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Abstract 

This paper is concerned with a non-standard source of fluctuations, 

called echoes effects, i.e. the ability of an economy to reproduce 

its own past behaviour. In the sixties, growth theorists believed 

that this property could arise in vintage capital growth models, 

taking the form of replacement echoes. This line of research was 

stopped after the publication of Solow et al. (1966), who showed 

that echoes should vanish in a Solow growth model with vintage 

capital. In this paper, we claim that this result has nothing to do 

with vintages and comes directly from the constancy of the saving 

rate at equilibrium inherent to Solow growth models. We show that 

echoes do not vanish in the Ramsey vintage capital growth model 

with linear instantaneous utility function. 
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1 Introduction 

Modern economic theory gives essentially two different explanations for eco­
nomic fluctuations: the existence of exogenous uncertainty or the existence 
of non-linearities. However, in the sixties growth theorists were concerned 
with a third source of fluctuations, so-called echo effects, Le., the ability of 
an economy t.o reproduce its own past behavior. This property could arise in 
a vintage capital economy, where technological progress is embodied in new 

- machines. At each period, firms must decide how many old machines must 
be scrapped and how much to invest in new machines. Replacement activity, 
Le., the substitution of an ol~ machine for a new one, is the key-element of 
vintage capital models,_ and is the main cause of the e,qstence of replacement . 

_ echoes. When investment is mainly guided by replacement activity, invest­
ment today is high (resp. low) when we replacea high (resp. low) stock of 
old machines (Le., past investment). 

Although a great number of papers were written on vintage capital growth 
models in the 1960s,1 a very few of them were really concerned with the 
dynamic properties of these economies. Moreover, Solow et al. (1966) and 
Sheshinski (1967), two of these very few exceptions, showed that repla<;ement 
echoes should vanish in a Sol~w growth model with vintage capital (hereafter 
SVCM). In fact, this negative result is probably a mayor cause of the decline 
of the vintage capital literatuÍe- in the 1970's and 1980's. However, as we 
will show in this paper, the fundamental reason for this result has nothing to 
do with vintages and it comes directly from the main assumption in a Solow 
growth model, Le., at equilibrium investment is a constant fraction of output 
and does not depend on any optirnal replacement rule. 

It should be noted that the decline of vintage capitalliterature ment.ioned 
aboye can also be explained by the technical problems that confronted, and 
still confront, those who wish to go beyond the SVCM (in particular the con­
stancy of the investrnent rate). Indeed, sorne further and more recent impor­
tant developments along this research line have also marle sorne crucial techni­
cal contributions, as for exarnple the introduction of the differential-difference 
mathematicalliterature (Bellmand and Cooke (1963)) in economics. Using 
this mat.hernatical approach, Benhabib and Rustichini (1991) established the 
existence of periodic solutions in the setup of optimal growth with vintage 
capital. HowevE'r, these authors established this result for sorne exogenous 
physical or technical depreciation rules, e.g. the so-called "one-hoss shay 

ISee for example Johansen (1959) and Solow (1962). 
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model." In fact, the production teclÚlology considered in Rustichini and 
Benhabib, being more general than the Leontieff structure assumed in the 
SVCM, does not allow one to address the issue of endogenous replacement 
decisions straightforwardly. 

In a discrete time optimal growth model with vintage capital, Benhabib 
and Rustichini (1993) consider the possibility of endogenous determination of 
scrapping rules under gross complementarity in technology. However, prol;>­
ably due to technical reasons, the authors do n.ot characterize explicitly the 
replacement dynamics under endogenous scrapping. In order to be able to 
analyze the problem of endogenous scrapping in an optimal growth model, 
we come back to the Leontieff technology assumed in the sLxties and we pro­
yide a benchmark for the study of endogenous replacement dynamics, which 
are not really studied in the cited Benhabib and Rustichini contributions: 

According to the objectives mentio:hed just aboye, we study a continuous 
time Ramsey model with ·vintage capital and linear utility. Linear prefer­
ences are indispensable to bring out sorne explicit characterization of the 
solution paths. The model gives rise to comer and interior solutions. 'VVe 
fl1lly characterize each solution and show that the economy converges to the 
interior solution at a finite distance, independently of its investment initial 
profile. At the interior solution, \Ve show that detrended investment and out­
put are purely periodic, that. is to say echoes do occur in the long run in the 
linear Ramsey vintage capital growth model (hereafter LVCM). 'VVe conc1ude 
that the presence of vintages may _well cause replacement echoes in optimal 
growth models, in which the savings rate is not assumed constant. 

The paper is organized as follows: section 2 describes and briefty analyzes 
the SVCM, while section 3 provides the formulation of the LVCM. Section 4 
solves for the interior solution of the latter model and section 5 describes its 
comer solutions and the transition dynamics to the interior solution starting 
with any initial investment profile. Section 6 shows how replacement echoes 
should occur starting at a finite date and section 7 concludes. 

The Solow Vintage Capital Model 

The SVCM is described and analyzed in Solow et al. (1966) and Sheshinski 
(1967). It is defined by the following block recursive eql1ation system, \;ft ~ O: 

y(t) = [t i(z)dz (1) 
lt-T(t) 

[t i(z) exp{ -')'z} dz = 1 (2) 
lt-T(t) 
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i(t) = 8 y(t) (3) 

w(t) . exp{-y(t - T(t))} (4) 

r+J(t)
1 = lt (1 - w(z) exp{ -¡t}) R(z - t) dz (5) 

J(t) = T(t + J(t)) (6) 

with initial conditioñs i(t), Vt < O. 
y(t) is production, i(t) is investment, T(t) represents the age of the oldest 

operating machines or serapping time, w(t) is th~ wage rate, R(t) is the 
discount factor and J(t) rE~presents the expected scrapping time for machines. 
bought at time t. In order to reproduce the Kaldor stylized growth facts, 
technical progress is supposed to be labor augmenting or Harrod neutral 
by assuming that each machine of generation t has a labor requirement of 
exp{-¡t} workers. The parameter ¡ is supposed to be positive and represents 
technical progress. 

Equations (1) to (3) represent the equilibrium in both the goods and the 
labor market. The vintage technology is in eqúations (1) and (2). Machines 
from different vintages are supposed to produce one unit of output each 
and to require exp{ -¡t} wiits of labor. The labor supply is assumed to be 
constant and equal to one for simplicity. The key assumption in the Solow 
growth model is that at equ.ilibrium, a proportion s of output (the saving 
rate) is saved and invested. 

Equation (4) states that the equilibrium real wage is equal to the marginal 
productivity of labor, Le., the inverse of the labor requirement of the oldest 
(and marginal) operating machines. FinaHy, equation (5) corresponds to the 
optimal investment rule and states that the marginal cost of investing, which 
is equal to one, must be equal to the marginal revenue, which depends on 
the fllture scrapping of new machines. Equation (6) is just a definition, Le., 
the expected life time for new machines J(t) is equal to the scrapping time 
T(.) evaluated at t + J(t), which correspond with the time at which these 
new machines will be scrapped in the future. 

An important property of the SVCr..l is its block recursive structure, i.e., 
the backward part of the system, equations (1) to (3), can be solved first in 
y(t), i(t) and T(t). In particular, the age of the oldest operating machines 
T(t) is solved first of aH in equation (2) as a function of past investment 
only. Under the condition that 8> ¡, and sorne more technical assumptions, 
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Solow et al. show that the economy converges to a unique balanced growth 
path.2 Consequently, the SVCM has .the same qualitative dynamics as thé 
standard Ramsey growth model with homogeneous capital. 

Notice that the block recursive structure of the SVCM depends crucially 
on the key assumption of the Solow growth model, Le., investment is a con­
stant fraction of out,put. In a Solow growth model, households determine 
quantities and firms determine prices in the capital market. As a conse-. 
quence, equilibrium investment is determined by the savings behayior of 
households and the optimal rule for investment, equation (5),. is at the bot­
tom of a block recursive system, and determines the interest factor R(t). 

However, since the publication ofSolowet al.'s paper an important ques-. 
tion remains still open.: has the Ramsey model \vith vintage capital the~same 
qualitative dynamics than the SVCM and then the standard Ramsey growth 
model? Unfortunately, even if we can write dO\vn the optimal conditions for 
the Ramsey growth model with vintage capital, we cannot solve it 'in general 
since the equilibrium conditions for this economy give rise to a mixed-delay 
differential equation system with endogenous leads and lags. As stated by 
Boucekkine et al. (1996), until our days, this type of dynamic systems cannot 
in general be solved either mathematically or numerically. 

The Linear Ramsey Vintage Model 

As we cannot solve the general Ramsey vintage capital growth model, we 
focus on the linear utility case and we try to bring out an analytical char­
acterization of the Sollltion paths. Let a central planer solve the following 
problem: 

ma, 10
00 

c(t) exp{-pt} dt (7) 

subject to 

y(t) =¡t i(z)dz
t-T(t) 

(1) 

¡t i(z)exp{-,z}dz=l
t-T(t) 

(2) 

c(t) = y(t) ­ i(t) (8) 

O:::; i(t) :::; y(t) (9) 

given i(t) for all t < O. 

2See Boucekkine et al. (1996) for a numerical analyses of the dynamic behavior oC the 
SVCM. 
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In order to solve for this control problem we write down the Lagrangian 
function, denoted by Ct• Fol1owing Malcomson (1975), after changing thé 
order of integration, and some algebra, we get: 

00 00 

C(t) - "10 y(t) (1 - cj;(t) )e-pt dt + 10 w(t)e-pt dt ­

roo ( rt+J(t) )Jo i(t) 1 - Jt (cj;(z) - w(z)e--yt)e-p(z-t) dz e-pt dt ­

j o (lt+J(t) )i(t) 1 - (cj;(z) - w(z)e--yt)e-p(z-t) dz e-pt dt 
-T(O) t 

where 
J(t) = T{t + J(t)}. (6) 

cj;(t) and w{t) are the Lagrangian multipHers associated with constraints (1) " 
and (2) respectively. Our optimization problem is similar to the one discussed 
by Malcomson, except that our central planner structure may give rise to 
corner solutions.3 To characteríze corner and interior solutions we use a 
trivial tool, taking advantage of the linearity of the Lagrangian with respoct 
to i(t) and y{t). The optimal rules are, Vt ~ O: 

cj;{t) = 1 

w{t) = exp {"Y (t - T(t))} (4) 

O if <I>{t) < 1 
y{t) if <I>(t) > 1 (lO) 
[O, y{t)] if <I>(t) = 1 

where 

r+J(t)
<I>(t) =Jt (1 - e--y(t-z+T(Z))) e-p(z-t) dz . 

3 A more detailed discussion of the necessary and sufficient optimality conditions can 
be found in Malcomson (1975). Actually, the unique problem relies on the concavity of 
the Lagraugian with respect to J(t): a sufficient condition for a global optimum callnot be 
verifled before derivillg explicitly the solution for J(t) (as J(t) appears as an integration 
bound in the Lagrangian). Indeed, unlike in Malcomson, we are unable to check this 
condition analytically for a particular initial investment profile, as e.'<plained in details in 
subsection 5.2. 
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Conditions (10) describe the three possible regimes the economy can ex­
perience. At first, all the regimes are "feasible": depending on the initial 
investment profile, any regime can occur at least at t = O. To get an intu­
ition of this, observe that the initial conditions, i (t) with t < O, determine 
T (O) by (2), which is likely to mat.ter in the inequalities, at t = O, that 
characterize each of the three possible regimes. So, the basic mathematical 
problem of our model is that we cannot in general implement the intf?rior 
solution beginning at t = O, because the initial investment profile may not 
allow for it. 

In the following sections, we focus on the dynamics of T (t), since the 
block recursive structure of our problem -allows us to 'solve first equations 
(2), (6) and (10) on T(t), J(t) and i(t). Denoting the interior E>olution by 
(TO (t) ,Jo (t) , iO (t))t, we operates as follows: . 

i) 	 The Terborgh-Smith' resulto We show that, if the economy is sometime 
at the interior solution, then it stays on and both TO (t) and JO (t) are 
equal to the same constant function. 

ií) 	St.arting with any initial investment .profile, or alternatively with T (O) 
not necessarily equal to TO, we show that the economy converges at a 
finite distance to the interior solution. 

m) 	'We characterize the complete dynamics of investmenf and production, 
and in partiCular we show how replacement echoes affect these dynam­
ics. 

Before conducting the operations described just aboye, we need some 
assumptions on the initial investment profile, some of them merely for con­
venience: 

Assumption 1 

:3t* < O such that i (t) > O, Vt ~ t* "No holes" 
and Jt~ i (z) exp { -1'z} dz ~ 1 "full-employment" 

Assumption 2 "Piecewise cont.inuity" 

:3 (tI = t* < t2 < t3 .... < tn = O) E R":. such that: 

i) i (t) is continuous on ] tj, tj+l [ Vj E {l, 2, ... , n - l} 
ii) Vj E {l,2, ... ,n-l} lim i(t) < oc 

t......t; 
VjE {l,2, ... ,n-l} lim i(t) < 00 

+t ......t j 
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The" "no holes" assumption will alláw us to use sorne results established 
by Solow et al. (1966). The "full-employment" assumption is a sufficient 
condition to ensure that equation (2) makes sense at t = O. Assumption 2 
seems a little bit less general than in Solow et al., who only assumes integra­
bility. But in our framework, thís hypothesis ís necessary to get sorne explicit 
results. 

The next section is devoted to the characterizatiop. of the interior solution, 
solving for functíon T (t).and J (t) in the set of continuous j piecewise differen­
tiable flillctions, say in the CDf seto T (t) and J (t) are assumed continuous, 
differentiabIe functions in open intervals. They can be non-differentiable at 
sorne points where the one-sided derivatives, while finite, can be different. 
Our assumption is indeed more general than the one adopted (Le. global dif­
ferentiability) in analogous frameworks by Malcomson (1975) and van Hilten 
(1991). Obviously, it fits better the structure of our model since the transi­
tion from a regime to another can involve pointwise ·non-differentiabilities. 

Characterizing the interior solution 

This section fo11ows -Boucekkine et al. (1995). Let us assume that there 
exists O~ to < +00 such that the interior solution is implementable begin­
ning at t = too From the optimal condition (10), \Ve can focus first on the. 
determination of T (t) and J(t) in this regime, \vhich are determined by the 
system: 

rt+J(t)
<I>(t) = lt [1 - e-'Y(t-z+T(Zn] e-p(z-t)dz = 1 (11) 

J(t) =T(t+J(t)) (6) 

Provided that T (t) and J (t) are in the set eDi, we can state the fo11owing 
proposition: 

Proposition 1 For a given t > to, J (.) differentiable at t, J (t) and T (t) 
are such that 

T(t) = F(J(t)) 

with 

F (x) = _! In [1 - p + "( ­
"( 

2: + 2: exp { - px}] 
p p 

provided that F (x) is defined Vx 2: O. 
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Given that J (t) is differentiable at t, we can differentiate (11) and easily 
show Proposition 1 after some elementary manipulations. ' 

Now, in order to establish the Terborgh-Smith result, Le. TO(t) = JO(t) = 
TO with TO a specific constant, we make a further restriction on the param­
eters values: 

.Assumption 3 Parameters ¡ and p must. hold the following condition: 

O<¡<p<1. 

Assumption 3 is a standard assumption for the existence of solutions in e....(­
ogenous growth models. In fact, this assumption will allow us to use a fixed­
point argumEmt a la van Hilten (1991) in order to establish the Terborgh­
Smith property. This argument requires function F (.) being strictly increas­
ing and admitting a unique stridly positive fixed-point. It is easy to show 
that under Assumption 3, F (.) fulfills the latter requirements. 

We are able now to show the Terborgh-Smith property. First, we prove 
it by assuming global differentiability of T(t) and J(t) as in van Hilten, then 
we provide the' extension of the proof to the case of eDi func·tions. 

Proposition 2 Under Assumption 3, the unique diJjerentiable interior so­
lutions T(t) and J(t), t'~ to, are defined by 

T(t) = J(t) -:- TO 

with TO the positíve fixed-point of function F (.). 

Proof: By Proposition 1, we know that T(t) = F(J(t)), \;jt > to. By 
continuity of T (.), J (.), and F (.), we deduce T(t) = F(J(t)), \;jt ~ too Since 
J(t) ~ Oand F(x) > O, we have F(O) ~ T(t) ~ P, for every t ~ to, with 
P = lim F(x).

:1: .... +00 
Applying the latter inequalities at t + J(t) and using (6) yields F(O) ~ 
J(t) ~P, \;jt ~ too As F'(x) > O, for x ~ O, we get F (F(O)) ::; T(t) ~ F (p), 
\;jt ~ too 
As before, we can apply the latter inequalities at t+ J(t), find new lower and 
upper bounds for J(t) and then for T(t). Repeating this reasoning, we can 
rOllstruct a sequence of lower (Xn ) and upper bounds (Yn ) for T(t), \;jn ~ O 
and \;jt ~ to, such that: 

9 



where 

Xo = F(O) and Xn = F(Xn - 1), n ~ 1 
Yo = F and Yn = F(Yn- 1), n ~ 1 

It is easy to show that (Xn ) is an increasing bounded sequence and that (Y )n 
is a docreasing bounded sequence. Both of them converge by construction to 
the fixed-point of F(.), TO;o 

The extension to the eDf- case uses the following lemma: 

Lemma 1 Jf J(.) 	is differentiable at t, t > to, J(.} is differentiable at t+J(t). 

Proof: If J(t) is differentlable at any t > to, then: T(t) = F(J(t)). 
_ F(.) being a diffeomorphism, we have the equivalence: 

J(t) differentiable att ~ T(t) differenÜable ~t t 

On the other hand, differentiating (6) yields: 

J'(t) 
T'[t + J(t)] = 1 + J'(t) 

So if JI(t) exists, T'[t + J(t)] exists and so should exist JI[t + J(t)] given the 
equivalence before. . 
The case J'(t) = -1 is of course excluded by the definition of CDf functions 
as it involves an infinite derivative of T(.) at t + J(t).o 

Then, we can state the Terborgh-Smith pr€?perty in the eDf case: 

Proposition 3 Under Assumption 3, the unique CDf solutions T(t) and 
J(t) are given by: 

T(t) = J(t) = TO V't ~ O 

with TO the positive fixed-point of F(.). 

Proof: The proof of Proposition 2 consists in constructing two sequences 
oflower and upper bounds exclusively using the fact that if T(t) = F(J(t)) 
then T(t + J(t)) = F(J(t + J(t)) under the assumption that both T(t) and 

! 	
J(t) are globally differentiable for t ~ to. In the CDf case, we get exactly the 
same property if we prove that the differentiability of J(.) at t implies the 
differentiability of J(.) at t+J(t). The latter implication is established in the 
lernma just aboye. We can consequently conclude that: T(t) = J(t) = TO for 
any point t such that J (.) is differentiable at t. By definition of the eDi set 
(especial1y the continuity reqtúrement), we get: T(t) = J(t) =TO, V't ~ to.o 

It remains to see why the interior solution is reached at a finite distance, 
or in other words, why it exists O:5 to < +00 such that the equality condition 
(11) holds at to. This is done in the following section. 
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5 The transition dynamics 

Given the initial investment profile, T(O) solves equation (2) -the labor mar­
ket equilibrium condition. T(O) exists and is unique by Assumption 1. How­
ever. three cases are possible depending on the position of T(O) with respect 
to TO. The case T(O) = TO is trivial since it allows us to implement the in­
terior solution beginning at t = O. The two other cases are discussedbelow: 

5.1 A too 	high initial stock of machines: T(O) < TO 

In this case, at t = O more machines are scrapped than there would be in the. 
interior solution. Intuitively, this should corresponds to the case where the 

- economy starts with a relatively too high stock of machines. It correspond 
to the i(O) = O regime, described by the corresponding ineqt.lality in condi­
tion (10) at t ='0. This intuitive property is established in the following 
proposition: 

Proposition 4 	IfT(t) < TO, then 

- r+J(t)· . 
<I>(t) =Jt [1 - e-"'I(t-z+T(z)~] e-p(z-t)dz < 1. (12) 

Proof: First, note that if T(t) < TO, then : J(t) :s; ro. Indeed, by the 
forward-looking condition (6) we have: J(t) = T(t + J(t)). If J(t) > TO, by 
continuity there exists to, t < to < t + J(t), such that T(to) -= TO. Then, 

I 	 for every t ;:: to, T(t) = TO is the optimal solution. Which contradicts the 
assumption: T(t + J(t)) = J(t) > TO. 
Consider the case J(t) =TO. From Proposition 3,I 

(13) 
I 

Then the inequality (12) holds if and only if: 

Jt[t+J(t) 
[e-"'I(T(z)-z) - e-"'I(TO-.t)] e-(P+"'I).tdz > O, 

which is obvious given that T(O) < TO and T(t) :s; TO on the interval [O, TOJ 
(remember that T(t) cannot become greater than TO). 
It remains to address the case .J(t) < TO. Decompose the left hand side of 
equality (13), into the sum of two integrals, the first with the integration 
bounds t and t + J(t) and the second with the integration bounds t + J(t) 
and t + TO. The first integral is greater than the left hand side of inequality 
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(12) by the same argument as in the case J(t) = TO. The second integral 
of the decomposition is strictIy positive. Then, (12) also holds in this last 
case. o 

We characterize now explicitly the transition dynamics when the regime 
given by inequality (12) prevails at the initial period and we show precisely 
how and when the interior solution is reached. 

Proposition 5 For a given initial investment profile, under Assumptions 1 
to 3, if T(O) < TO, then: 

í) The interior solution is reached at to = TO --T(O)¡ 

ii) 	 "it, O:5 t <_ to T(t) = t + T(O) 

"it, t 2: to T(t) = T~j 


iii) "it2: O J(t) = TO 

Proof: Since \Ve assume T(O) < TO, by Proposition 4 we know that 
<.I>(O) < 1. By continuity, there exists to such that T(t) < TO, 'Vt E [O, toro 
From condition (10) i"(t) = O, "it E [O, to[ , implying ­

rO i(z)e-iZdz = 1,­
lt-T(t) . 

"it E [O, tolo 
- Using the latter characterization of this regime, the piecewise continuity 
of the initial investment profile and special1y the "no-holes" assumption, it 
is very easy to show that t - T(t) = -T(O), "it E [O, toro Hence, the interior 
solution is reached at a finite distance, precisely at to = TO - T(O). 

To end the proof, we must show that: J(t) = TO, "it E [O,to[. 
First, we show that t+ J(t) 2: to, "it E [O, tolo Assume that there exists t' such 
that t' E [O, to[and t' + J(t') < too By (6), we know that J(t') =T(t' + J(t')), 
and J(t') = t'+J(t')+T(O) by property ii) ofthis proposition. So t'+T(O) = O 
which is impossible as T(O) > O. Hence "it E [O, to[, t + J(t) 2: too 
Applying again equation (6) and using property ii) of this proposition, we 
get: 

J(t) = T(t + J(t)) = ro, 'Vt E [O, to[. o 
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5.2 A too low initial stock of machines: T(O) > TO 

As in the previous case and using exactly the same type of arguments, we can 
show that if T{O) > TO, then the regime described by <J?(t) > 1 should hold in 
a neighborhood of t = O. This regime describes the cases where the economy 
starts with a relatively low stock of machines, which makes optimal, at the 
beginning, both to use older machines than in the interior solution, and to 
invest all production in new machines. Unlike in the previous subsection, now 
it is not possibleto characterize expUcitly the transition dynamics. However, 
we will show that the economy, starting with this regime, should converge 
at a finite distance to the interior solution. To this end, we use a powerful 
preUminru:y result. proved by Solow et al. (1966) in their seminal paper. We 
state it aS foilows: . 

Proposition 6 Under Assumption 1 -""no hples" assumption- and if the fol­
lowing equations hold for t ~ O: 

i(t) = y(t) = r i(z)dz (14)
Jt-T(t) 

and· 
tr i(z)e-¡Z dz = 1 (2)

Jt-T(t) 

Then: 
"i) T(t), i(t) and y(t) are differentiable 'í/t ~ O 

ii) lim T(t) =T*, where T* = =.11n{1 - 1').
t-+oo ¡ 

Observe that when the regime described by <J?(t) > 1 holds, we get exactly 
the system (14) - (2) stated in the proposition. This system is a special case 
of the model studied by Solow et al.: The axogenous saving rate is in our 
case equal to 1 and the growth rate of the population is zeroed. 
Property i) is demonstrated by Solow et al., remark 3 page 91. Propert.y ii) 
is proved in their section 5, pp 94-98. 

The finite distance convergence to the interior solution of our optimal 
control problem follows from the fact that T* < TO, as one can check easily. 
Since T{O) > TO, the property T* < TO implies that there exists a finite to 
sllch that T{to) = TO, 

\Ve can now give a general characterization of T{t) dynamics: 

Proposition 7 For a given initial profile of investment, under Assumptions 
1 to 3, ifT{O) > TO, then: 
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i) The interior solution is reached at finite to such that: 
to = inf {t' > 01 T(t') = ro} where T(t) solves the system (14)-(2). 

ii) \ft, 0:5 t < to, T(t) solves the system (14)-(2). \ft ~ to, T(t) = TO. 

Proor: The proof is trivial given the arguments aboye. 

Unfortnnately, we are unable to give an equally accurate characterization 
for J(t), except that J(t) = TO, "1 t ~ O if to:5 TO, or "1 t ~ to -To otherwise. 
The equation J(t) = T(t + J(t)) \ft ~ O determine J(t) elsewhere given the 
solution T(t), t ~ O stated in the proposition aboye. This problem comes 
from the unavailability of an explicit T(t) ·solution on [O; to[. As shown by 
Boucekkine et al. (1996), equations (14). and (2) -a particular case of the 
SVCM, yields a system of nonlinear non-autonomous difIerential-difIerence . 
equations that can·be sol~ed only numerically using sorne very advanced 
computational mathematics tools. Hence, it is not possible to give an·explicit 
characterization for T(t) in the transition regime, which in turn disables us 
to be more precise on J( t)'s dynamics in this transition regime. 

We end now om dynamic analysis by s~udying the investment and pro­
duction solutions. 

6 Investment and production dynamics: re-. 
placement echoes 

In this final section, we explain how replacement echoes can arise in this 
framework. More precisely, \ve prove that optimal production and invest­
ment paths show periodicity beginning at a well-defined date. When the 
interior solution is reached and for any initial investment pro file, given the 
characterization of T(t) dynamics studied above, investment dynamics fol­
lows directly from equation (2). Production dynamics come mainly from 
eql1ation (1) once investment dynamics are found out. As one can easily 
check, a difficulty comes from the fact that, y(t),s solution depends on the 
position of to with respect to ro, to being the date at which the interior 
solution is reached using the notations of the previous section. When the 
economy starts with T(O) < ro, we do not face this problem since we know 
the explicit value of to, to = TO - T(O) < TO. But when the economy st.art.s 
wit.h T(O) > TO, we cannot characterize explicitly t.he uate to for the precise 
reasons exposed in subsection 5.2 (namely, t.he impossibility of ana1ytical 
resolution of nonlinear non-autonomous difIerential-difIerence equations that 
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yields the model in this regime). This point does not suppose any theoretical 
problem since we can derive the dynamics of production conditionally to the 
position of to with respect to TO and find out the periodicity property for 
each case. 

Investment dynamics are given by the following proposition: 

Proposition 8 Por any investment inítial profile, under Assumptions 1-3 
and denoting by to the date at whích the interior regime is reachea 

i) Por t ~ to, i(t) = i(t - TO)e"'lTO provided i(t) is continuous at t - TO. 
íi) Jf to > O, for O~ t < to : . 
JfT(O) > TO, i(t) solves the system (14)-(2), i(t) is differentiable. 
JfT(O) < TO, i(t) = O. 

. 

The investment solutions given by Property ii) are true by construction of 
the two non-interior regimes. The differentiability of i(t) during the transition 
from the regime éharacterized by 1'(0) > TO to the interior solution is oIJ.e 
consequence of Solow et al. findings (See Proposition 6 aboye). Property i) 
can be obtained simply by differentiation of equation (2) provided that i(t) is 
continuous at t - TO, using the fact that T(t) = TO after to by construction of 
too Observe that property i) is true 'except at a finite number of points, given 
the piecewise continuity of the initial investment profile and given Property 
ii) of the proposition. 

vVe give the production dynamics in the following proposition: 

Proposition 9 For any investment initial profile, under Assumptions 1-3 
and denoting by to the date at which the interior regime is reached 

For t ~ to + TO, y(t) = y(t - TO)e"'lTO . 

The proof of the proposition is trivial. As arglled before, the main prop­
erty of production dynamics, namely the periodic behavior, is obtained after 
to+TO independently of the position oí to with respect to TO. This property 
is obtained by different.iation oí the integral equation (1) using the fact that 
over the integration range i(t) is periodic by Proposition S. As one can see, 
the existence oí echoes in production is a consequence of the existence of 
investment replacement echoes. 

Conclusions 

In this paper we have fully characterized the dynamics oí the vintage capital 
Ramsey model with inst.antaneous linear utility and we have also shown t.hat 
given any initial investment. profile, this model gives rise to a periodic paU.ern 
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starting. at a well-defined date. 1t is very irnportant to notice that, even un­
der the assurnption of linearity on preferences and technology, the resolutiorí 
of t,he rnodel is far frorn straightforward. Concerning the perrnanent regirne 
(t,he interior solution), it uses a non-standard rational expectations argu­
rnent to prove the constancy of the scrapping age (as in van Hilten (1991)) 
and takes advantage of this property to obtain periodicity (as in Benhabib 
and Rustichini (1991)). Concerning the analysis of the transitional dynam­
ics: first, we use sorne convergence results proved by Solow et al. (1966), 
using very sophisticated rnathernatical argurnentsj and finaly, we show that 
sorne marginal properties (like the exact date at which the interior solution 
is reached when the initial capital stock is "too" low) are not analytically 
tractable. 

Since the early 1990s there is a growing literature' on vintage capital 
. econornies, with sorne authors analyzing structural problerns as in Chari and 
HopEmhayn (1991) and Aghion and Howitt (1994) and sorne others analyzing 
cyclical problerns as in Caballero and Harnrnour (1994), Cooley et al. (1994) 
and Gilchrist and vVilliarns (1996). The LVCM solved in this paper could 
be seen as a benchrnark for the analysis of growth and cycles in continuous 
time growth rnodels with vintage capital. It seems clear t.hat sorne very 
irnportant extensions of the rnodel, such that the analysis of the nonlinear 
utility case, cannot be undertaken without a prior resolut,ion of the induced 
rnathernatical and cornputational problern. As reported by Boucekkine et 
al. (1996), it is likely that these extensions will not allow in general even 
for a partial analytical t.reatrnent, but instead will reqlúre full numerical 
approaches. Unfortunately, the dynamic systerns involved are so cornplicated 
that even nurnerical appraisal requires very sophisticated tools, st.ill to be 
conceived and tested. 
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