
Knowledge Representation Issues in Control Knowledge LearningRiardo Aler aler�inf.u3m.esDaniel Borrajo dborrajo�ia.u3m.esPedro Isasi isasi�ia.u3m.esDepartamento de Inform�atia, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Legan�es,Madrid, Spain AbstratKnowledge representation is a key issue forany mahine learning task. There have al-ready been many omparative studies aboutknowledge representation with respet to ma-hine learning in lassi�ation tasks. How-ever, apart from some work done on rein-forement learning tehniques in relation tostate representation, very few studies haveonentrated on the e�et of knowledge rep-resentation for mahine learning applied toproblem solving, and more spei�ally, toplanning. In this paper, we present an ex-perimental omparative study of the e�etof hanging the input representation of plan-ning domain knowledge on ontrol knowl-edge learning. We show results in two las-sial domains using three di�erent mahinelearning systems, that have previously showntheir e�etiveness on learning planning on-trol knowledge: a pure ebl mehanism, aombination of ebl and indution (hamlet),and a Geneti Programming based system(evok).1. IntrodutionKnowledge representation is a key issue for any ma-hine learning task. There have already been someomparative studies about knowledge representationwith respet to mahine learning in lassi�ation tasks.There is even a set of topis devoted to hanging theinput representation of the examples for improving thelearning task with issues suh as feature seletion (Ko-havi & John, 1997) or onstrutive indution (Donoho& Rendell, 1995). However, apart from some workdone on reinforement learning tehniques in relationto state representation (Lin, 1993), very few studieshave onentrated on the e�et of knowledge represen-tation for mahine learning applied to problem solving,

and more spei�ally, to planning. In (Qu & Kamb-hampati, 1995), the authors present results in threevariations of the bloks world. They disuss di�er-enes with respet to using onditional e�ets, and/oruniversal quanti�ers. But, they only ompared withrespet to variations of the same tehnique: ebl.One of the main di�erenes between mahine learningapplied to problem solving and lassi�ation is thatproblem solving tasks required for most systems tosolve some set of problems given by an initial stateand a set of goals to generate the learning examples.Changing the representation of the domain theory anhange the solvability horizon of problems, and there-fore, the ability to generate learning examples, giventhat most learning systems require �nding a solutionto learn. In this paper, we present an experimentalomparative study of the e�et of hanging the inputrepresentation of domain knowledge for mahine learn-ing in planning tasks. We show results in two lassialdomains using three di�erent mahine learning sys-tems, that have previously shown their e�etivenesson learning planning ontrol knowledge: a pure eblmehanism (Minton, 1988), a ombination of ebl andindution (hamlet) (Borrajo & Veloso, 1997), anda geneti programming driven system (evok) (Aleret al., 1998).2. The Learning TaskThe goal of the three systems onsidered in this artileis to learn ontrol knowledge for a state spae planneralled prodigy (Veloso et al., 1995). prodigy4.0 is anonlinear planning system that follows a means-endsanalysis. The inputs to the problem solver algorithmare:� Domain theory, D (or, for short, domain), thatinludes the set of operators speifying the taskknowledge and the objet hierarhy;

Referencia bibliográfica
Published in:Proceedings of 17th International Conference on Machine Learning, 2000. p. 1-9



Table 1. Example of a ontrol rule for seleting the unstakoperator.(ontrol-rule selet-operator-unstak(if (and (urrent-goal (holding <objet1>))(true-in-state (on <objet1> <objet2>))))(then selet operator unstak))� Problem, spei�ed in terms of an initial on�gu-ration of the world (initial state, S) and a set ofgoals to be ahieved (G); and� Control knowledge, C, desribed as a set of ontrolrules, that guides the deision-making proess.prodigy4.0 's planning=reasoning yle, involves sev-eral deision points, namely:� selet a goal from the set of pending goals andsubgoals;� hoose an operator to ahieve a partiular goal;� hoose the bindings to instantiate the hosen op-erator;� apply an instantiated operator whose preondi-tions are satis�ed or ontinue subgoaling on an-other unsolved goal.We refer the reader to (Veloso et al., 1995) for more de-tails about prodigy. In this paper it is enough to seethe planner as a program with several deision pointsthat an be guided by ontrol knowledge. If no on-trol knowledge is given, prodigy4.0 might make thewrong deisions at some points, requiring baktrak-ing and reduing planning eÆieny. Table 1 showsan example of ontrol knowledge represented as a ruleto determine when the operator unstak must be se-leted. Control knowledge an be handed down bya programmer or learned automatially. The goal ofthis paper is to observe the e�ets of di�erent rep-resentations of the same domain on learning ontrolknowledge for that domain.3. Desription of the Learning SystemsIn this Setion, the three systems (ebl, hamlet andevok) involved in the experimental study will be de-sribed. As ebl is atually one of the subomponentsof hamlet, ebl and hamlet will be desribed in thesame Subsetion.

3.1 ebl and hamlethamlet is an inremental learning method based onebl (Explanation Based Learning) and indutive re-�nement (Borrajo & Veloso, 1997). The inputs tohamlet are a task domain (D), a set of training prob-lems (P), a quality measure (Q)1 and other learning-related parameters. The output is a set of ontrol rules(C). hamlet has two main modules: the Bounded Ex-planation module, and the Re�nement module. ham-let's Bounded Explanation module is the ebl systemthat has been used in this paper. Figure 1 shows ham-let modules and their onnetion to prodigy.
Measure
Quality

mode
Learning

Refinement
module

PRODIGY
Problems
Training

Bounded Explanation
module

Learned
Control
Knowledge

Q

L

DomainD

O

C

C’

ST

ST

C

HAMLET

C
P

parameter
Optimality

Figure 1. hamlet's high level arhiteture.The Bounded Explanation module generates ontrolrules from a prodigy4.0 searh tree. The details anbe found in (Borrajo & Veloso, 1997). These rules willbe referred to as ebl rules in the experimental Setion.The ebl rules might be overly spei� or overly gen-eral. hamlet's Re�nement module solves the prob-lem of being overly spei� by generalizing rules whenanalyzing positive examples. It also replaes overlygeneral rules with more spei� ones when it �nds sit-uations in whih the learned rules lead to wrong de-isions. hamlet gradually learns and re�nes ontrolrules, in an attempt to onverge to a onise set oforret ontrol rules (i.e., rules that are individuallyneither overly general, nor overly spei�). ST andSTC are planning searh trees generated by two alls toprodigy4.0 planning algorithm with or without on-trol rules (respetively. C is the set of ontrol rules,and C0 is the new set of ontrol rules learned by theBounded Explanation module.3.2 evokWe only intend to provide a summary of evok andrefer to (Aler et al., 1998) for details. evok is a ma-hine learning system for learning ontrol rules based1A quality metri measures the quality of a plan interms of number of operators in the plan, exeution time,eonomi ost of the planning operators in the plan or anyother user de�ned riteria.



on Geneti Programming (GP) (Koza, 1992). GP isan evolutionary omputation method that has beenused for program indution and mahine learning. GPsearhes in the spae of omputer programs, tryingto �nd a \good enough" omputer program aordingto some metri. GP an be seen as a kind of heuris-ti beam searh. Initially, the beam (or population)is made up of randomly generated omputer programs(or individuals). These individuals are seleted aord-ing to a heuristi (or �tness) funtion and modi�ed bymeans of the so alled geneti operators.In evok, the individuals are sets of ontrol rulesthat are manipulated by evok's geneti operators.evok's individuals are generated and modi�ed a-ording to a grammar that represents the languageprovided by prodigy4.0 for writing orret ontrolrules. evok's geneti operators an grow (ompo-nents of) rules, remove (omponents of) rules andross parts of rules with parts of other rules, just likethe GP rossover operator does. evok also inludessome tailor made operators for modifying ontrol rules.evok's guiding heuristi -the �tness funtion- mea-sures individuals aording to the number of planningproblems from the learning set they are able to solve,the number of nodes expanded and the size of the indi-vidual (smaller individuals are preferred beause theyrun faster).4. Experiments and ResultsIn this setion, we will �rst desribe the variationson representation of domain theories. Then, we willpresent the training and testing setups, and, �nally, wewill present the obtained results and a disussion onthose results. It is very important to bear in mind thatthe goal of this paper is to analyze the e�et of hang-ing the representation of a domain theory in planningfor several learning systems. Therefore, we have inten-tionally not ompared the di�erent learning systemsamong them.4.1 Domain Theories RepresentationIn order to analyze the impat of knowledge represen-tation on the task of learning problem solving ontrolknowledge, we de�ned the following domains relativeto the bloks world:2� Standard bloks world (b): four operators (un-stak, stak, pik-up, and put-down) with a teston the ones with two arguments (unstak and2We have left a version of the �rst two domains inhttp://salab.u3m.es/�dborrajo/hamlet/

stak) that heks that these arguments are notequal.� Simpli�ed bloks world (sb): two operators (put-on and new-tower) with a test on both that heksthat their arguments are not equal. This ver-sion has been used in many experiments in thebloks world, and has the advantage over the pre-vious one that there is no reasoning about thearm being empty, beause movement operationson bloks are atomi; that is, they are not sep-arated in two operations: taking the blok andleaving the blok.� Reverse bloks world (rb): the same four oper-ators as the standard version, but two operators(unstak and pik-up) are presented in the oppo-site order in the domain desription �le. Sineprodigy4.0 (as most other planners) follows theorder by whih operators have been de�ned whenmaking blind deisions, this hange might a�etthe behavior of the learning system. For instane,learning when to selet an operator might be eas-ier than learning when to selet the other one.� Standard bloks world without funtions (bwf):it is the standard version without the hek fordi�erene between the arguments of operators.We also used the following versions of the logistis do-main:� Standard logistis domain (l): six opera-tors (load-airplane, load-truk, unload-airplane,unload-truk, y-airplane, and drive-truk) andprediates suh as at-truk, at-airplane, at-objet,inside-airplane, inside-truk. Here, we have usedthe standard version of the logistis domain inprodigy4.0 where one an de�ne funtions inthe preonditions to de�ne �lters on the values ofthe variables of the operators. Apart from that,variables are assigned to types. For example, forunload-truk operations only truks in the sameity as the destination loation of the objet to betransported are seleted.� Plain logistis domain (pl): six operators, butwe have removed the \semantis" of the predi-ates, leaving the above mentioned prediates intwo: at and inside. This is theoretially more dif-�ult than the previous domain, sine there aremore operators now that ahieve those goals. Forthe new prediate inside, in the standard version,one would subgoal either on inside-airplane, whihfores to use operator load-airplane, or on inside-truk, whih fores to use operator load-truk. In



this new version, sine there is only one insidefor both previous prediates, the planner wouldselet both operators for any subgoal on inside.The same happens with prediate at.� Standard logistis domain without funtions(lwf): here, he have removed the funtions allsfrom the preonditions, so that variables an haveany value within their types (as in the ase of thelast version of the bloks world). This domain de-sription is also theoretially more diÆult thanthe standard one, given that the planner an re-ate more bindings (substitutions) for eah vari-able. We only report here the results of usingprodigy, hamlet, and ebl.4.2 Training SetupWe used for training two randomly generated prob-lem sets for the bloks world: the �rst one with 400one goal problems and �ve bloks; and the seond onewith another 400 two goal problems and �ve bloks.Sine representation of eah domain version was dif-ferent, we generated the same problem twie: one fordomain versions that used the standard representa-tion (with the arm-empty, and holding); and anotherfor domain versions with the simpli�ed representation(without arm-empty and holding). Sine we used arandom problem generator that used arm-empty andholding, we did the following to make sure that theomparison among domain versions was fair:� Eah time that arm-empty appeared in a problem,it was removed from the problem desription.� Eah time that holding appeared in a problem,the blok that the robot held was left on the ta-ble. Therefore, all initial on�gurations and goalstatements had all bloks on the table or on topof other bloks, but never held by the robot. Ofourse, this auses some problems to beome eas-ier, beause, in the previous versions, in order tohold another blok, the robot �rst had to thinkon where to leave the blok it was holding, whilehere we are leaving it diretly on the table. But,it has the advantage of being fair when omparingthe standard domain desription with the simpli-�ed one, given that this last one does not reasonabout holding bloks.In the logistis domain, we generated a training setof 400 one goal problems and �ve objets, airplanes,truks, and ities. In this ase, for representation rea-sons, the only hanged we had to do in problem formu-lations was to hange all inside-x prediates for inside,

and all at-x prediates for at. We gave 200 seonds oftime limit for solving eah problem in both domainsduring learning of ebl and hamlet.Then, we trained the three learning systems: hamlet,ebl, and evok. hamlet was trained as explainedin previous setions. Sine there are many di�erenteays to train the learning systems, we performed thetests always using the best on�guration found for eahlearning system. In the ase of hamlet, results usingthe 800 training problems were worse than using onlythe �rst 400, so we used for omparison the resultsof using those 400 problems. ebl learned rules fromall deisions that were not the �rst alternative triedin eah node. Then, a utility analysis was performed.Aording to the usual equation (Minton, 1988),u(r) = s(r)� p(r) �m(r)where u(r) is the utility of a rule r, s(r) is the time thatthe rule saves when used, p(r) is the probability thatthe rule would math, and m(r) is the ost of usingthe rule (mathing time). Therefore, we estimated thefollowing variables:� s(r): given that eah rule is learned from a nodein a searh tree, we set s(r) to the number ofnodes below the node from where it learned therule, multiplied by the time prodigy4.0 takes toexpand a node. A better estimate would havebeen omputed by using a seond training set ofproblems as Minton did.� p(r): we estimated it as the number of times thatprodigy4.0 tried to use the rule in subsequentproblems in the training phase divided by thenumber of times that it atually �red. As be-fore, a better estimate would be to use a seondtraining set.� m(r): it is estimated as the total mathing timeadded over all times that it tried to math therule divided by the number of times that it triedto math it.After training, the utility u(r) of eah rule is om-puted, and rules that do not have a number of timesthat it �red greater than one are removed. Also, weused two utility thresholds: 0 and 0.5. So, rules that donot have a higher utility than 0/0.5 are removed. Thisgenerates two versions of ebl for eah domain version.Sine a threshold of zero still keeps many rules, wehave only used 0.5 for the experiments reported here.



In the ase of evok, sine it is a stohasti method,we performed around 25 experiments for eah on�g-uration. we will present the result for the best in-dividual, and the average for all individuals and thestandard deviation.4.3 Testing SetupFor testing, we generated problems of diverse om-plexity with the same random proedure desribedbefore. In the bloks world, we generated 18 testsets eah with ten problems. We varied the numberof bloks and goals, having the following on�gura-tions of (goals,bloks): (1,5), (1,10), (1,20), (1,50),(2,5), (2,10), (2,20), (2,50), (5,5), (5,10), (5,20), (5,50),(10,10), (10,20), (10,50), (20,10), (20,20), (20,50), and(50,50). We did something similar for the logistisdomain, generating also the on�gurations: (10,5),(20,10), and (50,20).Time limit for test problems was set to 150 for all on-�gurations and domains. Segre et al. (1991) disussthe e�et of de�ning a time limit for a fair omparison,given that if one would inrease that limit, the learningsystems might �nd solutions, while the base problemsolver might not. While the authors are theoretiallyright, we did not �nd experimentally a big di�ereneby multiplying the time limit by two or three. First,we believe that, in order to �nd a big di�erene withthe reported results in terms of solvability, one wouldhave to inrease in an order of magnitude (or more)the time limit. In fat, we would like to perform thoseexperiments in the near future.Seond, suppose (whih is not far from reality in mostases, at least, in ours) that the goal of using learningsystems for problem solving is to attain an optimalbehavior after learning: in eah deision of the searhtree, selet the alternative that will lead diretly tothe best solution without exploring failure branhes.If that is the goal of the researh, one would have toadmit as a (partial) failure (even if we do not do it)when the learning system does not learn to fore thatoptimal behavior. Optimal behavior in the ases of alltest problems that we have generated (up to 50 goalsand objets/bloks), would mean in prodigy4.0 toexpand a number of nodes whih is equal to 4�o, whereo is the number of operators in the solution. For 50goal problems the maximum number of operators in anoptimal solution is 200 for the bloks world and 500 forthe logistis domain. Given that the mahines we areusing expand a node in 2 milliseonds, it would need atmost 4�500�0:002 = 4 seonds for solving optimallyeah test problem. Therefore, imposing a time limit of150 seonds for eah problem is way beyond the time

that we should expet an optimal learnt knowledge tosolve eah problem. If it does not solve the problemin that time, we will have to work harder (as it is thease, given that learning in problem solving is not asolved task).We measured the following variables:� number of learned rules by eah learning system;� number of solved problems: if a on�gurationfound a solution in the time limit de�ned before;� delta-time: sine we wanted to ompare the e�etof representation in various domain desriptionsfor learning, we used the di�erene between thetime that prodigy4.0 spent to solve eah prob-lem and the time that the learning system spent;and� delta-solution-length: omputed as the di�ereneof the number of operators in the solutions byprodigyand the number of operators in the solu-tions by the learning systems. This is an estimateof the optimality of the solutions that the plan-ner with the learned knowledge provides when thequality metri is the solution length.4.4 ResultsTable 2 and 3 show the number of rules learned by eahlearning system in eah domain. In the ase of ebl,the tables show the number of rules used for the ex-periments (after utility pruning) and, in parentheses,the original number of rules (before pruning).Table 2. Number of learned rules in the bloks world.System Standard Simpli�ed Reverse Withoutfuntionshamlet 6 11 6 6ebl 13 (661) 5 (328) 12 (640) 16 (635)evok 3 1 2 2Table 3. Number of learned rules in logistis.System Standard Plain Withoutfuntionshamlet 32 24 1ebl 27 (297) 33 (300) 0 (30)Tables 4 and 5 show the number of solved problemsby the di�erent learning systems and prodigy4.0 inthe bloks world and in the logistis domain given thetime limit desribed before. In the ase of evok,



the tables show the results of the best individual, theaverage of all individuals and the standard deviation(�).Table 4. Number of solved problems over 180 in the bloksworld.System Standard Simpli�ed Reverse Withoutfuntionsprodigy4.0 92 169 92 92hamlet 128 149 128 128ebl 90 168 89 89evok (best) 144 169 166 143evok (ave.) 102 125 120 100evok (�) 21 41 32 37Table 5. Number of solved problems over 210 in logistis.System Standard Plain Withoutfuntionsprodigy4.0 96 96 25hamlet 107 104 26ebl 103 103Figures 2, 3 and 4 show the aumulated deltatime (di�erene of time between the time spent byprodigy4.0 and the learning system) of the solvedproblems by all on�gurations and domain of hamletand ebl in all domain versions of the bloks world.They were also ordered by time.Figures 5 and 6 show the aumulated delta time (dif-ferene of time between the time spent by prodigy4.0and the learning system) of the solved problems by allon�gurations and domain of hamlet and ebl in allversions of the logistis domain, and ordered aordingto inreasing diÆulty for prodigy, measured by thetime that took prodigy4.0 to solve the problem. Inthe logistis domain, there is no result for the versionwithout funtions, given that being a diÆult versionas disussed in the next subsetion, very few rules werelearnt by hamlet and ebl and the behavior was loseto that of prodigy. In Figure 7, we show the aumu-lated di�erene in number of operators in the solutionbetween prodigy4.0 and hamlet (we do not showthese data for the bloks world, given that in that ase,the di�erene is very lose to zero).4.5 DisussionWe an perform the following analysis from the datain the previous setion:Number of learned rules (Tables 2 and 3): the onlysigni�ant di�erene between the various domain de-sriptions is in the ase of the logistis domain withoutfuntions, in whih hamlet ould only learn one rule,

-100

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

b
sb
rb

bwf

Figure 2. Aumulated delta time of solved problems by allon�gurations of hamlet and prodigy4.0 for all variationsof domain theories for the bloks world.

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 10 20 30 40 50 60 70 80 90

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

b
sb
rb

bwf

Figure 3. Aumulated delta time of solved problems by allon�gurations of ebl and prodigy4.0 for all variations ofdomain theories for the bloks world.



-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

b
sb
rb

bwf

Figure 4. Aumulated delta time of solved problems by allon�gurations of evok and prodigy4.0 for all variationsof domain theories for the bloks world.

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 10 20 30 40 50 60 70 80 90 100

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

l
pl

Figure 5. Aumulated delta time in the solution of solvedproblems by the on�gurations of hamlet and prodigy4.0for the best two variations of domain theories for the logis-tis.

-120

-100

-80

-60

-40

-20

0

20

0 10 20 30 40 50 60 70 80 90 100

A
cc

um
ul

at
ed

 ti
m

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Problems

l
pl

Figure 6. Aumulated delta time of solved problems by allon�gurations of ebl and prodigy4.0 for all variations ofdomain theories for the logistis.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f a
cc

um
ul

at
ed

 o
pe

ra
to

rs

Problems

l
pl

Figure 7. Aumulated di�erene of the number of opera-tors in the solution of solved problems by the on�gurationsof hamlet and prodigy4.0 for the best two variations ofdomain theories for the logistis.



while ebl did not learn any useful rule. This is dueto the diÆulty that this domain poses for prodigy,making it hard for prodigy4.0 to expand the searhtrees. Given that both hamlet and ebl (in this im-plementation) need to expand the whole tree to learnrules, they ould only use very few atual trainingproblems for learning.Solvability (Tables 4 and 5): in the ase of the bloksworld, it is lear that the simpli�ed version is easierthan the rest, so all on�gurations solve more prob-lems. Removing the expliit handling of the robotarm makes the domain muh easier. In this domain,no learning system was able to improve over prodigy.Also, it is very remarkable that there is no signi�antdi�erene between the rest of domain versions.In the ase of the logistis domain, the opposite hap-pens: there is a version of the domain muh harderthan the rest, and it onsists on removing the bindings�lters implemented by funtions on the preonditionsof operators.Time to solve problems (Figures 2 through 6):in the ase of the bloks world, the tables learlyshow that the di�erene between the time spent byprodigy4.0 and the learning systems is minimal forthe simpli�ed version, given that prodigy4.0 is thebest option for that domain version. In the rest ofversions of the domain, the di�erenes in time to solvethe problems tend to be high in absolute value. Whilehamlet and evok have better times than prodigy,ebl does worse (negative values of the di�erene).In the ase of the logistis domain, all on�gurations oflearning systems use more time in the solved problemsthan prodigy. This might be aused by the fat thatthese systems learn more rules in the logistis domainthan in the bloks world, and, therefore, the mathingproess takes longer. Also, with respet to the dif-ferene of solutions lengths between prodigy4.0 andhamlet, hamlet learns rules that provide better so-lutions (shorter in this ase), speially in the ase ofpotentially harder domain versions, suh as the plainlogistis domain version.5. ConlusionsThe main onlusion of this paper is that good rep-resentations (like the simpli�ed bloks world) tend tomake ontrol knowledge learning less neessary, as faras solvavility is onerned. On the other hand, learn-ing an alleviate the user e�ort for writing eÆientdomain theories.In the logistis domain, one of the representations

obtains very bad results, and we should expet thatlearning provides large gains in performane. However,if the representation is so ineÆient that even simpleproblems annot be solved by the base planner, thensystems that learn from traes (ebl, hamlet) will notbe able to learn muh. However, other systems thatdo not rely on previous exeutions of the base planner(like a simple modi�ation of evok) might overomethis problem.ReferenesAler, R., Borrajo, D., & Isasi, P. (1998). Genetiprogramming and dedutive-indutive learning: Amultistrategy approah. Proeedings of the FifteenthInternational Conferene on Mahine Learning (pp.10{18). Madison, Wisonsin.Borrajo, D., & Veloso, M. (1997). Lazy inrementallearning of ontrol knowledge for eÆiently obtain-ing quality plans. AI Review Journal., 11, 371{405.Donoho, S., & Rendell, L. (1995). Rerepresenting andrestruturing domain theories: A onstrutive in-dution approah. Journal of Arti�ial IntelligeneResearh, 2, 411{446.Kohavi, R., & John, G. (1997). Wrappers for featuresubset seletion. Arti�ial Intelligene., 97, 273{324.Koza, J. R. (1992). Geneti programming: On theprogramming of omputers by means of natural se-letion. Cambridge, MA: MIT Press.Lin, L.-J. (1993). Saling-up reinforement learningfor robot ontrol. Proeedings of the Tenth Interna-tional Conferene on Mahine Learning (pp. 182{189). Amherst, MA: Morgan Kaufman.Minton, S. (1988). Learning e�etive searh ontrolknowledge: An explanation-based approah. Boston,MA: Kluwer Aademi Publishers.Qu, Y., & Kambhampati, S. (1995). Learning searhontrol rules for plan-spae planners: Fators a�et-ing the performane (Tehnial Report), ComputerSiene Department, Arizona State University.Segre, A., Elkan, C., & Russell, A. (1991). Tehnialnote: A ritial look at experimental evaluations ofEBL. Mahine Learning, 6, 183{19.Veloso, M., Carbonell, J., P�erez, A., Borrajo, D., Fink,E., & Blythe, J. (1995). Integrating planning andlearning: The prodigy arhiteture. Journal of Ex-perimental and Theoretial AI, 7, 81{120.




