 
N 

-� VTi (P: - P(Fon ,Fx,n)) CL Li(s, t, (}o)hi ((}o, Y, X)). 
j=1 

The hypothesis on the derivatives of hi allows us to approximate this last expression by 

using a one term Taylor expansion around (}o to obtain 
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- ~ Lj(s, t, OO)vn(On - Oo)t [(p~ - P(Fen , Fx,n)) Hj(00, Y, X)] +op(l), (3.6) 
;=1 

where H j is the vector of partial derivatives of hj with respect to () at ()o. By the definition of 

regular estimator, the second term is zero (the distribution of hj has zero mean and variance 
equals to o}((),Fx ) if (Y,X) '" P(Fe, Fx )). 

Since On ---+P ()o, the continuity of the distributions with respect to () gives that for any 

distance d metrizing weak convergence, d(FSn ' Feo ) ---+p O. Proposition 2.1 in Beran and 

Millar (1991) and the fact that d(Fx,n, Fx ) ~a.a. 0 imply that d(P(Fsn , FX,n), P(Feo' Fx)) 
converges to zero in probability. By Theorem 2 in Beran, Le Cam, and MilIar (1987) it fol­

lov.'s that d(P;;" P(Feo ' Fx )) ---+p 0 and the hypothesis on the derivatives of hj implies that Hj 
is continuous and bounded a.e. if (Y, X) '" P(Feo, Fx ); so, (P;;, - P(FSn ' Fx,n)) Hj(()o, Y, X) 
converges to zero in probability. This proves that the second factor in (3.6) is op(l). Since the 

first factor is Op(l), the whole term is op(l). Noting that O~ = Tn(l;*, Xi, 1';*, Xi" .. , }~*, X~) 
conditioned on the sample is a regular estimator of On, we obtain that 

N 

b~(hst) = I: vn(O~j - Onj)Lj(s,t,()o) +op(l). 
j=1 

Using now the condition on L j , 

N 

=� I: vn(O~j - Onj)Lj(s, t, On) +op(l) = 
j=l� 

N� 

-� I: vn(e~j - Onj)E[~j(X,On,s)I(_oo,t](X)] +op(l) = 
j=l 

N " "1 n " 
=� I: vn( ()~j - ()nj)- I: ~j(Xt, ()n, S )I(-oo,t](Xt) +op(l). 

j=l� n i=l 

By the regularity of the distribution family and reasoning as in the first part of the proof of 

Theorem 2.1, we get b~(Jat + hat) = vn (P;;' - P(Fsi.' Fx,n)) (s, t) = j~(s, t) +op(l). 

The following two theorems provide the asymptotic validity of the bootstrap version iJ~ 

under two different sets of assumptions. Consider the following hypotheses: 

(i)� hj (()o, y, x), j = 1, ... ,N are bounded in (y, x) and continuous a.e. (P(Feo, Fx))· 

(ii)� Let 9(a,b) = {g : Rq ---+ R I g(x) = f(a + xb,x),f E .r}, As in Proposition 2.2 in 

Delicado and Romo (1994), it can be shown that 9(a, b) (and also the classes 9(a, b)h j , 
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j = 1, ... , N) is a Donsker class for Fx . So, the functions t/J~(a, b) = IIFx,n­
FXllQ(a,b)hj tend to zero in probability for all (a,b). Let nj = ((a, b) 13(an,bn) ---+ 

(a, b) and t/J~(an, bn) -f+ O}. Assume that PFso (n j ) = o. 
(ii) , With the notation in (ii), t/J~ tends to zero uniformly over compact sets, j = 1, ... , N. 

(iii)� hj,j = 1, , N are uniformly continuous. 

(iii) , hj , j = 1, , N, are uniformly continuous except in a set whose closure has null 

probability under P(Foo ' Fx ): there exists rh) such that P(Foo ' Fx )(f7:;) = 0 and for 

all c > 0 there exists 8> 0 so that if (yo,xo) f/. rh) and (y',x') E S((Yo,xo), 8) then 

Ihj(y, x) - hj(y', x')1 < c. 

(iv)� For all c > 0 there exists 8 > 0 such that II(a, b) - (a', b')II < 8 implies PFx ({ x Ia+ xb ::; 
s, a' + xb' is}) < c, for all s E RP. 

(v)� A = {Q's(x) = F(x, Bo, s) I s E RP} is uniformly equicontinuous: for all c > 0 there 

exists 8> 0 such that if Ilx - x'll < 8 then lQ's(x) - Q's(x') I< c, for all s E RP. 

(vi)� P(Foo' Fx ) is absolutely continuous with density function !-P(Fso,Fx) and there exists a 

largest mode where the density achieve its maximum. 

THEOREM 3.1. Suppose that the conditions in Theorem 2.1 and Proposition 3.1 hold. If (i), 
either (ii) or (ii)', (iii) and (iv) are true then 

PROOF: The proof relies on Corollary 2.7 in Gine and Zinn (1991). From that result, it 

follows that if {Rn} are random measures and I1 Rn - Ro 11 Q ---+ 0 allJ)ost surely, then 
R� -

d(vn(:~k)),ZRo) ---+ 0 almost surely for any distance d metrizing weak convergence, where 

v;; is the empirical process based on the probability measure R (see Gine and Zinn, 1991). 

Now, if IIRn- RollQ ---+p 0 then any subsequence of Rn contains a further subsequence such 
Rn(k� ) ) I h'that IIRn(k)) - RoII Q---+ 0 almost surely and thus, d(vn(k)) ,ZRo ---+ 0 almost sure y; t IS 

implies that d(v;;n,ZRo) ---+p 0 and we will say that v;;n ---+w ZRo in probability. 

Take iJ~ = v;;n, with Rn = P(FOn ' FX,n), and Ro = P(Foo ' Fx ). We have to show that 

IIRn- RoIIQ ---+p 0, where 9 = 91 U 92 U 93 U 94, and 91 = F + H, 92 = (F + H)2, 93 = 
(F + H)', 94 = ((F + H)')2. Note that 

IIRn- RollQl < IIRn- RoII.r- + IIRn - RoII1i'� 
IIRn- RoIIQ~ < IIRn - RoII.r-.r- + IIRn- RoII1i1i + 211Rn- RoII.r-1i,� 
IIRn- RoIIQ3 < 211Rn - RoII.r- + 211Rn - Roll1i'� 

IIRn- RoIIQ. < 311Rn- RoII.r-.r- + 311Rn - Roll1i1i + 411Rn - RoII.r-1i·� 

\Ve need to show that IIRn-Rollc ---+p 0, whereC is any ofthe classes F, H, FF, HH, FH. 
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(a) "Rn - ~11.r ---+p 0 

It holds that ~Usd = 0 (see proof of Theorem 2.2 in Delicado and Romo (1994)). 
Moreover, 

RnUsd - J[J f st(y,x)dP(F8n ,hx )] dFx,n = 

- J[PFeJA +xB :5 s) - PF60 (A + xB :5 s)] I(-oo,tj(x )dFx,n. 

The regularity of the distribution of Yx implies that the quantity between brackets is 

N 

~)Onj - OOj).ilj(x,Oo,s) +R(x,Oo,On,s), 
j=l 

and so 

The notation o~) (1) indicates that the term depends on s; the hypothesis of regularity� 

for Y~ ensures that the supremum in s of these quantities is op(l).� 

The hypothesis on L j in Theorem 2.1 guarantees that the supremum in (s,t) of o~t)(l)
 

is op(1). This, together with the uniform boundedness of Lj and the fact that Onj-OOj =� 

op(l),j = 1, ... ,N, gives that� 

"Rn - ~11.1" = IIRnll.r ----+ 0 in probability. 

(b) [IRn - Roll'H ----+p 0 

Let 111 = maX1~j~N sUPs,t ILj(s, t, (0 )1, which is finite due to the hypothesis on E.il j. 

Thus, 

IIRn - ~"'H < NM max I(Rn - ~)(hj)l· 
- l~j~N 

Since On ----+p 00 , we have that d(F8n , Fe) ----+p O. The continuity of functional P (see 

Beran and Millar (1991), Proposition 2.1) implies that Rn ----+w ~ in probability; hy­

pothesis (i) gives that I(Rn - ~)(hj)l----+p O. 

(c) "Rn - Roll'H'H ----+p 0 
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The argument in (b) applies to any finite-dimensional class of functions of the form 

N 

C = {I:>kjhj IIQjl ~ I<} 
j=1 

when the functions hj satisfy (i); in particular, this holds for the class 11.11. and so, 

11 Rn - Ro 117-l7-l ---+P O. 

(d) I[Rn - RoIIJ="J=" ---+p 0 

From Theorem 2.2 in Delicado and Romo (1994), it follows that Ro(Jst!uv) = Fx (rstuv), 

where r stuv( x) = (F( x, ()o, u 1\ s) - F( x, ()o, u)F(x, ()o, s)) I(-oo,tl\v] (x), and that the class 

n of these functions is Donsker for Fx . Now, for Rn we have that 

and the expression inside the first integral is 

EFen [I(-oo,uI\S](A + xB) - PFeo (A + xB ~ u)I(_oo,s](A +xB)­

-PFoo (A + xB ~ s)I(-oo,u](A +xB) + PFe (A + xB ~ u)PFeo (A + xB ~ s)]�o

I(-oo,tl\v](x) = 

= [F(x, On, U1\ s) - F(x, On, u)F(x, ()o, s)­

-F(x,On,s)F(x,()o,u) + F(x,()o,s)F(x,()o,u)] I(-oo,tl\v](x) = 

= ",tu. + [t,(On; - 00; )tlj(x, 00 , u As) +R( x, 00 , 0., U A-:)­

N 

- 2)Onj - ()OJ)~j(x,()o,u)F(x,()o,s) +R(x,()o,On,u)F(x,()o,s)­
j=1 

N A]- j;(Onj - ()OJ)~Ax,()o,s)F(x,()o,U) + R(x,()o,()n,s)F(x,()o,u) I(-oo,tl\v](x). 

Thus, 

(Rn - Ro)(Jsduv) - (Fx,n - Fx )(rstuv) + 
N nA [1+~(()nj - ()OJ) ~ ~~j(Xi'()O'U 1\ s)I(-oo,tl\v](Xd­

_.!. :t ~j(Xi' ()o, u)F(Xi, ()o, s)I(-oo,tl\v](Xi ) ­
n i=1 

-~ ~ ~j(Xi, ()o, S )F(Xi, ()o, u)I(-oo,tl\v](Xi)] + o~tuv\l). 
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So, 

N 

IIRn- RollFF < IIFx,n - Fxll n +L IOnj - OOjl sup [IL j(u A s, t A v, 00 )1 + 
j=l s,t,U,tI 

+ILj(u,t A v,Oo)1 + ILj(s,t A v,Oo)1 + o~tUtI)(l)] + op(l) = 
- IlFx,n - Fxll n + op(l), 

(the supremum over (s,t,u,v) of o~tUtI)(l) is op(l)), and this tends to zero in proba­

bili ty because 'R is Donsker for Fx . 

From the definition of .M, 

IIRn - Rollnf < N M max IIRn - RoIIFhj'
- l$.j$.N 

where the class Fh j is the one obtained by multiplying the elements of F by the 

function hj • 

\Ve will show that IIRn - RoII Fh ---+p 0, where h is any of the functions hj, 1 ::; j ::; N, 

for °equals to the true value 00: h(y,x) = hj(Oo,y,x). Let Sn = P(FOn ' Fx ). Then 

and we will check that both of these elements tend to zero in probability. 

\Ve have that 

(Rn - Sn)(fst h) = J[J fst( a + xb, x )h( a + xb, x )d(Fx,n - Fx )(x-i]dFoJ a, b). 

The functions 'l/Jn(a, b) = IIFx,n - FX I1 9(a,b)h tend to zero in probability for all (a, b) 
and 11,I'n(a, b)1 ::; 211Fllllhll, where F is an envelope for F. Either hypothesis (ii) or (ii) , 
allow us to apply Theorem 1.5 to obtain 

since On ---+ p 00 and so FOn ---+w Feo , in probability. 

Now, for IISn - RoIIFh' we have that 

(Sn - Ro)(Jst h) = J[J fst(a + xb,x)h(a + xb,X)dFx(x)] d(FOn - Feo)(a,b). 

Let Ast(a,b) = ffst(a + xb,x)h(a + xb,x)dFx(x). The class 'D = {Asd is uniformly 

bounded. Let us show that is also equicontinuous and then apply Theorem 1.3. For a 
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function Ast, 

IAst(a,b) - Ast(a',b')1 < f Ifst(a + xb,x)h(a+ xb,x)­

- fst(a' + xb',x)h(a' + xb',x)ldFx(x) ::; 

< kl1h(a+xb,x)-h(a'+xb',x)ldFX(x)+ 

+ f jh(a + xb,x)ldFx(x) + f Ih(a' + xb',x)ldFx(x),lC2 lC3 
where C1(s,a,b,a',b') = {x Ia+xb::; s, a'+xb'::; s}, C2(s,a,b,a',b') = {x Ia+xb::; 

s, a' + xb'i s} and C3(s,a,b,a',b') = C2(s,a',b',a,b). 

Given c > 0, from (iii) we can find T such that if "(a, b) - (a', b')" < T then 

and hypothesis (iv) gives the equicontinuity of the family. Finally, Theorem 1.3 implies 

that 

lim sup If AstdFe - f AstdFoo I= 0 in probability. 
n--+oo s,t n 

o 

The next result gives the same conclusion under a different set of hypotheses. 

THEOREM 3.2. Suppose that conditions in Theorem 2.1 and Proposition 3.1 hold. If (i), 

eitheT (iii) 01' (iii)', (v) and (vi) are true then 

. 
D~ -+w Zp(FBO,Fx) in probability. 

PROOF: The proof is the same except for claim (e). So, it is enough to show part (e) 

under the present hypotheses. We use Theorem 1 in Billingsley and Tops~e (1967) (see 

Theorem 1.4) and we have to prove that:Fh is a P(Foo' Fx)-uniform class, where h(·,·) is 

any of h j (()o, " '), j = 1, ... , N. Hypothesis (i) in Theorem 1.4 holds because :Fh is uniformly 

bounded; let us check (ii) in that theorem. 

Let (yo,xo) E Rp+pq. If S((yo,xo),<5) is the open ball with center (Yo,xo) and radius <5, 

define AO = UaEAS(a, <5). We have to establish that for all c > 0, 

lim sup Pp(FB ,Fx) {(YO,xo) : sup Ifst(y,x)h(y,x) - fst(y', x')h(y', x')1 > c}=o.
0-0 iSlE;: 0 (y,x),(y',x')ES((yo,xo),o) 

For (y,x),(y',x') E S((YO,xo),<5), 

fst(y, x)h(y, x) - fst(y', x')h(y', x') = 

=[I(-oo,s)(y) - F(x,()o,s)] I(_oo,t)(x)h(y,x) -[I(-oo,s)(y') - F(x',()o,s)] I(_oo,t)(x')h(y',x')= 
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o , xf;t,x'f;t 
F(x', 0o, s)h(y', x') ­ F(x,Oo,s)h(y,x) , x::S; t, x' ::s; t, y f; s, y' f; s 
(1- F(x,Oo,s))h(y,x) ­ (1 - F(x',Oo,s))h(y',x') , x::S; t, x' ::s; t, y ::s; s, y' ::s; s 
(1- F(x,Oo,s))h(y,x) +F(x',Oo,s)h(y',x') , x::S; t,x'::S; t,y::S; s,y' f; s 
-F(x,Oo,s)h(y,x) ­ (1- F(x',Oo,s))h(y',x') x ::s; t, x' ::s; t, y f; s, y' ::s; s 

-F(x, 0o, s)h(y, x) , x::S; t,x' f; t,y f; s 
F(x', 0o, s )h(y', x') , xf;t,x'::S;t,y'f;s 
(1- F(x,Oo,s))h(y,x) , x::S; t, x' f; t, Y ::s; s 
-(1- F(x', 0o, s))h(y', x') , x f; t, x' ::s; t, y' ::s; s 

As (iii) implies (iii) " we will assume that (iii) , is true. So, the class Ah is uniformly 

equicontinuous except a set f h with null probability, where A was defined in (v). 

Let f(s,t,8) = {({(y,x)::S; (s,t)) n {(y,x) -f. (s,t)}) U fd 8
• Given (s,t), let (yo,xo) tt 

f(s,t,8). For 8::S; 8E:' 

IJst(y,x)h(y,x) - Jst(y',x')h(y',x')I::s; c, (y,x),(y',x') E S((yo,xo),8). 

So, for all c > 0, there exists 8E: such that for all (s, t), 8 ::s; 8E: implies 

PP(Feo,Fx) ((YO,xo): sup IJst(y,x)h(y,x) - Jst(y',x')h(y',x')1 > c) ::s; 
. (y,x),(y',x')ES((yo,xo),8) 

::s; PP(Feo,Fx) (f(s,t,8)). 

Now, let us see that (vi) gives that 

limSUpPp(Fe ,Fx )(f(s,t,8)) = O. 
8-+0 S,t ° 

Indeed. gi\'en 7J > 0, there exists a closed hypercube ]{17 C Rp+pq with probability larger than 

(1 - 77) and such that 

Pp(Feo,Fx) (f(s, t, 8)) ::s; PP( Feo,Fx)(f8) + 7J + Jp(Feo,FX) (Ym, xm)V(8), 

where (Yml xm ) is the largest mode of the density of the distribution P(Feo ' Fx ), and 

V(8) = Vol(({(y, x) ::s; (s,t)} n {(y,x) -f. (s,t)})8 n ](17)::S; (p+ pq)A17 8, 

where A 17 is the surface of one of the faces of ]{17' So, 

for any 7J > 0, and the result follows. o 

Condition (v) follows, for instance, from the hypothesis in Theorem 1.2 (see Delicado 

and Romo (1994)). The next corollary provides the asymptotic validity of the statistics k~ 

and £f~. 
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COROLLARY 3.1. For the statistics i<~ =SUP8.tiJ~(S, t)1 and M~ = (JRp+q(j~(s, t))2dQ(s, t)) t 
it holds that 

---+w IIZp(F60,FX)IIF+1"{ a.s., and 

M*n ---+w II Zp(F6o,Fx ) IIF+1"{,2,Q a.s. 

The strategy outlined in this paper can be also used to test one of the most relevant hypoth­

esis in random coefficient regression models: the constancy of coefficients. This would entail 

to test that the distribution of B is degenerated with parameters being the corresponding 

constant value, and assuming a parametric especification for the distribution of A. 

4 A simulation study 

We have conducted a Monte-Carlo experiment to study the size and power of these tests 

in practice. The data have been generated with the following algorithm. First, simulate 

independent (Ai, ei), i = 1, ... ,n with Ai '" FA, ei '" Fe, Ai and ei independent, and 

construct Bi = bo + pAi + ei, i = 1, ... , n. Then, take independent Xi, i = 1, , n with 

distribution Fx and, finally, calculate the observations Yi = Ai + XiBi, i = 1, , n. bo is 

always equal to 1. 

\Ve label normal a model generated using variable A with distribution N (0, 1) and e 

normally distributed such that E( e) = 0 and the standard deviation of B is a specified 

value O'B. The collection of simulations labelled Cauchy is constructed from A with Cauchy 

distribution with zero median and interquantile semirange SA equal to one and B is obtained 

from a Cauchy variable e independent from A such that the interquantile semirange of B 
is a fixed value SB. In our simulation study, we have considered each of this two situations 

with two sample sizes and two distributions for X (N(O, 1) and N(2,I)). 

[Table 1 about here] 

Table 1 contains all the situations we have studied. They differ in the distribution of 

(A, B), in the null and alternative hypotheses or in the parameters to be estimated. 

In situations 1 to 4, the coefficients A and B are independent under Ho (Ho: p = 0); in 

5 and 6, B is degenerated under Ho, i.e., we are testing constancy of B. Third column in 

Table 1 specifies the unknown parameter in each situation; when they act as known values, 

we have taken p = JiA = mA = 0, jiB = mB = O'A = O'B = SA = SB = 1. In cases 1 to 4, p has 

taken values in the set 5~ = {-0.9, -0.6, -0.4, -0.2,0.2,0.4,0.6, 0.9} under HA and in cases 

5 and 6, the scale parameter of B belongs to the set 51 = {0.2, 0.4, 0.6, 0.8,1,1.3,1.6, 2}. 
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We have used sample sizes n = 50 and n = 100 and we have simulated 500 samples for each 

combination of distributions and parameters and the number of bootstrap replications in 
each case was B =500. 

We present with some detail the estimation procedure corresponding to case 4. The 
model is 

where A,B have independent Cauchy distribution and Ci = (Ai - mA) + Xi(Bi - mB),i = 
1, ... ,n, are also Cauchy. The median of Ci is 0 and its scale parameter Si = SA + IXilsB 

is unknown. We propose here an estimator of the parameters of A and B in the spirit of 

Hildreth and Houck (1968), but based on minimum absolute deviations regression. 

First, we obtain initial minimum absolute deviations estimations of mA and mB from the 

pairs (Yi, Xd and calculate the estimated residuals {i = Yi - mA - XimB' Note that 

I€il med(l€il) + (I€il- med(l€il)) :::::: 

:::::: med(lcil) +Vi = si +Vi = 

= SA + IXi!SB +Vi, 

where Vi is a random variable with zero median. 

Second, estimate the scale parameters of A and B by using minimum absolute deviations 

from the regression 

I€il = SA + IXi\sB +vi,i = 1, ... ,n. 

Let SA and SB be these estimates. Now, estimate the scale of ei by using Si = SA + IXilsB. 
~ 

Third, calculate the generalized minimum absolute deviations estimate~ of mA and mB 

as the minimum absolute deviations of the regression 

Yi 1 Xi Ci-;:- = -:::-mA + -A-mB + -:::-.
Si Si Si Si 

Table 2 presents the empirical sizes of the described simulation experiment. The sizes 

obtained in situations 1, 3 and 4 are very satisfactory: only 2 out of 72 are significantly 

different from the theoretical sizes at 95%. In situation 2, the estimated sizes are more 

often significantly different from the theoretical ones, specially for Q' = 0.05 and when X is 

centered at 2. Testing for constant coefficients (5 and 6) gives empirical sizes which are very 

different from the expected ones: when A has a normal distribution, they are much lower 

than the nominal sizes and the opposite happens for a Cauchy coefficient A. 

[Table 2 about here] 
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Finally, we described the results on the power of the tests against models with different 

values of one parameter. Figures 1 and 2 contain two types of graphs: some of them represent 

the empirical power functions and the remainder ones are multiple box-plots; each of these 

represents estimates of the unknown parameters corresponding to a value of the parameter 

under either the null or the alternative. We give some results for n = 100 (the results for 

n = 50 are qualitatively similar but with lower power and larger dispersion for the parameter 
estimations). 

[Figure 1 about here] 

Figure 1 corresponds to situation 3 in Table 1. With X '" N(O, 1), we see the same 

behavior for Kn for both positive and negative values for p and lack of identifiability for Mn 

with negative values of p. Also, lack of identifiability appears for X '" N(2, 1) and p positive 

(see Figure l.(b)). For all values of p, we get unbiased estimations of mB with dispersion 

increasing with the absolute values of p, except when p is positive and X '" N(2, 1) because 

this case cannot be distinguished from p = O. 

[Figure 2 about here] 

The graphs in Figure 2 give the results for situation 4 in Table 1. Now, we are estimating 

four parameters and so the empirical powers are lower than the ones obtained in Figure 1, 

when we were estimating just one parameter; this is especially clear for negative p and X '" 
N(2, 1). When X is centered at zero, the power functions for both Kn and M are similar; this n 

didn't happen for tests different from this one only in the number of estil11.~ted parameters. 
.. -' 

The multiple box-plots show that all the estimations, especially for scale parameters are 

very sensitive to the value of p used to generate the data; let us recall that the procedure is 

designed to act correctly under the nulJ hypothesis (p = 0). 

[Figure 3 about here] 

Finally, Figure 3 contains the power functions for the different specified situations. Part 

(a) corresponds to normal (A, B) with X '" N(2, 1) and this is better than the result we 

obtained when X '" N (0, 1). Moreover, comparing with other results available from our 

simulations, we got slightly higher powers for estimated parameters in this case. In part (b), 

we estimate the parameters J.LA,JJ,B, (J' A and (J'B and X '" N(O, 1); the power is larger when 

we estimate four parameter than when none or just one parameter is estimated. The results 

in part (c) are slightly better than the ones we obtained for X '" N(O, 1) and the same 

phenomenon happens with the Cauchy situation in part (d) with respect to the case with 

X '" N(2, 1). To end, we may also report that the power is low when the four parameters 

are estimated in the Cauchy case. 
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Situation (A, B) model Unknown Specified para- Specified para­

parameters meters under Ho meters under HA 

1 Normal p=o pE 51JiB 

2 Normal J-LA,J-LB,O'A,O'B p=o pE 51� 
3 Cauchy mB p=o pE 51� 
4 Cauchy mA, m'B, SA, SB p=o pE 51� 
5 Normal J-LA,J-LB,O'A O'B = 0 O'B E 5~
 

6 Cauchy mA,mB,sA SB = 0 SB E 5~
 

Table 1: Simulation design for estimated parameters. 
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------------------------------------------------

Situation 

1 

n =
Mn 

.002 

.046 

.104 

X'" N(O, 1) 

50 n = 
I<n 1I1n 

.006 .010 

.048 .056 

.118 .112 

100 

I<n 
.012 

.068 

.114 

n =
Mn 

.014 

.044 

.092 

X '" N(2, 1) 

50 n = 
I<n Mn 

.012 .016 

.072 .060 

.126 .112 

100 

I<n 
.018 

.056 

.112 

.036 .022 
2 .068 .060 

.114 .114 

.026 

.046 

.112 

.018 

.042 

.084 

.036 .020 

.084 .060 

.146 .108 

.040 

.104 

.200 

.024 

.056 

.136 

3 

.010 

.062 

.114 

.014 

.044 

.102 

.006 

.044 

.082 

.012 

.054 

.124 

.020 

.050 

.100 

.002 

.046 

.100 

.010 

.060 

.126 

.008 

.052 

.116 

4 

.006 

.052 

.092 

.016 

.066 

.096 

.014 

.050 

.092 

.008 

.042 

.084 

.014 

.042 

.116 

.012 

.036 

.076 

.004 

.040 

.090 

.004 

.034 

.088 

5 

.000 

.000 

.004 

.000 

.004 

.010 

.000 

.000 

.006 

.000 

.006 

.018 

.002 

.012 

.026 

.002 

.008 

.022 

.002 

.004 

.004 

~-OOO 

.012 

.028 

6 

.042 

.072 

.120 

.020 

.056 

.110 

.022 

.080 

.140 

.000 

.052 

.110 

.090 

.150 

.208 

.082 

.134 

.186 

.068 

.142 

.220 

.052 

.132 

.198 

Table 2: Empirical sizes. The three values appearing in each cell are the empirical sizes 

corresponding to the theoretical ones of .01, .05 and .1, from top to the bottom. 
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(a) (b) 
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2.5rO=-.9 -.6 -.4 -.2 .0 .2 .4 .6 .9 rO=-.9 -.6 -.4 -.2 .0 .2 .4 .6 .9 
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0.5 

0.5 

.o . . . . . o ·· ·· -0.5 . 
: 

o 5 10 o 5 10 

Figure 1: Estimation 3. Power function for Ho : p =0 against different values of p, with estimated mB· 

(A. B) are Cauchy and Q' =0.05. X ..... N(O, 1) in the left hand side and X ..... N(2, 1) in the right one. 
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Figure 2: Estimation 4. Power function for Ho : p = 0 against different values of p, with estimated 

711A,711B,SA,SB. (A,E) are Cauchy, 0' = 0.05 and X - N(O, 1) 
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Figure 3: Power functions for: 

(a) Ho : p =0 against different values of p, with estimated PB. (A, B) are normal, Q =0.05 and X'" N(2, 1). 

(b) same, with estimated PA, PB,(TA, (TB and X '" N(O, 1). 

(c) Ho : (TB =0 against different values of (TB, with estimated PA, PB, (TA. (A, B) are normal, Q =0.05 and 

X '" N(2, 1). 

(d) Ho : SB =0 against different values of SB, with estimated mA, mB, SA. (A, B) are Cauchy, Q =0.05 and 

X� '" N(2, 1).� 
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