
Coevolutive adaptation of fitness landscape for solving the testing problem

A. Berlanga, P.Isasi, A. Sanchis and J. M. Molina

Departamento de Informlitica, Universidad Carlos I11 de Madrid
Avda Universidad 30,2891 1- LeganCs (Madrid)

ABSTRACT. In this work a general framework, called Uniform
Coevolution, is introduced to overcome the testing problem in
evolutionary computation methods. This framework is based on
competitive evolution ideas where the solution and example sets
are evolving by means of a competition to generate difficult test
beds for the solutions in a gradual way. The method has been
tested with two different problems the robot navigation problem
and the density parity problem in cellular automata. In both test
cases using evolutive methods, the examples used in the
learning process biased the solutions founded. The main
characteristics of the Uniform Coevolution method are that
smoothes the fitness landscape and, that gets the “ideal learner
examples”. The results using uniform coevolution show a high
value of generality, compared with no CO-evolutive approaches.

1. INTRODUCTION

The coevolutive dynamics evolve a solutions system and an
examples system. In “learning by examples methods”, the
performance of the solutions depends of the examples used. In
coevolutive methods, the evolution of the examples tries always
to generate harder examples for the solutions. As the solutions
are more complex and accurate, they must prove their
capabilities with more sophisticated and complex examples [I],
PI.
In many problems, the generation of good solutions over
reduced examples set is a very difficult task. In this case:

If the examples evolve toward hard data sets, the process
could end into an impossibility of achieving solutions for
these hard example sets, and the continuous adaptation of
the examples could stop the adaptation of the solutions.
These are cases in which the fitness landscape is abruptly
sharpened by the examples.

If the adaptation of examples process is carried out in such
a way that the adaptation of solutions is allowed, the
solutions could reach in a process of over-adaptation,
making more difficult the generation of more accurate
solutions with a high value of generality. In these cases, the
examples are not modified too much in order to allow the
generation of solutions, but the generated solutions become
good for the particular examples set, and solutions are not
able to solve the problem for different examples.

Usually, the solution obtained with a coevolutive approach in
problems with huge search an examples spaces, has no idea how
good is the solutions founded. The validation process is an
additional problem. This is referred in the literature as the
testing problem. In some previous works [3],[4],[5], we have
studied evolutionary systems and having founded the testing
problem because of the over-adaptation of solutions. In these
cases, some rules (or neural networks) have been evolved for

navigation problem in robotics (or learning rules for neural
networks have been found) with a low value of generality.

To overcome the testing problem Rosing and Bellew [6] suggest
a new CO-evolutionary method, the shared sampling. In this
method a population of exmples is always kept. Each example
of the population is evaluaied computing its performance over a
previously selected set of solutions. In the same way, each
solution is evaluated computing its performance over a
previously selected set of examples. The selection of the
examples is carried out proportionally to the evaluation of
examples. The examples with better general evaluations are
preferred as test cases for the solutions, and their evaluations are
computed again. This method has the problem of a high
computational cost, m solutions and n examples require 2xmxn
evaluations.

Hillis’s solution [7] is similar. In this case, the examples are not
selected, each time an evaluation of a solution is needed. By the
opposite, each solution has a subset (subpopulation) of examples
related with it. This subsel. is kept constant, and is in continuous
evolution. Is hard to compare the success of the solutions
because the fitness value is too relative, a solution is tested with
an example.

We propose, in this work, a new method of adjusting
coevolution to allow both the evolutions of good solutions and
hard test examples in difficult generalization problems. This
method has been tested in two different problems where the
generality of solutions is very necessary.

2. COEVOLUTIVE ADAPTATION OF FITNESS
LANDSCAPE

The architecture of the IJniform Coevolution is composed of r
population of solutions ;and a set of populations of example.
(one population of examples for each individual in tht
population of solutions). see Figure 1. This structure reflect!
what it was called Independent Examples Sets.

The solutions and examples systems are named respectively:

Solutions Generator System (SGS). A population o
solution individuals (SI) composes it. For computing eaci
SI fitness, is necessary to face each individual with a set o
different situations, examples, represented by a populatiol
in the Examples Generator System.

Examples Generator System (EGS). It is a meta-populatio
composed of meta-individuals, which are populations G
examples (PE). Each PE is related with a SI. Exampl
individuals (EI) compose the PE. The fitness of thos
individuals is inversely proportional to their related SI’

0-7803-6583-6/001$10.00 0 2000 IEEE 3846

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

fitness, when operating over them. of SIi for the block j . This
equations 2 and 3.

,’
\ I . ,
\ ’ ‘-. *.*’ _--- ------- -- ---*’ -.-

Figure 1: Uniform Coevolutive architecture.

The evolution of each system depends on the other’s evolution.
The general procedure is as follows:

1. Initialization of the populations:
(a) SGS initialization (m SI individuals)
(b) EGS initialization (m PE of n E1 individuals each)

2. Computation of the fitness
(a) Evaluation of the SI over each individual E1 in its
related PE
(b) The fitness of the SI is a combination of the above
evaluations
(c) The Fitness of the PE is set inversely to the fitness
value of the correspondent SI

(a) PE evolutions by means of generation of new El’s
applying an ad-hoc genetic operator (Incremental
Genetic Operator -EO-)
(b) EGS and SGS evolution

3. Generation of new populations

Solution Generator System
The SGS objective is to gradually generate better solutions to a
particular problem. Any evolutionary computation method can
be used, where each individual represents a problem solution.
The evolution of the SGS follows the dynamics of the
evolutionary computation method selected.

The generation of better solutions is driven by the evaluation
function, also called fitness function. Each individual is
evaluated over a set of examples. Lets call PE, the examples set
of the individual i, this population is composed of several
independent blocks (A..Z), which meaning will be explained
later. Therefore EI{ is the j-th example of the block A for the
set PE;. As previously mentioned, for the smoothing fitness
landscape mechanism, a linear combination of evaluations is
used as fitness value of the individual. The fitness of an
individual I is computed using the evaluation values of that
individual over a set of n examples, in equation 1.

Where F(SI,) is the final fitness of the i-th solution individual, nb
is the number of blocks in the population of examples, di is the
deviation of the fitness values of the blocks for SI;, C is a
constant measuring the importance of the deviations over the
normalized total fitness of the blocks, and F,’(S&) is the fitness

value is computed following

Where f(SI,! EY‘,A is the value of the evaluation of SI, over the
example El‘jk, nex is the number of examples of each block. The
d j k values are used to weight the importance of each example in
the total computation of the fitness of a SI. The w values depend
on the proximity between the fitness they are weighting and the
maximum fitness, and they are computed by the equation 4.

(e - 1>’
(4)

Where a, is a measure of the evolution degree of the individual
over its examples set, and the P,’ gives an idea about how the
example j contributes to the total fitness of individual i. The a,
values are computed by equation 5.

, if minimize
fit’ - FMrN

FMAX - FMIN

, if maximize fi t’ - FMrN
nj =

FMAX - FMIN

nex

1 -
And Oj by equation 6.

Where Fmm is the maximum fitness value that a SZi could ever
reach, &,in are the maximum and minimum fitness values
achieved for SI, over its related examples set respectively,
described through equations 7 and 8.

Examples Generator System
The second subsystem in Uniform Coevolution is called
Examples Generator System (EGS). The EGS is a meta-
population composed of a set of populations (PE,} . Therefore,
the EGS is composed of two dependent evolutive systems: the
meta-population {PEi} and the PEi, one embedded into the
other.

(a) Meta-population. As a way of developing the independent
examples sets idea, the examples are divided in M independent
sets PE;, which are the individuals in the meta-population. Each

3847

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

PE, is related and competes against a unique solution SI,.
Individuals PEi is composed of a number of chromosomes.
These chromosomes are the previously mentioned blocks of the
PE,. Each chromosome represents a set of examples. These
blocks, that could be considered independent and evolve in an
independent way, are needed for crossover purposes. When the
individuals in the meta-population interchange their genetic
material, the blocks are interchanged.

(b) Population PE,. All the individuals EIv in a block are
generated from an especial individual called “seed example”.
The generation of EIv is based on a particularly designed
Genetic Operator called Incremental Genetic Operator, IGO.
This generation process constitutes the unique method for
evolving PE,.

(c) Evolution of population. Initially all the seed examples of the
blocks are identical and randomly generated. The individuals in
the blocks are all the same and equal, in this initial step, to their
related seed example. In furthers steps of evolution, the
individuals in a block are generated from the seed example by
the Incremental Genetic Operator (IGO). The blocks of PEi are
inherited by the offspring from their parents.

(d) Incremental Genetic Operator. For the designing of the IGO
is necessary to define a distance function between examples.
This distance is a measure of the differences existing among
examples: most different are two examples a higher value
outputs the function and vice-versa (equation 9).

Where E is the set of all possible examples for a particular
problem.

As the distance between examples is a numerical value, the
change in the examples could be computed using the equation
10.

Where A and B are two constants to regulate the shape of the
function. This shape conforms how different the examples have
to be inside a block from the fitness of the individual. I values
are used to generate examples which distance from one each
other is precisely I.

For the evolution of examples the following rules are used:

To generate the first example for the individual I (SIi)
To generate all the individuals in the block, the equation 11
is used.

Where N(O,I) is a Normal distribution, means 0, and deviation I,
and D(x,y) is the distance between examples x and y . In other

words, the examples are generated in such a way that their
distances follow a Normal distribution of deviation 4 computed
for Sh.

3. EXPERIMENTS !IN ROBOT NAVIGATION

The robot navigation problem consists on reaching a goal in a
complex environment while avoiding obstacles found in its path.

A. Evolving Controllers by means of Evolutionary
Strategies

It has been proven that by means of connections between
sensors and actuators, a controller is able to solve any
autonomous navigation robotic behavior [SI. This theoretical
approach is based on the possibility of finding the right
connections of a feed-forward Neural Network, NN, without
hidden layers for each particular problem, see Figure 2. The
input sensors considered in this approach are the ambient and
proximity sensors, si, of Figure 3. The NN outputs are the wheel
velocities.

The NN architecture is shown in Figure 2.

Wheels
elocity

Input Layer Output Layer

Figure 2: Neural Network Controller

A, Input of i-sensor
v, Velocity ofj -wheel
d Goal distance
0 Goal angle
W, Weight between i-sensor and

/-wheel

Figure 3: Connections between sensors and actuators in the Braitenberg
representation of a IChepera robot.

The velocity of each wheel is calculated by means of a linear
combination of the sensor values, using those weights (Figures 2
and 3) as shows equation 1:2.

vi = f(t w . . x s,)
!I

i = i

Where wv are searched weights, si are sensor input values and f
is a function for constraining the maximum velocity values of
the wheels.

Weight values depend on problem features. To find them
automatically, an ES is proposed 191. In this approach each
individual is composed by a 20 dimensional-real valued vector,
representing each one of the above mentioned weighs and their
corresponding variances. The individual represents one robot

3848

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

behavior consequence of applying the weights to the equation
12. The evaluation of behaviors is used as fitness function.

B. Environment

In this work, a simulator based on an autonomous robot named
Khepera [IO] is used. The mini-robot Khepera is a commercial
robot developed at LAM1 (EPFL, Laussanne, Switzerland).
Experiments take a long time of continuous fimctioning of the
hardware. In order to prove the different configurations of the
controllers, a simulator developed in a previous work [l 11 has
been used, the SimDAI one. In the simulator, the characteristics
of the turtle robot model [12] and the physical restrictions of the
Khepera robot have been considered. SimDAI is a working
prototype of a mobile robot simulation environment for
experimenting with robot navigation and control algorithms.
Each mobile robot is completely independent, can navigate and
interacts with other robots in a 2-D simulated world of obstacles,
which is separately monitored. The simulation world consists of
a rectangular map of user defined dimensions, where particular
objects are located. In this world it is possible to define a final
position for the robot.

C. Robot Navigation Results

Two different kinds of experiments have been performed. In
both cases, an Evolutionary Strategy [13], [14], is used, (p+X)-
ES, p=6, h=4, in order to find the network connections weights.
Experiments differ in the way they are evaluated on the learning
environments. One of the experiments, which will be referred as
fixed, is trained in the same environment during all the evolutive
process; that is, starting and goal positions, as well as the
obstacle configuration are constant. On the other hand, those
experiments that use the uniform coevolution algorithm, coevU,
evolve the robot starting position and orientation, while they
keep fixed the goal position and obstacles configuration. Figure
4 shows the training environments. The objective of the
evolutive process is to minimize the fitness value.

= I
- 14 ,

- * I I I

Y

I

Figure 4: Evaluation environments. The little point represents the goal
and the big point represents the robot starting position.

Measure of the controllers fitness
To obtain controller fitness value, the simulation has been run
for a period of 2000 cycles. Simultaneously, a log of its behavior
is recorded. The measures that will be taken into account to
calculate the fitness value are the following:

Number of cycles necessary to reach the goal, T. If the goal
is not reached, the value is 2000.
Length of the robot’s trajectory, L.
Number of collisions, C.
Number of cycles in which the robot stayed in the same
position, S.
Euclidean distance between the robot’s starting and final
position, 0,.
Euclidean distance between the robot’s starting position
and the goal position, D,.

Equation 13 shows the lineal combination and weights used to
compute the fitness value of a controller, experimentally
obtained from the measurements of its behavior.

fj = 20T - 1.5L + 1 OC + 1 OS + 1 OD, - 1 SD, (13)

For the f x d experiment the fitness function is the base
measurement used to apply the selection operator. For the coevU
experiment, this is the value, f(Slj, EPi,J, applied in equations 2,
6, and 8 to calculate the block fitness value. In these
experiments, constant C in equation 1 has an experimental value
of 0.25.

Resu Its
The fixed type experiments have two main problems: the
overadaptation problem and the quality of the solutions that
depends on the training examples set. Thus, the necessity of an
evolutive algorithm to improve the existing one is justified.

3849

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

Coevolutive experiments have not been performed in all the
environments since some of these only differ in the starting
position, thus for example 3, 6, 7 and 9 in figure 4 are the same
environment.

Fitness 1 Fiued’ I o Fitness

The fitness values of fured), fured3 and CoevUl, CoevU, are
related with the evolution in worlds 1 and 3. These two worlds
are the most general ones from figure 4. In table 1, the
validation of the obtained controllers is shown. These controllers
have been learned in worlds 1 and 3 (of figure 4) and tested in
worlds I , 3, 5 and 10.

Table 1: Resume ofthe results infuedexperiments and CoevU
experiments.

1 w1 1 w3 1 ws 1 Wl“ 1
66.4 89.7 87.0 79.4
15.5 19.8 21.1 21.1

Fiued3
Fitness 73.2 95.5 95.0 91.2
o Fitness 15.9 9.7 9.6 14.0
Fitness

COeVlJ‘

COeVUJ
Fitness 21.7 20.6
oFitness 4.6 15.3 24.2 9.9

I I I I I I I

The validation process has been carried out making 1000
executions over worlds 1, 3, 5 and IO. Each execution has
different initial position and orientation of the robot, randomly
generated.

Table 1 compiles the average over the 1000 running. The
controller denoted through CoevUl shows the best
generalization results, better than any one of the fixed
controllers. Moreover, it also can be seen that CoevUl has a very
specialized behavior in the world 1 , comparing with the results
of CoevU3. This last controller shows better results in the four
worlds considered. CoevU, improves the fixed controllers in
about an 80% and about a 20% over CoevUl.

4. EXPERIMENTS FOR THE DENSITY
CLASSIFICATION PROBLEM

Cellular Automata (CA), are spatially-extended discrete
dynamical systems whose architecture has many desirable
features. CA performs computation, with local interactions, in a
distributed fashion on a spatially-extended lattice, [151.

The Density Classification Problem (DCP) is one of the most
studied problems in Cellular Automata [16]. This problem is
interesting from both, theoretical and practical aspects, and it
has been proven the non-existence of any rule able to solve the
problem for a binary CA with a neighborhood of radius one
[17]. The DCP is defined by the equation 14.

Where T,(N,A4) is an unidimensional DCP of size N, with a
critical density of pc and after M updating periods. If the initial
density Aso), is shorter than the critical density, the CA has to
transit, after M steps, to a configuration of all zeros. so is the
initial configuration, the configuration of a CA after some i steps

is s,=Y(so), where the function Y defines the rule of the CA

A genetic algorithm (GA) has been used to evolve the SGS. In
the EGS the initial state configuration, needed to measure the
performance of CA rules, are codified. The objective is to obtain
a CA rule with the highest average of right classifications.

Six kinds of experiment hake been performed. In table 4 is
shown a brief description of each type of experiment. The
examples set column identifies the training examples generation.
“Fixed” means that always the same examples are faced for all
the individuals. “Random” means that a new random examples
set is generated each generation for each individual in the
population. “Coev” means that the example sets are generated
following the previously mentioned rules for the Uniform
coevolution method. The word “UNI” means that the Uniform
Coevolution method is applied completely. When ‘‘NoSPC”
appears, no Selective Pressurr: Control is used. The word “NI” is
related with the local fitrress function used. Two fitness
functions have been introduc1:d named informed fitness function
and non-informed fitness function:

Non-Informed fitness function. It is computed by the
percentage of success of the CA rule over the examples set.

Informed fitness function. In this case some domain
knowledge is taken into account. It is known that initial
configurations with a density near 0.5 are more difficult to
classify and better to achieve generalized rules. This fact is
used to overweight these especially difficult initial
configurations, to introduce a selective pressure toward
more general CA rules.

A total of 30 experiments of each type have been realized to
overcome the stochasticity of the GA. In all the experiments a
GA have been used to evolve the solutions. In tables 2 and 3 the
CA and CA parameters of runs are shown.

Table 2:: GA parameters.
Population size
Chromosome length
Crossover probability
Mutation probability 0.01
Elitism 0.05
Generations
Selection operator Tournament (3)

Table 3: CA parameters.

Neighborhood
Dimension Uni-dimensional
Number of rules 7 A v l n

1 -. 1
Periodic

I 149
I 7.1 x 1 044 Number of initial configurations I

These initial configurations are the same for all the experiments
and are equally distributed in ten density intervals. This
supposes one hundred conhgurations of density between 0.0 and
0.1, one hundred between 0.1 and 0.2 and so on. The percentage
of successfully classified configuration is the measure of
generalization of the rule.

Table 4: Generalization results

Fixed 70.74% 20.43

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

RamdomNI 93.01% 92.10% 0.27 ’
Random 94.1 OYo 92.55% 0.51
CoevNoSPC 93.48% 92.55% 0.42
CoevUni 93.61% 92.63% 0.5 1

This work has shown some of the important disadvantages of
evolutionary computation techniques, especially in complex
problems where general solutions are needed in learning through
examples. The new method proposed in this work present these
characteristics: (a) Avoid overadaptation. The coevolutive
mechanisms proposed slowly down the adaptation of solutions
during learning. (b) Keeping on the genetic diversity. Usually
the evolutionary computation methods converge prematurely by
faster loosing genetic material, while UC is able to keep the
genetic diversity (c) Examples evolution. The simultaneous
evolution of both solutions and examples allow the automatic
and gradual generation of good training examples.

Uniform Coevolution method has been compared with a non-
coevolutive algorithm to solve both the robot navigation
problem and the density classification problem in CA. Their
characteristics, evolution of the examples and the solutions sets
and control of evolutive process, have proven the capability of
the proposed system to obtain better-generalized solutions in

examples-based problems.

6. REFERENCES

P.J. Angeline and J.B. Pollack, Competitive
environments evolve better solutions for complex tasks
Proceedings of the Fifth Intemational Conference on
Genetics Algorithms, ed. S. Forrest, Morgan Kaufmann,
San Mateo, CA, pp: 264-270, 1993.
C. W. Reynolds, “Competition, coevolution and the
game of Tag” Artificial Life IV, ed. C.G. Langton,
Addison-Wesley, Santa Fe Institute, Reading, MA, 1996.
J.M. Molina, C.Sevilla, P. Isasi and A. Sanchis, “A
reactive approach to classifier systems”, Proceedings of
the IEEE Intemational Conference on System, Man and
Cybernetics, San Diego, CA USA, 1998.
R. E. Smith and B. Gray, “CO-adaptive genetics

algorithms: An example in Othello strategy”,
Proceedings of the Florida Artificial Intelligence
Research Symposium, 1994.
A. Sanchis, J.M. Molina, P. Isasi and J. Segovia,
“RTCS: A reactive with tags classifier system”, Joumal
of Intelligent and Robotic Systems 27: 379-405,2000.
C. D. Rosin and R. K. Belew, “New methods for

competitive coevolution”, Evolutionary computation, vol

W. D. Hillis, ‘To-evolving parasites improve simulated
evolution as an optimization procedure”, Artificial Life
11, ed. C.G. Langton, Addison-Wesley, Santa Fe
Institute, Reading, MA, pp 313-324, 1991.
V. Braitenberg, “Vehicles: Experiments on synthetic
psychology”, MIT Press, Massachusets, USA, 1984.
Berlanga, A., Sanchis, A., Isasi, P., Molina, J.M.
“Neural Networks Robot Controller Trained with
Evolution Strategies”, Proc. of 1999 Congress on
Evolutionary Computation, CEC99, 1999.
F. Mondada and P. I. Franzi, “Mobile Robot

Miniaturization: A tool for investigation in control
algorithms”, Proceedings of the second Intemational
Conference on Fuzzy Systems, San Francisco, USA,
1993.
L. Sommaruga and I. Merino and V. Matellb and J.M.
Molina, A Distributed Simulator for Intelligent
Autonomous Robots, Fourth Intemational Symposium
on Intelligent Robotic Systems-SIRS96, Lisboa,
Portugal, 1996.
McKerrow P.J. “Introduction to robotics”, Addison-
Wesley Publishing Company Inc, 1991.
I. Rechenberg, “Evolution Strategy: Nature’s way of

optimization”, Optimization: Methodos and
Applications, Posibilities and Limitations, Springer eds.
Bergmann , Lecture notes in Engineering pp: 106-126,
1989.
H.P. Schwefel, “Numerical Optimization of Computer
Models”, John Wiley & Sons, New York, 1981.
M. Mitchell and J.P. Crutchfield and P.T. Hraber,

“Evolving cellular automata to perform computations:
Mechanisms and impediments”, Physica D, vol 75, pp:

J. Paredis, “Coevolving cellular automata: Be aware of
the red queen!”, Proceedings of the Seventh International
Conference on Genetic Algorithms, pp: 393-400,
Morgan Kaufmann, 1997.
M. Land and R.K. Bellew, No perfect two state cellular
automata for density classification exists, Physical
Review Letters, vol. 74, num. 25, pp:5148-5150, 1995.

5, pp: 1-29, 1997.

361-391, 1994.

385 1

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:19 from IEEE Xplore. Restrictions apply.

