
Knowledge Representation Issues in Control Knowledge LearningRi
ardo Aler aler�inf.u
3m.esDaniel Borrajo dborrajo�ia.u
3m.esPedro Isasi isasi�ia.u
3m.esDepartamento de Inform�ati
a, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Legan�es,Madrid, Spain Abstra
tKnowledge representation is a key issue forany ma
hine learning task. There have al-ready been many 
omparative studies aboutknowledge representation with respe
t to ma-
hine learning in 
lassi�
ation tasks. How-ever, apart from some work done on rein-for
ement learning te
hniques in relation tostate representation, very few studies have
on
entrated on the e�e
t of knowledge rep-resentation for ma
hine learning applied toproblem solving, and more spe
i�
ally, toplanning. In this paper, we present an ex-perimental 
omparative study of the e�e
tof 
hanging the input representation of plan-ning domain knowledge on 
ontrol knowl-edge learning. We show results in two 
las-si
al domains using three di�erent ma
hinelearning systems, that have previously showntheir e�e
tiveness on learning planning 
on-trol knowledge: a pure ebl me
hanism, a
ombination of ebl and indu
tion (hamlet),and a Geneti
 Programming based system(evo
k).1. Introdu
tionKnowledge representation is a key issue for any ma-
hine learning task. There have already been some
omparative studies about knowledge representationwith respe
t to ma
hine learning in 
lassi�
ation tasks.There is even a set of topi
s devoted to 
hanging theinput representation of the examples for improving thelearning task with issues su
h as feature sele
tion (Ko-havi & John, 1997) or 
onstru
tive indu
tion (Donoho& Rendell, 1995). However, apart from some workdone on reinfor
ement learning te
hniques in relationto state representation (Lin, 1993), very few studieshave 
on
entrated on the e�e
t of knowledge represen-tation for ma
hine learning applied to problem solving,

and more spe
i�
ally, to planning. In (Qu & Kamb-hampati, 1995), the authors present results in threevariations of the blo
ks world. They dis
uss di�er-en
es with respe
t to using 
onditional e�e
ts, and/oruniversal quanti�ers. But, they only 
ompared withrespe
t to variations of the same te
hnique: ebl.One of the main di�eren
es between ma
hine learningapplied to problem solving and 
lassi�
ation is thatproblem solving tasks required for most systems tosolve some set of problems given by an initial stateand a set of goals to generate the learning examples.Changing the representation of the domain theory 
an
hange the solvability horizon of problems, and there-fore, the ability to generate learning examples, giventhat most learning systems require �nding a solutionto learn. In this paper, we present an experimental
omparative study of the e�e
t of 
hanging the inputrepresentation of domain knowledge for ma
hine learn-ing in planning tasks. We show results in two 
lassi
aldomains using three di�erent ma
hine learning sys-tems, that have previously shown their e�e
tivenesson learning planning 
ontrol knowledge: a pure eblme
hanism (Minton, 1988), a 
ombination of ebl andindu
tion (hamlet) (Borrajo & Veloso, 1997), anda geneti
 programming driven system (evo
k) (Aleret al., 1998).2. The Learning TaskThe goal of the three systems 
onsidered in this arti
leis to learn 
ontrol knowledge for a state spa
e planner
alled prodigy (Veloso et al., 1995). prodigy4.0 is anonlinear planning system that follows a means-endsanalysis. The inputs to the problem solver algorithmare:� Domain theory, D (or, for short, domain), thatin
ludes the set of operators spe
ifying the taskknowledge and the obje
t hierar
hy;

Referencia bibliográfica
Published in:
Proceedings of 17th International Conference on Machine Learning, 2000. p. 1-9



Table 1. Example of a 
ontrol rule for sele
ting the unsta
koperator.(
ontrol-rule sele
t-operator-unsta
k(if (and (
urrent-goal (holding <obje
t1>))(true-in-state (on <obje
t1> <obje
t2>))))(then sele
t operator unsta
k))� Problem, spe
i�ed in terms of an initial 
on�gu-ration of the world (initial state, S) and a set ofgoals to be a
hieved (G); and� Control knowledge, C, des
ribed as a set of 
ontrolrules, that guides the de
ision-making pro
ess.prodigy4.0 's planning=reasoning 
y
le, involves sev-eral de
ision points, namely:� sele
t a goal from the set of pending goals andsubgoals;� 
hoose an operator to a
hieve a parti
ular goal;� 
hoose the bindings to instantiate the 
hosen op-erator;� apply an instantiated operator whose pre
ondi-tions are satis�ed or 
ontinue subgoaling on an-other unsolved goal.We refer the reader to (Veloso et al., 1995) for more de-tails about prodigy. In this paper it is enough to seethe planner as a program with several de
ision pointsthat 
an be guided by 
ontrol knowledge. If no 
on-trol knowledge is given, prodigy4.0 might make thewrong de
isions at some points, requiring ba
ktra
k-ing and redu
ing planning eÆ
ien
y. Table 1 showsan example of 
ontrol knowledge represented as a ruleto determine when the operator unsta
k must be se-le
ted. Control knowledge 
an be handed down bya programmer or learned automati
ally. The goal ofthis paper is to observe the e�e
ts of di�erent rep-resentations of the same domain on learning 
ontrolknowledge for that domain.3. Des
ription of the Learning SystemsIn this Se
tion, the three systems (ebl, hamlet andevo
k) involved in the experimental study will be de-s
ribed. As ebl is a
tually one of the sub
omponentsof hamlet, ebl and hamlet will be des
ribed in thesame Subse
tion.

3.1 ebl and hamlethamlet is an in
remental learning method based onebl (Explanation Based Learning) and indu
tive re-�nement (Borrajo & Veloso, 1997). The inputs tohamlet are a task domain (D), a set of training prob-lems (P), a quality measure (Q)1 and other learning-related parameters. The output is a set of 
ontrol rules(C). hamlet has two main modules: the Bounded Ex-planation module, and the Re�nement module. ham-let's Bounded Explanation module is the ebl systemthat has been used in this paper. Figure 1 shows ham-let modules and their 
onne
tion to prodigy.
Measure
Quality

mode
Learning

Refinement
module

PRODIGY
Problems
Training

Bounded Explanation
module

Learned
Control
Knowledge

Q

L

DomainD

O

C

C’

ST

ST

C

HAMLET

C
P

parameter
Optimality

Figure 1. hamlet's high level ar
hite
ture.The Bounded Explanation module generates 
ontrolrules from a prodigy4.0 sear
h tree. The details 
anbe found in (Borrajo & Veloso, 1997). These rules willbe referred to as ebl rules in the experimental Se
tion.The ebl rules might be overly spe
i�
 or overly gen-eral. hamlet's Re�nement module solves the prob-lem of being overly spe
i�
 by generalizing rules whenanalyzing positive examples. It also repla
es overlygeneral rules with more spe
i�
 ones when it �nds sit-uations in whi
h the learned rules lead to wrong de-
isions. hamlet gradually learns and re�nes 
ontrolrules, in an attempt to 
onverge to a 
on
ise set of
orre
t 
ontrol rules (i.e., rules that are individuallyneither overly general, nor overly spe
i�
). ST andSTC are planning sear
h trees generated by two 
alls toprodigy4.0 planning algorithm with or without 
on-trol rules (respe
tively. C is the set of 
ontrol rules,and C0 is the new set of 
ontrol rules learned by theBounded Explanation module.3.2 evo
kWe only intend to provide a summary of evo
k andrefer to (Aler et al., 1998) for details. evo
k is a ma-
hine learning system for learning 
ontrol rules based1A quality metri
 measures the quality of a plan interms of number of operators in the plan, exe
ution time,e
onomi
 
ost of the planning operators in the plan or anyother user de�ned 
riteria.



on Geneti
 Programming (GP) (Koza, 1992). GP isan evolutionary 
omputation method that has beenused for program indu
tion and ma
hine learning. GPsear
hes in the spa
e of 
omputer programs, tryingto �nd a \good enough" 
omputer program a

ordingto some metri
. GP 
an be seen as a kind of heuris-ti
 beam sear
h. Initially, the beam (or population)is made up of randomly generated 
omputer programs(or individuals). These individuals are sele
ted a

ord-ing to a heuristi
 (or �tness) fun
tion and modi�ed bymeans of the so 
alled geneti
 operators.In evo
k, the individuals are sets of 
ontrol rulesthat are manipulated by evo
k's geneti
 operators.evo
k's individuals are generated and modi�ed a
-
ording to a grammar that represents the languageprovided by prodigy4.0 for writing 
orre
t 
ontrolrules. evo
k's geneti
 operators 
an grow (
ompo-nents of) rules, remove (
omponents of) rules and
ross parts of rules with parts of other rules, just likethe GP 
rossover operator does. evo
k also in
ludessome tailor made operators for modifying 
ontrol rules.evo
k's guiding heuristi
 -the �tness fun
tion- mea-sures individuals a

ording to the number of planningproblems from the learning set they are able to solve,the number of nodes expanded and the size of the indi-vidual (smaller individuals are preferred be
ause theyrun faster).4. Experiments and ResultsIn this se
tion, we will �rst des
ribe the variationson representation of domain theories. Then, we willpresent the training and testing setups, and, �nally, wewill present the obtained results and a dis
ussion onthose results. It is very important to bear in mind thatthe goal of this paper is to analyze the e�e
t of 
hang-ing the representation of a domain theory in planningfor several learning systems. Therefore, we have inten-tionally not 
ompared the di�erent learning systemsamong them.4.1 Domain Theories RepresentationIn order to analyze the impa
t of knowledge represen-tation on the task of learning problem solving 
ontrolknowledge, we de�ned the following domains relativeto the blo
ks world:2� Standard blo
ks world (b): four operators (un-sta
k, sta
k, pi
k-up, and put-down) with a teston the ones with two arguments (unsta
k and2We have left a version of the �rst two domains inhttp://s
alab.u
3m.es/�dborrajo/hamlet/

sta
k) that 
he
ks that these arguments are notequal.� Simpli�ed blo
ks world (sb): two operators (put-on and new-tower) with a test on both that 
he
ksthat their arguments are not equal. This ver-sion has been used in many experiments in theblo
ks world, and has the advantage over the pre-vious one that there is no reasoning about thearm being empty, be
ause movement operationson blo
ks are atomi
; that is, they are not sep-arated in two operations: taking the blo
k andleaving the blo
k.� Reverse blo
ks world (rb): the same four oper-ators as the standard version, but two operators(unsta
k and pi
k-up) are presented in the oppo-site order in the domain des
ription �le. Sin
eprodigy4.0 (as most other planners) follows theorder by whi
h operators have been de�ned whenmaking blind de
isions, this 
hange might a�e
tthe behavior of the learning system. For instan
e,learning when to sele
t an operator might be eas-ier than learning when to sele
t the other one.� Standard blo
ks world without fun
tions (bwf):it is the standard version without the 
he
k fordi�eren
e between the arguments of operators.We also used the following versions of the logisti
s do-main:� Standard logisti
s domain (l): six opera-tors (load-airplane, load-tru
k, unload-airplane,unload-tru
k, 
y-airplane, and drive-tru
k) andpredi
ates su
h as at-tru
k, at-airplane, at-obje
t,inside-airplane, inside-tru
k. Here, we have usedthe standard version of the logisti
s domain inprodigy4.0 where one 
an de�ne fun
tions inthe pre
onditions to de�ne �lters on the values ofthe variables of the operators. Apart from that,variables are assigned to types. For example, forunload-tru
k operations only tru
ks in the same
ity as the destination lo
ation of the obje
t to betransported are sele
ted.� Plain logisti
s domain (pl): six operators, butwe have removed the \semanti
s" of the predi-
ates, leaving the above mentioned predi
ates intwo: at and inside. This is theoreti
ally more dif-�
ult than the previous domain, sin
e there aremore operators now that a
hieve those goals. Forthe new predi
ate inside, in the standard version,one would subgoal either on inside-airplane, whi
hfor
es to use operator load-airplane, or on inside-tru
k, whi
h for
es to use operator load-tru
k. In



this new version, sin
e there is only one insidefor both previous predi
ates, the planner wouldsele
t both operators for any subgoal on inside.The same happens with predi
ate at.� Standard logisti
s domain without fun
tions(lwf): here, he have removed the fun
tions 
allsfrom the pre
onditions, so that variables 
an haveany value within their types (as in the 
ase of thelast version of the blo
ks world). This domain de-s
ription is also theoreti
ally more diÆ
ult thanthe standard one, given that the planner 
an 
re-ate more bindings (substitutions) for ea
h vari-able. We only report here the results of usingprodigy, hamlet, and ebl.4.2 Training SetupWe used for training two randomly generated prob-lem sets for the blo
ks world: the �rst one with 400one goal problems and �ve blo
ks; and the se
ond onewith another 400 two goal problems and �ve blo
ks.Sin
e representation of ea
h domain version was dif-ferent, we generated the same problem twi
e: one fordomain versions that used the standard representa-tion (with the arm-empty, and holding); and anotherfor domain versions with the simpli�ed representation(without arm-empty and holding). Sin
e we used arandom problem generator that used arm-empty andholding, we did the following to make sure that the
omparison among domain versions was fair:� Ea
h time that arm-empty appeared in a problem,it was removed from the problem des
ription.� Ea
h time that holding appeared in a problem,the blo
k that the robot held was left on the ta-ble. Therefore, all initial 
on�gurations and goalstatements had all blo
ks on the table or on topof other blo
ks, but never held by the robot. Of
ourse, this 
auses some problems to be
ome eas-ier, be
ause, in the previous versions, in order tohold another blo
k, the robot �rst had to thinkon where to leave the blo
k it was holding, whilehere we are leaving it dire
tly on the table. But,it has the advantage of being fair when 
omparingthe standard domain des
ription with the simpli-�ed one, given that this last one does not reasonabout holding blo
ks.In the logisti
s domain, we generated a training setof 400 one goal problems and �ve obje
ts, airplanes,tru
ks, and 
ities. In this 
ase, for representation rea-sons, the only 
hanged we had to do in problem formu-lations was to 
hange all inside-x predi
ates for inside,

and all at-x predi
ates for at. We gave 200 se
onds oftime limit for solving ea
h problem in both domainsduring learning of ebl and hamlet.Then, we trained the three learning systems: hamlet,ebl, and evo
k. hamlet was trained as explainedin previous se
tions. Sin
e there are many di�erenteays to train the learning systems, we performed thetests always using the best 
on�guration found for ea
hlearning system. In the 
ase of hamlet, results usingthe 800 training problems were worse than using onlythe �rst 400, so we used for 
omparison the resultsof using those 400 problems. ebl learned rules fromall de
isions that were not the �rst alternative triedin ea
h node. Then, a utility analysis was performed.A

ording to the usual equation (Minton, 1988),u(r) = s(r)� p(r) �m(r)where u(r) is the utility of a rule r, s(r) is the time thatthe rule saves when used, p(r) is the probability thatthe rule would mat
h, and m(r) is the 
ost of usingthe rule (mat
hing time). Therefore, we estimated thefollowing variables:� s(r): given that ea
h rule is learned from a nodein a sear
h tree, we set s(r) to the number ofnodes below the node from where it learned therule, multiplied by the time prodigy4.0 takes toexpand a node. A better estimate would havebeen 
omputed by using a se
ond training set ofproblems as Minton did.� p(r): we estimated it as the number of times thatprodigy4.0 tried to use the rule in subsequentproblems in the training phase divided by thenumber of times that it a
tually �red. As be-fore, a better estimate would be to use a se
ondtraining set.� m(r): it is estimated as the total mat
hing timeadded over all times that it tried to mat
h therule divided by the number of times that it triedto mat
h it.After training, the utility u(r) of ea
h rule is 
om-puted, and rules that do not have a number of timesthat it �red greater than one are removed. Also, weused two utility thresholds: 0 and 0.5. So, rules that donot have a higher utility than 0/0.5 are removed. Thisgenerates two versions of ebl for ea
h domain version.Sin
e a threshold of zero still keeps many rules, wehave only used 0.5 for the experiments reported here.



In the 
ase of evo
k, sin
e it is a sto
hasti
 method,we performed around 25 experiments for ea
h 
on�g-uration. we will present the result for the best in-dividual, and the average for all individuals and thestandard deviation.4.3 Testing SetupFor testing, we generated problems of diverse 
om-plexity with the same random pro
edure des
ribedbefore. In the blo
ks world, we generated 18 testsets ea
h with ten problems. We varied the numberof blo
ks and goals, having the following 
on�gura-tions of (goals,blo
ks): (1,5), (1,10), (1,20), (1,50),(2,5), (2,10), (2,20), (2,50), (5,5), (5,10), (5,20), (5,50),(10,10), (10,20), (10,50), (20,10), (20,20), (20,50), and(50,50). We did something similar for the logisti
sdomain, generating also the 
on�gurations: (10,5),(20,10), and (50,20).Time limit for test problems was set to 150 for all 
on-�gurations and domains. Segre et al. (1991) dis
ussthe e�e
t of de�ning a time limit for a fair 
omparison,given that if one would in
rease that limit, the learningsystems might �nd solutions, while the base problemsolver might not. While the authors are theoreti
allyright, we did not �nd experimentally a big di�eren
eby multiplying the time limit by two or three. First,we believe that, in order to �nd a big di�eren
e withthe reported results in terms of solvability, one wouldhave to in
rease in an order of magnitude (or more)the time limit. In fa
t, we would like to perform thoseexperiments in the near future.Se
ond, suppose (whi
h is not far from reality in most
ases, at least, in ours) that the goal of using learningsystems for problem solving is to attain an optimalbehavior after learning: in ea
h de
ision of the sear
htree, sele
t the alternative that will lead dire
tly tothe best solution without exploring failure bran
hes.If that is the goal of the resear
h, one would have toadmit as a (partial) failure (even if we do not do it)when the learning system does not learn to for
e thatoptimal behavior. Optimal behavior in the 
ases of alltest problems that we have generated (up to 50 goalsand obje
ts/blo
ks), would mean in prodigy4.0 toexpand a number of nodes whi
h is equal to 4�o, whereo is the number of operators in the solution. For 50goal problems the maximum number of operators in anoptimal solution is 200 for the blo
ks world and 500 forthe logisti
s domain. Given that the ma
hines we areusing expand a node in 2 millise
onds, it would need atmost 4�500�0:002 = 4 se
onds for solving optimallyea
h test problem. Therefore, imposing a time limit of150 se
onds for ea
h problem is way beyond the time

that we should expe
t an optimal learnt knowledge tosolve ea
h problem. If it does not solve the problemin that time, we will have to work harder (as it is the
ase, given that learning in problem solving is not asolved task).We measured the following variables:� number of learned rules by ea
h learning system;� number of solved problems: if a 
on�gurationfound a solution in the time limit de�ned before;� delta-time: sin
e we wanted to 
ompare the e�e
tof representation in various domain des
riptionsfor learning, we used the di�eren
e between thetime that prodigy4.0 spent to solve ea
h prob-lem and the time that the learning system spent;and� delta-solution-length: 
omputed as the di�eren
eof the number of operators in the solutions byprodigyand the number of operators in the solu-tions by the learning systems. This is an estimateof the optimality of the solutions that the plan-ner with the learned knowledge provides when thequality metri
 is the solution length.4.4 ResultsTable 2 and 3 show the number of rules learned by ea
hlearning system in ea
h domain. In the 
ase of ebl,the tables show the number of rules used for the ex-periments (after utility pruning) and, in parentheses,the original number of rules (before pruning).Table 2. Number of learned rules in the blo
ks world.System Standard Simpli�ed Reverse Withoutfun
tionshamlet 6 11 6 6ebl 13 (661) 5 (328) 12 (640) 16 (635)evo
k 3 1 2 2Table 3. Number of learned rules in logisti
s.System Standard Plain Withoutfun
tionshamlet 32 24 1ebl 27 (297) 33 (300) 0 (30)Tables 4 and 5 show the number of solved problemsby the di�erent learning systems and prodigy4.0 inthe blo
ks world and in the logisti
s domain given thetime limit des
ribed before. In the 
ase of evo
k,



the tables show the results of the best individual, theaverage of all individuals and the standard deviation(�).Table 4. Number of solved problems over 180 in the blo
ksworld.System Standard Simpli�ed Reverse Withoutfun
tionsprodigy4.0 92 169 92 92hamlet 128 149 128 128ebl 90 168 89 89evo
k (best) 144 169 166 143evo
k (ave.) 102 125 120 100evo
k (�) 21 41 32 37Table 5. Number of solved problems over 210 in logisti
s.System Standard Plain Withoutfun
tionsprodigy4.0 96 96 25hamlet 107 104 26ebl 103 103Figures 2, 3 and 4 show the a

umulated deltatime (di�eren
e of time between the time spent byprodigy4.0 and the learning system) of the solvedproblems by all 
on�gurations and domain of hamletand ebl in all domain versions of the blo
ks world.They were also ordered by time.Figures 5 and 6 show the a

umulated delta time (dif-feren
e of time between the time spent by prodigy4.0and the learning system) of the solved problems by all
on�gurations and domain of hamlet and ebl in allversions of the logisti
s domain, and ordered a

ordingto in
reasing diÆ
ulty for prodigy, measured by thetime that took prodigy4.0 to solve the problem. Inthe logisti
s domain, there is no result for the versionwithout fun
tions, given that being a diÆ
ult versionas dis
ussed in the next subse
tion, very few rules werelearnt by hamlet and ebl and the behavior was 
loseto that of prodigy. In Figure 7, we show the a

umu-lated di�eren
e in number of operators in the solutionbetween prodigy4.0 and hamlet (we do not showthese data for the blo
ks world, given that in that 
ase,the di�eren
e is very 
lose to zero).4.5 Dis
ussionWe 
an perform the following analysis from the datain the previous se
tion:Number of learned rules (Tables 2 and 3): the onlysigni�
ant di�eren
e between the various domain de-s
riptions is in the 
ase of the logisti
s domain withoutfun
tions, in whi
h hamlet 
ould only learn one rule,

-100

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

b
sb
rb

bwf

Figure 2. A

umulated delta time of solved problems by all
on�gurations of hamlet and prodigy4.0 for all variationsof domain theories for the blo
ks world.

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 10 20 30 40 50 60 70 80 90

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

b
sb
rb

bwf

Figure 3. A

umulated delta time of solved problems by all
on�gurations of ebl and prodigy4.0 for all variations ofdomain theories for the blo
ks world.



-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

b
sb
rb

bwf

Figure 4. A

umulated delta time of solved problems by all
on�gurations of evo
k and prodigy4.0 for all variationsof domain theories for the blo
ks world.

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 10 20 30 40 50 60 70 80 90 100

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

l
pl

Figure 5. A

umulated delta time in the solution of solvedproblems by the 
on�gurations of hamlet and prodigy4.0for the best two variations of domain theories for the logis-ti
s.

-120

-100

-80

-60

-40

-20

0

20

0 10 20 30 40 50 60 70 80 90 100

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

l
pl

Figure 6. A

umulated delta time of solved problems by all
on�gurations of ebl and prodigy4.0 for all variations ofdomain theories for the logisti
s.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f a
cc

um
ul

at
ed

 o
pe

ra
to

rs

Problems

l
pl

Figure 7. A

umulated di�eren
e of the number of opera-tors in the solution of solved problems by the 
on�gurationsof hamlet and prodigy4.0 for the best two variations ofdomain theories for the logisti
s.



while ebl did not learn any useful rule. This is dueto the diÆ
ulty that this domain poses for prodigy,making it hard for prodigy4.0 to expand the sear
htrees. Given that both hamlet and ebl (in this im-plementation) need to expand the whole tree to learnrules, they 
ould only use very few a
tual trainingproblems for learning.Solvability (Tables 4 and 5): in the 
ase of the blo
ksworld, it is 
lear that the simpli�ed version is easierthan the rest, so all 
on�gurations solve more prob-lems. Removing the expli
it handling of the robotarm makes the domain mu
h easier. In this domain,no learning system was able to improve over prodigy.Also, it is very remarkable that there is no signi�
antdi�eren
e between the rest of domain versions.In the 
ase of the logisti
s domain, the opposite hap-pens: there is a version of the domain mu
h harderthan the rest, and it 
onsists on removing the bindings�lters implemented by fun
tions on the pre
onditionsof operators.Time to solve problems (Figures 2 through 6):in the 
ase of the blo
ks world, the tables 
learlyshow that the di�eren
e between the time spent byprodigy4.0 and the learning systems is minimal forthe simpli�ed version, given that prodigy4.0 is thebest option for that domain version. In the rest ofversions of the domain, the di�eren
es in time to solvethe problems tend to be high in absolute value. Whilehamlet and evo
k have better times than prodigy,ebl does worse (negative values of the di�eren
e).In the 
ase of the logisti
s domain, all 
on�gurations oflearning systems use more time in the solved problemsthan prodigy. This might be 
aused by the fa
t thatthese systems learn more rules in the logisti
s domainthan in the blo
ks world, and, therefore, the mat
hingpro
ess takes longer. Also, with respe
t to the dif-feren
e of solutions lengths between prodigy4.0 andhamlet, hamlet learns rules that provide better so-lutions (shorter in this 
ase), spe
ially in the 
ase ofpotentially harder domain versions, su
h as the plainlogisti
s domain version.5. Con
lusionsThe main 
on
lusion of this paper is that good rep-resentations (like the simpli�ed blo
ks world) tend tomake 
ontrol knowledge learning less ne
essary, as faras solvavility is 
on
erned. On the other hand, learn-ing 
an alleviate the user e�ort for writing eÆ
ientdomain theories.In the logisti
s domain, one of the representations

obtains very bad results, and we should expe
t thatlearning provides large gains in performan
e. However,if the representation is so ineÆ
ient that even simpleproblems 
annot be solved by the base planner, thensystems that learn from tra
es (ebl, hamlet) will notbe able to learn mu
h. However, other systems thatdo not rely on previous exe
utions of the base planner(like a simple modi�
ation of evo
k) might over
omethis problem.Referen
esAler, R., Borrajo, D., & Isasi, P. (1998). Geneti
programming and dedu
tive-indu
tive learning: Amultistrategy approa
h. Pro
eedings of the FifteenthInternational Conferen
e on Ma
hine Learning (pp.10{18). Madison, Wis
onsin.Borrajo, D., & Veloso, M. (1997). Lazy in
rementallearning of 
ontrol knowledge for eÆ
iently obtain-ing quality plans. AI Review Journal., 11, 371{405.Donoho, S., & Rendell, L. (1995). Rerepresenting andrestru
turing domain theories: A 
onstru
tive in-du
tion approa
h. Journal of Arti�
ial Intelligen
eResear
h, 2, 411{446.Kohavi, R., & John, G. (1997). Wrappers for featuresubset sele
tion. Arti�
ial Intelligen
e., 97, 273{324.Koza, J. R. (1992). Geneti
 programming: On theprogramming of 
omputers by means of natural se-le
tion. Cambridge, MA: MIT Press.Lin, L.-J. (1993). S
aling-up reinfor
ement learningfor robot 
ontrol. Pro
eedings of the Tenth Interna-tional Conferen
e on Ma
hine Learning (pp. 182{189). Amherst, MA: Morgan Kaufman.Minton, S. (1988). Learning e�e
tive sear
h 
ontrolknowledge: An explanation-based approa
h. Boston,MA: Kluwer A
ademi
 Publishers.Qu, Y., & Kambhampati, S. (1995). Learning sear
h
ontrol rules for plan-spa
e planners: Fa
tors a�e
t-ing the performan
e (Te
hni
al Report), ComputerS
ien
e Department, Arizona State University.Segre, A., Elkan, C., & Russell, A. (1991). Te
hni
alnote: A 
riti
al look at experimental evaluations ofEBL. Ma
hine Learning, 6, 183{19.Veloso, M., Carbonell, J., P�erez, A., Borrajo, D., Fink,E., & Blythe, J. (1995). Integrating planning andlearning: The prodigy ar
hite
ture. Journal of Ex-perimental and Theoreti
al AI, 7, 81{120.




