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ABSTRACT. In this work a general framework, called Uniform 
Coevolution, is introduced to overcome the testing problem in 
evolutionary computation methods. This framework is based on 
competitive evolution ideas where the solution and example sets 
are evolving by means of a competition to generate difficult test 
beds for the solutions in a gradual way. The method has been 
tested with two different problems the robot navigation problem 
and the density parity problem in cellular automata. In both test 
cases using evolutive methods, the examples used in the 
learning process biased the solutions founded. The main 
characteristics of the Uniform Coevolution method are that 
smoothes the fitness landscape and, that gets the “ideal learner 
examples”. The results using uniform coevolution show a high 
value of generality, compared with no CO-evolutive approaches. 

1. INTRODUCTION 

The coevolutive dynamics evolve a solutions system and an 
examples system. In “learning by examples methods”, the 
performance of the solutions depends of the examples used. In 
coevolutive methods, the evolution of the examples tries always 
to generate harder examples for the solutions. As the solutions 
are more complex and accurate, they must prove their 
capabilities with more sophisticated and complex examples [I], 
PI.  
In many problems, the generation of good solutions over 
reduced examples set is a very difficult task. In this case: 

If the examples evolve toward hard data sets, the process 
could end into an impossibility of achieving solutions for 
these hard example sets, and the continuous adaptation of 
the examples could stop the adaptation of the solutions. 
These are cases in which the fitness landscape is abruptly 
sharpened by the examples. 

If the adaptation of examples process is carried out in such 
a way that the adaptation of solutions is allowed, the 
solutions could reach in a process of over-adaptation, 
making more difficult the generation of more accurate 
solutions with a high value of generality. In these cases, the 
examples are not modified too much in order to allow the 
generation of solutions, but the generated solutions become 
good for the particular examples set, and solutions are not 
able to solve the problem for different examples. 

Usually, the solution obtained with a coevolutive approach in 
problems with huge search an examples spaces, has no idea how 
good is the solutions founded. The validation process is an 
additional problem. This is referred in the literature as the 
testing problem. In some previous works [3],[4],[5], we have 
studied evolutionary systems and having founded the testing 
problem because of the over-adaptation of solutions. In these 
cases, some rules (or neural networks) have been evolved for 

navigation problem in robotics (or learning rules for neural 
networks have been found) with a low value of generality. 

To overcome the testing problem Rosing and Bellew [6] suggest 
a new CO-evolutionary method, the shared sampling. In this 
method a population of exmples is always kept. Each example 
of the population is evaluaied computing its performance over a 
previously selected set of solutions. In the same way, each 
solution is evaluated computing its performance over a 
previously selected set of examples. The selection of the 
examples is carried out proportionally to the evaluation of 
examples. The examples with better general evaluations are 
preferred as test cases for the solutions, and their evaluations are 
computed again. This method has the problem of a high 
computational cost, m solutions and n examples require 2xmxn 
evaluations. 

Hillis’s solution [7] is similar. In this case, the examples are not 
selected, each time an evaluation of a solution is needed. By the 
opposite, each solution has a subset (subpopulation) of examples 
related with it. This subsel. is kept constant, and is in continuous 
evolution. Is hard to compare the success of the solutions 
because the fitness value is too relative, a solution is tested with 
an example. 

We propose, in this work, a new method of adjusting 
coevolution to allow both the evolutions of good solutions and 
hard test examples in difficult generalization problems. This 
method has been tested in two different problems where the 
generality of solutions is very necessary. 

2. COEVOLUTIVE ADAPTATION OF FITNESS 
LANDSCAPE 

The architecture of the IJniform Coevolution is composed of r 
population of solutions ;and a set of populations of example. 
(one population of examples for each individual in tht 
population of solutions). see Figure 1. This structure reflect! 
what it was called Independent Examples Sets. 

The solutions and examples systems are named respectively: 

Solutions Generator System (SGS). A population o 
solution individuals (SI) composes it. For computing eaci 
SI fitness, is necessary to face each individual with a set o 
different situations, examples, represented by a populatiol 
in the Examples Generator System. 

Examples Generator System (EGS). It is a meta-populatio 
composed of meta-individuals, which are populations G 
examples (PE). Each PE is related with a SI. Exampl 
individuals (EI) compose the PE. The fitness of thos 
individuals is inversely proportional to their related SI’ 
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fitness, when operating over them. of SIi for the block j .  This 
equations 2 and 3. 

,’ 
\ I . , 
\ ’  ‘-. *.*’ _--- ------- -- ---*’ -.- 

Figure 1: Uniform Coevolutive architecture. 

The evolution of each system depends on the other’s evolution. 
The general procedure is as follows: 

1. Initialization of the populations: 
(a) SGS initialization (m SI individuals) 
(b) EGS initialization (m PE of n E1 individuals each) 

2. Computation of the fitness 
(a) Evaluation of the SI over each individual E1 in its 
related PE 
(b) The fitness of the SI is a combination of the above 
evaluations 
(c) The Fitness of the PE is set inversely to the fitness 
value of the correspondent SI 

(a) PE evolutions by means of generation of new El’s 
applying an ad-hoc genetic operator (Incremental 
Genetic Operator -EO-) 
(b) EGS and SGS evolution 

3. Generation of new populations 

Solution Generator System 
The SGS objective is to gradually generate better solutions to a 
particular problem. Any evolutionary computation method can 
be used, where each individual represents a problem solution. 
The evolution of the SGS follows the dynamics of the 
evolutionary computation method selected. 

The generation of better solutions is driven by the evaluation 
function, also called fitness function. Each individual is 
evaluated over a set of examples. Lets call PE, the examples set 
of the individual i, this population is composed of several 
independent blocks (A..Z), which meaning will be explained 
later. Therefore EI{ is the j-th example of the block A for the 
set PE;. As previously mentioned, for the smoothing fitness 
landscape mechanism, a linear combination of evaluations is 
used as fitness value of the individual. The fitness of an 
individual I is computed using the evaluation values of that 
individual over a set of n examples, in equation 1. 

Where F(SI,) is the final fitness of the i-th solution individual, nb 
is the number of blocks in the population of examples, di is the 
deviation of the fitness values of the blocks for SI;, C is a 
constant measuring the importance of the deviations over the 
normalized total fitness of the blocks, and F,’(S&) is the fitness 

value is computed following 

Where f(SI,! EY‘,A is the value of the evaluation of SI, over the 
example El‘jk, nex is the number of examples of each block. The 
d j k  values are used to weight the importance of each example in 
the total computation of the fitness of a SI. The w values depend 
on the proximity between the fitness they are weighting and the 
maximum fitness, and they are computed by the equation 4. 

(e - 1>’ 
(4) 

Where a, is a measure of the evolution degree of the individual 
over its examples set, and the P,’ gives an idea about how the 
example j contributes to the total fitness of individual i. The a, 
values are computed by equation 5. 

, if minimize 
fit’ - FMrN 

FMAX - FMIN 

, if maximize fi t’  - FMrN 
nj = 

FMAX - FMIN 

nex 

1 -  
And Oj by equation 6. 

Where Fmm is the maximum fitness value that a SZi could ever 
reach, &,in are the maximum and minimum fitness values 
achieved for SI, over its related examples set respectively, 
described through equations 7 and 8.  

Examples Generator System 
The second subsystem in Uniform Coevolution is called 
Examples Generator System (EGS). The EGS is a meta- 
population composed of a set of populations (PE,} .  Therefore, 
the EGS is composed of two dependent evolutive systems: the 
meta-population {PEi} and the PEi, one embedded into the 
other. 

(a) Meta-population. As a way of developing the independent 
examples sets idea, the examples are divided in M independent 
sets PE;, which are the individuals in the meta-population. Each 
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PE, is related and competes against a unique solution SI,. 
Individuals PEi is composed of a number of chromosomes. 
These chromosomes are the previously mentioned blocks of the 
PE,. Each chromosome represents a set of examples. These 
blocks, that could be considered independent and evolve in an 
independent way, are needed for crossover purposes. When the 
individuals in the meta-population interchange their genetic 
material, the blocks are interchanged. 

(b) Population PE,. All the individuals EIv in a block are 
generated from an especial individual called “seed example”. 
The generation of EIv is based on a particularly designed 
Genetic Operator called Incremental Genetic Operator, IGO. 
This generation process constitutes the unique method for 
evolving PE,. 

(c) Evolution of population. Initially all the seed examples of the 
blocks are identical and randomly generated. The individuals in 
the blocks are all the same and equal, in this initial step, to their 
related seed example. In furthers steps of evolution, the 
individuals in a block are generated from the seed example by 
the Incremental Genetic Operator (IGO). The blocks of PEi are 
inherited by the offspring from their parents. 

(d) Incremental Genetic Operator. For the designing of the IGO 
is necessary to define a distance function between examples. 
This distance is a measure of the differences existing among 
examples: most different are two examples a higher value 
outputs the function and vice-versa (equation 9). 

Where E is the set of all possible examples for a particular 
problem. 

As the distance between examples is a numerical value, the 
change in the examples could be computed using the equation 
10. 

Where A and B are two constants to regulate the shape of the 
function. This shape conforms how different the examples have 
to be inside a block from the fitness of the individual. I values 
are used to generate examples which distance from one each 
other is precisely I. 

For the evolution of examples the following rules are used: 

To generate the first example for the individual I (SIi) 
To generate all the individuals in the block, the equation 11 
is used. 

Where N(O,I) is a Normal distribution, means 0, and deviation I, 
and D(x,y) is the distance between examples x and y .  In other 

words, the examples are generated in such a way that their 
distances follow a Normal distribution of deviation 4 computed 
for Sh. 

3. EXPERIMENTS !IN ROBOT NAVIGATION 

The robot navigation problem consists on reaching a goal in a 
complex environment while avoiding obstacles found in its path. 

A.  Evolving Controllers by means of Evolutionary 
Strategies 

It has been proven that by means of connections between 
sensors and actuators, a controller is able to solve any 
autonomous navigation robotic behavior [SI. This theoretical 
approach is based on the possibility of finding the right 
connections of a feed-forward Neural Network, NN, without 
hidden layers for each particular problem, see Figure 2. The 
input sensors considered in this approach are the ambient and 
proximity sensors, si, of Figure 3. The NN outputs are the wheel 
velocities. 

The NN architecture is shown in Figure 2. 

Wheels 
elocity 

Input Layer Output Layer 

Figure 2: Neural Network Controller 

A, Input of i-sensor 
v, Velocity ofj  -wheel 
d Goal distance 
0 Goal angle 
W, Weight between i-sensor and 

/-wheel 

Figure 3: Connections between sensors and actuators in the Braitenberg 
representation of a IChepera robot. 

The velocity of each wheel is calculated by means of a linear 
combination of the sensor values, using those weights (Figures 2 
and 3)  as shows equation 1:2. 

vi = f( t w . .  x s,) 
!I 

i = i  

Where wv are searched weights, si are sensor input values and f 
is a function for constraining the maximum velocity values of 
the wheels. 

Weight values depend on problem features. To find them 
automatically, an ES is proposed 191. In this approach each 
individual is composed by a 20 dimensional-real valued vector, 
representing each one of the above mentioned weighs and their 
corresponding variances. The individual represents one robot 
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behavior consequence of applying the weights to the equation 
12. The evaluation of behaviors is used as fitness function. 

B. Environment 

In this work, a simulator based on an autonomous robot named 
Khepera [IO] is used. The mini-robot Khepera is a commercial 
robot developed at LAM1 (EPFL, Laussanne, Switzerland). 
Experiments take a long time of continuous fimctioning of the 
hardware. In order to prove the different configurations of the 
controllers, a simulator developed in a previous work [l 11 has 
been used, the SimDAI one. In the simulator, the characteristics 
of the turtle robot model [12] and the physical restrictions of the 
Khepera robot have been considered. SimDAI is a working 
prototype of a mobile robot simulation environment for 
experimenting with robot navigation and control algorithms. 
Each mobile robot is completely independent, can navigate and 
interacts with other robots in a 2-D simulated world of obstacles, 
which is separately monitored. The simulation world consists of 
a rectangular map of user defined dimensions, where particular 
objects are located. In this world it is possible to define a final 
position for the robot. 

C. Robot Navigation Results 

Two different kinds of experiments have been performed. In 
both cases, an Evolutionary Strategy [13], [14], is used, (p+X)- 
ES, p=6, h=4, in order to find the network connections weights. 
Experiments differ in the way they are evaluated on the learning 
environments. One of the experiments, which will be referred as 
fixed, is trained in the same environment during all the evolutive 
process; that is, starting and goal positions, as well as the 
obstacle configuration are constant. On the other hand, those 
experiments that use the uniform coevolution algorithm, coevU, 
evolve the robot starting position and orientation, while they 
keep fixed the goal position and obstacles configuration. Figure 
4 shows the training environments. The objective of the 
evolutive process is to minimize the fitness value. 

= I 
- 14 ,  

- *  I I I 

Y 

I 

Figure 4: Evaluation environments. The little point represents the goal 
and the big point represents the robot starting position. 

Measure of the controllers fitness 
To obtain controller fitness value, the simulation has been run 
for a period of 2000 cycles. Simultaneously, a log of its behavior 
is recorded. The measures that will be taken into account to 
calculate the fitness value are the following: 

Number of cycles necessary to reach the goal, T. If the goal 
is not reached, the value is 2000. 
Length of the robot’s trajectory, L. 
Number of collisions, C. 
Number of cycles in which the robot stayed in the same 
position, S. 
Euclidean distance between the robot’s starting and final 
position, 0,. 
Euclidean distance between the robot’s starting position 
and the goal position, D,. 

Equation 13 shows the lineal combination and weights used to 
compute the fitness value of a controller, experimentally 
obtained from the measurements of its behavior. 

fj = 20T - 1.5L + 1 OC + 1 OS + 1 OD, - 1 SD, ( 13) 

For the f x d  experiment the fitness function is the base 
measurement used to apply the selection operator. For the coevU 
experiment, this is the value, f(Slj, EPi,J, applied in equations 2, 
6, and 8 to calculate the block fitness value. In these 
experiments, constant C in equation 1 has an experimental value 
of 0.25. 

Resu Its 
The fixed type experiments have two main problems: the 
overadaptation problem and the quality of the solutions that 
depends on the training examples set. Thus, the necessity of an 
evolutive algorithm to improve the existing one is justified. 
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Coevolutive experiments have not been performed in all the 
environments since some of these only differ in the starting 
position, thus for example 3, 6, 7 and 9 in figure 4 are the same 
environment. 

Fitness 1 Fiued’ I o Fitness 

The fitness values of fured), fured3 and CoevUl, CoevU, are 
related with the evolution in worlds 1 and 3. These two worlds 
are the most general ones from figure 4. In table 1, the 
validation of the obtained controllers is shown. These controllers 
have been learned in worlds 1 and 3 (of figure 4) and tested in 
worlds I ,  3, 5 and 10. 

Table 1: Resume ofthe results infuedexperiments and CoevU 
experiments. 

1 w1 1 w3 1 ws 1 Wl“ 1 
66.4 89.7 87.0 79.4 
15.5 19.8 21.1 21.1 

Fiued3 
Fitness 73.2 95.5 95.0 91.2 
o Fitness 15.9 9.7 9.6 14.0 
Fitness 

COeVlJ‘ 

COeVUJ 
Fitness 21.7 20.6 
oFitness 4.6 15.3 24.2 9.9 

I I I I I I I 

The validation process has been carried out making 1000 
executions over worlds 1, 3,  5 and IO. Each execution has 
different initial position and orientation of the robot, randomly 
generated. 

Table 1 compiles the average over the 1000 running. The 
controller denoted through CoevUl shows the best 
generalization results, better than any one of the fixed 
controllers. Moreover, it also can be seen that CoevUl has a very 
specialized behavior in the world 1 ,  comparing with the results 
of CoevU3. This last controller shows better results in the four 
worlds considered. CoevU, improves the fixed controllers in 
about an 80% and about a 20% over CoevUl. 

4. EXPERIMENTS FOR THE DENSITY 
CLASSIFICATION PROBLEM 

Cellular Automata (CA), are spatially-extended discrete 
dynamical systems whose architecture has many desirable 
features. CA performs computation, with local interactions, in a 
distributed fashion on a spatially-extended lattice, [ 151. 

The Density Classification Problem (DCP) is one of the most 
studied problems in Cellular Automata [16]. This problem is 
interesting from both, theoretical and practical aspects, and it 
has been proven the non-existence of any rule able to solve the 
problem for a binary CA with a neighborhood of radius one 
[17]. The DCP is defined by the equation 14. 

Where T,(N,A4) is an unidimensional DCP of size N, with a 
critical density of pc and after M updating periods. If the initial 
density Aso), is shorter than the critical density, the CA has to 
transit, after M steps, to a configuration of all zeros. so is the 
initial configuration, the configuration of a CA after some i steps 

is s,=Y(so), where the function Y defines the rule of the CA 

A genetic algorithm (GA) has been used to evolve the SGS. In 
the EGS the initial state configuration, needed to measure the 
performance of CA rules, are codified. The objective is to obtain 
a CA rule with the highest average of right classifications. 

Six kinds of experiment hake been performed. In table 4 is 
shown a brief description of each type of experiment. The 
examples set column identifies the training examples generation. 
“Fixed” means that always the same examples are faced for all 
the individuals. “Random” means that a new random examples 
set is generated each generation for each individual in the 
population. “Coev” means that the example sets are generated 
following the previously mentioned rules for the Uniform 
coevolution method. The word “UNI” means that the Uniform 
Coevolution method is applied completely. When ‘‘NoSPC” 
appears, no Selective Pressurr: Control is used. The word “NI” is 
related with the local fitrress function used. Two fitness 
functions have been introduc1:d named informed fitness function 
and non-informed fitness function: 

Non-Informed fitness function. It is computed by the 
percentage of success of the CA rule over the examples set. 

Informed fitness function. In this case some domain 
knowledge is taken into account. It is known that initial 
configurations with a density near 0.5 are more difficult to 
classify and better to achieve generalized rules. This fact is 
used to overweight these especially difficult initial 
configurations, to introduce a selective pressure toward 
more general CA rules. 

A total of 30 experiments of each type have been realized to 
overcome the stochasticity of the GA. In all the experiments a 
GA have been used to evolve the solutions. In tables 2 and 3 the 
CA and CA parameters of runs are shown. 

Table 2:: GA parameters. 
Population size 
Chromosome length 
Crossover probability 
Mutation probability 0.01 
Elitism 0.05 
Generations 
Selection operator Tournament (3) 

Table 3: CA parameters. 

Neighborhood 
Dimension Uni-dimensional 
Number of rules 7 A v l n  

1 -. .... 1 
Periodic 

I 149 
I 7.1 x 1 044 Number of initial configurations I 

These initial configurations are the same for all the experiments 
and are equally distributed in ten density intervals. This 
supposes one hundred conhgurations of density between 0.0 and 
0.1, one hundred between 0.1 and 0.2 and so on. The percentage 
of successfully classified configuration is the measure of 
generalization of the rule. 

Table 4: Generalization results 

Fixed 70.74% 20.43 
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RamdomNI 93.01% 92.10% 0.27 ’ 
Random 94.1 OYo 92.55% 0.51 
CoevNoSPC 93.48% 92.55% 0.42 
CoevUni 93.61% 92.63% 0.5 1 

This work has shown some of the important disadvantages of 
evolutionary computation techniques, especially in complex 
problems where general solutions are needed in learning through 
examples. The new method proposed in this work present these 
characteristics: (a) Avoid overadaptation. The coevolutive 
mechanisms proposed slowly down the adaptation of solutions 
during learning. (b) Keeping on the genetic diversity. Usually 
the evolutionary computation methods converge prematurely by 
faster loosing genetic material, while UC is able to keep the 
genetic diversity (c) Examples evolution. The simultaneous 
evolution of both solutions and examples allow the automatic 
and gradual generation of good training examples. 

Uniform Coevolution method has been compared with a non- 
coevolutive algorithm to solve both the robot navigation 
problem and the density classification problem in CA. Their 
characteristics, evolution of the examples and the solutions sets 
and control of evolutive process, have proven the capability of 
the proposed system to obtain better-generalized solutions in 

examples-based problems. 
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