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Abstract- One of the major problems related to 
Classifier Systems is the loss of rules. This loss is caused 
by the Genetic Algorithm being applied on the entire 
population of rules jointly. Obviously, the genetic 
operators discriminate rules by the strength value, such 
that evolution favours the generation of the stronger 
rules. When the learning system works in an 
environment in which it is possible to generate a 
complete training set, the strength of the rules of the CS 
will reflect the relative relationship between rules 
satisfactorily and, therefore, the application of the 
Genetic Algorithm will produce the desired effects. 
However, when the learning process presents individual 
cases and allows the system to learn gradually from 
these cases, each learning interval with a set of 
individual cases can lead the strength to be distributed in 
favour of a given type of rules that would in turn be 
favoured by the Genetic Algorithm. Basically, the idea is 
to divide rules into groups such that they are  forced to 
remain in the system. This contribution is a method of 
learning that allows similar knowledge to be grouped. A 
field in which knowledge-based systems researchers have 
done a lot of work is concept classification and the 
relationships that are  established between these concepts 
in the stage of knowledge conceptualization for later 
formalization. This job of classifying and searching 
relationships is performed in the proposed Classifier 
Systems by means of a mechanism, Tags, that allows the 
classification and the relationships to be discovered 
without the need for expert knowledge. 

1 Introduction 
Classifier Systems (Holland 1975, 1980, 1985, 1986, 1986a, 
1995, Golberg 1989, Mitchel 1996), the subject of this 
paper, are studied from the viewpoint of behaviour, an 
approach referred to as behaviourist, which considers 
exclusively the change in system behaviour and is defended, 
among others, by Narendra, Thathachar and Simon, 
(Thathachar 1989). 

Classifier Systems (CS) combine the advantages of rule- 
based systems with the possibility of applying a domain- 
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independent learning system, such as Genetic Algorithms. 
The relative value of the different rules is one of the key 
information items to be learnt in a CS. In order to promote 
this learning, CS's oblige the rules to coexist in what is 
called an information-based economy service. Rules are 
made to compete, where the right to respond to the 
activation stems from the highest bidders, which will pay 
the value of their bids to the rules that are responsible for 
their activation. A chain of intermediaries is formed along 
this path, ranging from manufacturers (detectors) to 
consumers (actions to the environment). The 
competitiveness of the economy assures that the good 
(beneficial) rules survive and the bad ones disappear. There 
is a high level of relation and communication between the 
different levels of a CS (Golberg 1989). 

The conditions and messages of a CS form a system of 
rules, making them a special class of production system. 
One of the main problems raised by production systems is 
the complexity of rule syntax. CS's find a way around this 
problem by restricting each rule to a fixed-length 
representation. This constraint has two benefits: first, all the 
rules, within a permitted alphabet, are syntactically 
meaningful and, second, a representation using fixed-length 
strings allows the application of genetic-type string 
operators. This opens the door to search of the space of 
permitted rules using Genetic Algorithms (Holland 1975). 

As discussed above, traditional Classifier Systems 
combine rule-based knowledge representation with genetic 
learning. There is an obvious difference between systems 
that use Genetic Algorithms for learning and Classifier 
Systems. In the former, the solution to the problem is fully 
encoded in the binary representation used by the Genetic 
Algorithm, that is, the evaluation of one individual is 
tantamount to the evaluation of the whole solution (Mitchell 
1996). In Classifier Systems, however, the evaluation of an 
output is equivalent to the evaluation of a rule that partly 
contributes to solving the problem. This evaluation is 
distributed across all those rules that contribute to the 
activation of the end rule, using the credit reassignment 
algorithm. In no case, however, is it an evaluation of the 
system composed of all the rules. This is the approach 
proposed by the University of Michigan (Holland 1986a). 
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New rules or sets of rules are generated from these 
evaluations. So, any rules that have been activated and 
provide a satisfactory solution to part of the problem will be 
the source of new rules. 

The manner in which Classifier Systems operate has 
some drawbacks, of which the following deserve a special 
mention: 

With regard to the system’s ability to learn chains of 
rules which, moreover, do not break from one learning 
instant to another; the loss of a rule from the chain can 
lead to a loss of all the knowledge due to the 
interrelations between rules. The rules make sense not 
individually but only as groups which are unknown a 
priori. 

With regard to the need to apply the discovery algorithm 
to generate increasingly better classifiers and, finally, 

With regard to the sequencing of the cases put to the 
system in order to guide learning towards an 
improvement in overall system behaviour. 

The problem addressed in this paper is in particular how 
to combat the problem of the loss of rules and the need to 
“maintain acquired knowledge”. Both problems are due to 
CS discovery level action, which leads the mechanisms of 
the CS to fail when forming and maintaining associations 
between rules. The discovery level acts on the set of 
classifiers that have just been executed in such a manner 
that the new rules are generated from the best rules prior to 
discovery level action. This operation can lead to the loss of 
rules that are necessary for solving certain points of the 
problem and which appeared at the start of the learning 
period but failed to do so later on. This means that rules 
which were very good at the start of the execution can be 
considered by the GA as less valuable, because other rules 
are stronger. 

‘‘ Internal Tags” (IT), proposed by Holland (Holland 
1995) and others for application to Genetic Algorithms, 
were introduced for this purpose, giving rise to a new class 
of CS, Classifier Systems with Tags (TCS). Apart from 
preventing the loss of rules, different rules must be made to 
coexist at all times, thus stopping the rules becoming 
uniform, leading to a loss of variety in the rule 
population.The remainder of this article will provide 
examples of the formats of all the major components of 
your paper. Please follow these directions as closely as 
possible to ensure that our proceedings looks like the 
quality publication the content will make it. 

2 Related Works 

2.1 Ad-hoc internal CS hierarchies 
The problems of rule loss have been addressed from various 
viewpoints in the literature with a view, in all cases, to 
improving CS’s. Shu et al. (Shu 1991) consider introducing 

hierarchies into CS‘s, that is, groups of rules that have to be 
maintained throughout the learning process. The rule groups 
are formed a priori and are given by the expert problem- 
solver. This is an attempt to solve the problem which 
DeJong (Booker 1989) solved by means of crowding in the 
field of Genetic Algorithms. So, on the one hand, they 
establish rule groups (families) and, on the other, they 
propose genetic operators that act intrafamily and 
interfamily. The payment system is also modified, and when 
a rule from one group wins, all the other rules in its group 
also partake of that prize. 

Basically, the problem with discovery level action is that 
all the rules are considered to be equal. This idea, which is 
logical in other Evolutionary Computing techniques, where 
each individual is a solution to the problem, and they, 
therefore, all have to compete with each other, is not 
directly extendible to CS. This is because no one rule is 
capable of solving the problem on i t s  own in many cases, 
which means that not all the rules ar2tpual. A rule that is 
fired in a particular situation and yvhose action solves the 
problem is not the same as a set of rules that must be fired 
in order so as to address ai different situation. Here, the 
strength of the first rule is likely to grow much more than 
the strength of all the rules chained in the second case. In 
order to solve this problem, Shu proposes dividing the CS 
rule set into subsets, each of which has rules specialized in a 
particular point of the problem, in such a manner as to make 
the members of the same family of rules compete. 

2.2 Hierarchically Organized Independent CS 
In 1995, Dorigo (Dorigo 1995) presented the results of 
solutions designed to make Classifier Systems learn faster. 
The tools he used are: parallelism, a distributed architecture 
and training. With respect to parallelism and the parallel 
architecture, he proposes a parallel version of ICs (Dorigo 
1993), and designed a parallel Classifier System, called 
Alecsys, applied to what is termed the “animal problem” 
(Wilson 1985). This problem is addressed from the 
viewpoint of dividing the problem into smaller parts, based 
on a hierarchical architecture in which a series of ICs’s 
learn to cooperate in solving the learning problem. The 
different ICs levels are executed in parallel on different 
machines, and, moreover, different ICs’s, responsible for 
different tasks, are also executed in parallel. The author 
(Dorigc 1995) takes up Brooks’s idea of “reactivity” 
(Brooks 1991), that is, the existence of a set of behaviours, 
each of which is implemented by means of an ICs and 
which are independent of each other and produce an output 
for each input. The whole system is composed of three 
systems: an ICs to overcome obstacles, another to attain a 
goal and, finally, a system that decides which of the two 
possible outputs is the output of the combined system. 

The author proposes that internal conditions be included 
to achieve rule chaining (which is eqdivalent to behaviour 
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chaining in this case). This allows messages from the 
environment to be distinguished from messages from earlier 
cycles. Dorigo's study centres on the usefulness of the 
internal conditions without clearly explaining how they are 
used internally by the CS. The results of this part of the 
paper show that the size of these internal conditions, as 
applied in this case, is not very relevant for learning. 

3 Knowledge Classification In TCS 
Automatic category generation within a CS has not been 
addressed in any paper to date. The idea can perhaps be 
borrowed from nature: some species use "tags" to limit a 
"call or warning" to a set of individuals, discriminating a 
subset among the total set. In the same manner, parts can be 
included in rules that allow some to be discriminated from 
others. What we will call Internal Tags (IT) can be defined 
in an ad hoc manner by creating a given string of calls (Shu 
1991) or can be defined in such a manner that the ITS 
themselves evolve, determining what groups are necessary. 
In short, each rule can be provided with a field which will 
evolve genetically and which identifies that the rule in 
question is a member of a group, similarly to the tags 
proposed by Holland (Holland 1995). 

The proposed solution must, therefore, combine the 
ability to learn without a priori knowledge and the 
capability of generating some kind of internal subdivision 
within the CS to allow categories of rules to exist. A CS, 
called TCS, has been designed that allows groups to evolve 
automatically. For this solution to be implemented, the 
encoding of the classifiers will have to be modified to 
include a field that represents the type or group to which 
each classifier belongs. So, for example, given a CS, A l-bit 
field can be reserved to establish the classes making up the 
CS. This field can be used to subdivide the CS into several 
groups of classifiers, each of which contains the classifiers 
that have the same value in the new field. This field can be 
said to establish the classifier type or group. According to 
the definition of the value of the field that establishes the 
classes, there are 2 classes: one defined by classifiers whose 
value is 1 and the other by those whose value is 0. Note that 
the definition of a class is determined by the value of the 
above field in the condition part of the rule, that is, rules 
that must have the same value in the field for activation are 
members of the same group. 

This field, which appears in the encoding, evolves in the 
same manner as the other fields, which means that the 
number and size of each class in the CS hierarchy is 
variable and must be learnt. Wide ranging groups can be 
established, and all the classifiers could actually have the 
same value, in which case the system would operate like a 
classical CS. 

Apart from establishing the classifier type according to 
the value of the condition part, as it is included in the 

message part which evolves similarly, not only are the rule 
groups evolving, so is the form of intergroup activation. 

Finally, it is important to take into account that the 
inclusion of a field in the classifiers means that a value must 
also be entered in the input message in the above position. 
This value is not determined by the environment; it is 
defined a priori by means of a value encoding the fact that 
the message in question is the environmental message. In 
this manner, the CS will have to learn which rule group 
having the same group definition field value is to be 
activated in response to the environmental message. 

The appearance of hierarchies in the CS is subject to the 
information about the category to which the rule belongs 
being maintained in each rule. This information must evolve 
genetically; obviously, if the information about the category 
in each rule is capable of representing "n" different 
categories, the solution to the problem could be composed 
of m (m<n) categories and the remaining categories would 
be irrelevant. If this information is represented in each rule 
and it is allowed to evolve, the number of rules associated 
with a particular category is also variable; in this respect, 
the genetic evolution of the categories will not only allow 
the categories required to evolve but also for each one to 
have the size required to solve the problem. 

4 TCS Evaluation In The Game Of Draughts 
In this paper, we seek to get a measure of the contribution 
of Internal Tags (IT) to the learning process in a Classifier 
System. A clear evaluation of the contribution of ITS in the 
encoding calls for a problem that is solved in a perfectly 
defined environment. The environment chosen in this case 
was the learning of draughts end games, that is, draughts 
matches where only a few pieces remain on the board at an 
advanced stage of the game. 

The objective of applying the TCS to learning the game 
of draughts is not to obtain a CS that plays draughts; it is to 
apply Classifier Systems in a clear and defined environment 
that allows traditional Classifier Systems to be compared 
with the modification proposed in this paper, including IT. 
Obviously, there are a lot of systems that play draughts, 
some very successfblly (Schaeffer 1997). However, for the 
purposes of this study and comparison, a player following a 
random strategy will be used, and measurements will be 
taken of the games each type of CS (classical/with IT) wins 
against the random player using different configurations. 

4.1 GameRules 
There are a lot of variations on the game of draughts. In this 
paper, a 64-square board is used with black and white 
squares. The game is played by two players one with white 
pieces and the other with black pieces, which are either 
pieces or kings. Initially, the white pieces are placed at the 
bottom of the board and the black pieces at the top, and 
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there no kings. In tkis pager, the opening boards are not 
used, as we work only with end games, where the maximum 
number of pieces is 5 .  These can be pieces of any kind and 
be situated in any valid position on the board. 

4.2 1:nformation encoding 
This involves analysing how and what information about 
the board, the pieces, players, turns, moves, etc., can be 
supplied to the CS as an input message. The encoding 
chosen for the game of draughts is such that an output from 
the CS is always interpreted as a move. This means that the 
CS decisions are interpreted depending on the system status. 
Obviously, the system must be able to play with both black 
and white pieces, so an encoding was chosen that does not 
take into account "the colour'' of the piece. Additionally, the 
directions of the moves have been taken to be absolute. 

4.3 Payment function 
The objective of the payment function that analyses the 
quality of the classifiers is to guide CS learning. The CS 
will learn depending on the payment function, and this, 
precisely, is the central objective of the CS developer when 
the CS's are applied to a particular problem. For the 
purposes of this paper, the CS should be able to beat a 
random player, that is, a player who has no strategy and 
whose moves are not determined by the situation. This 
objective means that the payment function does not need to 
be able to evaluate different situations and detect the finest 
distinction in the moves decided by the CS; on the contrary, 
the payment function should be simple and objectively 
evaluate the decisions made by the CS, assessing each move 
on the basis of "quantitative" results. In this manner, the CS 
will be able to beat a random, though not an experienced, 
player, and it will be possible to compare the classic CS and 
the 'TCS.objectively. 

The payment function takes into account the following 
factors: whether or not a piece has been captured, whether 
or not a king has been crowned, and the number of pieces 
taken. The payment will be made once the opponent has 
made a move. So, the payment function employed is based 
on :he results achieved by the opponent and the results 
obtained by the CS move. In this case, payment can be 
represented by means of Table 1, where nc. is the number of 
pieces taken by the CS and no, the pieces captured by the 
opponent. 

Table 1 : Payment function for CS's and TCS's 
applied to the game of draughts. 

At the end of the game, the opponent player makes no 
move on the basis of which to evaluate the preceding move 
by the CS, so the result of the game is evaluated directly: 

IF (the game ends in a draw) THEN (the payment is 400) 
IF (the game does not end in a draw and the CS wins) 
THEN (the payment is 700) 
IF (the game does not end in a draw and the opponent player wins) 
THEN (the payment is -700) 

The payment developed is totally objective and depends 
on whether or not a piece is taken and on whether or not a 
king is crowned. This means that no payment is made if the 
move did not have a quantifiable result. Indeed, if there is 
no measurable quantity, the payment is 0. This payment 0 
defines situations that will not be evaluated and, therefore, 
limits Classifier System learning ability. This limitation 
rules out any subjectivity coming into the payment that 
assesses CS operation, thus distorting the comparison 
between the classical CS and the TCS. 

5 Comparison between CS and TCS 
The objective of this section is to compare the traditional 
CS with the TSC. For this purpose, the above systems will 
be played against a player who makes random moves, 
having a variable degree of randomness and starting from 
different situations. The two systems commence without 
any previous knowledge, that is, their entire population is 
randomly generated, which means that their rules and 
messages are not adapted to any particular case and their 
moves will, in principle, also be random. 

The three types of experiments conducted under this 
point were performed by gradually increasing their 
difficulty level in order to examine the behaviour of the two 
systems in face of the above changes. 

Three groups of experiments with a different starting 
situation were performed for the comparison. The 
experiments were defined in increasing order of complexity, 
depending on the opening board with which each game that 
was to be played commenced: first, the opening board will 
be fixed for all the games, then the positions of the pieces 
that appear on the board in each game will be altered and, 
finally, the opening board will be generated at random for 
each game. In the first experiment, differing degrees of 
randomness will be applied to the opponent player, starting 
with 0% randomness and increasing this percentage up to 
100% randomness. In tha last two experiments, the 
opponent will 100% random throughout, and the opening 
boards will be modified incrementally, either by changing 
the position of the pieces or by generating a new board. 

The result will show the evolution of the games won and 
lost by the two types of Classifier Systems. These results 
correspond to the average of five groups of games. In order 
to analyse the results obtained in more detail, the 
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percentages of games won at the end of learning for each 
CS and for each experiment, and the percentage 
improvement of the TCS as compared with the CS are set 
out in Table 2, Table 3 and Table 4. Analysing the results, 
we find that the contribution of ITS to the CS is not relevant 
in all situations. In problems where the CS has to learn a 
very simple sequence of operations, because the problem to 
be solved is less complex, the ITS can turn out to be more of 
a handicap, as their inclusion means that the system is 
forced to "learn" how to chain rules, when such chaining 
may be unnecessary. As the problem becomes more 
complex, the need for rule chaining increases, and the 
contribution of the ITS becomes evident, since their 
existence encourages rule chaining. So, we find that the 
results of the TCS in the first experiments (Table 4) only 
improve on the CS in the last case. On the other hand, an 
improvement is seen in the results obtained with the TSC as 
compared with the CS in the subsequent experiments 
performed (Table 5 and Table 6). 

Table 2: Summary of the results of CS and TCS: 
Same Opening Board. 

Table 3: Summary of CS and TCS results: Modified 

Table 4: Summary of CS and TCS results: Randomly 
Generated Opening Board. 

Table 2 shows the results of the experiments in which 
the opening board was unchanged. In this case, the problem 
appears not to require rule chaining to develop strategies 
that can be used in unexpected situations, since the opening 
board is fixed and there are, therefore, only limited 
possibilities of different moves. So, the CS is faced with a 
player who, for all intents and purposes, makes a well- 
defined series of moves whose variability is very restricted. 
This is why the TCS results are 14% worse on average than 
those obtained by the CS. Considering that this is the 
simplest possible case, it appears that is counterproductive 
to force the CS to employ ITS, as it makes the TCS play 
worse than the CS. In the last case, where the systems face 

maximum variability, the results are very similar, and those 
obtained by the TCS are slightly better, mainly because the 
need for chained strategies starts to become evident. 

Table 3 shows the results obtained when the opening 
board is modified using an incremental degree of 
randomness. In this case, the TCS performs 10% better on 
average than the CS; this is because the system has to start 
to generate more complex actions to be able to respond to 
more diverse situations. It is noteworthy in this case that the 
two systems obtain poor results at the maximum level of 
randomness, compared to the results that they obtained at 
lower levels of variability. This is perhaps due to the fact 
that these are very indeterminate situations where it is 
difficult for the system to be able to extract knowledge. 

In Table 4, the results obtained show that as the degree 
of uncertainty in opponent player performance is increased, 
a higher percentage of the results of the TCS are better than 
those of the CS, in this case 15% on average. Again neither 
of the two CS are able to obtain results of over 60% of 
games won with the effect of maximum randomness. 

In short, we can infer from the results obtained that 
Classifier Systems are able to learn in games environments 
and that when the game is complicated, it requires a 
complex solution which is not satisfactorily provided by 
classical Cs's and thus requires the inclusion of tags. 

The results presented show how the proposed Classifier 
Systems are capable of improving on the classical approach 
of Classifier Systems in cases in which rule chaining is 
relevant. The importance of this contribution is the 
discovery of a learning method that allows similar or related 
knowledge to be grouped. This property of ITS, the 
automatic grouping of rules that share the same objective, is 
of special interest, and a study has, therefore, been 
conducted to analyse what effect they have and what results 
are obtained in each of the proposed Classifier Systems. 

6 Analysis Of Groups Of Rules Learnt 
The encoding used to represent the rules in the Classifier 
System used to play draughts employs a lot of symbols. Not 
only is the number of symbols extensive, the encoding is 
very complex so as to ensure that all the outputs given by 
the Classifier System are valid. The need to generate valid 
responses at all times means that the meaning of the rule 
depends on the position of the pieces on the board. The 
meaning of the rules belonging to one group is, in this case, 
a problem for which there is no accurate analysis. Although 
the study of the meaning of the groups appears to be the 
best means of understanding what the Classifier System has 
learnt, this is ruled out by the extent and complexity of the 
chosen encoding. Therefore, we will study the different 
situations in which the inclusion of the IT improves 
Classifier System learning. How the groups have evolved 
and the number of rules belonging to each group in the 
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learning process is also of special importance. In order to 
perform the experiments with the TCS, 4 bits were reserved 
in the condition part and message of each classifier. 81 
groups could generated with 4 bits as shown in Table 5, 
each described by the value of its tags. 

-~ 

0111 

Ollo-TIlo I lO#  l l # O  1#10 #I10 1##0 #O#O # # I O  ###O 
1111 I l l #  1 1 # 1  1 # 1 1  # I 1 1  1 # # 1  # 1 # 1  # # I 1  ###I  

1 1 1 1  I l l #  1 1 # 1  1 # 1 1  # I 1 1  11## 

The chosen encoding means that it is out of the question 
to interpret the classifiers obtained. Therefore, we will 
analyse how the number of rules in each of the groups 
formed changes as the experiment advances. The most 
complicated case of those shown was chosen, based on an 
opening board generated with 10% to 100% randomness. It 
is in this experiment that the inclusion of ITS in the CS 
improves most on the results obtained without ITS. The 
evolution of the number of rules of the different groups are 
shown from Figure 1 to Figure 10. The figures show that the 
number of rules belonging to each group levels out as of the 
experiment with 70% randomness (Exp 70) in opening 
board generation. " 1 ## 1 " and '' ### 1 " are the groups 
whose number of rules increase most. The groups with the 
most pronounced fall in the number of groups are: " 1 1 1#", 
" 1 # 1 1 " , " # 1 1 1 " and " ####" . Although they do undergo 
changes throughout the experiments, the number of rules in 

1##1 I###  # # # I  #### 

the other groups remain within a relatively narrow 
of values. 

margin 

I I "1lil"OROUP 

I * ,  I I  

* I S  
8 "  1 - 101 I 

Figure 1 : Evolution in the number of rules of group 
"1 11" with increased board generation randomness. 

I '11W" QROUP I 

Figure 2: Evolution in the number of rules of group 
"1 1#" with increased board generation randomness. 

I 5 4  I1 

Figure 3: Evolution in the number of rules of group 
"1 1#1" with increased board generation randomness. 

I 'IMI'QROUP I 
I 201 ,I 

Figure 4: Evolution in the number of rules of group 
"1#11" with increased board generation randomness. 
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Figure 5: Evolution in the number of rules of group . 

"#111" with increased board generation randomness. 
Figure 9: Evolution in the number of rules of group 
"###I I' with increased board generation randomness. 

"11WOROUP 

15 - 

m 
I 

I "I#r OROUP 

Figure 6: Evolution in the number of rules of group 
"1 1##" with increased board generation randomness 

Figure 10: Evolution in the number of rules of group 
"######" with increased board generation randomness. 

I 'Im- OROUP I 

Figure 7: Evolution in the number of rules of group 
"1##1" with increased board generation randomness. 

"IW'OROUP 

Figure 8: Evolution in the number of rules of group 
"1###" with increased board generation randomness. 

The evolution of the number of rules of the groups that 
increase and decrease most is related to the specificity of the 
IT values. The groups that decrease are more specific 
(except the one defined by "####" which will be dealt with 
separately) than those that increase; however, the three 
specific groups are included in the more general ones. In 
this manner, rules that belonged to the three groups and 
represented similar situations, even if they were in different 
groups, have been able to migrate to another group that 
represents that common situation. As the target group is less 
specific, the rules include the response to the IT values of 
the groups to which they belonged before they migrated. 

With respect to group " ####" , which is the most general 
group and includes all the others, it is found that, first, in no 
experiment does it have a very significant number of rules 
(the maximum value is 7). Apart from not containing many 
rules, this group decreases precisely because the generation 
of possible strategies does not require rules that are totally 
general and fail to discriminate the rules by which they are 
activated. The final leveling value of this group is 3. 

As we have seen, the only groups formed are those 
required to solve the problem, as opposed to all the possible 
groups. In this case, this finding appears to be influenced by 
the IT values learnt, as, although no more groups are 
necessary, these groups did have to act according to a 
particular hierarchy. In these experiments, we find that not 
only is the TCS able to learn groups of rules, it is also 
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capable of establishing hierarchies between groups, using 
the ”# ’  symbol. 

7 Conclusions 
The objective of this paper was to obtain an encoding 
structure that would allow the genetic evolution of CS 
groups in such a manner that their number and relationship 
would also be learnt in the evolution process. For this 
purpose, an area that allows the definition of rule groups has 
been entered into the condition and message part of the 
encoded rules. This area will be named Internal Tags. This 
term was coined as the system has some similarities with 
natural processes that take place in certain animal species, 
where the existence of tags allows them to communicate 
and recognize each other. . 

As an encoding that uses symbolic knowledge of the 
problem is used in Classifier Systems, combined with 
genetic techniques for learning, this classification of 
concepts can evolve as part of the solution to the problem. 
In response to the question of how the system is able to 
learn what concepts are related, the Genetic Algorithm 
establishes relationships between concepts not by analysing 
their meaning, but depending on the results obtained, that is, 
the Classifier System evolves the groups of rules so that the 
solution to the problem improves all the time. A rule’s 
membership of a group does not depend on its symbolic 
meaning, but on how good it is for the whole system to 
solve the problem, evaluated by means of the payment 
function. 

These ideas allow the generation of complex strategies 
which solve problems that require an elevated chaining 
depth and where each rule in this chain is essential for 
attaining the final solution. For example, for a CS that plays 
draughts, the need to output complex solutions and for 
different rule types to coexist (such as rules for taking and 
rules for moving, for example) gains in importance, and 
these rules could disappear ‘as a result of Genetic Algorithm 
action, if some of the rule types are not employed during a 
certain number of cycles. The CS with tags (TCS) was 
proposed to solve this problem, in which positions are 
reserved in the rules to encode information with regard to 
the group to which they belong. 
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