
Knowledge Acquisition including Tags in a Classifier System

A. Sanchis J. M. Molina
Dept. Informiitica Dept. Informhtica

Univ. Carlos 111
Avda Universidad 30

2891 1 SPAIN 28911 SPAIN
masm@inf.uc3m.es molina@ia.uc3m.es

Univ. Carlos 111
Avda Universidad 30

Abstract- One of the major problems related to
Classifier Systems is the loss of rules. This loss is caused
by the Genetic Algorithm being applied on the entire
population of rules jointly. Obviously, the genetic
operators discriminate rules by the strength value, such
that evolution favours the generation of the stronger
rules. When the learning system works in an
environment in which it is possible to generate a
complete training set, the strength of the rules of the CS
will reflect the relative relationship between rules
satisfactorily and, therefore, the application of the
Genetic Algorithm will produce the desired effects.
However, when the learning process presents individual
cases and allows the system to learn gradually from
these cases, each learning interval with a set of
individual cases can lead the strength to be distributed in
favour of a given type of rules that would in turn be
favoured by the Genetic Algorithm. Basically, the idea is
to divide rules into groups such that they are forced to
remain in the system. This contribution is a method of
learning that allows similar knowledge to be grouped. A
field in which knowledge-based systems researchers have
done a lot of work is concept classification and the
relationships that are established between these concepts
in the stage of knowledge conceptualization for later
formalization. This job of classifying and searching
relationships is performed in the proposed Classifier
Systems by means of a mechanism, Tags, that allows the
classification and the relationships to be discovered
without the need for expert knowledge.

1 Introduction
Classifier Systems (Holland 1975, 1980, 1985, 1986, 1986a,
1995, Golberg 1989, Mitchel 1996), the subject of this
paper, are studied from the viewpoint of behaviour, an
approach referred to as behaviourist, which considers
exclusively the change in system behaviour and is defended,
among others, by Narendra, Thathachar and Simon,
(Thathachar 1989).

Classifier Systems (CS) combine the advantages of rule-
based systems with the possibility of applying a domain-

0-7803-5536-9l99l$lO.O0 01999 IEEE

P.Isasi J. Segovia
Dept. Lenguajes y Sistemas

Univ. Carlos 111 Univ. PolitCcnica
Boadilla del Monte

2891 1 SPAIN Madrid, SPAIN
isasi@,ia.uc3m.es jse.govia@,fi.upm.es

Dept. Informiitica

Avda Universidad 30

independent learning system, such as Genetic Algorithms.
The relative value of the different rules is one of the key
information items to be learnt in a CS. In order to promote
this learning, CS's oblige the rules to coexist in what is
called an information-based economy service. Rules are
made to compete, where the right to respond to the
activation stems from the highest bidders, which will pay
the value of their bids to the rules that are responsible for
their activation. A chain of intermediaries is formed along
this path, ranging from manufacturers (detectors) to
consumers (actions to the environment). The
competitiveness of the economy assures that the good
(beneficial) rules survive and the bad ones disappear. There
is a high level of relation and communication between the
different levels of a CS (Golberg 1989).

The conditions and messages of a CS form a system of
rules, making them a special class of production system.
One of the main problems raised by production systems is
the complexity of rule syntax. CS's find a way around this
problem by restricting each rule to a fixed-length
representation. This constraint has two benefits: first, all the
rules, within a permitted alphabet, are syntactically
meaningful and, second, a representation using fixed-length
strings allows the application of genetic-type string
operators. This opens the door to search of the space of
permitted rules using Genetic Algorithms (Holland 1975).

As discussed above, traditional Classifier Systems
combine rule-based knowledge representation with genetic
learning. There is an obvious difference between systems
that use Genetic Algorithms for learning and Classifier
Systems. In the former, the solution to the problem is fully
encoded in the binary representation used by the Genetic
Algorithm, that is, the evaluation of one individual is
tantamount to the evaluation of the whole solution (Mitchell
1996). In Classifier Systems, however, the evaluation of an
output is equivalent to the evaluation of a rule that partly
contributes to solving the problem. This evaluation is
distributed across all those rules that contribute to the
activation of the end rule, using the credit reassignment
algorithm. In no case, however, is it an evaluation of the
system composed of all the rules. This is the approach
proposed by the University of Michigan (Holland 1986a).

137

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:39 from IEEE Xplore. Restrictions apply.

New rules or sets of rules are generated from these
evaluations. So, any rules that have been activated and
provide a satisfactory solution to part of the problem will be
the source of new rules.

The manner in which Classifier Systems operate has
some drawbacks, of which the following deserve a special
mention:

With regard to the system’s ability to learn chains of
rules which, moreover, do not break from one learning
instant to another; the loss of a rule from the chain can
lead to a loss of all the knowledge due to the
interrelations between rules. The rules make sense not
individually but only as groups which are unknown a
priori.

With regard to the need to apply the discovery algorithm
to generate increasingly better classifiers and, finally,

With regard to the sequencing of the cases put to the
system in order to guide learning towards an
improvement in overall system behaviour.

The problem addressed in this paper is in particular how
to combat the problem of the loss of rules and the need to
“maintain acquired knowledge”. Both problems are due to
CS discovery level action, which leads the mechanisms of
the CS to fail when forming and maintaining associations
between rules. The discovery level acts on the set of
classifiers that have just been executed in such a manner
that the new rules are generated from the best rules prior to
discovery level action. This operation can lead to the loss of
rules that are necessary for solving certain points of the
problem and which appeared at the start of the learning
period but failed to do so later on. This means that rules
which were very good at the start of the execution can be
considered by the GA as less valuable, because other rules
are stronger.

‘‘ Internal Tags” (IT), proposed by Holland (Holland
1995) and others for application to Genetic Algorithms,
were introduced for this purpose, giving rise to a new class
of CS, Classifier Systems with Tags (TCS). Apart from
preventing the loss of rules, different rules must be made to
coexist at all times, thus stopping the rules becoming
uniform, leading to a loss of variety in the rule
population.The remainder of this article will provide
examples of the formats of all the major components of
your paper. Please follow these directions as closely as
possible to ensure that our proceedings looks like the
quality publication the content will make it.

2 Related Works

2.1 Ad-hoc internal CS hierarchies
The problems of rule loss have been addressed from various
viewpoints in the literature with a view, in all cases, to
improving CS’s. Shu et al. (Shu 1991) consider introducing

hierarchies into CS‘s, that is, groups of rules that have to be
maintained throughout the learning process. The rule groups
are formed a priori and are given by the expert problem-
solver. This is an attempt to solve the problem which
DeJong (Booker 1989) solved by means of crowding in the
field of Genetic Algorithms. So, on the one hand, they
establish rule groups (families) and, on the other, they
propose genetic operators that act intrafamily and
interfamily. The payment system is also modified, and when
a rule from one group wins, all the other rules in its group
also partake of that prize.

Basically, the problem with discovery level action is that
all the rules are considered to be equal. This idea, which is
logical in other Evolutionary Computing techniques, where
each individual is a solution to the problem, and they,
therefore, all have to compete with each other, is not
directly extendible to CS. This is because no one rule is
capable of solving the problem on i t s own in many cases,
which means that not all the rules ar2tpual. A rule that is
fired in a particular situation and yvhose action solves the
problem is not the same as a set of rules that must be fired
in order so as to address ai different situation. Here, the
strength of the first rule is likely to grow much more than
the strength of all the rules chained in the second case. In
order to solve this problem, Shu proposes dividing the CS
rule set into subsets, each of which has rules specialized in a
particular point of the problem, in such a manner as to make
the members of the same family of rules compete.

2.2 Hierarchically Organized Independent CS
In 1995, Dorigo (Dorigo 1995) presented the results of
solutions designed to make Classifier Systems learn faster.
The tools he used are: parallelism, a distributed architecture
and training. With respect to parallelism and the parallel
architecture, he proposes a parallel version of ICs (Dorigo
1993), and designed a parallel Classifier System, called
Alecsys, applied to what is termed the “animal problem”
(Wilson 1985). This problem is addressed from the
viewpoint of dividing the problem into smaller parts, based
on a hierarchical architecture in which a series of ICs’s
learn to cooperate in solving the learning problem. The
different ICs levels are executed in parallel on different
machines, and, moreover, different ICs’s, responsible for
different tasks, are also executed in parallel. The author
(Dorigc 1995) takes up Brooks’s idea of “reactivity”
(Brooks 1991), that is, the existence of a set of behaviours,
each of which is implemented by means of an ICs and
which are independent of each other and produce an output
for each input. The whole system is composed of three
systems: an ICs to overcome obstacles, another to attain a
goal and, finally, a system that decides which of the two
possible outputs is the output of the combined system.

The author proposes that internal conditions be included
to achieve rule chaining (which is eqdivalent to behaviour

138

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:39 from IEEE Xplore. Restrictions apply.

chaining in this case). This allows messages from the
environment to be distinguished from messages from earlier
cycles. Dorigo's study centres on the usefulness of the
internal conditions without clearly explaining how they are
used internally by the CS. The results of this part of the
paper show that the size of these internal conditions, as
applied in this case, is not very relevant for learning.

3 Knowledge Classification In TCS
Automatic category generation within a CS has not been
addressed in any paper to date. The idea can perhaps be
borrowed from nature: some species use "tags" to limit a
"call or warning" to a set of individuals, discriminating a
subset among the total set. In the same manner, parts can be
included in rules that allow some to be discriminated from
others. What we will call Internal Tags (IT) can be defined
in an ad hoc manner by creating a given string of calls (Shu
1991) or can be defined in such a manner that the ITS
themselves evolve, determining what groups are necessary.
In short, each rule can be provided with a field which will
evolve genetically and which identifies that the rule in
question is a member of a group, similarly to the tags
proposed by Holland (Holland 1995).

The proposed solution must, therefore, combine the
ability to learn without a priori knowledge and the
capability of generating some kind of internal subdivision
within the CS to allow categories of rules to exist. A CS,
called TCS, has been designed that allows groups to evolve
automatically. For this solution to be implemented, the
encoding of the classifiers will have to be modified to
include a field that represents the type or group to which
each classifier belongs. So, for example, given a CS, A l-bit
field can be reserved to establish the classes making up the
CS. This field can be used to subdivide the CS into several
groups of classifiers, each of which contains the classifiers
that have the same value in the new field. This field can be
said to establish the classifier type or group. According to
the definition of the value of the field that establishes the
classes, there are 2 classes: one defined by classifiers whose
value is 1 and the other by those whose value is 0. Note that
the definition of a class is determined by the value of the
above field in the condition part of the rule, that is, rules
that must have the same value in the field for activation are
members of the same group.

This field, which appears in the encoding, evolves in the
same manner as the other fields, which means that the
number and size of each class in the CS hierarchy is
variable and must be learnt. Wide ranging groups can be
established, and all the classifiers could actually have the
same value, in which case the system would operate like a
classical CS.

Apart from establishing the classifier type according to
the value of the condition part, as it is included in the

message part which evolves similarly, not only are the rule
groups evolving, so is the form of intergroup activation.

Finally, it is important to take into account that the
inclusion of a field in the classifiers means that a value must
also be entered in the input message in the above position.
This value is not determined by the environment; it is
defined a priori by means of a value encoding the fact that
the message in question is the environmental message. In
this manner, the CS will have to learn which rule group
having the same group definition field value is to be
activated in response to the environmental message.

The appearance of hierarchies in the CS is subject to the
information about the category to which the rule belongs
being maintained in each rule. This information must evolve
genetically; obviously, if the information about the category
in each rule is capable of representing "n" different
categories, the solution to the problem could be composed
of m (m<n) categories and the remaining categories would
be irrelevant. If this information is represented in each rule
and it is allowed to evolve, the number of rules associated
with a particular category is also variable; in this respect,
the genetic evolution of the categories will not only allow
the categories required to evolve but also for each one to
have the size required to solve the problem.

4 TCS Evaluation In The Game Of Draughts
In this paper, we seek to get a measure of the contribution
of Internal Tags (IT) to the learning process in a Classifier
System. A clear evaluation of the contribution of ITS in the
encoding calls for a problem that is solved in a perfectly
defined environment. The environment chosen in this case
was the learning of draughts end games, that is, draughts
matches where only a few pieces remain on the board at an
advanced stage of the game.

The objective of applying the TCS to learning the game
of draughts is not to obtain a CS that plays draughts; it is to
apply Classifier Systems in a clear and defined environment
that allows traditional Classifier Systems to be compared
with the modification proposed in this paper, including IT.
Obviously, there are a lot of systems that play draughts,
some very successfblly (Schaeffer 1997). However, for the
purposes of this study and comparison, a player following a
random strategy will be used, and measurements will be
taken of the games each type of CS (classical/with IT) wins
against the random player using different configurations.

4.1 GameRules
There are a lot of variations on the game of draughts. In this
paper, a 64-square board is used with black and white
squares. The game is played by two players one with white
pieces and the other with black pieces, which are either
pieces or kings. Initially, the white pieces are placed at the
bottom of the board and the black pieces at the top, and

139

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:39 from IEEE Xplore. Restrictions apply.

there no kings. In tkis pager, the opening boards are not
used, as we work only with end games, where the maximum
number of pieces is 5 . These can be pieces of any kind and
be situated in any valid position on the board.

4.2 1:nformation encoding
This involves analysing how and what information about
the board, the pieces, players, turns, moves, etc., can be
supplied to the CS as an input message. The encoding
chosen for the game of draughts is such that an output from
the CS is always interpreted as a move. This means that the
CS decisions are interpreted depending on the system status.
Obviously, the system must be able to play with both black
and white pieces, so an encoding was chosen that does not
take into account "the colour'' of the piece. Additionally, the
directions of the moves have been taken to be absolute.

4.3 Payment function
The objective of the payment function that analyses the
quality of the classifiers is to guide CS learning. The CS
will learn depending on the payment function, and this,
precisely, is the central objective of the CS developer when
the CS's are applied to a particular problem. For the
purposes of this paper, the CS should be able to beat a
random player, that is, a player who has no strategy and
whose moves are not determined by the situation. This
objective means that the payment function does not need to
be able to evaluate different situations and detect the finest
distinction in the moves decided by the CS; on the contrary,
the payment function should be simple and objectively
evaluate the decisions made by the CS, assessing each move
on the basis of "quantitative" results. In this manner, the CS
will be able to beat a random, though not an experienced,
player, and it will be possible to compare the classic CS and
the 'TCS.objectively.

The payment function takes into account the following
factors: whether or not a piece has been captured, whether
or not a king has been crowned, and the number of pieces
taken. The payment will be made once the opponent has
made a move. So, the payment function employed is based
on :he results achieved by the opponent and the results
obtained by the CS move. In this case, payment can be
represented by means of Table 1, where nc. is the number of
pieces taken by the CS and no, the pieces captured by the
opponent.

Table 1 : Payment function for CS's and TCS's
applied to the game of draughts.

At the end of the game, the opponent player makes no
move on the basis of which to evaluate the preceding move
by the CS, so the result of the game is evaluated directly:

IF (the game ends in a draw) THEN (the payment is 400)
IF (the game does not end in a draw and the CS wins)
THEN (the payment is 700)
IF (the game does not end in a draw and the opponent player wins)
THEN (the payment is -700)

The payment developed is totally objective and depends
on whether or not a piece is taken and on whether or not a
king is crowned. This means that no payment is made if the
move did not have a quantifiable result. Indeed, if there is
no measurable quantity, the payment is 0. This payment 0
defines situations that will not be evaluated and, therefore,
limits Classifier System learning ability. This limitation
rules out any subjectivity coming into the payment that
assesses CS operation, thus distorting the comparison
between the classical CS and the TCS.

5 Comparison between CS and TCS
The objective of this section is to compare the traditional
CS with the TSC. For this purpose, the above systems will
be played against a player who makes random moves,
having a variable degree of randomness and starting from
different situations. The two systems commence without
any previous knowledge, that is, their entire population is
randomly generated, which means that their rules and
messages are not adapted to any particular case and their
moves will, in principle, also be random.

The three types of experiments conducted under this
point were performed by gradually increasing their
difficulty level in order to examine the behaviour of the two
systems in face of the above changes.

Three groups of experiments with a different starting
situation were performed for the comparison. The
experiments were defined in increasing order of complexity,
depending on the opening board with which each game that
was to be played commenced: first, the opening board will
be fixed for all the games, then the positions of the pieces
that appear on the board in each game will be altered and,
finally, the opening board will be generated at random for
each game. In the first experiment, differing degrees of
randomness will be applied to the opponent player, starting
with 0% randomness and increasing this percentage up to
100% randomness. In tha last two experiments, the
opponent will 100% random throughout, and the opening
boards will be modified incrementally, either by changing
the position of the pieces or by generating a new board.

The result will show the evolution of the games won and
lost by the two types of Classifier Systems. These results
correspond to the average of five groups of games. In order
to analyse the results obtained in more detail, the

140

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:39 from IEEE Xplore. Restrictions apply.

percentages of games won at the end of learning for each
CS and for each experiment, and the percentage
improvement of the TCS as compared with the CS are set
out in Table 2, Table 3 and Table 4. Analysing the results,
we find that the contribution of ITS to the CS is not relevant
in all situations. In problems where the CS has to learn a
very simple sequence of operations, because the problem to
be solved is less complex, the ITS can turn out to be more of
a handicap, as their inclusion means that the system is
forced to "learn" how to chain rules, when such chaining
may be unnecessary. As the problem becomes more
complex, the need for rule chaining increases, and the
contribution of the ITS becomes evident, since their
existence encourages rule chaining. So, we find that the
results of the TCS in the first experiments (Table 4) only
improve on the CS in the last case. On the other hand, an
improvement is seen in the results obtained with the TSC as
compared with the CS in the subsequent experiments
performed (Table 5 and Table 6).

Table 2: Summary of the results of CS and TCS:
Same Opening Board.

Table 3: Summary of CS and TCS results: Modified

Table 4: Summary of CS and TCS results: Randomly
Generated Opening Board.

Table 2 shows the results of the experiments in which
the opening board was unchanged. In this case, the problem
appears not to require rule chaining to develop strategies
that can be used in unexpected situations, since the opening
board is fixed and there are, therefore, only limited
possibilities of different moves. So, the CS is faced with a
player who, for all intents and purposes, makes a well-
defined series of moves whose variability is very restricted.
This is why the TCS results are 14% worse on average than
those obtained by the CS. Considering that this is the
simplest possible case, it appears that is counterproductive
to force the CS to employ ITS, as it makes the TCS play
worse than the CS. In the last case, where the systems face

maximum variability, the results are very similar, and those
obtained by the TCS are slightly better, mainly because the
need for chained strategies starts to become evident.

Table 3 shows the results obtained when the opening
board is modified using an incremental degree of
randomness. In this case, the TCS performs 10% better on
average than the CS; this is because the system has to start
to generate more complex actions to be able to respond to
more diverse situations. It is noteworthy in this case that the
two systems obtain poor results at the maximum level of
randomness, compared to the results that they obtained at
lower levels of variability. This is perhaps due to the fact
that these are very indeterminate situations where it is
difficult for the system to be able to extract knowledge.

In Table 4, the results obtained show that as the degree
of uncertainty in opponent player performance is increased,
a higher percentage of the results of the TCS are better than
those of the CS, in this case 15% on average. Again neither
of the two CS are able to obtain results of over 60% of
games won with the effect of maximum randomness.

In short, we can infer from the results obtained that
Classifier Systems are able to learn in games environments
and that when the game is complicated, it requires a
complex solution which is not satisfactorily provided by
classical Cs's and thus requires the inclusion of tags.

The results presented show how the proposed Classifier
Systems are capable of improving on the classical approach
of Classifier Systems in cases in which rule chaining is
relevant. The importance of this contribution is the
discovery of a learning method that allows similar or related
knowledge to be grouped. This property of ITS, the
automatic grouping of rules that share the same objective, is
of special interest, and a study has, therefore, been
conducted to analyse what effect they have and what results
are obtained in each of the proposed Classifier Systems.

6 Analysis Of Groups Of Rules Learnt
The encoding used to represent the rules in the Classifier
System used to play draughts employs a lot of symbols. Not
only is the number of symbols extensive, the encoding is
very complex so as to ensure that all the outputs given by
the Classifier System are valid. The need to generate valid
responses at all times means that the meaning of the rule
depends on the position of the pieces on the board. The
meaning of the rules belonging to one group is, in this case,
a problem for which there is no accurate analysis. Although
the study of the meaning of the groups appears to be the
best means of understanding what the Classifier System has
learnt, this is ruled out by the extent and complexity of the
chosen encoding. Therefore, we will study the different
situations in which the inclusion of the IT improves
Classifier System learning. How the groups have evolved
and the number of rules belonging to each group in the

141

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:39 from IEEE Xplore. Restrictions apply.

learning process is also of special importance. In order to
perform the experiments with the TCS, 4 bits were reserved
in the condition part and message of each classifier. 81
groups could generated with 4 bits as shown in Table 5,
each described by the value of its tags.

-~

0111

Ollo-TIlo I lO# l l # O 1#10 #I10 1##0 #O#O # # I O ###O
1111 I l l # 1 1 # 1 1 # 1 1 # I 1 1 1 # # 1 # 1 # 1 # # I 1 ###I

1 1 1 1 I l l # 1 1 # 1 1 # 1 1 # I 1 1 11##

The chosen encoding means that it is out of the question
to interpret the classifiers obtained. Therefore, we will
analyse how the number of rules in each of the groups
formed changes as the experiment advances. The most
complicated case of those shown was chosen, based on an
opening board generated with 10% to 100% randomness. It
is in this experiment that the inclusion of ITS in the CS
improves most on the results obtained without ITS. The
evolution of the number of rules of the different groups are
shown from Figure 1 to Figure 10. The figures show that the
number of rules belonging to each group levels out as of the
experiment with 70% randomness (Exp 70) in opening
board generation. " 1 ## 1 " and '' ### 1 " are the groups
whose number of rules increase most. The groups with the
most pronounced fall in the number of groups are: " 1 1 1#",
" 1 # 1 1 " , " # 1 1 1 " and " ####" . Although they do undergo
changes throughout the experiments, the number of rules in

1##1 I### # # # I ####

the other groups remain within a relatively narrow
of values.

margin

I I "1lil"OROUP

I * , I I

* I S
8 " 1 - 101 I

Figure 1 : Evolution in the number of rules of group
"1 11" with increased board generation randomness.

I '11W" QROUP I

Figure 2: Evolution in the number of rules of group
"1 1#" with increased board generation randomness.

I 5 4 I1

Figure 3: Evolution in the number of rules of group
"1 1#1" with increased board generation randomness.

I 'IMI'QROUP I
I 201 ,I

Figure 4: Evolution in the number of rules of group
"1#11" with increased board generation randomness.

142

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:39 from IEEE Xplore. Restrictions apply.

%I l l - ORMlP I 20. I 25 , I

Figure 5: Evolution in the number of rules of group .

"#111" with increased board generation randomness.
Figure 9: Evolution in the number of rules of group
"###I I' with increased board generation randomness.

"11WOROUP

15 -

m
I

I "I#r OROUP

Figure 6: Evolution in the number of rules of group
"1 1##" with increased board generation randomness

Figure 10: Evolution in the number of rules of group
"######" with increased board generation randomness.

I 'Im- OROUP I

Figure 7: Evolution in the number of rules of group
"1##1" with increased board generation randomness.

"IW'OROUP

Figure 8: Evolution in the number of rules of group
"1###" with increased board generation randomness.

The evolution of the number of rules of the groups that
increase and decrease most is related to the specificity of the
IT values. The groups that decrease are more specific
(except the one defined by "####" which will be dealt with
separately) than those that increase; however, the three
specific groups are included in the more general ones. In
this manner, rules that belonged to the three groups and
represented similar situations, even if they were in different
groups, have been able to migrate to another group that
represents that common situation. As the target group is less
specific, the rules include the response to the IT values of
the groups to which they belonged before they migrated.

With respect to group " ####" , which is the most general
group and includes all the others, it is found that, first, in no
experiment does it have a very significant number of rules
(the maximum value is 7). Apart from not containing many
rules, this group decreases precisely because the generation
of possible strategies does not require rules that are totally
general and fail to discriminate the rules by which they are
activated. The final leveling value of this group is 3.

As we have seen, the only groups formed are those
required to solve the problem, as opposed to all the possible
groups. In this case, this finding appears to be influenced by
the IT values learnt, as, although no more groups are
necessary, these groups did have to act according to a
particular hierarchy. In these experiments, we find that not
only is the TCS able to learn groups of rules, it is also

143

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:39 from IEEE Xplore. Restrictions apply.

capable of establishing hierarchies between groups, using
the ”# ’ symbol.

7 Conclusions
The objective of this paper was to obtain an encoding
structure that would allow the genetic evolution of CS
groups in such a manner that their number and relationship
would also be learnt in the evolution process. For this
purpose, an area that allows the definition of rule groups has
been entered into the condition and message part of the
encoded rules. This area will be named Internal Tags. This
term was coined as the system has some similarities with
natural processes that take place in certain animal species,
where the existence of tags allows them to communicate
and recognize each other. .

As an encoding that uses symbolic knowledge of the
problem is used in Classifier Systems, combined with
genetic techniques for learning, this classification of
concepts can evolve as part of the solution to the problem.
In response to the question of how the system is able to
learn what concepts are related, the Genetic Algorithm
establishes relationships between concepts not by analysing
their meaning, but depending on the results obtained, that is,
the Classifier System evolves the groups of rules so that the
solution to the problem improves all the time. A rule’s
membership of a group does not depend on its symbolic
meaning, but on how good it is for the whole system to
solve the problem, evaluated by means of the payment
function.

These ideas allow the generation of complex strategies
which solve problems that require an elevated chaining
depth and where each rule in this chain is essential for
attaining the final solution. For example, for a CS that plays
draughts, the need to output complex solutions and for
different rule types to coexist (such as rules for taking and
rules for moving, for example) gains in importance, and
these rules could disappear ‘as a result of Genetic Algorithm
action, if some of the rule types are not employed during a
certain number of cycles. The CS with tags (TCS) was
proposed to solve this problem, in which positions are
reserved in the rules to encode information with regard to
the group to which they belong.

References

Booker L., Goldberg D.E. and Holland J.H. (1989),
“Classifier Systems and Genetic Algorithms ”, Artificial
Intelligence, 23 5-282.
Brooks R.A. (1991), “Intelligence Without
Representation ”, Artificial Intelligence, 47, 139- 159,.
Dorigo M. (1995), “ALECSYS and the AutonoMOuse:
Learning to Control a Real Robot by Distributed Classifier
Systems”, Machine Learning, 19,209-240.

Dorigo M. and Schnepf U. (1993), “Genetics-Based
Machine Learning and Behwior Based Robotics: A New
Synthesis”, IEEE Trans. on Systems, Man and Cybernetics,

Goldberg D.E. (1989), “Genetic Algorithms in Search,
Optimization, and Machine Learning”. Addison Wesley,
Reading Massachusetts.
Holland J. (1975), “Adaptafion in Naturaf and Artificial
Systems ’ I . University of Michigan Press, Ann Arbor.
Holland J. (1980), “Adaptive Algorithms for Discovering
and Using General Patterns in Growing Knowledge
Bases ”, International Journal of Policy Analysis and
Information Systems, vol. 4,245-268.
Holland J. (1985), “Properties of the Bucket Brigade”. In
Proc. of International Conference on Genetic Algorithms
and their Applications, vol. 1, 1-7.
Holland J. (1986), “ A Mathematical Framework for
Studying Learning in Classifier Systems”, Physica D, 22,

Holland J.H. (1986), “Escaping Brittleness, The
Possibilities of General Purpose Learning Algorithms
Applied to Rule-Based Systems”, 593-623.
Holland J.H. (1995), “Hidden order: how adaptation builds
complexity ”. Reading Massachusetts, Addison- Wesley.
Mitchell M. (1 996), ”Ah Introduction to Genetic
Algorithms ”, MIT Press, Massachusetts.
Schaeffer J. (1 997), “One Jump Ahead”, Springer-Verlag.
Shu L. and Schaeffer J . (1991), “HCS: Adding Hierarchies
to Classifier Systems ”, Proceedings of the 4th International
Conference on Genetic Algorithms, 339-345.
Thathachar M.A., Narendra K. (1989), “Learning
Automata, an Introduction ” Prentice Hall International,
Englewood Cliffs, N.J..
Wilson S. (1985), “Knowledge Growth in an Artificial
Animal ”, Roc. of the First International Conference on
Genetic Algorithms and their Applications, 16-23.

23:1, 141-154.

307-3 17.

144

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:39 from IEEE Xplore. Restrictions apply.

