Neural Network Controller against Environment:
A Coevolutive approach to Generalize Robot
Navigation Behavior

A. BERLANGA, A. SANCHIS, P. ISASI and J. M. MOLINA
ScaLab, Universidad Carlos Ill, Avda Universidad, 30, 28911, Madrid, Spain;
e-mail: aberlan@ia.uc3m.es, masm@inf.uc3m.es, isasi@ia.uc3m.es, molina@ia.uc3m.es

(Received: 5 December 2000; in final form: 3 April 2001)

Abstract. In this paper, a new coevolutive method, called Uniform Coevolution, is introduced to
learn weights of a neural network controller in autonomous robots. An evolutionary strategy is used
to learn high-performance reactive behavior for navigation and collisions avoidance. The introduction
of coevolutive over evolutionary strategies allows evolving the environment, to learn a general be-
havior able to solve the problem in different environments. Using a traditional evolutionary strategy
method, without coevolution, the learning process obtains a specialized behavior. All the behaviors
obtained, with/without coevolution have been tested in a set of environments and the capability
of generalization is shown for each learned behavior. A simulator based on a mini-robot Khepera
has been used to learn each behavior. The results show that Uniform Coevolution obtains better
generalized solutions to examples-based problems.

Key words: robot navigation problem, generalized behavior, competitive coevolution, learning
examples-based, evolutionary strategies.

1. Introduction

Many robotic systems applied in industry are autonomous mobile robots work-
ing in stationary environments, i.e. automatic floor-cleaning, automatic assembly,
transporting pieces in a factory, etc. Other applications of robotic systems involve
interactions with dynamic environments, where the autonomous robot deals with
unexpected events, such as tour-guiding robots. The successful operation in such
environments depends on the ability of adaptation to the changes. Thus, for most
agent-based tasks, having a perfect domain theory (model) of how the actions of
the agent affect the environment is usually an ideal. Three ways of providing such
models to agents (planners/controllers) are considered:

1. High level planning, learning and control. One of the first approaches to plan-
ning, learning, and executing within autonomous robotic tasks was the Shakey
robot [49]. It had a planner, and a learning method based on compacting the
solutions (plans) to given problems into new operators that could be used in

future planning steps, as well as means for replanning in case things went
1

Referencia bibliográfica
Published in:
Journal of Intelligent and Robotic Systems, 33, 2 (2002), 139-166

wrong. However, it was soon discovered that approaches based on the classical
paradigms (abstraction, planning, heuristic search, etc.) were not completely
suitable for unpredictable and dynamic environments.

2. Manual design of reactive planners. Other approaches consider reaction as the
new paradigm to build intelligent systems. One classical instance of this kind
of architecture is the subsumption architecture, which was proposed by Brooks
and has been successfully implemented on several robots. The base of the
subsumption architecture is a piece of code called “behavior” or “skill”. Each
behavior produces an action (reacts) in a given situation, and the global control
of the “planning” system is a composition of behaviors. Different systems, from
finite state machines to fuzzy controllers, have been used for the implementa-
tion of these behaviors. In most cases, the way in which these behaviors were
built was by careful and painstaking “ad-hoc” manual design of skills by a
human.

3. Automatically acquiring skills for reactive planners. Another approach that
solves the above mentioned disadvantages of manual design consists on au-
tomatically learning those behaviors. There have been already many differ-
ent approaches for learning skills in robotic tasks, such as neural networks
[39], genetic techniques [14, 34, 48], evolutionary strategies for configuring
neural networks [4, 31], inductive collaborative techniques [19], or reinforce-
ment learning techniques [32, 53].

Some of the Machine learning techniques becomes inapplicable to the learning
reactive behavior problem because they require more information than the problem
constraints allow. In the last few years, new approaches that involve a form of sim-
ulated evolution have been proposed in order to build autonomous robots that can
perform useful tasks in unstructured environments [9, 10, 33]. The main interest
in this approach is due to the dissatisfaction with traditional robotic and Artificial
Intelligence approaches, and their belief that interesting robots may be too difficult
to design. Thus, it would appear reasonable to use an automatic procedure, such
a genetic algorithm that gradually builds up the control system of an autonomous
agent by exploiting the variations in the interactions between the environment and
the agent itself. It remains to be determined if it is feasible.

In particular, two questions should be answered: what to evolve? And how
to evolve it? The choice of what to evolve is controversial. Some authors have
proposed to evolve controllers in the form of explicit programs in some high-level
language. Brooks [8] proposes to use an extension of Koza’s genetic programming
technique [27]. Other authors propose to evolve controller rules using a form of
classifier system [12—-14, 48], or using a fuzzy controller [26, 34]. Finally, oth-
ers authors propose to evolve weights in neural network controllers, fixing the
architecture [3-5, 16, 36].

When a system is learning from examples, for testing a solution is necessary
to face it with different situations (examples set). Moreover, in many cases, the

solutions should not fit a particular examples set, they have to be generalized solu-
2

tions, useful over any possible example. This problem becomes harder when using
evolutionary methods. An excessive adaptation to the examples set could abort
the generalization capability of a solution. The evolution of the examples tries
only to generate harder examples for the solutions. In this paper, a new method
is proposed based on Hillis’s ideas [24] to use coevolution ideas to learn gen-
eralized autonomous robot navigation behaviors. The new proposed coevolutive
method considers the coevolutive approach from a different perspective of the pre-
vious coevolutive works. Previously, the theory of coevolution has been applied
to solve specific robotic problems, basically the pursuit-evader problem. These
approaches are a particularization of the general theory and the methods could
not be translated directly to other robotics domains. In our proposal, the Uniform
Coevolution method is a general framework for any robotic problem that could be
defined by means of a set of possible solutions and a set of examples (navigation,
transformation, assembly, etc.).

In Section 2, the general theory of coevolutive method is outlined. Section 3 is
related to the experimental environment and the goals of the work, in Section 4
the Uniform Coevolution method has been described. The experimental results are
shown in Section 5. The last section contains some concluding remarks.

2. Coevolution in Robotics

Coevolution refers to the simultaneous evaluation of several species, where the
survival of each specie depends on one each other. When talking about coevolu-
tion in computational terms, this is referring to the ability of a system to improve
its performance by means of mutual adaptation of its different constituents. The
final performance of the system is improved as a consequence of the incremen-
tal adaptation among constituents. These ideas of coevolution were first explored
in evolutionary computation in some works in the Iterated Prisioner’s Dilemma
[1, 2, 30]. One of the first authors in applying the coevolution in an optimization
problem was Hillis with his work over the coevolution of parasites for improving
solutions in a sorting network problem [24]. More recently, some works for es-
tablishing the theoretical basis in coevolution have been done [41] and [46]. All
these previous works have proven the usefulness of coevolution to improve the
evolutionary computation techniques from different perspectives.

Problems related with robotics have been one of the main fields of application
of evolutive computation. A wide variety of robotic controllers, to resolve spe-
cific tasks, have been investigated; robot planning [23], wall following task [28],
collision avoidance [50], arm control [29], etc. The traditional evolutive compu-
tation techniques have several disadvantages. Coevolution has been proposed as
a way to evolve a learner and a learning environment simultaneously such that
open-ended progress arises naturally, via a competitive arms race, with minimal
inductive bias [15]. The viability of an arms race relies on the sustained learnability

[43] of environments. The capability to obtain the ideal learner, the better environ-
3

ments where the learning takes place, is the main advantage of the coevolutive
method.

There are two main reasons to apply a competing coevolutive approach in ro-
botics: that does not require specification of complex fitness functions and the
intrinsic complex dynamics of an elegantly simple architecture. Several authors
have been used competitive coevolution in robotics. Floreano and Nolfi [17] have
studied the feasibility of co-evolutionary pursuit-evasion for evolving useful neu-
rocontrollers for two Khepera robots. They have observed spontaneous evolution
of obstacle avoidance, visual tracking and other navigation skills without any effort
in fitness design. Cliff and Miller [11] have developed a coevolution simulator to
study coevolutionary arms race with robot in a pursuit-evasion role. They conclude
that coevolution evolves quickly smart pursuers and evaders, unpredictable behav-
ior will emerge quickly, robustly and permanently in any simulation and mainly
the details of fitness function, trial initialization methods and genetic algorithm
parameters will not matter much because coevolution is so robust.

Those applications have not significant differences between the learner agent
and the environment. To apply a competitive coevolutive method to robot naviga-
tion problem a new generalized framework is needed.

3. Robot Controller and Experimental Environment

The concept of designing new computational structures using all the available in-
formation from the very efficient world of biology, specially the case of neural
networks is a fascinating approach [18, 7]. The most interesting feature of this
approach is that biological neural networks have been designed to be adapted to the
real world [22, 40]. This suggests the biological approach as the most appropriate
to solve problems existing in mobile robotics field [20, 37]. The redundancy, the
parallelism and the resulting robustness of the computational structure are the inter-
esting points of the biological approach. These mechanisms are not only exploited
inside the brain structure, but also at the level of groups of animals, giving very
interesting results in collective behavior of insects, for instance.

The control architecture used to evolve the reaction (adaptation) is based on a
neural network. The neural network controller has several advantages [36]:

e Neural Networks, NN, are resistant to noise, those exist in real environment,
and are able to generalize their ability in new situations.

e The primitives manipulated by the Evolutionary Strategy, ES, are at the lowest
level in order to avoid undesirable choices made by the human designer.

e A NN could easily exploit several ways of learning during its lifetime.

The use of a feed forward network with eight input units and two output units
directly connected to motors appears in previous works [36] as an efficient way
to learn a behavior: “avoid obstacles” using genetic algorithms. In this work, the
NN ought to learn more complex behavior: “navigation”. Another successful ap-

proach to learning a robotic skill by using neural networks has been the Ralph and
4

Alvinn systems [42]. In this case, the learning task was to learn how to drive an
autonomous vehicle in a highway.

In this work, the task faced by the autonomous robot is to reach a goal in a
complex environment while avoiding obstacles found in its path. In the proposed
model, the robot starts without information about the right associations between
environmental signals and actions responding to those signals. The number of in-
puts (robot sensors), the range of the sensors, the number of outputs (number of
robot motors) and its description is the only previous information. From the initial
situation the robot is able to learn through experience the optimal associations
between inputs and outputs. Different environments have been used to find the
connections of the neural network.

3.1. ENVIRONMENT

In this work, a simulator based on an autonomous robot named Khepera [39] is
used. The mini-robot Khepera is a commercial robot developed at LAMI (EPFL,
Laussanne, Switzerland). The robot characteristics are 5.5 cm of diameter in cir-
cular shape, 3 cm of height and 70 g of weight. The sensory inputs come in from
eight infrared proximity sensors. These sensors are composed of two devices: an
IR emitter and a receiver. The emitter and the receiver are independent, then it
is possible to use the receiver to measure the reflected light (with the emitter
active) or to measure the environmental light (without emission). The reflected
light measurement can give some information about the obstacles. In fact, this
measure is not only a function of the distance to an object in front of the emitter
but also the environmental light and the object nature (color and texture). So the
value of distance is modified by the measure of the ambient light and the object
nature, the light used is constant and all the obstacles used have the same color and
texture. The robot has two wheels controlled by two independent DC motors with
incremental encoder that allow any type of movement. A speedometer could read
each wheel velocity.

Using the ambient sensors it is possible to measure the distance and the angle to
a light source. The distribution of the amount of light coming into the eight sensors
is used to evaluate the distance and the angle to the source, see Figure 1. The
amount of light received in the sensor depends on the distance of the light source.
The response curve of each real sensor is described by a sigmoid function [39].

Experiments take a long time of continuous functioning of the hardware. In
order to prove the different configurations of the controllers, a simulator developed
in a previous work [51] have been used, the SimDAI one. In the simulator, the
characteristics of the turtle robot model [35] and the physical restrictions of the
Khepera robot have been considered. The proximity sensors (in front) are grouped
in three sets, see Figure 1. SimDAI is a working prototype of a mobile robot simu-
lation environment for experimenting with robot navigation and control algorithms.

Each mobile robot is completely independent, can navigate and interacts with other
5

Grouped
Sensors

" % IR Emiter Sensor
= [R Receiver Sensor

¥ Proximity Sensor {P;}
m Ambient Sensor {A;}

Not used
Figure 1. Sensors considered in the real robot.

-
Starting Position Path

Escala: 10 Orgnx: 0 Orgmy: 0 Adivo

(@) (b)

Figure 2. (a) SimDAI Simulator (Example of one simulated environment). (b) Example of a
real experimental environment.

robots in a 2-D simulated world of obstacles, which is separately monitored. This
simulator has been used in many other works [25, 34, 38, 47]. The simulation world
consists of a rectangular map of user defined dimensions where particular objects
are located. In this world it is possible to define a final position for the robot. In this
case the robot is represented with three proximity sensors and two special sensors
to measure the distance and the angle to the goal (Figures 2(a) and (b)).

3.2. ROBOT CONTROLLER

It has been proven that by means of connections between sensors and actuators,
a controller is able to solve any autonomous navigation robotic behavior [7]. This
theoretical approach is based on the possibility of finding the right connections of a

feed-forward NN without hidden layers for each particular problem, see Figure 3.
6

W,
5y ¥

Proximity 52
Sensors
. = Wheels
Sz ;
Velocity
- _V,
Ambient Sq
Sensors

Input Layer Output Layer

Figure 3. Neural network architecture.

s;: Input of i-sensor

v;: Velocity of j -wheel

d: Goal distance

¢: Goal angle

;. Weight between i-sensor and
J-wheel

Figure 4. Connections between sensors and actuators in the Braitenberg representation of a
Khepera robot.

The input sensors, s;, considered in this approach, are calculated from the ambient
and proximity sensors, (P;, A;), in this way: 51 = P + P3, 80 = Py + Py, 53 =
Ps + Pg, s, =Max{Light received in A;}, s5s = Angle of the light received in {A;}.
The NN outputs are the wheel velocities. The NN architecture is shown in Figure 3.

The velocity of each wheel is calculated by means of a linear combination of
the sensor values, Equation (1), using those weights (Figures 3 and 4):

5
Uj =f Zwijsi , (1)
i=1

where w;; are searched weights, s; are sensor input values and f is a function for
constraining the maximum velocity values of the wheels.

Weight values depend on problem features. To find them automatically, an evo-
lutionary strategy, ES is used [6]. In this approach each individual is composed of
a 20-dimensional real-valued vector, representing each one of the above mentioned
weighs and their corresponding variances. The individual represents one robot be-
havior consequence of applying the weights to Equation (1). The evaluation of
behaviors is used as fitness function.

Evolution strategies (ES) developed by Rechenberg [44, 45] and Schwefel [52],
have been traditionally used for optimization problems with real-valued vector
representations. As Genetic Algorithms, GA, [21], and the ES are heuristic search

techniques based on the building blocks hypothesis. Unlike GA, howeyver, the search
7

is basically focused in the gene mutation. This is an adaptive mutation based on the
likely the individual represents the problem solution. The recombination plays also
an important role in the search, mainly in the adaptive mutation.

4. Uniform Coevolution Applied to the Robot Navigation Problem

In this work, a coevolutive approach called Uniform Coevolution (UC) is pre-
sented. The architecture of the UC is composed by a population of solutions and a
set of populations of examples (one population of examples for each individual in
the population of solutions), see Figure 5.

The solutions and examples systems are described above:

e Solutions Generator System (SGS). A population of solution individuals (S/;)
composes it. For computing their fitness, is necessary to face each individ-
ual with a set of different situations, examples, represented by a population
in the examples generator system (further explained). The objective of this
system is to gradually generate better solutions to a particular problem. Any
evolutionary computation method can be used, where an individual represents
one problem solution. The evolution of the SGS follows the dynamics of the
evolutionary computation method selected.

e Examples Generator System (EGS). The population of EGS is composed of
evaluation (training) examples. This population is arranged in a special way.
The examples are grouped in small blocks. Thus the EGS is a population
of blocks of training examples. Every individual of SGS has a set of blocks
related only with it. The evaluation of the individual of SGS is calculated
over its related m-block, each composed with r evaluation examples. Thus,
the evaluation is performed over m x r evaluation examples. This general

Figure 5. Uniform coevolutive architecture.

3

T Evolution [... Crossover and |~ Incremental |
Sratonise Mutation | Mutation

Figure 6. Uniform Coevolution applied to robot navigation problem.

scheme is shown in Figure 5. In order to make more comprehensible the

blocks structure, the different blocks have been called as following:

— *EI';:1s the evaluation k-example of the j-block related with the i-individual
of SGS.

- B;: Is the j-block related with the i-individual of SGS.

— PE;: The set of all Bj. related with the i-individual of SGS.

In the robot navigation problem the SGS is the population of controllers (each
SI; represents the weights of a neural network) and EGS is composed with different
training examples or environments (each kEI; represents a robot starting angle and
position). In order to explore the solutions space, an evolutive strategy is applied
to the SGS. Following the UC scheme, each solution of SGS has a given set of
evaluation example associated. In Figure 6, a short scheme of the system and the
evolutive algorithms applied is shown.

The UC method evolves automatically solutions and examples. The evolution of
each system depends on the other’s evolution. The general procedure is as follows:

1. Initialization of the populations:

(a) SGS initialization (n-SI individuals)

(b) EGS initialization (n-PE of m-B blocks with r-EI training examples)
2. Computation of the fitness

(a) Evaluation of each SI; over each individual *EI ‘] in its related PE;

(b) The fitness of each SI; is a combination of the above evaluations, this

calculation is explained in more detail in Section 4.1.

(c) The Fitness of each PE; is the fitness value of the correspondent S7;
3. Generation of new populations

(a) Selection of individuals from SGS.

To generate To Evaluate —
(m—b Population Population End >
- - p-Solutions p-Solutions

: 1

| ! No

Y v

To generate L.xamples To caleulate fitness Genetic Operator:
Population e value to every \utation and “T'o use the incremental
(Environments) environment in a block " Crossover. ---p mutation and the
T A-Child was obtained uniform erossover
v
For eacl
pop(l)l‘] ;:;l: To calculate the
solu[iun< ﬁmcssg;““f ofthe “To evaluate 3-Child
oc
|
|
y To select p
To calculate fitness individuals of the set
_ value of solution oy

Figure 7. Uniform Coevolution scheme to solve the robot navigation problem.

(b) New SGS population, in this problem a (6 4 4)-evolutionary strategy, was
applied to evolve neural network controllers.

(c) The evolution of EGS is related with the generation of new EI’s for the
new solutions. Two ad-hoc genetic operators: the Incremental Genetic Op-
erator (IGO), and a modified uniform crossover operator are applied,
both operators will be explained below.

A brief scheme of the process is shown in Figure 7.

The evolutive process involves the generation of two new populations with one
evaluation of the fitness value. Thus, the first step is to generate a new population
for both systems. The selection of a SGS individual following the classical rules
of (+ X) evolutionary strategy. In Figure 8 the individual SI; and SI; has been
selected to mate.

The second step is the recombination of the genotype of selected solution (S/;
and SIy). This operation generates two new solution SI and SI; (see Figure 9). The
recombination of SGS individual produces the recombination of the first evaluation
example of its related blocks. In Figure 9 the uniform recombination of the first
examples is shown. In this recombination the genetic code does not change just the
individual of EGS interchanges the first evaluation examples.

The third step is the generation of new blocks of evaluation examples. The IGO
is applied to the first example to obtain a new one, applying successively IGO to
the last example generated produces a new one until the block is completed. This
process is shown in Figure 10. The IGO uses the genotype of evaluation examples
and the fitness value calculated for this block. The IGO will be explained in more
detail in Section 4.2. These steps are repeated until a new population of SGS has

been obtained, then in addition, a new EGS has been generated too.
10

SEo

{ Sk, Sl)
i EGS i
PE; - PE,
JE || R, || E1S el® | | *EI; | | *EX
Il \\
/| Bl Bl Bl 1Y B B |\
] 1
V| UER EI%, 1% B EI%, g, |
A ’
b ’J
B P, | | EP By | | 'EP, (| B ¥
'|?1‘*‘~n‘ B, Bl B B, | R

s SGS

Figure 9. Recombination of SGS and EGS individuals.

4.1. FITNESS VALUE CALCULATION

The Uniform Coevolutive method requires some measures in order to calculate
the final fitness value of every solution chromosome. In the following, the detailed
calculation of the final fitness value is given.

The calculation of ﬁtlj , Equation (2), is obtained using an evaluation function, ¥,
the genotype of the solution system, ssol, and the i-example of the j-block of EGSs
individual associated with it are the evaluation function parameters. In Section 5.1
the evaluation function is described in more detail.

\Il(ssol, sejeij) = ﬁt{ . 2)

11

Block,

IGO(EI',.fits)
Ely ¥ EI\

J' IGO(EI', fit)

¢ IGO(EI,. fitz)

IGO(EI", fits)

ETy

Figure 10. Generation of a new block of evaluation examples.

This measure, ﬁt{ , 1s the classically fitness value of the evolutive computation tech-
niques. To get fit; , some previous measures are needed. First, the fitness value of
all block of evaluation examples associated with it, ﬁtj , Equations (3)—(7) obtain
the block fitness value.

Let associate each solution with m blocks, each one of them made with r learn-
ing examples. The first calculated parameter is o’/ (calculated to j-block). This
parameter is an absolute measure, related with how close, in mean, the solution
proposed by SGS solves the proposed problem.

i fit]

J 4 -
_ M’ where ﬁtj — &i=1J"0 (3)

F max — F min r
The highest and the lowest fitness value a solution can ever reach are F,x and Fp;p.
It is not necessary to give exactly the extreme of the range values. The / parameter
value is inside the interval [0,1]. Figure 11 shows the values of parameter o/ from
the fitness value f. '

The second parameter is ,31/ (calculated over each evaluation example). This
parameter is a relative reference. It measure is referred to the highest and lowest
values of the fitness value in the set of evaluation examples to which it belongs, see
Equation (4).

i J J
ﬁtr]nax zﬁtmin’ IBi = 0’
; 4
ﬁtj #ﬁtj. /Sj _ Sit; — Jithax)
max min’ i J i
ﬁtmin - ﬁtmax
The fit/ and ﬁt[’;ﬁn values are the extremes fitness values obtained by solutions

over their set of evaluation examples. Therefore, each set of examples has a fit/__,

ol =1

the highest value and a ﬁtrjnin the lowest fitness value obtained. The parameter S/
is calculated for every example of a set of evaluation examples. It measures how
12

08 LT

06 -

0.4 el

0.2 A -

0 T]
Fmin Fmax
f
Figure 11. Plot of the parameter o/ .

1.
08 - .
0.6 1 ~.

Bl N

0.4 - RN

0.2 A

0 T =
fmin fmax

fith

Figure 12. Plot of parameter ﬂij .

good the behavior of the solution over an example has been, related with other of
its own set of evaluation examples. The possible values of parameter ,Bf are in the
range [0,1]. Figure 12 shows the shape of parameter ,Bij .

With parameters o/ and ,Bij the parameter wij for each evaluation examples
of each set associated with the i-solution is calculated (see Equation (5)). This
parameter wij takes values in the interval [0,1]. The normalization of this parameter
produces the yij parameter. This parameter has a fundamental importance in the UC
method and has been named as Selection Pressure Control (SPC), see Equation (6).

j_ @ = DE Dt e - DEH -1
w; = ’

j c_ 12 S

13

J

Figure 13. Plot of parameter w l.‘.

J

J w;
Vi == (6)
pIy w,ﬁ

At this point, the fitness value of the set of evaluation examples, ﬁté, can be
calculated as:

p
fity ="yl fitl. 9
i=1

The SPC weights the fitness value of an evaluation example in its own set. The
effect is to control the selection pressure to avoid premature convergence. At the
beginning of the evolutive process, the solutions have been randomly generated,
then they will obtain high fitness values (in a minimization problem). At this evo-
lutive point, the strategy is to reward any advantages, even the slightly little ones
that a solution could acquired. Therefore the best fitness values, obtained on a set
of evaluation examples, must have much more weight in the calculation of fir,.
This is a way to increase the importance of the evaluation examples in which the
solution shows some right behavior. The fitness values of the set, fit},, are therefore
biased to best fitness values. As the evolutive process develops, the contribution of
all examples tends to be the same. When the solutions have very good behaviors,
then calculation of fir}; is biased to the worst fitness values, that is, the performance
over the most difficult examples is more important. In this phase the objective
is to adjust details of the generalized solution. Figure 13 plots the shape of the

parameter wij .
Each set of evaluation examples has a fitness value ﬁt{9 at this point the fit-
ness value of the solution, fitgo; , related with them can be calculated, following

Equation (8):
14

Standard Desviation

Generations

Figure 14. 1dealized evolution of standard deviations of fitness values.

1 &
fitsop = ;Z fith | £ Ko, ®)

j=1

The selection operator uses the fitgg; value to choose the solutions that will gener-
ate new ones. The fitgo; value is calculated with two factors: the average and the
standard deviation of the fitness values of the set of evaluation examples related
with it. The parameter K is an experimental constant. The standard deviation has
the effect of improving the solutions with homogenous behavior. The solutions
obtained must be general, and the average fitness value is not enough to drive the
evolution to get this objective. The standard deviation is very different than the
fitness value. At the beginning of the evolutive process, all solutions have similar
poor behaviors, therefore, the standard deviation has small values. Near the end of
the evolutive process something similar happens, all the solutions have reach a high
level of performance. In Figure 14 shown how must be the evolution of standard
deviation of the best solution fitness values measures over its evaluation examples.

A summary of the process to calculate the fitness value of a solution fityq; is
shown in Figure 15.

4.2. GENERATION OF EVALUATION ENVIRONMENTS

As was already seen, the global evaluation of the fitness value of a solution is
performed over an object configuration. The robot starts in different positions,
the so-called evaluation examples. A new genetic operator, incremental mutation
operator (IGO), was proposed to generate new evaluation examples. The IGO uses
a measure distance between examples. The distance function is shown in Equa-
tion (9). The parameters used in the incremental mutation operator are a = 400,
b = 0.01, Fhax = 65000 and Fi,, = 0. These parameters have been experimen-
tally adjusted:

€))

' 1 — e—(2/65000)fir; In((400—0.01)/0.01)
t — J—
Q(ﬁtB) - 400(1 1 — e—2In((400—0.01)/0.01))

15

Block; R
: A
Vissole') ! |
1 S30LE] I
di e — / Sit'; \ >
WPlssole™) r—— 1
[>
i
] 1
1 1
1] bl i
Y(ssol.e',) H T
ey P fir) >
v - A\ /!
Solution, e

.\'.\‘0-’ < ses _/

Blocky, Pl
W(ssole'w) [7 \
: SSOL,C 1y ! [3
e'n g Al »
- Wissole™r) |7 o 1 >
& ¥l i
\ i i
i]
W ! ; f
- P(ssol.e'y,) ' fir" ’ »
€m el i
4 L
e
\-l\/

“'}F .‘/r

!
W

=
W I, 1 3 f,

—»
LA » ;;nl'
W o2 = ;J”:‘
Jil"y
w", i

Figure 15. Calculus of fitness value of an individual, fitgoy .

Figure 16 shows the shape of Equation (9). It can be observed that when the fitness
values of a set of evaluation examples, get the half value of the possible amount,
then the distance is 1%. This value smooths the convergence to prevent the disori-
entation in the learning process. The maximum distance value has been fixed to
400 because the object configuration has a 500 x 500 positions size.

To generate a new evaluation example, the function distance is applied to each
parameter of an evaluation example. Let x;, y;, a; be the initial position and ori-

16

400
350 \
300
250

200 \\
150 \
100

50

Distance

0 20000 40000 60000
fit

Figure 16. Distance between evaluation examples.

entation of the r-evaluation example of the /-set of evaluation examples. First the
distance 6; is calculated, then the new example parameters are given by Equa-
tion (10):

X'} = x] + N(0,6),
Y =y +N(©.6), (10)
a'j =a +N(0,0).

The N(0, 6) function is a gaussian distribution with mean 0 and standard devia-
tion 6.

4.3. DYNAMIC OF THE EVOLUTIVE PROCESS

The dynamic of the UC method is the following: in the initial generations the con-
trollers have poor navigation behavior (a lot of collisions, restricted movements),
its fitness value in the evaluation function will be close to the worst value Fp.x,
therefore the examples (the initial position) must be unchanged till the controller
develops some skill. The necessary parameter to calculate the fitness value is w
(Equation (11)):

. el=f _ 1

ﬁl‘lj%FmaX, Ot%(), w%?, Ogﬂgl (11)
In Figure (17) the weights of the fitness value of examples in a block in different
evolutive steps are shown. At the beginning of the evolutive process, Figure 17(a),

the better behaviors are the most weighted.
The selection pressure is applied in the direction of better controllers, those
who have some minimal navigation skill. The controller evolves and when the
fitness value is close to the half of the maximum possible the parameters of control

pressure have the values (Equation (12)).
17

4 0.2 [0.6 i 1
Parameter 8

(a)

& .0 .4 024
Parameter 3

(b)

Parameter p

(c)

Figure 17. Parameter w in different evolutive steps.

iNFmax+Fmin Nl
ﬁt]’\liz s OZNE,
B _ 1 -8 _
%(e)+ (e)’ 0<p<l.

(e— D2+ 1)

12)

In this situation, the weights in a block are the same for all training examples,
Figure 17(b). At the end of evolutive process the controller has acquired a high

18

navigation capability. The fitness value of a controller in an environment example is
close to 0; the contribution to the total fitness value is mainly far the worst behavior,
Figure 17(c). In this step is important to weight the worst behavior to move the
selection pressure to less adapted controllers, that is, the most general ones. With
this mechanism the controller avoid the overadaptation to environment and the
disorientation on the search process. The parameters of control pressure at this
point are given by Equation (13).

G

ti' ~ Fmina ~ 07 ~ T
7 ¢ €D

0<B<1 (13)

5. Experimental Results

The experiments are focused to the automatic learning controllers for the robot
navigation problem. The objective is to obtain a controller able to navigate in any
environment, that is, independently of the initial and goal positions and the objects
configuration.

Two different sets of experiments have been performed called fixed and coevU.
In both experiments, an Evolutionary Strategy is used, (u+X1)-ES, u = 6, A = 4,in
order to find the network connections weights. Experiments differ in the way they
are evaluated on the learning environments. One of the experiments, which will be
referred as fixed, is trained in the same environment during all the evolutive process;
that means that starting and goal positions, as well as the obstacles configuration
are constant. On the other hand, those experiments that use the UC method, called
coevU, evolve the robot starting position and orientation, while they keep the goal
position and obstacles configuration fixed.

Figure 18 shows the training object configuration. The dot in the middle of
the configuration indicates the goal position, that is the same for all experiments
performed. These object configurations have been used in both fixed and coevU
experiments.

The fixed experiments are summarized in Table I and the coevU ones in Table II.

A coevU experiment has been done for each objects configuration, in fixed ex-
periments the same object configuration is used in some cases, just varying theirs
robot start position. Thus, in the fixed experiments 3, 6, 7 and 9 the learning process
takes place in the object configuration 3 and fixed experiments 4 and 5 in objects
configuration 4. In those experiments just the angle and starting position of the
robot change.

Each experiment has been repeated five times with different random seed, the
best controller obtained was validated. The evolutive process has performed 200
generations. In each evolutive process a different initial population for the evolu-
tionary strategy is generated. The best controller achieved in this training process

is used later in the validation process.
19

(D

2

3)

4

&)

(6)

Figure 18. Objects configuration used in training and validating process.

Table 1. Object configuration and starting robot position in fixed experiments

Experiment

Training example. Robot initial position: (x, y), angle

Object configuration

O 0 9 N Lt AW N =

—_
=]

(50, 50, 315)
(450, 400, 90)
(50, 400, 0)
(50, 300, 0)
(450, 300, 270)
(300, 400, 90)
(200, 50, 0)
(250, 400, 0)
(425, 250, 115)
(200, 20, 180)

AN W W W R RN W~

Table 1. Objects configuration and starting robot position in coevU experiments

Experiment

Training example. Robot initial position: (x, y), angle

Object configuration

AN B W N =

Evolve
Evolve
Evolve
Evolve
Evolve

Evolve

A AW N =

20

5.1. MEASURE OF THE CONTROLLERS’ FITNESS

The evaluation process W is applied on the genotype of a solution, ssol, on a
specific evaluation example, seje'l./ (i-example of j-block), in order to obtain de
evaluation measure ﬁt{ . This evaluation proccess measures some quality skill of
robot behavior:

e Number of cycles necessary to reach the goal, 7. If the goal is not reached the
value is 2000.
Trajectory length of the robot path, L.
Number of collisions, C.
Number of cycles in which the robot stayed in the same position, S.
Euclidean distance between the robot’s starting position and the goal position,
D,,.

e Euclidean distance between the robot’s starting and final position, D,,.

Equation (14) shows the lineal combination and weights used to obtain the

fitness value of a controller, obtained from the measurements of its behavior.

f; =20T — 1.5L + 10C + 10§ + 10D,, — 1.5D,,. (14)

The direction of the learning process is to minimize the fitness value. For the fixed
experiment the fitness function is the base measurement used to apply the selection
operator. For the coevU experiment, this is the value applied in Equations (3), (4),
and (7) to calculate the block fitness value. In these experiments, constant K in
Equation (8) has an experimental value of 0.25.

5.2. EVOLUTION OF CONTROLLERS IN fixed AND coevU EXPERIMENTS

A very different learning process will be expected in both types of experiments.
The Figure 19 shows the evolution of average fitness values in the learning process
in experiments 1 and 3 for both fixed and coevU experiments.

The comparison of the fitness values evolution in the learning process between
fixed, Figures 19(a), (b) and coevU, Figures 19(c), (d), shows significant differ-
ences. The evolution in coevolutive method has been smoothed and the shape, in
detail, is very rough. The sharp-edged shape of Figures 19(c), (d) appears as a
consequence to alternating the selection pressure between solutions and evalua-
tion examples systems, in spite of this fact, the tendency of the plots converges
exponentially to the optimum fitness value. In the classical method (fixed) the
convergence is too abrupt, that means that the learning process occurs in few
steps. It is important to remark that the distance between the minimum, mean and
maximum plots goes down at the same rate. This is a consequence of maintaining
the genetic diversity at a high level. Therefore the learning process avoids local
minimal and overadaptation. The global effect is the achievement of solutions with
good generalization behaviors, as will be demonstrated in the validation process

(Sections 5.3 and 5.4).
21

Fitness Value in fixed (1) Fitness Value in fixed (3)
1.0
0.87
0.6\

0.4
0.2
0 50 100 150 200 50 100 150 200
Generations Generations
(a) (b)
10 Fitness Value in coevU (1) Lo Fitness Value in coevl’(3)
0.8 08|
06 | 06|,
04 0.4 "
0.2 . 02 !
LD
0 50 100 150 200 0 50 100 150 200
Generations Generations
(c) (d)

Figure 19. Fitness value evolution in object configuration 1 and 3.

5.3. GENERALIZATION CAPABILITIES OF UNIFORM COEVOLUTION METHOD

Once a controller has been learned in a specific environment, it is interesting to
know how well this controller behaves when the object configuration and starting
position is changed randomly. The capability to show similar behavior, no matter
the environment we are dealing with, is referred as generalization capability. To
test this generalization capability of the Uniform Coevolutive method a validation
process was performed.

The validation process has been carried out making 1000 executions over all
object configurations. The best controller obtained in every training execution (five
per objects configuration) is used in the validation process. Each execution has
different randomly generated initial position and orientation for the robot. In order
to make some quantitative comparison some numerical results have been compiled
from fixed experiments in Table III and from coevU in Table IV.

In Tables III and IV the average percentage of best controllers that reach the
goal are summarized. At the bottom of Tables III and IV the average value over the
column is calculated. This value can be considered as a measure of the difficult for
the controllers to navigate in a specific objects configuration. Thus is a measure of
the complexity in terms of navigation through it. Higher value in column average
implies higher probability of arriving, therefore this objects configuration is easy
to navigate, for instance, in fixed experiments, objects configuration 1 is the easiest
and number 5 is the hardest. In coevU experiments, the values in the average

column show similar results for all the configurations. The average over the row
22

Table 111. Probability of a robot trained in a specific object configuration reach the goal
in all object configurations, fixed experiments

Validation object configuration

1 2 3 4 5 6 Average
Experiment 1 0.024 002 0.02 0.02 0.02 0.02 0.02
fixed 2 063 032 023 035 014 031 0.33
3 073 034 035 043 023 044 0.42
4 08 042 032 057 032 038 0.48
5 084 034 029 047 0.16 038 0.41
6 088 034 020 042 012 044 0.40
7 087 038 034 058 039 047 0.51
8 068 042 034 034 029 058 0.44
9 049 035 023 034 034 037 0.35
10 082 042 038 063 022 0.57 0.51
Average 068 034 027 041 022 040 0.39

Table 1V. Probability of a robot trained in a specific object configuration reach the
goal in all object configurations, coevU experiments

Validation object configuration

1 2 3 4 5 6 Average
Experiments 1 1.00 050 0.81 090 0.71 0.82 0.79
coevU 2 097 077 0.84 091 0.83 0.86 0.86
3 099 082 079 0.87 0.61 084 0.82
4 098 044 077 089 0.70 0.86 0.77
5 1.00 081 0.80 0.89 0.80 0.80 0.85
6 099 080 0.80 090 0.73 0.80 0.84
Average 099 069 080 090 0.73 0.83 0.82

in Tables IIT and IV, can be also be calculated and considered as the generaliza-
tion level obtained by the best controller evolved in an object configuration. The
higher value in row average, the highest probability of arriving, and considering
different objects configuration, the most general controller obtained. So in fixed
experiments, objects configuration 1 generates the worst controller (less general)
and the small value obtained, 0.02, suggests an absence of navigation skills for
controller 1. The coevU experiments show a high independence of learning ob-
jects configuration used and in all the cases the percentage is higher than fixed
experiments.
23

Table V. Averages of reach the goal of best controllers evolved in
six objects configurations

Objects Average (fixed) Average (coevU) Improve

configuration
1 0.02 0.79 0.77
2 0.33 0.86 0.53
3 0.51 0.82 0.31
4 0.48 0.77 0.29
5 0.44 0.85 0.45
6 0.51 0.84 0.33

In Table V a comparison among both experiments of the best percentage in
average of reaching the goal is shown. In fixed experiments with the same objects
configuration the value presented is the best so far.

The column “Improve” of Table V indicates the difference between the average
values of percentages of reaching the goal of coevU and fixed methods. The im-
provement value corresponding to objects configuration 1 is surprising, considering
the results obtained in the fixed experiments. In the coevU results, the controller
from objects configuration 1 has obtained the same navigation capability than other
controllers evolved in objects configurations with obstacles. This feature seems to
point out that the learning process in coevU method is independent of the object
configuration used. Even if an environment with no objects at all is used in the
learning process, the controller obtained behaves very well in an environment with
an arbitrary objects configuration. If the average of improve column is calculated,
a value of 0.42 is obtained, that means a 42% of average improvement when using
the UC method.

In Figure 20 the probability of reach the goal in average obtained in both exper-
iments types are represented and the distance between the two lines represents the
mentioned improvement.

Finally, in Figure 21 a histogram of all fitness values obtained by all the con-
trollers learned in all the objects configuration when tested in the validation process,
both in fixed and coevU experiments, is represented. Lines in light color corre-
sponding to the classical evolutive technique, fixed, and the dark ones to coevU.
The values of fixed experiments are clustered in two areas. The area of values
[0—0.2] a 38% of the total area, corresponding to right behavior, reach the goal
avoiding obstacles. The area above 0.8 (53%) belongs to controllers that hit the
obstacles or wall, stand in the same place and does not reach the goal at all.

Analyzing the areas under the plot of coevU experiments, it can be seen that
under fitness value 0.2 (good behaviors) constitutes the 80% of all obtained fitness

values in coevU method. In the area of bad behaviors, above 0.8, to coevU are more
24

ge of

£z 08

$8 |

= 5 06

88 el e

=5 04 ‘ e :

= =

2 £ 024 /.

£ |

GE- 0 T u T T 1

1 2 3 4 5 6

Object Configuration
u— fixed coevl/

Figure 20. Probability of a robot trained in a specific object configuration reach the goal.

0.15 7

0.10 [

Frecuency

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0

. Fitness Value
—coevl/ fixed

Figure 21. Histogram of the fitness values of UC and classical method.

or less the 12%, less of a fifth of the region occupied by the classical method fixed.
The percent of exploratory strategies, the robot navigate without reaching the goal,
corresponding to fitness value in the interval of 0.2-0.8; they have the same level
in both methods. The total improvement when the coevolution uniform method is
applied is very notable.

6. Conclusions

In this paper a new coevolutive method, called uniform coevolution, has been intro-
duced to solve the robot navigation problem. The main objective of UC is to obtain
general solutions applying an evolutionary computation technique, in this problem
domain, to find a neural network controller evolved with evolutionary strategies.
The algorithm proposed has many characteristics that improve the search of gen-
eralized solutions. The calculation of fitness value takes into account the examples
used to learn and the global population evolution. The evolutive dynamic of uni-

form coevolution alternates the selection pressures in both systems. The training
25

examples system evolves to best trainer and the solutions system to generalized
behavior. These characteristics produce smooth convergence, permit avoid local
minima.

Two kinds of experiments have been done: a classical evolutionary strategy
and the coevolutive one. A comparison of the generalization achieved with both
methods was performed. The results have shown the high level of generalization
obtained with uniform coevolution. This is a great improvement in evolutionary
algorithms because classical evolutionary algorithms have a lack in generalization
problem. Furthermore, the uniform coevolution is a general method, is easy to
apply without effort to other different problems.

References

1. Axelrod, R.: The Evolution of Cooperation, Basic Books, New York, 1984.

2. Axelrod, R.: Evolution of strategies in the iterated prisioner’s dilemma, in: L. Davis (ed.),
Genetic Algorithms and Simulated Annealing, Morgan Kaufman, 1989.

3. Baluja, S.: Evolution of an artificial neural network based autonomus plan vehicle controller,
1EEE Trans. Systems Man Cybernet. 26(3) (1996), 450-463.

4. Berlanga, A., Isasi, P., Molina, J. M., and Sanchis, A.: Competitive evolution to find generalized
solutions: the arms race perspective, in: Proc. of Intelligent Engineering Systems INES, Austria,
1998, pp. 61-65.

5. Berlanga, A., Isasi, P, Sanchis, A., and Molina, J. M.: Distance modulation competitive co-
evolution method to find initial configuration independent cellular automata rules, in: /[EEE
Internat. Conf. on Systems, Man and Cybernetics, Japan, 1999, pp. 607-612.

6. Berlanga, A., Sanchis, A, Isasi, P., and Molina, J. M.: Neural networks robot controller trained
with evolution strategies, in: Proc. of 1999 Congress on Evolutionary Computation, CEC99,
1999.

7. Braitenberg, V.: Vehicles: Experiments on Synthetic Psychology, MIT Press Cambridge, MA,
1984.

8. Brooks, R. A.: Intelligence without representation, Artificial Intelligence 47 (1991), 139-159.

9. Brooks, R. A.: Artificial life and real robots, in: Toward a Practice of Autonomous Systems:
Proc. of the 1st European Conf. on Artificial Life, MIT Press, Cambridge, MA, 1992.

10. Cliff, D. T., Husband, P., and Harvey, I.: Explorations in evolutionary robotics, Adaptive
Behaviour (1993), 73-110.

11. CIiff, D. and Miller, G. F.: Tracking the red queen: Measurements of adaptive progress in
coevolutionary simulations, in: F. Moran, A. Moreno, J. J. Merelo and P. Chacén (eds), Proc.
of the 3rd European Conf. on Artificial Life, Springer, Berlin, 1995, pp. 200-218.

12. Dorigo, M. and Snepf, U.: Genetics based machine learning and behavior based robotics: A
new sysnthesis, IEEE Trans. Systems Man Cybernet. 23 (1993), 141-153.

13. Dorigo, M. and Colombetti, M.: Robot shaping: Developing autonomous agents through
learning, Artificial Intelligence T1(2) (1994), 321-370.

14. Dorigo, M.: Alecsys and the autonomouse: Learning to control a real robot by distributed
classifier systems, Machine Learning 19 (1995), 209-240.

15. Ficici, Sevan, G. and Pollack, J. B.: Challenges in coevolutionary learning: Arms-race dynam-
ics, open-endedness, and mediocre stable states, in: Adami, Belew, Kitano and Talor (eds),
Proc. of the 6th Internat. Conf. on Artificial Life, MIT Press, Cambridge, MA, 1998.

16. Floreano, D. and Mondada, F.: Evolution of homming navigation in a real mobile robot, Proc.
IEEE Trans. Systems Man Cybernet. 26(3) (1996), 396-407.

26

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.
36.

37.

38.

Floreano, D. and Nolfi, S.: Adaptive behavior in competing co-evolving species, in: Proc. of
the 4th European Workshop on Evolutionary Robotics, Springer, Berlin, 1997.
Franceschini, N., Pichon, J. M., and Blanes, C.: Real time visuomotor control: from flies to
robots, in: Proc. of the 5th Internat. Conf. on Advanced Robotics, 1991, pp. 91-95.
Garcia-Martinez, R. and Borrajo, D.: An integrated approach of learning, planning, and
execution, J. Intelligent Robotic Systems (2000), accepted for publication.
Gaudiano, P., Zalama, E., and Lopez, J.: An unsupervised neural network for low level control
of a wheeled mobile robot: noise resistance stability and hardware implementation, /[EEE Trans.
Systems Man Cybernet. 26(3) (June 1996), 485-495.
Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, New York, 1989.
Graf, D. H. and LaLoncle, W. R.: A neural controller for collision-free movement of general
robot manipulators, in: Proc. of the IEEE 2nd Internat. Conf. on Neural Networks, Vol. 1, 1988,
pp. 77—84.
Handley, S. G.: The genetic planner: The automatic generation of plans for a mobile robot via
genetic programming, in: Proc. of IEEE Internat. Symp. on Intelligent Control, Chicago, 1994,
pp. 190-195.
Hillis, W. D.: Co-evolving parasites improve simulated evolution as an optimization procedure,
in: C. G. Langton (ed.), Artificial Life 1I, Santa Fe Institute, Addison-Wesley, Readin, MA,
1991, pp. 313-324.
Isasi, P.,, Berlanga, A., Molina, J. M., and Sanchis, A.: Robot controller against environment,
a competitive evolution, in: Special Session on Evolution Computation, 15th IMACS World
Congress 1997 on Scientific Computation, Modelling and Applied Mathematics, Germany,
1997.
Ishikawa, S.: A method of autonomous mobile robot navigation by using fuzzy control, Adv.
Robotics 9(1) (1995), 29-52.
Koza, J.: Genetic Programming, MIT Press, Cambridge, MA, 1992.
Koza, J.: Evolution of subsumption architecture that perform a wall following task for an
autonomous mobile robot via genetic programming, in: Computational Learning Theory and
Natural Learning Systems, Vol. 2, MIT Press, Cambridge, MA, 1994, pp. 321-346.
Kwok, D. P, Leung, T. P, and Feng, S.: Genetic algorithms for the optimal dynamic control
of robot arms, in: Proc. of the 19th Annual Conf. of IEEE Industrial Electronic Society, Vol. 1,
Maui, 1993, pp. 381-385.
Lindergren, K. and Nordahl, M. G.: Artificial food webs, in: Artificial Life 111, Addison-Wesley,
Reading, MA, 1994, pp. 73-103.
Maes, P. and Brooks, R.: Learning to coordinate behaviors, in: Proc. of the 8th National Conf.
on Arfificial Intelligence, Morgan Kaufmann, San Mateo, CA, 1990, pp. 796-802.
Mahavedan, S. and Connell, J.: Automatic programming of behavior-based robots using
reinforcement learning, Artificial Intelligence 55 (1992), 311-365.
Mataric, J. and Cliff, D.: Challenges in evolving controllers for physical robots, J. Robotics and
Autonomous Systems 19(1) (1996), 67-83.
Matellan, V., Fernandez, C., and Molina, J. M.: Genetic learning of fuzzy reactive controllers,
Robotics Autonom. Systems 25(1/2) (1998), 33-41.
McKerrow, P. J.: Introduction to Robotics, Addison-Wesley, Reading, MA, 1991.
Miglino, O., Hautop, H., and Nolfi, S.: Evolving mobile robots in simulated and real
environment, Artificial Life 2 (1995), 417-434.
Millan, J. R.: Rapid, safe, an incremental learning of navigation strategies, I[EEE Trans. Systems
Man Cybernet. 26(3) (June 1996), 408—420.
Molina, J. M., Sanchis, A., Berlanga, A., and Isasi, P.: An enhanced classifier system for
autonomous robot navigation in dynamic environments, in: Intelligent Automation and Soft
Computing, Autosoft Press, 1998, in press.

27

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.
53.

Mondada, F. and Franzi, P. I.: Mobile robot miniaturization: A tool for investigation in control
algorithms, in: Proc. of the 2nd Internat. Conf. on Fuzzy Systems, San Francisco, USA, 1993.
Nagata, S., Sekiguchi, M., and Asakawa, K.: Mobile robot control by a structures hierarchical
neural network, IEEE Control Systems Mag. (April 1990), 69-76.

Paredis, J.: Coevolutionary computation, Artificial Life 2 (1996), 355-375.

Pomerleau, D.: Neural Network Perception for Mobile Robot Guidance, Kluwer Academic,
Dordrecht, 1993.

Pollack, J. B., Blair, A. D., and Land, M.: Coevolution of a backgammon player, in:
V. C. G. Langton (ed.), Proc. of Artificial Life, MIT Press, Reading, MA, 1996.

Rechenberg, 1.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der
Biologischen Evolution, Frommann-Holzboog, Stuttgart, 1973.

Rechenberg, I.: Evolution strategy: Nature’s way of optimization, in: Optimization: Methods
and Applications, Possibilities and Limitations, Springer, Berlin, 1989, pp. 106-126.

Rosin, C. D. and Belew, R. K.: New methods for competitive coevolution, Evolutionary
Computation 5 (1997), 1-29.

Sanchis, A., Molina, J. M., Isasi, P.,, and Segovia, J.: RTCS: A reactive with tags classifier
system, J. Intelligent Robotic Systems (1999), in press.

Molina, J. M., Sanchis, A., Berlanga, A., and Isasi, P.: An enhanced classifier system for au-
tonomous robot navigation in dynamic environments, Intelligent Automat. Soft Comput. 6(2)
(2000), 113-124.

Shakey, N.: Shakey the robot, Technical Report, SRI A.L., 1984.

Solano, J. and Jones, D. I.: Generation of collision-free paths, a genetic approach, in: Proc. of
the IEEE Colloquium on Genetic Algorithms for Control and Systems Engineering, London,
1993.

Sommaruga, L., Merino, 1., Matelldn, V., and Molina, J.: A distributed simulator for intelligent
autonomous robots, in: 4th Internat. Symp. on Intelligent Robotic Systems—SIRS96, Lisboa,
Portugal, 1996.

Schwefel, H. P.: Numerical Optimization of Computer Models, Wiley, New York, 1981.

Stone, P. and Veloso, M.: A layered approach to learning client behaviors in the robocup soccer
server, Appl. Artificial Intelligence J. 12 (1998), 165-188.

28

