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1. Introduction 

Solution concepts for coalitional garnes with an infinite set of players have been studied 

in rnany works. Most of these works deal with the core and the Shapley value. Bargain­

ing sets and related solution concepts for garnes with a finite set of players have been 

studied intensively (for a cornprehensive survey see Maschler[lO)). There are a few works 

concerning bargaining sets (and related concepts) of garnes with an infinite set of players. 

\Vesley[20] deals with the kernel of garnes with a countable set of players. Bird[3] studies 

the nuc1eolus-like solutions for garnes with a rneasurable space of players. Mas-Colell[13] 

introduces his bargaining set in the context of pure exchange econornies with a continllurn 

of agents. Shitovitz[18] deals with the Mas-Colell bargaining set in rnixed rnarket garnes. 

Einy et al. [8] study the :Mas-Colell bargaining set in convex garnes with a rneasurable 

space of players. 

The present work deals with the least core, the kernel, and the Allrnann-lVlaschler 

and Mas-Colell bargaining sets for superadditive garnes with a countable set of players. 

The least core was introduced by Maschler, Peleg and Shapley[12], where they study its 

relation to the kernel and the nuc1eolus. It is well known that the core of a continuous 

garne with a rneasurable space of players, if it is non-ernpty, consists of countably additive 

payoff rneasures (e.g., Schrneidler[16)). Here we show that the least core of a continuous 

superadditive garne with a countable set of players is a non-ernpty norrn-cornpact subset 

of the set of all countably additive rneasures defined on the set of coalitions (see Theorern 

A). 

The kernel of a cooperative garne was introduced by Davis and l'vIaschler[5]. Since then 

it has been the subject of rnany studies . Originally it was regarded as an auxiliary solu­

tion concept whose rnain task was to illurninate the properties of the Aurnann-Maschler 

bargaining seto Nevertheless, the kernel possesses interesting rnathernatical properties, 

and refiects in rnany ways the structure of the garne. The prekernel is a sirnplified version 

of the kernel which is not restricted to individually rational payoffs. We show that in 

continuous superadditive garnes with a countable set of players the prekernel (and hence 

the kernel) and the least core have a non-ernpty intersection. The proof of this result uses 

finite approxirnations. Wesley[20] proved by using non-standard analysis that under sorne 
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conditions the kernel of a superadditive game with a cOlmtable set of players is non-empty 

(for every coalition structure). We show that Wesley's conditions imply that the game is 

continuous. We also give an example of a continuous game which does not satisfy one of 

Wesley's conditions (see Lemma 4.3 and Example 4.4). Thus, Wesley's result is a special 

case of our result when the coalition structure includes onIy the grand coalition. 

The first definition of a bargaining set for cooperative games was given in Aumann 

and Maschler[l]. Recently, several new concepts of bargaining set have been introduced 

(see Maschler[lO] for a survey). Davis and Maschler[4] and Peleg[14] proved that the 

Aumann-Maschler bargaining set is non-empty in a coalitional game with a finite set of 

players. We show that in continuous superadditive games with a countable set of players, 

the Aumann-Maschler bargaining set contains the intersection of the prekernel and the 

least core, and thus it always contains a countably additive payoff measure (see Theorem 

C). 

J\Ias-ColEill[13] proposed a bargaining set which is a modification of the Aumann­

J\laschler bargaining seto One of the advantage of the Mas-Colell bargaining set is that 

it can be defined for games with a continuum of players. Mas-Colell[13] showed that in 

atornless pure exchange economies his bargaining set coincides with the set of competitive 

equilibria, and he pointed out that in finite coalitional games, the prekernel is always 

contained in his bargaining set (see also Vohra[19]). In the definition of the Mas-Colell 

bargaining set it is not assumed that payoffs are individually rationaL We show that in 

continuous superadditive games with a countable set of players the Mas-Colell bargaining 

set contains the intersection of the prekernel and the least core, and thus it always contains 

an individually rational countably additive payoff measure. 

The paper is organized as follows. Section 2 contains the basic definitions and the 

preliminary results which are relevant to our work. In Section 3 we prove that the least 

core of a continuous superadditive game with a countable set of players is a non-empty 

norm-compact subset of the space of all countably additive measures on the set of coali­

tions. In Section 4 we show that in continuous superadditive games with a countable set 

of players the least core and the prekernel have a non-empty intersection. In Section 5 we 

prove that in continuous superadditive games the bargaining set of Aumann and Maschler 

and that of Mas-Colell contain the intersection of the prekernel and the least coreo 
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i'------------------------------------------ ­

2. Basic Definitions and Preliminary Results 

In this section we define sorne basic notions we use throughout and prove sorne pre­

liminary results. 

2.1. Mathematical Preliminaries 

Let N be the set of natural numbers. The set of subsets of N is denoted by 2N • The 

set of all functions f : N - {D, 1} is denoted by {D, l}N. Note that {D, l}N is a compact 

metric space (as the product of countable metric spaces), and convergence of sequences in 

this metric is identical to pointwise convergence. Every S E 2N can be naturally identified 

with its indicator function ls E {D, l}N . The correspondence S ~ ls induces a metric 

on 2N under which it is compact. It is wen known that a sequence {Sn}~=l converges to 

S (written limn ......oo Sn = S) in this metric if and only if 

where limn--+ooSn = U~=l nk::n SkI and limn--+ooSn = n~=l Uk::n Sk. 

If {Sn}~=l is a sequen ce of sets in 2N such that Sn e Sn+l, and U~=l Sn = S we' 

write Sn /' S. Similarly, if {Sn}~=~ is a seqllence of sets in 2N such that Sn+l e Sn, and 

n~=l Sn = S, then we write Sn '\. S. Note that if {Sn}~=l is a sequence such that Sn /' S 

or Sn '\. S, then limn --+oo Sn = S. A function v : 2N - 1R is monotonic if v (S) :::; v (T) 

whenever S e T. A function v on 2N is continuous if it is continous with respect to the 

natural topology on 2N defined aboye. For monotonic functions we have the following 

characterization of continuity. 

Lemma 2.1. Let v: 2N 
- 1R be a monotonic function. Then v is continuous if and only 

if for every S E 2N we have limn --+oo v (Sn) = V (S) whenever Sn /' S or Sn '\. S. 

Proof: 'Ve prove the non-obvious part of the lemma. Let S E 2N 
• Assume limn --+oo v (Sn) = 

V (S) whenever Sn /' S or Sn '\. S. We show that v is continuous at S. Let {Sn}~=l 

be such that limn --+oo Sn = S; that is S = limn.....ooSn = limn--+ooSn. \Ve show that 

limn .....oo v (Sn) v (S). For each n let An = n~n Sk, and Bn = U~n Sk. As v is mono­

tonic and An e Sn e Bn for each n, then v (An) :::; v (Sn) :::; v (Bn) for each n. Now, 
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An+l :JAn and S = limSn = U~=l An' Also Bn+l e Bn, and S = limSn = n~=l Bn. 

Thus, An / S and Bn '\. S. Hence by our assumption 

lim v (An ) = lim v (Bn ) = v (S) ,n.....oo n.....oo 

and therefore limn.....oo v (Sn) = V (S) .0 

The Banach space of aH bounded finitely additive measures on 2N with the variation 

norm is denoted by bao Its closed subspace consisting of all countable additive measures 

is denoted by ca. It is well known that ba is naturally identified with the dual space of 

loo = loo (N) , which is the Banach space of all bounded sequences of real numbers. Also, 

ca can be naturaHy identified with II = l¡ (N) ; Le., every x E l¡ corresponds to Jlx E ca, 

where 

Jlx (S) = ¿Xi, 
iES 

for every S E 2N • 

The following lemma plays an important role in our work. 

Lemma 2.2. Let K be a weak*-compact subset ofba that contains only countably additive 

measures (i.e., K e ca). Then K is norm-compact. 

Proof: Since K e ca, we can view K as a subset of .el' As ba is the norm-dual of .eoo , 

which in turns is the norm-dual of .el, the weak* topology induced by ba on K coincides 

with the weak topology induced by .el on K. Hence K is a weakly compact subset of .el. 
Since .el is a separable Banach space, the weak topology on its weakly compact subsets 

is metrizable (see e.g., Theorem 3.V.6.3 in Dunford-Schwartz[7]). Therefore K is weakly 

sequentially compact in .el. By Schur's Theorem (see Diestel[6], page 85, and Corollary 14 

page 296 of Dunford-Schwartz[7]), weak convergence and norm convergence of sequences 

are equivalent in .el; hence K is norm-compact in .e1.0 

2.2. Game Theoretic Preliminaries 

\Ve refer to the members of N as players, and to each subset of N as a coalition. A 

game is a bounded function v : 2N -- ~ satisfying v (0) = O which is superadditive; that 

is, v satisfies v (S UT) ~ v (S) + v (T) for every two disjoint subsets S, T E 2N
, and for 
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which there is A E ca such that v (S) ~ A(S) for every S E 2N 
• (Note that the later 

requirement is satisfied for every non-negative set function v with A=O.) Note that every 

AE ca is continuous, and that if v (S) ~ A(S) for all S, then V-A is a monotonic functiolí. 

Hence by Lernma 2.1 a game v is continuous on 2N if and only if limn ....oo v (Sn) = V (S) 

whenever Sn /' S or Sn '\. S. Note that our definition of continuity coincides with that 

of Schmeidler[16] (see also Aumann and Shapley[2]). 

For every game v and every coalition S E 2N , we define 

n 

av (S) = infI: v (Si), 
i=l 

where infimum is taken over all finite partitions {SI, S2, ... ,Sn} of S. Note that av (i) = 

v ({í}) for every í E N. Note also that av E ba. Moreover, av is the largest measure in ba 

such that av (S) ::; v (S) for all S E 2N ; that is, if AE ba and A(S) ::; v (S) for all S E 2N , 

then A::; av (pointwise). AIso, if v is continuous then av E ca. 

A payoff measure (or a preimputation) is a measure A E ba such that A(N) v (N) . 

A payoff measure A is individually rational if A ~ av . An imputation is an individllally 

rational payoff measure. The set of all imputations is denoted by 1 (v) . 

3. The Least eore 

Recall that the core of a game v, denoted by e (v), is the set off all imputations 

J.t E 1 (v) such that J.t (S) ~ v (S) for each S E 2N • For every A E ba let f (A) = 

sup{v (S) - A(S) I S e N}. The least core of the game v, denoted Le (v) , is the set 

of all imputations J.t E 1 (v) for which f attains its minimal value on 1 (v) . 'Note that 

since f is the supremum of affine weak*-continuous functions, it is a convex and lower 

semicontinuous function on ba. As 1 (v) is a weak*-compact subset of ba, f attains its 

minimal value €v on 1 (v) . Therefore Le (v) is a non-empty convex weak*-compact subset 

of 1 (v). \Ve note that €v ~ O, and €v = O if only if e (v) '# 0. In this case e (v) = Le (v). 

Theorem A. Let v be a continuous game. Then Le (v) is a non-empty convex norm­

compact subset oi ca. 
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Proof: By Lemma 2.2 it suffices to prove that LC (v) e ca. Without loss of generality 

(w.l.o.g.) assnme that Uv is identically zero. (Alternatively, we could replace the game v 

with the game w = v - U v , which is also continuous and satisfies Jl E LC(w) if and only 

if Jl + U v E LC (v).) AIso w.l.o.g. assume that v (N) = 1. Finally, we may assume that 

fv > O, as otherwise the result follows from Schmeidler[16]. 

Let Jl E LC (v). By Theorem 1.23 of Yosida and Hewitt[21], Jl can be uniquely 

decomposed into a sum of a non-negative countably additive measnre Jlc and a non­

negative purely finitely additive measnre Jlp (Le., a measnre Jlp satisfying Jlp (S) = O, for 

each finite S E E). We must show that Jlp is identically zero. As Jlp is non-negative, 

it snffices to show that Jlp (N) = O. Assume that Jlp (N) > O. We show that this 

implies that max {v (S) - Jlc (S) I S E 2N } > fv· This leads to a contradiction since 

max { v (S) - Jlc (S) I S E 2N } (which exists because v - Jlc is continuous) is. bounded 

aboye by fv. Indeed, let S E 2N , and for every n E N define Sn = {1, ... , n} . Then 

v (S) - Jlc (S) = limn -+oo (v (S n Sn) - Jlc (S n Sn)) 

limn -+oo (v (S n Sn) - Jl (S n Sn)) 

In the remaining of the proof of Theorem A assume that Jlp (N) > O. The proof 

proceeds in several steps. 

STEP 1: We show that Jlc (N) > O. 

Assume by way of contradiction that Jlc (N) = O. Then Jl = Jlp. As Jl E LC (v), 

v (S) - Jl (S) :::; t v , for every S E 2N. As v is continuous, we have limn -+oo v (Sn) = 

v (N) = 1. Since Jl = Jlp and Jlp (Sn) = O, we have v (Sn) - Jl (Sn) = v (Sn), for each 

n . . Therefore t v 2:: v (Sn) for each n, and thus fv = 1. Let e E 1 (v) be given for 

each S E 2N by e(S) = ¿íES 2-i 
. As v - eis continuous, there is S* E 2N such that 

v(S*) - e(S*) = max {v (S) - e(S) I S E 2N 
}. From the definition of fv it is clear that 

1 = t v :::; v (S*) - e(S*); hence S* =1= 0. Alsov (S) :::; 1, and e(S) > Ofor each S =1= 0 in 

2N • Surnming up these ineqnalities we have 

which is a contradiction. Hence Jlc (N) > O. 


STEP 2: \Ve show that the payoff measure >. = I'-c(N)Jlc is a member of LC (v). 
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Let Q = p)N)' As /lp (N) > 0, Q > 1. For each S E 2N we have 

v (S) - ,,\ (S) = v (S) - Q/le (S) = v (S) - /le (S) - (o - 1) /le (S) :5 V (S) - /le (S) . 
\/ 

Recall that Sn = {1, ... ,n}. Then for all S E 2N we have 

V (S) -,,\ (S) = limn~oo (V (S nSn) - ,,\ (S nSn)) 

:5 limn~oo (V (S n Sn) - /-Le (S n Sn)) 

= 1imn~oo (V (S n Sn) - /l (S n Sn)) 

Therefore ,,\ E Le (v) . 


STEP 3: "Ve show that max {v (S) - /le (S) I S E 2N 
} > f v , and we will get the desired 


contradiction. 


For every S E 2N we have V (S) - /le (S) 2:: V (S) - /l (S). As /-L E Le (v), we have 

sup {v (S) /l (S) I S E 2N
} = fv· Hence max {v (S) - /le (S) I S E 2N } 2:: fv. We show 

that this inequality is strict. Assume to the contrary that max {v (S) - /le (S) I S E 2N } = 
fv. Let ,,\ = pc(N)/-Le; by Step 2, ,,\ E Le (v). Now if S E 2N is such that v (S) -,,\ (S) = f v , 

then ,,\ (S) = O. For otherwise we would have v (S) - /le (S) > v (S) - ,,\ (S) = fv. Let 

So = {i E N I ,,\ ({i}) = O}. Because ,,\ E ca, ,,\ (So) = O. Let 8 E 2N be such that 

v (8) - ,,\ (S) = fv (8 =F 0because fv > O); hence ,,\ (8) = 0, and therefore Se So. Thus, 

So =F 0. 

Let j E N\So. Then"\ ({j}) > O. Let ej = {S E 2N I j E S}. The set {ls I S E ej } 

is a closed subset of {O, 1}N in the topology of pointwise convergence, and therefore it 

is compacto Let Q E ej be such that v (Q) -,,\ (Q) = max {v (S) -,,\ (S) I S E ej }. Let 

6 = v (Q) -,,\ (Q) . If 6 = f v , then"\ (Q) = 0, which is impossible since j E Q, and therefore 

,,\ (Q) 2:: ,,\ ({j}) > O. Hence 6 < fv. Let °< f < min (,,\ ({j}) ,fv - 6) , and for each i E So 

let fi = L €2-
i 

_1 • AIso for each i E N define
2

lESo 

fi i E So 

~ ( { i}) = ,,\ ({j}) - f i = j 
,,\ ({i} ) i <t So U {j} 

Note that ~ E ca+. 1Ioreover, since ~ (So) = f, we have ~ (N) = 1, and therefore 

~ E 1 (v) . \Ve show that max { v (S) - ~ (S) I S E 2N } < f v , and this will contradict the 

definition of fv. Let S E 2N , S =F 0. We distinguish two cases. 
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(a) 	S e so. In this case we have v (S) - ,\ (S) < v (S) - A(S) ~ Ev. 

(b) S = SI U S2, where SI e So, and S2 e N\So satisfies S2 '# 0. Since S2 '# 0, we have 


A(S) > O; hence v (S) - A(S) < Ev- If irt S, then v (S) - ,\ (S) ~ v (S) - A(S) < Ev. If 


j E S, then v (S) - A(S) ~ 8. Thus 


v (S) - .x (S) = v (S) - A(S) + A(S) - ,\ (S) 

~ 8 + A (S) - ,\ (S) 

= A(SI) - ,\ (SI) 8 + A({j}) - ,\ ({j}) 

The following example taken from Kannai[9] (Example 2.1) shows that when a game 


is not continuous its least core may contain only purely finitely additive payoff measures. 


Example 3.4. Define a game v by 

1 N\S is finite 
v (S) = 

{ O otherwise. 


It is easy to see that the core of v is not empty, and therefore it coincides with the least 


coreo Since a payoff measure J.l E ba is in the core of v if and only if J.l (S) = O for each 


finite S E 2N , the least core of v contains only purely finitely additive measures. 


Remark: The least core for games with a finite set of players was defined by Maschler, 


Peleg and Shapley[12] as the set of all payoff measures J.l for which 


min max (v (S) - A(S))
>'E/«(v) S=l=0,S=l=N 

is attained at A = J.l, where I* (v) is the set of preimputations. It can be easily verified 

that for games with an empty core our definition applied to a game with a finite set of 

players coincides with the aboye definition. However,if e (v) '# 0 then Le (v) = e (v) 

according to om definition, whereas the original definition may yield a strict subset of the 

coreo 

4. 	The Kernel 

The set of all payoff measures in a game v is denoted by I* (v) ; that is 


I* (v) = {J.l E ba I J.l (N) = v (N)}. 
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For i,j E N, i j, define the set 

AIso for i,j E N, i i= j, and p, E ba define 

The prekernel of v is the set 

The kernel of v is the set 

K (v) = {p, E I (v) I ( Sij (p,) - Sjdp,)) (p, ({j}) - O"v ({j})) ~ O, \ji,j E N, i i= j}. 

The notion of the kernel of a eoalitional game with a finite set of players was introdueed 

by Davis and Masehler[5]. It is well-known that if v is a superadditive game with a finite 

set ofplayers, then K (v) = PK (v) (see Theorem 2.7 in !\Iasehler, Peleg and Shapley[ll]). 

It is also well-knownthat for sueh games K (v) n LC (v) i= 0. In faet, the nucleolus of 

v is eontained in this intersection (see Corollary 6.7 in !\Iasehler, Peleg and Shapley[12], 

and Theorem 3 in Sehmeidler[15]). Theorem B below establishes that the prekernel (and 

henee the kernel) and the least eore have a non-empty intersection for eontinuous games. 

Theorem B. Let v be a continuous game. Then PK (v) n LC (v) 0. In particular, 

P K (v) contains an individually rational countably additíve payoff measure. 

We need the following lemmas. 

Lemma 4.1. Let v be a continuous game. Then each functíon Sij, í,j E N" i j, is 

norm-contínuous on ca. 

Proof: Let p, E ca and let {p'n} ~=l e ca be s11ch that limn ....oo IIp'n - p,1I = O. \Ve show 

that for eaeh i,j E N, i i= j, limn ....oo Sij (p'n) = Sij (p,). Note that the set {ls I S E 7iú 
is a closed (and therefore a eompact) subset of {O, l}N in the topology of pointwise 
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convergence. Since v is continuous and each f.Ln E ca, v - f.Ln attains its maximum on Tij. 

For each n E N let Sn E Tij be such that Sij (f.Ln) = v (Sn) - f.Ln (Sn) , and similarly let 

S E Tij satisfying Sij (f.L) = V (S) - f.L (S) . Since v (S) - f.L (S) ;::: v (Sn) - f.L (Sn) for every 

n E N, we have 

V (Sn) - f.Ln (Sn) ::; v (Sn) - f.Ln (Sn) + (v (S) - f.L (S)) - (v (Sn) - f.L (Sn)) 

=v (S) - f.L (S) + f.L (Sn) - f.Ln (Sn) 

::; v (S) f.L (S) + 1If.L - f.Lnll· 

AIso we have v (Sn) - f.Ln (Sn) ;::: v (S) - f.Ln (S) for each n E N. 

As 11f.L - f.Lnll -- O, limn_oo (v (Sn) - f.Ln (Sn)) = v (S) - f.L (S). Hence, 

Lernrna 4.2. Let w be a game with afinite support (i.e., for some n ;::: 1, w (S n {1, "') n}) = 
w (S)) for all S E 2N J. Then PK (w) n Le (w) =1= 0. 

Proof: W.l.o.g. assume that w ;::: O. Let ~ = {S E 2N I S e {1, ... , n}} , and let u 

be the restriction of w to ~. Since w is superadditive , u is a superadditive game with a 

finite set of players. Therefore by Theorem 2.7 in lvIaschler, Peleg and Shapley[ll], we 

have PK (u) = K (u), and by Corollary 6.7 in Maschler, Peleg and Shapley[12], we have 

PK (u) n Le (u) =1= 0. 

Let f.L E PK (u) n Le (u). Define 

l::;i::;n
ji ({i}) = { f.L({i}), 

O, otherwise. 

Obviously ji E ca, and therefore there is S* E 2N such that 

w(S*) - ji (S*) = max {w (S) - ji (S) I S E 2N
} . 

Now, 

Ew ::; W (S*) - ji (S*) 

= u(S* n {1, ...,n}) - f.L(S* n {1, ...,n}) 
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Let ). E Le (w) ; since ). minimizes the function f (e) = sup { w (S) - e(S) I S E 2N } 

on 1 (w), we have ). (S) = ofor each S e N\ {1, ... ,n}. Thus 

€w = max { w (S) - ). (S) I S E 2N 
} 

=max{u(Q)-).(Q) I QE~} 

Rence w (S*) - jl (S*) = €w, and therefore jl E Le (w). 

Now, 

max{w(S)-jl(S) I SE'lij}=max{u(Q) J-l(Q)·1 QE~n'lij}, (4.1) 

and 

max{w(S)-jl(S) 1 SE'lji}=max{u(Q)-J-l(Q) I QE~n'lji}' (4.2) 

As J-l E PK (u) n Le (u), we get from (4.1) and (4.2) that jl E PK (w) n Le (w).O 

\Vith these results at hand we can now complete the proof of Theorem B. 

PROOF OF THEOREM B: 

Assume, w.l.o.g., that O"v is identically zero and v (N) = 1. For every n E N let 

Sn = {1, ... , n}, and let Vn be the garue given by Vn(S) . V (S n Sn). By Lemma 4.2, 

for each n E N there is J-ln E PK (vn) n Le (vn). As the garues V n are continuous, 

then by Theorem A, J-ln E ca for each n. Let ÑI be the weak*-closure in ba of the set 

M = {J-ln I n E N} . \Ve show that M is a norm-compact subset of ca. As M is a weak*­

compact subset of ba, then by Lemma 2.2 it suffices to show that M e ca. Moreover, 

since }vI e ca, it suffices to show that each J-l E M\M is a member of ca. Let J-l E M\M. 

Then there exists a net {J-ln(a:) I a E D} in M which converges to J-l. Let ). E Le (v) . By 

Theorem A, ). E ca. We distinguish four cases (note that ). 2:: O and ). (N) = 1) : 

(1) The net {). (Sn{a:)) Ia E D} does not converges to 1. In this case there is a subnet 

that converges to a number a E [0,1). Assume, w.l.o.g., that {). (Sn{Q)) Ia E D} itself 

converges to a. Let € > O be such that a € < 1; then there is ao E D such that for 

each a ~ ao (here ~ denotes the order relation on D) we have ). (Sn(a:)) < a + € < 1. 

As limn .....oo ). (Sn) = 1, there is no E N such that ). (Sn) > a + € for every n > no· 
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Thus, for each (l t (lo we have n ((l) ~ no. Let 8 E 2N , As {J.tn(o)} converges in the 


weak*-topology to J.t, the net {J.tn(o) (8)) converges to J.t (8) . Hence there is /30 E D such 


that for each /3 t /30 we have lJ.tn(t3) (8) - J.t (8)1 < E. From the definition of a net it 


follows that there is "1 E D, such that "1 t (lo, and "1 t /30' Therefore n ("f) ~ no, and 


\J.tnh') (8) - J.t (8)\ < E.Thus we have shown that if O < E< 1 a is given, then for each 


8 E 2N there is 1 ~ n S; no such that 1J.tn (8) - J.t (8)1 < E. Since the set {1, ''', no} is 


finite and é can be chosen arbitrarily small, there is 1 ~ n < no such that J.tn (8) = J.t (8) . 


2NWe now show that this implies that J.t E ca. Assume that {1I}~1 e is a non­

decreasing sequence of coalitions such that U~l 11 = N. Then for every l E N there is 

1 S; n S; no such that J.tn (11) = J.t (11) . Therefore there is a subsequence {lk}~=l e N, 

and 1 S; n ~ no, such that J.t (1I k ) = J.tn (1I k ) for each k E N. As J.tn E 1 (vn) n ca+, 

limk->ooJ.tn (1Ik) = 1. Therefore limk-ooJ.t(T¡k) = 1. Now {J.t(1I)}~1 is a non-decreasing 

and bounded sequence of real numbers, and therefore it converges. As {J.t (1I k )}~1 is a 

subsequence of {J.t (1I)}~1 which converges to 1, we have liml->oo J.t (11) = 1. Thus, J.t E ca. 

(2) The net {v (8n(o») }does not converge to 1, then an argument similar to the one given 

in (1) yields that J.t E ca. 

(3) There exists a coalition 8 such that the net {vn(O) (8)} does not converge to v (8) . 

In this case we use the argument we used in (1) to obtain that J.t E ca. 

(4) Cases (1)-(3) do not hold. As A E Le (v), then for each (l E D and all 8 e N we 

have 

Since A(8n(o»)converges to 1, we assume, w.l.o.g., that A (8n(o») > Ofor each (l E D. For 

any 8 e N and (l E D let 

and 
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Then >'n(o} E 1 (Vn(o}) , and the net {an(o}} converges to zero. AIso for every 8 e N we 

have 

vn(Q} (8) - >'n(o} (8) ~ v (8 n 8n(Q}) - >. (8 n 8n(o}) + an(o~ 

Therefore 

As Jln(o) E Le (vn(Q}) , for every 8 e N we have 

vn(Q) (8) - Jln(o} (8) ~ Ev + an(o}' 

Hence for every 8 e N we have 

v (8) Jl (8) ~ Ev. 

Thus Jl E Le (v) . As v is continuous, by Theorem A, Le (v) e ca. Therefore Jl E ca. 

\Ve have shown that in any case Jl E ca. Thus, fiI e ca, and therefore it. is norm­

compact in ca. As the sequence {Jln In E N} e ]\:1, there is a subsequence {Jln,J:'l which 

converges in the norm to a member Jl of ca. As limk-+oo Jl (8nlc ) = limk->oo v (8n,,) = 1, 

and limk->oo vn" (8) = v (8) for each 8 E 2N , an argument identical to the one given 

in (4) aboye yields Jl E Le (v). Let i,j E N, i i= j. Since Jln" E PK (vn,,) for each 

k E N, we have Síj (Jln,,) = Sji (Jln,,). By Lemma 4.1, limk-+oo Sij (Jln,,) = Sij (Jl), and 

limk-+oo Sji (Jln,,) = Sji (Jl). Therefore Sij (Jl) = Sji (Jl), and thus Jl E PK (v). Hence, 

PK (v) n Le (v) 0.0 

\iVesley[20] showed by using non-standard analysis that a non-negative game v has a 

non-empty kernel (for every coalition structure) if it satisfied the following conditions: 

(4.3) For each 8 E 2N , limn ->00 (v (8) -v(8n{1, ... n})) = O; and 

(4.4) L
00 

Ti < 00, where Ti = sup {v (8 U {í}) - v (8) 18 e N\{í}}. 
i=l 

'Ve show that. (4.3) and (4.4) imply that v is continuous, and then we give an example 

of a cont.inuous game which does not satisfy (4.4). Thus, \Vesley's Theorem is a special 

case of Theorem B when the coalition structure is {N}. 

Lemma 4.3. Assume that v ís a non-negative game which satisfies (4.3) and (4.4). Then 

v is contínuous. 
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Proof: Let S E 2N . We first show that if {Sn}:=1 is a non-decreasing sequence 

of coalitions such that U~=1 Sn = S, then limn ....oo v (Sn) = V (S). Indeed, if {Sn}:=1 

is such a sequence then for each n E N there is iñ (n) such that m ~ iñ (n) implies 

S n {1, ... , n} e Sm. As v is monotonic we have 

v (S n {1, ... , n}) ~ V (Sm) ~ V (S) , 

for every m ~ iñ (n). Thus by (4.3), limn-+oo v (Sn) = V (S). 

Assllme now that {Sn}:=1 is a non-increasing seqllence of coalitions sllch that n~=1 Sn = 
S. We show that limn -+oo 11 (Sn) = V (S). For A e N we define r (A) = EiEA ri- Then 

rE ea+. Let n E N, and let B E 2N be sllch that B n S 0. \Ve show that v (S U B) ­

v (B) ~ r (B). Define Bn = B n {1, ... , n}. Then by (4.4) 

As Bn+l ::::> Bn, and U~=1 Bn = B, by what we have just shown, limn -+oo v (S U Bn) = 

v (S U B) . Since limn ....oo r (Bn) = r (B) , we have 

v (S U B) - v (S) ~ r (B). 

As B was an arbitrary coalition, for each n E N we have 

o~ 11 (Sn) - V (S) = v (S U (Sn \S)) - v (S) ~ r (Sn\S)_ 

As limn ....oo r (Sn\S) = O, we have limn_oo v (Sn) = V (S).O 

\Ve give an example of a non-negative continuous game which does not satisfy (4.4) . 

Example 4.4. For every O ~ x ~ 11et f (x) = 1 - Jf=X. Define a measure J.L E ca by 

J.L (S) = eEiES b, where e = (E~1 b) -1 . For every S e N let v (S) = f (J.L (S)). Since 

f is continuous on [0,1], 11 is continuous. Moreover, as f is convex on [0,1], v is conveXj 

that is, 

for each SI, S2 e N (see Shapley[17J), and in particular, v is superadditive. For every 

i E N we have 

ri = SUp {v (S U {i}) - v (S) IS e N\{i}} ~ v (N) - 11 (N\{i}) . 
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As 

v (N) - v (N\{í}) = V!,
1, 

(
we have 

Thus L~lrí = 00, and (4.4) is not satisfied. 

As it was mentioned aboye, Maschler, Peleg, and Shapley[12] showed that for super­

additive games with a finite set of players the kernel coincides with the prekernel. By 

Theorems B there are always countably additive payoffs measures in the kernel and the 

prekernel of a continuous superadditive game on 2N • Using the compactness of 2N the 

same proofs as those of Theorem 2.4 and Theorem 2.7 in J\Iaschler, Peleg, and Shapley[12] 

yield 

Proposition 4.5. Let v be a continuous (superaddítíve) game. Then every countably 

additive payoff measure in P K (v) is individually rational. 

Proposition 4.6. Let v be a continuous (superadditive) game. Then 

K (v) n ca = P K (v) n ca. 

5. Bargaining Sets 

In this section we establish that the Aumann-Maschler and the lvlas-Colell bargaining 

sets of a continuous game with a countable set of players are non-empty sets which contain 

the intersection of the prekernel and the least coreo 

Let v be a game, let j.l E 1 (v), and let i,j E N, i i= j, be two players. An objection of 

í to j in j.l is a pair (A, A) such that AE ba, A2:: O'v, A e N, í E A, j fj. A, A(A) :::; v (A) , 

and A({k}) > j.l({k}) for each k E A. A counterobjection of j to (A,A) is a pair (B,~) 

such that ~ E ba, ~ 2:: O'v, B e N, j E B, i fj. B, ~(B) :::; v(B), ~({k}) 2:: j.l({k}) for 

k E B\A, and ~ ({k}) 2:: A ( { k}) for k E A n B. A justified objection of i E N to j in j.l is 

an objection which does not have a counterobjection. The Aumann-Maschler bargaining 
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set (see Aurnann and Maschler[l]) ofv is the set B (v) of all irnputations Jl E I (v) such 

that no player i has a justified objection to another player in Jl. 

Davis and Maschler[4], and Peleg[14] showed that if v is a garne with a finite set of 

players, then B (v) is a non-ernpty seto For this class of garnes, Davis and Maschler[5] 

proved that K (v) is a subset of B (v). Theorern Cbelow establishes that if v is a 

continuous garne, then the intersection of the prekernel and the .least core is contained 

B (v). 

Theorem C. Let v be a continuous game. Then the P K (v) n LC (v) e B (v). In 

particular, B (v) contains a countably additive payoff measure. 

Proof: vV.l.o.g. assurne that 0'1} is identically zero. By Theorern B, PK (v)nLC (v) 

0. Let Jl E P K (v) n LC (v) . By Theorern A, Jl E ca. vVe show that Jl E B (v) . Assurne 

to the contrary that Jl ~ B (v). Then there are i,j E N, i j, such that j has a 

justified objection (A, A) to i in Jl. By t.he Yosida and Hewitt Theorern[21], A can be 

uniquely decornposed into a surn of a non-negative countably additive measure Ac , and 

a non-negative purely finitely additive rneasure Ap (note that A ~ 0'1}, and thus A ~ O). 

As Ap vanishes on finite subsets of N, we have Ac ({k}) > Jl ({k}) for each k E A, and 

Ac (A) S A(A) S v (A) . Since any counterobjection to (A, Ac) is also a counterobject.ion 

to (A, A) , (A, Ac) is a justified objection. Since vis continuous and Jl E ca, there is B E 2N 

such that i E B, j ~ B, and 

Sij (Jl) = v (B) - Jl (B) . 

As Jl E PK (v), 


v (B) - Jl (B) = Sjí (Jl) ~ v (A) - Jl (A) . 


Since Ac ({j}) > Jl ({j}) , 

v (A) - Jl (A) ~ 2: (Ac ( { k}) - Jl ( { k} ) ) 
keA 

> 2: (Ac ( { k}) - Jl ( { k} )) . 
keAnB 

Therefore 

v (B) - I: Jl ( { k}) > I: (Ac ( { k} ) - Jl ( { k} )) ; 
keA keAnB 
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Le., 

v(B» ¿ Ac({k})+ ¿ JL({k}). 
kEAnB kEB\A ( 

For each 8 e N let e(8) = Ac (8 n A)+JL (8 n (B\A)). Then e(B) $ v (B) by the last 

inequality, and ií k E A n B, e({k}) = Ac ({k} ) , and ií 1E B\A, then e ( {l}) = JL ({l} ) . 

Thereíore each member oí B (and in particular player i) has.a counterobjection to the 

objection (A, Ac) oí j, whích contradicts the íact that (A, Ac) is a jllstified objection.O 

Mas Colell[13] proposed a notion oí bargaining set different írom that oí Aumann and 

:rvlaschler bargaining set,and showed that in the context of a market with a continllum 

oí players, this new bargaining set coincides with the set oí wallrasian allocations. The 

advantage oí the Mas-Colell bargaining set is that it can be defined íor games with an 

uncountable set oí players. 

The íollowing definitions are taken from Einy et al.[8]' who provide a straightíorward 

generalization oí the l\Ias-Colell[13] definition to games with an infinite set oí players. 

Let v be a game, and let JL be a payoff measure in v. An objection to JL (in t,he sense 

oí Mas-Colell) is a pair (A, A) such that A E 2N , and A E ba satisfies A(A) $ v (A) , 

A(A) > JL (A) , and A(B) 2:: JL (B) for every ~oalition B e A. A counterobjection (in the 

sense oí Mas-Colell) to the objection (A, A) is a pair (e, e) such that 

(5.1) eE ba, and e(e) $ v (e); 

(5.2) For every B e A n e, e(B) 2:: A(B), and íor every D e e\A, e(D) 2:: JL (D); 

and 

(5.3) e(e) > A(A n C) + JL (e\A). 

A justified objection is an objection whích has no counterobjection. The Mas-eolell bar­

gaining set oí v is the set fl.,fB (v) oí all payoff measures whích have no justified objection. 

Mas-Colell[13] in considering exchange economies with a continuum of agents, defines 

the bargaining set without restricting attention to individually rational allocations. Thus, 

his equivalence result holds íor a large seto From the point oí view oí an existence re­

sult it will be interesting to show that the Mas-Colell bargaining set always contains an 

individually rational payoff measure. Theorem D below establishes that the Mas-Colell 

bargaining set oí a continuous game contains the intersection oí the prekernel and the 

least core oí this game. As a consequence, for these games the Mas-Colell bargaining set 
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eontains an individually rational eountably additive payoff measure. 

Theorem D. Let v be a continuous game. Then PK (v) n Le (v) e MB (v). In partic­

ular, M B (v) contains an individually rational countably additive payoff measure. 

The following lemma will be useful in the proof of Theorem D. 

Lemma 5.1. Let v be game, and let f.,l be a payoff measure in v. 11 (A, A) is a justified 

objection to f.,l, then v (B) ~ A(B n A) + f.,l (B\A) lor each B E I::. 

Proof: Assume to the contrary that there is B E I:: sueh that v (B) > A (B n A) + 
f.,l (B\A). Then B f. 0. Let € = v (B) (A (B nA) + f.,l (B\A)) . Choose t E B, and let 8t 

be the probability measure eoneentrated on {t}. Define ~ E ba by 

~ (8) = A(8 n (B nA)) + f.,l (8 n (B\A)) + €8t (8). 

Thus, if 8 E I:: satisfies 8 e A n B we have ~ (8) ~ A (8) , and if 8 E I:: satisfies 8 e B\A 

we have ~ (8) ~ f.,l (8) . AIso 

~ (B) = v (B) > A(B n A) + f.,l (B\A). 

Thus (B,~) is a counterobjeetion to (A, A) , which is a eontradiction.D 

PROOF OF THEOREM D: 

\V.l.o.g. assume that O'v is identically zero. By Theorem B, PK (v) n Le (v) f. 0. Let 

f.,l E PK (v) n Le (v). By Theorem A, f.,l E ca. We show that f.,l E M B (v). Assume by 

way of contradiction that f.,l ~ M B (v). Then there is a justified objection (A, A) to f.,l. 

Sinee f.,l is a payoff measure, A f. N. Assume, w.Lo.g., that A(A) v (A) . Sinee (A, A) 

is a justified objection to f.,l, by Lemma 5.1 for eaeh B e A we have A(B) ~ v (B) . For 

eaeh 8 E 2N let vA (8) = v (8 n A), and AA (8) = A(8 n A) . Then AA is in the eore of 

the game VA. Sinee VA is eontinuous, AA E ca. As A (A) > f.,l (A) , there is j E A such 

that AA ({j}) > f.,l({j}). Let i E N\A. As f.,l E PK (v), there is e e N, i E e, j ~ e, 

sueh that v (e) - f.,l (e) = 8ij (f.,l) ~ v (A) - f.,l (A) . Sinee AA ({j}) > f.,l ({j}) , an argument 
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4 
identical to the one given in the proof of Theorem C yields 

v (C) > ¿ AA ({k}) + ¿ ¡.t ({ k}) 
kEAnC kEC\A ( 

= A(A n C) + ¡.t (C\A) . 

By Lemma 5.1 this eontradiets the assumption that (A, A) is a justified objeetion to ¡.t.O 
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