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Abstract

Knowledge representation is a key issue for
any machine learning task. There have al-
ready been many comparative studies about
knowledge representation with respect to ma-
chine learning in classification tasks. How-
ever, apart from some work done on rein-
forcement learning techniques in relation to
state representation, very few studies have
concentrated on the effect of knowledge rep-
resentation for machine learning applied to
problem solving, and more specifically, to
planning. In this paper, we present an ex-
perimental comparative study of the effect
of changing the input representation of plan-
ning domain knowledge on control knowl-
edge learning. We show results in two clas-
sical domains using three different machine
learning systems, that have previously shown
their effectiveness on learning planning con-
trol knowledge: a pure EBL mechanism, a
combination of EBL and induction (HAMLET),
and a Genetic Programming based system
(EVOCK).

1. Introduction

Knowledge representation is a key issue for any ma-
chine learning task. There have already been some
comparative studies about knowledge representation
with respect to machine learning in classification tasks.
There is even a set of topics devoted to changing the
input representation of the examples for improving the
learning task with issues such as feature selection (Ko-
havi & John, 1997) or constructive induction (Donoho
& Rendell, 1995). However, apart from some work
done on reinforcement learning techniques in relation
to state representation (Lin, 1993), very few studies
have concentrated on the effect of knowledge represen-
tation for machine learning applied to problem solving,

and more specifically, to planning. In (Qu & Kamb-
hampati, 1995), the authors present results in three
variations of the blocks world. They discuss differ-
ences with respect to using conditional effects, and/or
universal quantifiers. But, they only compared with
respect to variations of the same technique: EBL.

One of the main differences between machine learning
applied to problem solving and classification is that
problem solving tasks required for most systems to
solve some set of problems given by an initial state
and a set of goals to generate the learning examples.
Changing the representation of the domain theory can
change the solvability horizon of problems, and there-
fore, the ability to generate learning examples, given
that most learning systems require finding a solution
to learn. In this paper, we present an experimental
comparative study of the effect of changing the input
representation of domain knowledge for machine learn-
ing in planning tasks. We show results in two classical
domains using three different machine learning sys-
tems, that have previously shown their effectiveness
on learning planning control knowledge: a pure EBL
mechanism (Minton, 1988), a combination of EBL and
induction (HAMLET) (Borrajo & Veloso, 1997), and
a genetic programming driven system (EVOCK) (Aler
et al., 1998).

2. The Learning Task

The goal of the three systems considered in this article
is to learn control knowledge for a state space planner
called PrODIGY (Veloso et al., 1995). PRODIGY4.0 is a
nonlinear planning system that follows a means-ends
analysis. The inputs to the problem solver algorithm
are:

e Domain theory, D (or, for short, domain), that
includes the set of operators specifying the task
knowledge and the object hierarchy;
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Table 1. Example of a control rule for selecting the unstack
operator.

(control-rule select-operator-unstack
(if (and (current-goal (holding <object1>))
(true-in-state (on <objectl> <object2>))))
(then select operator unstack))

e Problem, specified in terms of an initial configu-
ration of the world (initial state, S) and a set of
goals to be achieved (G); and

e Control knowledge, C, described as a set of control
rules, that guides the decision-making process.

PRODIGY4.0 ’s planning/reasoning cycle, involves sev-
eral decision points, namely:

e select a goal from the set of pending goals and
subgoals;

e choose an operator to achieve a particular goal;

e choose the bindings to instantiate the chosen op-
erator;

e apply an instantiated operator whose precondi-
tions are satisfied or continue subgoaling on an-
other unsolved goal.

We refer the reader to (Veloso et al., 1995) for more de-
tails about PRODIGY. In this paper it is enough to see
the planner as a program with several decision points
that can be guided by control knowledge. If no con-
trol knowledge is given, PRODIGY4.0 might make the
wrong decisions at some points, requiring backtrack-
ing and reducing planning efficiency. Table 1 shows
an example of control knowledge represented as a rule
to determine when the operator unstack must be se-
lected. Control knowledge can be handed down by
a programmer or learned automatically. The goal of
this paper is to observe the effects of different rep-
resentations of the same domain on learning control
knowledge for that domain.

3. Description of the Learning Systems

In this Section, the three systems (EBL, HAMLET and
EVOCK) involved in the experimental study will be de-
scribed. As EBL is actually one of the subcomponents
of HAMLET, EBL and HAMLET will be described in the
same Subsection.

3.1 EBL and HAMLET

HAMLET is an incremental learning method based on
EBL (Explanation Based Learning) and inductive re-
finement (Borrajo & Veloso, 1997). The inputs to
HAMLET are a task domain (D), a set of training prob-
lems (P), a quality measure (Q)' and other learning-
related parameters. The output is a set of control rules
(C). HAMLET has two main modules: the Bounded Ex-
planation module, and the Refinement module. HAM-
LET’s Bounded Explanation module is the EBL system
that has been used in this paper. Figure 1 shows HAM-
LET modules and their connection to PRODIGY.
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Figure 1. HAMLET’s high level architecture.

The Bounded Explanation module generates control
rules from a PRODIGY4.0 search tree. The details can
be found in (Borrajo & Veloso, 1997). These rules will
be referred to as EBL rules in the experimental Section.
The EBL rules might be overly specific or overly gen-
eral. HAMLET’s Refinement module solves the prob-
lem of being overly specific by generalizing rules when
analyzing positive examples. It also replaces overly
general rules with more specific ones when it finds sit-
uations in which the learned rules lead to wrong de-
cisions. HAMLET gradually learns and refines control
rules, in an attempt to converge to a concise set of
correct control rules (i.e., rules that are individually
neither overly general, nor overly specific). ST and
ST¢ are planning search trees generated by two calls to
PRODIGY4.0 planning algorithm with or without con-
trol rules (respectively. C is the set of control rules,
and C’ is the new set of control rules learned by the
Bounded Explanation module.

3.2 EVOCK

We only intend to provide a summary of EVOCK and
refer to (Aler et al., 1998) for details. EVOCK is a ma-
chine learning system for learning control rules based

'A quality metric measures the quality of a plan in
terms of number of operators in the plan, execution time,
economic cost of the planning operators in the plan or any
other user defined criteria.



on Genetic Programming (GP) (Koza, 1992). GP is
an evolutionary computation method that has been
used for program induction and machine learning. GP
searches in the space of computer programs, trying
to find a “good enough” computer program according
to some metric. GP can be seen as a kind of heuris-
tic beam search. Initially, the beam (or population)
is made up of randomly generated computer programs
(or individuals). These individuals are selected accord-
ing to a heuristic (or fitness) function and modified by
means of the so called genetic operators.

In EvVOCK, the individuals are sets of control rules
that are manipulated by EVOCK’s genetic operators.
EVOCK’s individuals are generated and modified ac-
cording to a grammar that represents the language
provided by PRODIGY4.0 for writing correct control
rules. EVOCK’s genetic operators can grow (compo-
nents of) rules, remove (components of) rules and
cross parts of rules with parts of other rules, just like
the GP crossover operator does. EVOCK also includes
some tailor made operators for modifying control rules.
EVOCK’s guiding heuristic -the fitness function- mea-
sures individuals according to the number of planning
problems from the learning set they are able to solve,
the number of nodes expanded and the size of the indi-
vidual (smaller individuals are preferred because they
run faster).

4. Experiments and Results

In this section, we will first describe the variations
on representation of domain theories. Then, we will
present the training and testing setups, and, finally, we
will present the obtained results and a discussion on
those results. It is very important to bear in mind that
the goal of this paper is to analyze the effect of chang-
ing the representation of a domain theory in planning
for several learning systems. Therefore, we have inten-
tionally not compared the different learning systems
among them.

4.1 Domain Theories Representation

In order to analyze the impact of knowledge represen-
tation on the task of learning problem solving control
knowledge, we defined the following domains relative
to the blocks world:?

e Standard blocks world (b): four operators (un-
stack, stack, pick-up, and put-down) with a test
on the ones with two arguments (unstack and

We have left a version of the first two domains in
http://scalab.uc3m.es/~dborrajo/hamlet/

stack) that checks that these arguments are not
equal.

e Simplified blocks world (sb): two operators (put-
on and new-tower) with a test on both that checks
that their arguments are not equal. This ver-
sion has been used in many experiments in the
blocks world, and has the advantage over the pre-
vious one that there is no reasoning about the
arm being empty, because movement operations
on blocks are atomic; that is, they are not sep-
arated in two operations: taking the block and
leaving the block.

e Reverse blocks world (rb): the same four oper-
ators as the standard version, but two operators
(unstack and pick-up) are presented in the oppo-
site order in the domain description file. Since
PRODIGY4.0 (as most other planners) follows the
order by which operators have been defined when
making blind decisions, this change might affect
the behavior of the learning system. For instance,
learning when to select an operator might be eas-
ier than learning when to select the other one.

e Standard blocks world without functions (bwf):
it is the standard version without the check for
difference between the arguments of operators.

We also used the following versions of the logistics do-
main:

e Standard logistics domain (1): six opera-
tors (load-airplane, load-truck, unload-airplane,
unload-truck, fly-airplane, and drive-truck) and
predicates such as at-truck, at-airplane, at-object,
inside-airplane, inside-truck. Here, we have used
the standard version of the logistics domain in
PRODIGY4.0 where one can define functions in
the preconditions to define filters on the values of
the variables of the operators. Apart from that,
variables are assigned to types. For example, for
unload-truck operations only trucks in the same
city as the destination location of the object to be
transported are selected.

e Plain logistics domain (pl): six operators, but
we have removed the “semantics” of the predi-
cates, leaving the above mentioned predicates in
two: at and inside. This is theoretically more dif-
ficult than the previous domain, since there are
more operators now that achieve those goals. For
the new predicate inside, in the standard version,
one would subgoal either on inside-airplane, which
forces to use operator load-airplane, or on inside-
truck, which forces to use operator load-truck. In



this new version, since there is only one inside
for both previous predicates, the planner would
select both operators for any subgoal on inside.
The same happens with predicate at.

e Standard logistics domain without functions
(1wf): here, he have removed the functions calls
from the preconditions, so that variables can have
any value within their types (as in the case of the
last version of the blocks world). This domain de-
scription is also theoretically more difficult than
the standard one, given that the planner can cre-
ate more bindings (substitutions) for each vari-
able. We only report here the results of using
PRODIGY, HAMLET, and EBL.

4.2 Training Setup

We used for training two randomly generated prob-
lem sets for the blocks world: the first one with 400
one goal problems and five blocks; and the second one
with another 400 two goal problems and five blocks.
Since representation of each domain version was dif-
ferent, we generated the same problem twice: one for
domain versions that used the standard representa-
tion (with the arm-empty, and holding); and another
for domain versions with the simplified representation
(without arm-empty and holding). Since we used a
random problem generator that used arm-empty and
holding, we did the following to make sure that the
comparison among domain versions was fair:

e Each time that arm-empty appeared in a problem,
it was removed from the problem description.

e Each time that holding appeared in a problem,
the block that the robot held was left on the ta-
ble. Therefore, all initial configurations and goal
statements had all blocks on the table or on top
of other blocks, but never held by the robot. Of
course, this causes some problems to become eas-
ier, because, in the previous versions, in order to
hold another block, the robot first had to think
on where to leave the block it was holding, while
here we are leaving it directly on the table. But,
it has the advantage of being fair when comparing
the standard domain description with the simpli-
fied one, given that this last one does not reason
about holding blocks.

In the logistics domain, we generated a training set
of 400 one goal problems and five objects, airplanes,
trucks, and cities. In this case, for representation rea-
sons, the only changed we had to do in problem formu-
lations was to change all inside-z predicates for inside,

and all at-z predicates for at. We gave 200 seconds of
time limit for solving each problem in both domains
during learning of EBL and HAMLET.

Then, we trained the three learning systems: HAMLET,
EBL, and EVOCK. HAMLET was trained as explained
in previous sections. Since there are many different
eays to train the learning systems, we performed the
tests always using the best configuration found for each
learning system. In the case of HAMLET, results using
the 800 training problems were worse than using only
the first 400, so we used for comparison the results
of using those 400 problems. EBL learned rules from
all decisions that were not the first alternative tried
in each node. Then, a utility analysis was performed.
According to the usual equation (Minton, 1988),

u(r) = s(r) x p(r) —m(r)

where u(r) is the utility of a rule r, s(r) is the time that
the rule saves when used, p(r) is the probability that
the rule would match, and m(r) is the cost of using
the rule (matching time). Therefore, we estimated the
following variables:

e s(r): given that each rule is learned from a node
in a search tree, we set s(r) to the number of
nodes below the node from where it learned the
rule, multiplied by the time PRODIGY4.0 takes to
expand a node. A better estimate would have
been computed by using a second training set of
problems as Minton did.

e p(r): we estimated it as the number of times that
PRODIGY4.0 tried to use the rule in subsequent
problems in the training phase divided by the
number of times that it actually fired. As be-
fore, a better estimate would be to use a second
training set.

e m(r): it is estimated as the total matching time
added over all times that it tried to match the
rule divided by the number of times that it tried
to match it.

After training, the utility u(r) of each rule is com-
puted, and rules that do not have a number of times
that it fired greater than one are removed. Also, we
used two utility thresholds: 0 and 0.5. So, rules that do
not have a higher utility than 0/0.5 are removed. This
generates two versions of EBL for each domain version.
Since a threshold of zero still keeps many rules, we
have only used 0.5 for the experiments reported here.



In the case of EVOCK, since it is a stochastic method,
we performed around 25 experiments for each config-
uration. we will present the result for the best in-
dividual, and the average for all individuals and the
standard deviation.

4.3 Testing Setup

For testing, we generated problems of diverse com-
plexity with the same random procedure described
before. In the blocks world, we generated 18 test
sets each with ten problems. We varied the number
of blocks and goals, having the following configura-
tions of (goals,blocks): (1,5), (1,10), (1,20), (1,50)
(2,5), (2,10), (2,20), (2,50), (5,5), (5,10), (5,20), (5,50),
(10,10), (10,20), (10,50), (20,10), (20,20), (20,50), and
(50,50). We did something similar for the logistics
domain, generating also the configurations: (10,5)
(20,10), and (50,20).

Time limit for test problems was set to 150 for all con-
figurations and domains. Segre et al. (1991) discuss
the effect of defining a time limit for a fair comparison,
given that if one would increase that limit, the learning
systems might find solutions, while the base problem
solver might not. While the authors are theoretically
right, we did not find experimentally a big difference
by multiplying the time limit by two or three. First,
we believe that, in order to find a big difference with
the reported results in terms of solvability, one would
have to increase in an order of magnitude (or more)
the time limit. In fact, we would like to perform those
experiments in the near future.

Second, suppose (which is not far from reality in most
cases, at least, in ours) that the goal of using learning
systems for problem solving is to attain an optimal
behavior after learning: in each decision of the search
tree, select the alternative that will lead directly to
the best solution without exploring failure branches.
If that is the goal of the research, one would have to
admit as a (partial) failure (even if we do not do it)
when the learning system does not learn to force that
optimal behavior. Optimal behavior in the cases of all
test problems that we have generated (up to 50 goals
and objects/blocks), would mean in PRODIGY4.0 to
expand a number of nodes which is equal to 4 x 0, where
o is the number of operators in the solution. For 50
goal problems the maximum number of operators in an
optimal solution is 200 for the blocks world and 500 for
the logistics domain. Given that the machines we are
using expand a node in 2 milliseconds, it would need at
most 4 x 500 x 0.002 = 4 seconds for solving optimally
each test problem. Therefore, imposing a time limit of
150 seconds for each problem is way beyond the time

that we should expect an optimal learnt knowledge to
solve each problem. If it does not solve the problem
in that time, we will have to work harder (as it is the
case, given that learning in problem solving is not a
solved task).

We measured the following variables:

e number of learned rules by each learning system;

e number of solved problems: if a configuration
found a solution in the time limit defined before;

e delta-time: since we wanted to compare the effect
of representation in various domain descriptions
for learning, we used the difference between the
time that PRODIGY4.0 spent to solve each prob-
lem and the time that the learning system spent;
and

e delta-solution-length: computed as the difference
of the number of operators in the solutions by
PRODIGYand the number of operators in the solu-
tions by the learning systems. This is an estimate
of the optimality of the solutions that the plan-
ner with the learned knowledge provides when the
quality metric is the solution length.

4.4 Results

Table 2 and 3 show the number of rules learned by each
learning system in each domain. In the case of EBL,
the tables show the number of rules used for the ex-
periments (after utility pruning) and, in parentheses,
the original number of rules (before pruning).

Table 2. Number of learned rules in the blocks world.

System  Standard Simplified Reverse  Without
functions
HAMLET 6 11 6 6
EBL 13 (661) 5 (328) 12 (640) 16 (635)
EVOCK 3 1 2 2

Table 3. Number of learned rules in logistics.

System  Standard Plain Without
functions
HAMLET 32 24 1
EBL 27 (297) 33 (300) 0 (30)

Tables 4 and 5 show the number of solved problems
by the different learning systems and PRODIGY4.0 in
the blocks world and in the logistics domain given the
time limit described before. In the case of EVOCK,



the tables show the results of the best individual, the
average of all individuals and the standard deviation

(0).
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Figures 2, 3 and 4 show the accumulated delta
time (difference of time between the time spent by
PRODIGY4.0 and the learning system) of the solved
problems by all configurations and domain of HAMLET
and EBL in all domain versions of the blocks world.
They were also ordered by time.

Figure 2. Accumulated delta time of solved problems by all
configurations of HAMLET and PRODIGY4.0 for all variations
of domain theories for the blocks world.
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versions of the logistics domain, and ordered according
to increasing difficulty for PRODIGY, measured by the -40 - ]

time that took PRODIGY4.0 to solve the problem. In
the logistics domain, there is no result for the version
without functions, given that being a difficult version
as discussed in the next subsection, very few rules were
learnt by HAMLET and EBL and the behavior was close
to that of PRODIGY. In Figure 7, we show the accumu-
lated difference in number of operators in the solution
between PRODIGY4.0 and HAMLET (we do not show eor ]
these data for the blocks world, given that in that case,
the difference is very close to zero).
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scriptions is in the case of the logistics domain without domain theories for the blocks world.
functions, in which HAMLET could only learn one rule,
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while EBL did not learn any useful rule. This is due
to the difficulty that this domain poses for PRODIGY,
making it hard for PRODIGY4.0 to expand the search
trees. Given that both HAMLET and EBL (in this im-
plementation) need to expand the whole tree to learn
rules, they could only use very few actual training
problems for learning.

Solvability (Tables 4 and 5): in the case of the blocks
world, it is clear that the simplified version is easier
than the rest, so all configurations solve more prob-
lems. Removing the explicit handling of the robot
arm makes the domain much easier. In this domain,
no learning system was able to improve over PRODIGY.
Also, it is very remarkable that there is no significant
difference between the rest of domain versions.

In the case of the logistics domain, the opposite hap-
pens: there is a version of the domain much harder
than the rest, and it consists on removing the bindings
filters implemented by functions on the preconditions
of operators.

Time to solve problems (Figures 2 through 6):
in the case of the blocks world, the tables clearly
show that the difference between the time spent by
PRODIGY4.0 and the learning systems is minimal for
the simplified version, given that PRODIGY4.0 is the
best option for that domain version. In the rest of
versions of the domain, the differences in time to solve
the problems tend to be high in absolute value. While
HAMLET and EVOCK have better times than PRODIGY,
EBL does worse (negative values of the difference).

In the case of the logistics domain, all configurations of
learning systems use more time in the solved problems
than PRODIGY. This might be caused by the fact that
these systems learn more rules in the logistics domain
than in the blocks world, and, therefore, the matching
process takes longer. Also, with respect to the dif-
ference of solutions lengths between PRODIGY4.0 and
HAMLET, HAMLET learns rules that provide better so-
lutions (shorter in this case), specially in the case of
potentially harder domain versions, such as the plain
logistics domain version.

5. Conclusions

The main conclusion of this paper is that good rep-
resentations (like the simplified blocks world) tend to
make control knowledge learning less necessary, as far
as solvavility is concerned. On the other hand, learn-
ing can alleviate the user effort for writing efficient
domain theories.

In the logistics domain, one of the representations

obtains very bad results, and we should expect that
learning provides large gains in performance. However,
if the representation is so inefficient that even simple
problems cannot be solved by the base planner, then
systems that learn from traces (EBL, HAMLET) will not
be able to learn much. However, other systems that
do not rely on previous executions of the base planner
(like a simple modification of EVOCK) might overcome
this problem.
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