

Finding Efficient Nonlinear Functions
by Means of Genetic Programming

Julio César Hernández Castro1, Pedro Isasi Viñuela2, and
Cristóbal Luque del Arco-Calderón2

1 Computer Security Group, Computer Science Department,
28911 Leganés, Madrid, Spain

jcesar@inf.uc3m.es
2 Artificial Intelligence Group, Computer Science Department,

28911 Leganés, Madrid, Spain
{isasi,cluque}@ia.uc3m.es

Abstract. The design of highly nonlinear functions is relevant for a
number of different applications, ranging from database hashing to
message authentication. But, apart from useful, it is quite a challenging
task. In this work, we propose the use of genetic programming for
finding functions that optimize a particular nonlinear criteria, the ava-
lanche effect, using only very efficient operations, so that the resulting
functions are extremely efficient both in hardware and in software.

1 Introduction

The design of highly nonlinear functions is useful for a number of different applica-
tions, from the construction of hash functions for large databases to the development
of different cryptographic functions (pseudorandom functions, message authentica-
tion codes, block ciphers, etc.)

For many of these applications, a desirable and conflicting property is efficiency. It
is not difficult to design highly nonlinear functions, nor very efficient functions, but
finding algorithms with both properties is quite a challenging task.

1.1 Compression Functions

A function nm ZZF 22: → is said to be a compression function if m>n. Different
compression functions are extensively used in diverse cryptographic primitives, such
as pseudorandom number generator or hash functions (used for digital signatures and
message authentication). The main advantage of this approach is to allow the simple
processing of variable-length input, following the recurrence relation:

1

Referencia bibliográfica
Published in:Knowledge-Based Intelligent Information and Engineering Systems. Berlin: Springer, 2003. P. 1192-1198 (Lecture Notes in Computer Science; 2773)

1

1

0

10

)(
),(

.........

+

+

=
=

=
=

n

iii

n

hMh
hMFh

IVh
MMMM

This scheme is very versatile, as it can be found with some minor differences in
block cipher chaining and cryptographic hash functions, and it can also be used to
produce pseudorandom numbers. We will focus our search to a quite general kind of
compression functions, where m=2n.

2 The Avalanche Effect

Nonlinearity can be measured in a number of ways or, what is the same, has not a
complete unique and satisfactory definition. In this work we focus our attention in a
special property, named avalanche effect because it tries to reflect to some extend the
intuitive idea of high-nonlinearity: a very small difference in the input producing a
high change in the output, thus an avalanche of changes. Mathematically:

2
))(),((1),(|, nyFxFHyxHyx ≈=∀

So if F is to have the avalanche effect [1], the Hamming distance between the out-
puts of a random input vector and one generated by randomly flipping one of the bits
should be, on average, n/2. That is, a minimum input change (one single bit) produces
a maximum output change (half of the bits).

This definition also tries to abstract the more general concept of independence of
the output from the input. Although it is clear that this is impossible to achieve (a
given input vector always produces the same output) the ideal F will resemble a per-
fect random function where inputs and outputs are statistically unrelated. Any such F
would have perfect avalanche effect, so it is natural to try to obtain such functions by
optimizing the amount of avalanche.

3 Genetic Programming

Genetic Programming [2] is a method for automatically creating working computer
programs from a set of high-level statements of a given problem. This is achieved by
breeding a population of computer programs using the principles of Darwinian natu-
ral selection and other biologically inspired operations that include reproduction,
sexual recombination (crossover), mutation, and possibly others. Starting from a
initial population of randomly created programs derived from a given set of functions
and terminals, populations gradually evolve, giving birth to new, more fitted indi-
viduals.

2

This is performed by repeating the cycle of fitness evaluation, Darwinian selection
and genetic operations until a certain ending condition is met. Each individual (or
program in the population) is evaluated to determine how fit is at solving a given
problem, and then programs are selected probabilistically from the population ac-
cording to their fitness values for being applied the rest of genetic operators. It is
important to note that, while fitter programs have higher probabilities of being se-
lected, all programs have a chance. After some generations, a program may emerge
that solves, completely or approximately, the problem at hand.

Genetic Programming combines the expressive high-level symbolic representa-
tions of computer programs with the learning efficiency of genetic algorithms. Ge-
netic Programming techniques have been successfully applied to a number of differ-
ent problems: apart from classical problems such as function fitting or pattern recog-
nition, where other evolutionary computation techniques also work fine, they have
even produced results that are competitive with humans in some non-trivial tasks as
designing electrical circuits[3] (some of which have been patented) or at classifying
protein segments[4].

4 Implementation Issues

We have used the lilgp genetic programming system, available at
http://garage.cps msu.edu/software/lil-gp/lilgp-index html, but a number of modifica-
tions were needed for our problem.

Firstly, we need to define the set of functions: This is critical for our problem, as
they are the building blocks of the algorithms we would obtain. Being efficiency one
of the paramount objectives of our approach, it is natural to restrict the set of func-
tions to include only very efficient operations; so the inclusion of the basic binary
operations as rotd (right rotation), roti (left rotation), xor (addition mod 2), or (bit
wise or), not (bit wise not), and and (bit wise and) are an obvious first step. Other
operators as the sum (sum mod 232) are necessary in order to avoid linearity, being
itself quite efficient. Another interesting operator introduced was kte, an operation
that, whatever its input, returns the 32-bit constant value 0x9e377969, which are the
most significant digits of the expression of the golden ratio in hexadecimal nota-
tion).The idea behind this operator was to provide a constant value that, independ-
ently from the input, could be used by the aforementioned operators to increase non-
linearity , and idea suggested by [5].

The inclusion of the mult (multiplication mod 232) operator was not so easy to de-
cide, because, depending on the particular implementations, the multiplication of two
32 bit values could cost up to fifty times more than an xor or and operation, so it is
relatively inefficient, at least when compared with the other operators used. In fact,
we did not include it at first, but after extensively experimentation, we conclude that
its inclusion was beneficial because, apart from improving non-linearity; it at least
doubled and sometimes tripled the amount of avalanche we were trying to maximize,
so we finally include it in the function set.

The set of terminals in our case is easy to establish; as said above, we are focusing
our attention in compression functions where m=2n, so the input will be formed by

3

two 32 bits integers a0 and a1, and these will be the branches of the function trees
that the genetic programming algorithm will construct, with functions from the func-
tion set in the nodes.

The fitness of every individual (algorithm or function) was evaluated by generat-
ing 1024 64-bit random vectors, then randomly flipping one of the bits and calculat-
ing the Hamming distance over their outputs. For each of these 1024 experiments a
Hamming distance between 0 and 32 was obtained and the fitness of the given func-
tion was the observed average Hamming distance.

Although this is a quite natural way of measuring the avalanche effect as defined
in the introduction, some additional explanations are needed. Obviously; the ideal
observed value should be 32/2=16, so a more natural approach for the fitness func-
tion will be not simply this average but is deviation from the optimum value of 16,
that is |16-average| Anyway, after some experiments we observed that, at least for the
depths studied in this work, the resulting functions fitness were far and below the 16
optimum value, so simply using the average number of changes as the fitness function
to maximize worked perfectly well.

When using genetic programming approaches, it is necessary to put some limits to
the depth and to the number f nodes the resulting trees could have. We preferred to
vary only the depth and not to put any limitation (apart from the depth itself) to the
number of nodes possibly used.

We selected a population size of 100 individuals, a crossover probability of 0.8,
which produced better results than the default 0.9 probability proposed, and an ending
condition of reaching 500 generations. In many cases, ten different runs were per-
formed, each one seeded with the 6 most significant digits of the expression
(314159)i. When only one run was possible, the seed was 314159.

5 Results

Selected functions are shown in the Appendix.
Table 1 below summarizes some of the results.
Basically, Table 1 shows that, by increasing the allowed depth of the function

trees, better avalanche effects could be obtained. This is intuitively clear, but not
trivial to get. The idea that simply adding more and more complexity (more branches
with functions and terminals) to any tree will increase the avalanche effect of the
function can be easily dismounted by a simple inspection to the first two individuals
shown at the Appendix.

After all the experiments, we can conclude we have found one super-individual,
shown in the appendix, that with only a depth of 5 and a little number of nodes is
capable of contesting in terms of avalanche with much more complex rivals.

Furthermore, this highly fitted function has many points in common with some of
the fittest individuals for every depth (as shown at the end of the appendix), so, in a
way, this is also revealing us a new promising method of construction or a new kind
of function design. There are other very fitted functions which have great similitude
with the aforementioned, but we cannot include them in the appendix due to lack of
space.

4

Table 1. Avalanche effect as a function of depth. Averages exclude the maximal and minimal
values. For some values there are only one result

 \Avalanche
 Depth\ Maximun Average Minimun

2 8.8696
3 9.4424 9.0725 8.8174
4 10.1396 9.5619 9.1152
5 11.2148 9.9919 9.6533
6 11.1479 10.2296 9.6621
7 11.3232 10.7037 10.3145
8 11.5200
9 10.9482

10 11.2310
11 11.3513
12 11.8284
13 11.5164
14 10.9707
15 12.4451
16 11.6604

6 Conclusions

The average avalanche effect on Table 1 steadily increases when the depth is in-
creased; so a natural question is which is the minimum depth at which any algorithm
exists that reaches the perfect avalanche of 16.

For trying to guess that, we performed a series of additional searches in deeper
depths (but only one run, as they are much more time consuming) until reaching
depth 16. By the slow increase in the avalanche levels observed, our current best
guess is that this could perhaps be achieved at depth 20. This makes that some ques-
tions arise naturally as, for example, would it better to dig in some such deep trees,
with the associated combinatorial explosion (for example in the number of nodes
used) or is it more sensible to search for short, faster functions and apply then twice?
What would it better, the best function we can find with this approach at level 12 or
the best function found at depth 6, with the same amount of resources, applied twice?

Many other questions remain. One of the more interesting is if it would be possible
to add to every function in the function set a weight or some other measure of its
complexity or efficiency (for example in number of instructions needed at the proces-
sor level, microseconds taken to perform, etc) and allow the genetic programming
technique itself to decide whether it is interesting to use that particular function or not
in terms of avalanche effect introduced for a given cost. This and other questions and
extensions to this work are currently under consideration.

5

Acknowledgements

Supported by the Spanish Ministerio de Ciencia y Tecnologia research project
TIC2002-04498-C05-4

References

[1] Feistel, H.: Cryptography and Computer Privacy. Scientific American, 228 (5)
15-23, 1973

[2] Koza, J.: Genetic Programming. In: Encyclopedia of Computer Science and
Technology, v.39, 29-43, 1998

[3] Koza, J., et. al. Automated Synthesis of analog electrical circuits by means of
genetic programming. In IEEE Transactions on Evolutionary Computation
1(2), 1997

[4] Koza, J., Andre, D.: Automatic discovery of protein motifs using genetic pro-
gramming. In Evolutionary Computation: Theory and Applications. World Sci-
entific Publications, 1996

[5] Wheeler, D., Needham, R.: TEA, a Tiny Encryption Algorithm. In: Proceed-
ings of the 1994 Fast Software Encryption Workshop, and at
http://www ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea html

Appendix: Experimental Results

Depth 5 Run #4 fitness: 11.2148
TREE:
 (mult (kte (rotd a0))
 (rotd (sum (roti (xor a0 a1))
 (xor a0 a1))))

Depth 14: fitness: 10.9707
TREE:
 (xor (sum (xor (rotd (mult (and a0
 (mult (mult (mult a1
 (mult a1 a1))
 (rotd a0))
 (mult a0
 (mult a1 a0))))
 (rotd (rotd (xor a1
 (rotd (xor a1
 (rotd (sum a0 a1)))))))))
 (xor (xor a0 a1)
 (sum a0
 (rotd (sum a0 a1)))))

6

 (sum (xor (rotd (roti a1)) a0)
 (sum a0 a1)))
 (xor (sum (xor (sum (mult (mult a1 a1)
 (sum (sum a0 a0)
 (xor a1
 (xor a0
 (sum a0
 (roti a1))))))
 (xor a0
 (sum a0 a1)))
 (xor a0 a1))
 (not a0))
 (mult (sum a0 a1)
 (mult a0
 (mult a1 a0)))))
===

Run #4 fitness: 11.0957
TREE:
 (mult (kte (xor (roti (roti a1)) a1))
 (rotd (sum (sum (rotd a0)
 (rotd a1))
 (roti (xor a0 a1)))))

DepthMax=7
==========
Run #4 fitness: 11.3232
TREE:
 (mult (kte (rotd a0))
 (rotd (sum (rotd (sum (sum a0 a0)
 (roti (rotd a1))))
 (rotd (sum (sum (rotd a0)
 (rotd a1))
 (rotd a0))))))

7

