
An Adaptive Michigan Approach PSO for
Nearest Prototype Classification

Alejandro Cervantes, Inés Galván, and Pedro Isasi

Department of Computer Science, University Carlos III de Madrid
Avda. Universidad, 30. 28911 Leganés, Madrid, Spain

alejandro.cervantes@uc3m.es, inesmaria.galvan@uc3m.es, pedro.isasi@uc3m.es

Abstract. Nearest Prototype methods can be quite successful on many
pattern classification problems. In these methods, a collection of proto-
types has to be found that accurately represents the input patterns. The
classifier then assigns classes based on the nearest prototype in this collec-
tion. In this paper we develop a new algorithm (called AMPSO), based on
the Particle Swarm Optimization (PSO) algorithm, that can be used to
find those prototypes. Each particle in a swarm represents a single proto-
type in the solution; the swarm evolves using modified PSO equations with
both particle competition and cooperation. Experimentation includes an
artificial problem and six common application problems from the UCI
data sets. The results show that the AMPSO algorithm is able to find so-
lutions with a reduced number of prototypes that classify data with com-
parable or better accuracy than the 1-NN classifier. The algorithm can
also be compared or improves the results of many classical algorithms in
each of those problems; and the results show that AMPSO also performs
significantly better than any tested algorithm in one of the problems.

Keywords: Classification, Data Mining, Nearest Neighbor, Particle
Swarm, Swarm Intelligence.

1 Introduction

This paper introduces a new technique to perform prototype selection to be ap-
plied in Nearest Neighbor classification. Nearest Neighbor (NN) is a lazy learning
method where the class assigned to a pattern is the class of the nearest pattern
known to the system, measured in terms of a distance defined on the feature
(attribute) space where patterns are represented as points.

To perform NN classification, data is split in a training and a test set. Each
pattern in the test set is classified with the class of the nearest pattern in the
training set. This means that each pattern in the training set defines a region
of the feature space where it determines the expected class of the test patterns.
Those regions are called Voronoi regions. When Euclidean distance is used, the
Voronoi regions are delimited by linear borders. This may or may not provide
an optimum solution, as the actual solution of the problem may require non-
linearly delimited Voronoi regions, which may be accomplished using the k-NN
algorithm or non-Euclidean distances.
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Both computational reasons and presence of noise in data lead to the de-
velopment of techniques that reduce the number of patterns evaluated with-
out increasing the classification error. These methods calculate a reduced set of
prototypes, that are the only ones used for classification. In instance selection
methods [1] prototypes are a subset of the pattern set, but this is not true for
all the prototype selection methods [2], where prototypes may be selected in any
position in the attribute space.

Our method selects those prototypes by first allocating a population of solu-
tions that represent the prototypes and then moving them in the attribute space
in a way inspired by the Particle Swarm Optimization (PSO) algorithm [3].

The PSO algorithm is a biologically-inspired algorithm motivated by a social
analogy. The algorithm is based on a set of potential solutions which evolves
to find the global optimum of a real-valued function (fitness function) defined
in a given space (search space). Particles represent the complete solution to the
problem and move in the search space using both local information (the particle
memory) and neighbor information (the knowledge of neighbor particles). In the
standard approach of PSO, a potential solution is encoded in each particle and
the swarm finally converges to a single solution.

However, our method, called AMPSO (Adaptive Michigan PSO) has impor-
tant differences as it uses a Michigan Approach; this term is borrowed from
the area of genetic classifier systems ([4][5]). In this approach a member of the
population does not encode the whole solution to the problem, but only part
of the solution. To implement this behavior, movement and neighborhood rules
of the standard PSO are changed. A related approach was used in [6], where a
Michigan binary version of PSO was able to discover a set of induction rules for
discrete classification problems.

The advantages of the Michigan approach versus the conventional PSO ap-
proach are: a) scalability and computational cost, as particles have much lower
dimension; and b) flexibility and reduced assumptions, as the number of proto-
types in the solution is not fixed.

Moreover, our algorithm does not use a fixed population of particles; given
certain conditions, we allow particles to reproduce to adapt to some situations,
and also we destroy useless particles to reduce the computational cost and the
complexity (number of final prototypes) of the solution.

This paper is organized as follows: section 2 shows how the solution to the
classification problem is encoded in the particles of the swarm; section 3 details
the proposed AMPSO algorithm; section 4 describes the experimental setting
and results of experimentation; finally, section 5 discusses our conclusions and
future work related to the present study.

2 Encoding Prototypes in Particles

The PSO algorithm uses a population of particles each encoding a complete
solution to an optimization problem. The position of each particle in the search
space changes depending on the particle’s fitness and the fitness of its neighbors.
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In the Michigan-approach PSO we propose, each particle represents a poten-
tial prototype to be used to classify the patterns using the nearest neighbor rule.
The particle position is interpreted as the position of a single prototype. Each
particle has also a class; this class does not evolve following the PSO rules, but
remains fixed for each particle since its creation.

The dimension of the particles is equal to the number of attributes of the
problem. The attributes of the problem are transformed in continuous values in
the [0, 1] range; this means that maximum and minimum values for the particles’
positions are fixed in all the dimensions.

A particle classifies a pattern when it is the closer particle (in terms of Eu-
clidean distance) to that pattern.

3 The Adaptive Michigan PSO Algorithm

3.1 Algorithm Pseudo Code and Movement

Our algorithm is based in the PSO algorithm but performs some extra calcu-
lations and has an extra cleaning phase. The overall procedure follows. Our
additions are explained in the following sections.

1. Load training patterns
2. Initialize swarm; dimension of particles equals number of attributes.
3. Insert N particles of each class in the training patterns.
4. Until max. number of iterations reached or success rate is 100%:

(a) Check for particle reproduction and deletion. (see 3.6)
(b) Calculate which particles are in the competing and non-competing sets

of particles for every class (see 3.4).
(c) For each particle,

i. Calculate Local Fitness. (see 3.3)
ii. Calculate Social Adaptability Factor. (see 3.5)
iii. Find the closest particle in the non-competing set for the particle

class (attraction center).(see 3.4)
iv. Find the closest particle in the competing set for the particle class

(repulsion center).(see 3.4)
v. Calculate the particle’s next position. (see Eq. 1 and Eq. 2 in 3.2)

(d) Move the particles
(e) Assign classes to the patterns in the training set using the nearest par-

ticle.
(f) Evaluate the swarm classification success
(g) If the swarm gives the best success so far, record the particles’ current

positions as “current best swarm”.
5. Delete, from the best swarm found so far, the particles that can be removed

without a reduction in the classification success value.
6. Evaluate the swarm classification success over the validation set and report

result.
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In step 5 of the previous procedure a reduction algorithm is applied after the
swarm reaches its maximum number of iterations. Its purpose is to delete unused
particles from the solution. Particles are removed one at a time, starting with
the one with the worst local fitness value, only if this action does not reduce the
swarm classification success rating over the training set. The “clean” solution is
then evaluated using the validation set.

3.2 Movement Equations

In order to take into account the concepts previously described, the equation
that determines the velocity at each iteration becomes the following (1).

vt+1
id = χ(w · vt

id + c1 · ψ1 · (pt
id − xt

id)+

c2 · ψ2 · sign(at
id − xt

id) · Sfi + c3 · ψ3 · sign(xt
id − rt

id) · Sfi) . (1)

where the meanings of symbols are: vt
id, component in dimension d of the ith

particle velocity in iteration t; xt
id, same for the particle position; c1 ,c2, c3,

constant weight factors; pi, best position achieved so far by particle i; ψ1 ,ψ2,
ψ3, random factors in the [0,1] interval; w, inertia weight; χ, constriction factor;
ai, attraction center for particle i ; ri, repulsion center for particle i ; Sfi, Social
Adaptability Factor ;

This expression allows the particle velocity to be updated depending on four
different influences: the current velocity of the particle is retained from iteration
to iteration (inertia term, w ·vt

id); the particle’s memory (individual term, c1 ·ψ1 ·
(pt

id − xt
id)); the current position of a particle to which the particle is attracted

(attractive term, c2 ·ψ2 ·sign(at
id−xt

id)·Sfi); and the current position of a particle
from which the particle is repelled (repulsive term, c3 · ψ3 · sign(xt

id − rt
id) · Sfi).

Also, if ai or ri does not’t exist the respective term (attractive term or repulsive
term) is ignored.

After velocity update, the particle position is calculated using (2).

xt+1
id = xt

id + vt+1
id . (2)

3.3 Local Fitness Function

In our approach, each particle has a Local Fitness value that measures its per-
formance independently of the other particles. For this purpose, we use (3).

Local Fitness =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if {g} = {b} = ∅

Gf

Total + 2.0 if {b} = ∅

Gf−Bf

Gf+Bf
+ 1.0 otherwise

, where

Gf =
∑

{g}
1

dg,i+1.0
Bf =

∑
{b}

1
db,i+1.0 .

(3)

where {g} is the set of patterns of the same class classified by the particle; {b}
is the set of patterns of different class classified by the particle; dg,i, db,i are
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the Euclidean distances between the patterns and the particle; and Total is the
number of patterns in the training set.

This fitness function gives higher values (greater than +2.0) to the particles
that only classify patterns whose class matches the class of the particle, and
assigns values in the range [0.0, +2.0] to particles that classify some patterns of
a wrong class.

In the lowest range, the particles only take into account local information (the
proportion of good to bad classifications made by itself). In the highest range,
the particle fitness uses some global information (the total number of patterns
to be classified), to be able to rank the fitness of particles with a 100% accuracy
(particles for which {b} = ∅).

By including in the formula the distance between patterns and particles we
give higher fitness to particles close to the patterns they classify correctly, so
they can move closer to the area where the patterns are located. This tendency
may be compensated by the repulsion term.

3.4 Neighborhood for the Michigan PSO

Our algorithm uses a dynamic neighborhood, which means that on each iteration,
movement of each particle may be influenced by different particles in the swarm:

– For each particle of class Ci, non-competing particles are all the particles of
classes Cj �= Ci that currently classify at least one pattern of class Ci.

– For each particle of class Ci, competing particles are all the particles of class
Ci that currently classify at least one pattern of that class (Ci).

When the movement for each particle is calculated, that particle is both:

1. Attracted by the closest (in terms of Euclidean distance) non-competing
particle in the swarm, which becomes the “attraction center” (ai) for the
movement. In this way, non-competing particles guide the search for patterns
of a different class.

2. Repelled by the closest competing particle in the swarm, which becomes the
“repulsion center” (ri) for the movement. In this way, competing particles
retain diversity and push each other to find new patterns of their class in
different areas of the search space.

Other authors have already used the idea of repulsion in PSO in different ways.
For instance, in [7] and [8], repulsion is used to increase population diversity in
the standard PSO and to allow the swarm to dynamically adapt to change. In [9]
a repulsive force is introduced to achieve particle diversification in a binary PSO.

3.5 Social Adaptability Factor

The social part of the algorithm (influence from neighbors) determines that
particles are constantly moving towards their non-competing neighbor and far
from their competing neighbor. However, particles that are already located in
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the proximity of a good position for a prototype should rather try to improve
their position and should possibly avoid the influence of neighbors.

To implement this effect we have generalized the influence of fitness in the
sociality terms by introducing a new term in the PSO equations, called “Social
Adaptability Factor” (Sf ), that depends inversely on the “Best Local Fitness”
of the particle. In particular, we have chosen plainly the expression in (4); value
for the exponent sexp was set to 1.0 after some experimentation.

Sfi = 1/(Best Local Fitnessi + 1.0)sexp (4)

3.6 Reproduction and Deletion of Particles

Though the swarm starts with a fixed number of particles, we introduce two
features that adjust the number of particles and their classes to the problem’s
requirements. The rules for reproduction and deletion of particles are:

– Particles that classify a set of patterns of several classes have a probability
to give birth to one particle for each of classes in that set. The chance of
“reproduction” is inversely proportional to the particle fitness (so the worst
particles are more likely to reproduce) and proportional to a parameter (Pr).
The particles are placed in the position of the “parent” particle and their
velocities are randomized.

– Particles that do not classify any pattern have a chance to be deleted that
grows linearly from 0 to the value of a parameter (Pd) in the last iteration.

4 Experimentation

4.1 Global Swarm Evaluation

The local fitness function defined above, is used for particles’ movement. How-
ever, to evaluate the goodness of the swarm as a classifier system, we use the
classification success rate ( 5).

Swarm Evaluation =
Good classifications

Total patterns
· 100 (5)

Given the NN criterion for classification, unclassified patterns are not possible,
as every pattern is assigned the class of the nearest prototype.

The system stores the best swarm evaluation obtained when performing clas-
sification on the training set. This function is also used to evaluate the final best
swarm success rate over the validation set.

4.2 Problems’ Description

We perform experimentation on the problems summarized in Table 1. The first (di-
agonal) is an artificial bi-dimensional problem that is very simple for lineal classi-
fiers, and it is used to understand the new algorithm’s properties. We generate 500
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randomtrainingpatterns and1500validationpatternswith coordinates in the [0, 1]
range. Patterns where x > y are assigned class 1, and the rest are assigned class 0.

The rest are well-known real problems taken from the UCI collection, used
for comparison with other classification algorithms. All the problems have real-
valued attributes, so no transformation was done on data besides normalization.
Success rates from several classification algorithms over some of these problems
can be found in [2].

Table 1. Problems used in the experiments

Name Instances Attrbs. Classes Class Distribution Validation

Diagonal 2000 2 2 1000 / 1000 Train & Test
Diabetes 768 8 2 500 / 268 10-fold CV
Bupa 345 6 2 200 / 145 10-fold CV
Glass 214 9 6 70 / 76 / 17 / 13 / 9 / 29 10-fold CV
Thyroid (new) 215 5 3 150 / 35 / 30 10-fold CV
Wisconsin 699 6 2 458 / 241 10-fold CV

4.3 Parameter Selection

The values of the swarm parameters were selected after some preliminary exper-
imentation.

In all cases we found that it was better to use a small value for the inertia
coefficient (w = 0.1); the number of iterations was set to 300 after checking
that number was roughly equal to double the average iteration in which the best
result was achieved.

For the PSO coefficients, we used low values for the parameters in the diag-
onal problem (c1 = 0.5, c2 = 0.15, c3 = 0.05), which means that movement is
performed in small steps. In the other problems we used the same set of values
(c1 = c2 = 1.0, c3 = 0.5). Velocity was clamped to the interval [−1.0, +1.0] and
χ = 0.1 in all the experiments.

To test reproduction and deletion of particles, we performed three series of
experiments, the first with no reproduction nor deletion (Series 1, Pr = Pd =
0.0), the second with only reproduction (Series 2, Pr = 0.1, Pr = 0.0) and the
third with reproduction and deletion(Series 3, Pr = Pd = 0.1).

In each one of the series we performed 100 runs for the Diagonal problem,
and 10 runs for the problems that use 10-fold cross validation, which also gives
a total of 100 runs over each. In all the experiments, we used 10 particles per
class for the initial swarm.

4.4 Experimental Results

The results of AMPSO on all the data sets are shown in Table 2; in this table
we compare our results with the results of our own tests with other algorithms,
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Table 2. Experiment results (success rate) for the UCI data sets; the three AMPSO
series compared to several commonly-used classifiers

AMPSO AMPSO AMPSO IBK IBK J48 PART Naive SMO
Domain Series 1 Series 2 Series 3 (K=1) (K=3) Bayes

Diagonal 94.26 95.71 95.56 97.93 97.64 95.22 95.50 96.30 97.76
Diabetes 74.14 74.45 74.25 70.44 73.88 74.48 74.18 75.69 76.63
Bupa 63.29 64.51 65.05 62.90 63.16 66.01 63.08 55.63 57.95
Glass 82.04 84.46 83.17 71.99 70.58 72.86 73.79 47.25 57.10
Thyroid 94.03 93.81 94.88 97.21 93.46 92.06 93.92 96.75 89.74
Wisconsin 96.46 96.66 96.48 95.14 96.42 94.70 95.14 95.99 96.85

using WEKA with the default parameters for each of the algorithms. In the
table, IBK(k=1) means plain NN, and IBK(k=3), 3-NN classification.

The results are very similar though both Series 2 and 3 are slightly better
than the AMPSO algorithm with no reproduction nor deletion (Series 1) in all
the problems but the Thyroid problem.

The success rate in terms of accuracy for AMPSO is comparable or clearly
better than the result of IBK with K=1 in all but the Diagonal and the Thyroid
problems. In the rest of the problems, the patterns are correctly represented with
the particles in the solution swarm.

For the Diagonal problem, the reason is that the learning bias of the algorithm
is not favoring the accuracy of the solution. A very good solution can be found
just placing one prototype of each class, located at the central position of each
cluster; the solutions found by our method are worse than that trivial solution
due to the fact that AMPSO explicitly searches near the classes boundary (the
diagonal) where a solution is more difficult to find.

In the thyroid problem our hypothesis is that NN classification requires more
prototypes than the particles generated by the algorithm. It may be difficult to
beat the performance of 1-NN in this problem as it seems that it significantly
improves any other method. Reduction of the prototype number is more likely
to decrease accuracy in this case.

The algorithm significantly improved the accuracy of all the rest in the Glass
problem. Good performance on this problem is possible due to the fact that
non-euclidean distances seem not to improve the results of Euclidean distance in
this case (see [2]). Our algorithm seems to significantly improve the results of all
the other classifiers, being to our knowledge the best result over this data set.

In Table 3, we compare the results of the three series, to show the impact
of the introduction of particle reproduction and removal over the algorithm’s
performance and the complexity of the solutions found, measured in terms of
the average number of prototypes in the solution.

The results in Table 3 show that Series 2 produces a greater number of pro-
totypes, that is, solutions are of greater complexity. Particle deletion reduces this
number of prototypes in the final solution as expected. Those results also show that
series 2 and 3 have greater computational costs (average number of iterations).
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Table 3. Comparison of the three series of experiments

Series Diagonal Diabetes Bupa Glass Thyroid Wisconsin

Prototypes 1 13.37 10.47 10.89 10.30 11.37 11.12
2 14.48 13.52 12.61 12.76 14.67 19.32
3 13.38 13.00 12.01 11.73 13.80 19.00

Evaluations 1 3222 3114 2918 10620 5235 3198
2 3185 4116 3550 14236 7114 5959
3 2909 4224 3908 12760 6737 8762

5 Conclusions

The purpose of this paper is to develop an effective algorithm for prototype
creation, to be applied to classification problems. Our algorithm is based on a
new approach of Particle Swarm Optimization (PSO); it determines a set of
prototypes that represent the training patterns and can be used as a classifier
using the nearest neighbor (1-NN) rule.

In the standard PSO, a straightforward encoding of a set of prototypes in
each particle would produce a search space of high dimension that might hin-
der the swarm success. For this reason, we propose a Michigan Approach PSO
(AMPSO), in which each particle represents a single prototype. In AMPSO the
population of particles also changes over time to adapt to the problem.

The AMPSO algorithm introduces a local fitness function to guide the parti-
cles’ movement and dynamic neighborhoods that are calculated on each iteration
to ensure particles are influenced only by others that either compete or cooperate
to classify part of the patterns.

We have tested the algorithm in an artificial problem and six well-known
benchmark problems and we have found that the results are always close to
or better than the standard nearest neighbor classifier (1-NN) with the limited
number of prototypes that compose the solutions found by the algorithm. This
proves that PSO can be used to produce a small representative set of prototypes.

When the results are compared to other classifiers, AMPSO can produce com-
petitive results in all the problems, specially when used in problems where 1-NN
classifier does not perform very well. Finally, AMPSO outperforms significantly
all the algorithms on the Glass Identification data set, where it achieves more
that 10% improvement on average.

The introduction of particle reproduction and deletion allows the number of
particles in the swarm to grow to produce solutions of greater complexity but
the extra cost in terms of computational cost has to be evaluated.

It is clear than further work could improve the algorithm performance if it
makes AMPSO able to adaptively tune important parameters (such as the re-
production and deletion rate) to the problem. Also, any technique that may
improve Nearest Neighbor classifiers’ performance could be applied to AMPSO.
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