
40 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

Local Feature Weighting in Nearest
Prototype Classification

Fernando Fernández and Pedro Isasi

Abstract—The distance metric is the corner stone of nearest
neighbor (NN)-based methods, and therefore, of nearest prototype
(NP) algorithms. That is because they classify depending on the
similarity of the data. When the data is characterized by a set of
features which may contribute to the classification task in different
levels, feature weighting or selection is required, sometimes in a
local sense. However, local weighting is typically restricted to NN
approaches. In this paper, we introduce local feature weighting
(LFW) in NP classification. LFW provides each prototype its own
weight vector, opposite to typical global weighting methods found
in the NP literature, where all the prototypes share the same one.
Providing each prototype its own weight vector has a novel effect
in the borders of the Voronoi regions generated: They become
nonlinear. We have integrated LFW with a previously developed
evolutionary nearest prototype classifier (ENPC). The experiments
performed both in artificial and real data sets demonstrate that
the resulting algorithm that we call LFW in nearest prototype
classification (LFW-NPC) avoids overfitting on training data
in domains where the features may have different contribution
to the classification task in different areas of the feature space.
This generalization capability is also reflected in automatically
obtaining an accurate and reduced set of prototypes.

Index Terms—Evolutionary learning, local feature weighting
(LFW), nearest prototype (NP) classification, weighted Euclidean
distance.

I. INTRODUCTION

NEAREST PROTOTYPE (NP) classifiers [1] allow to de-
fine the class of a new example, usually called query, on

the basis of a set of previously classified prototypes. The way of
computing this set of prototypes is based on selecting them from
an original set of labelled samples, or by replacing the original
set by a different and reduced one [2]. Learning vector quanti-
zation (LVQ) algorithms [3] are a family of algorithms focused
on NP classification. They are based on the dynamical computa-
tion of a set of prototypes in order to minimize the classification
error. Several approaches are based on this model [4].

It has been proved that NP classifiers have an asymptotic error
rate that is at most twice the Bayes error rate, no matter the
distance used in the classification [5]. However, this advantage
decreases when the dimensionality of the input data increases
[6]. Unfortunately, as the dimensionality of the input becomes

Manuscript received April 17, 2006; revised November 10, 2006 and January
31, 2007; accepted February 7, 2007. The work of F. Fernandez was supported
in part by the Grant from the Spanish Ministry of Education and Fulbright, the
Spanish MEC project TIN2005-08945-C06-05, and the regional CAM-UC3M
project CCG06-UC3M/TIC-0831. The work of P. Isasi was supported in part
by the MCyT project OpLink TIN2005-08818-C04-02.

The authors are with the Departamento de Informatica, Universidad Carlos
III de Madrid, 28911 Leganes, Madrid, Spain (e-mail: ffernand@inf.uc3m.es;
isasi@ia.uc3m.es).

Digital Object Identifier 10.1109/TNN.2007.902955

higher, the choice of the distance metric becomes more impor-
tant in determining the outcome of the NP classification. A com-
monly used distance metric is the Euclidean distance. It is based
on the assumption that the input space is isotropic or homoge-
neous. This assumption is not true in many practical domains.
Usually, the domains contain a high dimensionality spuriously,
there are irrelevant features and those are not homogeneous, and
many times the normalization of the space in a global way does
not produce any advantage.

To reduce dimensionality, two approaches can be followed.
On the one hand, feature selection methods try to identify the
important features for the classification process, eliminating the
rest of the features [7]. This can be done by projecting the input
space into a new lower dimensional one, improving the classi-
fication accuracy [8]; or by finding out relationships, linear or
nonlinear, among the attributes, that allow a better classifica-
tion after applying the found transformation [9]. On the other
hand, weighting methods try to weight the importance that the
distance metric gives to each feature, so different features can
receive different treatments [10].

Weighting approaches are typically followed to introduce
both feature selection or weighting, using a weighting factor
that can be constant, or a function of the example which is
being classified. If the weighting factor is constant, it is called
global weighting, given that the whole domain will receive the
same weighting vector. If the weighting factor is not constant,
it is called local weighting, given that the weighting factor
applied is a function that typically depends on the example,
and hence, on the area of the domain where it is located. An
extensive documentation on feature weighting methods for
nearest neighbor (NN) classification can be found in [10].

In this paper, we present a method for local weighting in NP
classification. The way to do this is to provide the prototypes
their own continuous weight vector. Thus, the algorithm follows
a prototype-specific weighting approach, instead of a typical in-
stance-specific one [11]. This approach allows for the borders
among Voronoi regions to be nonlinear, which provides better
generalization capabilities in domains where the relevance of
the features may be different in different areas of the space. To
do that, we include a new method of computing the weights for
each prototype, in such a way that the values of all the compo-
nents of the distortion vector of a prototype are the same. The
distortion vector is defined as the average difference contributed
by each training instance belonging to the region with respect to
the prototype, as it is explained in Section IV.

This prototype-specific weighting approach could be used
in many classification algorithms. Here, the method is imple-
mented as an extension of the evolutionary nearest prototype

1045-9227/$25.00 © 2007 IEEE

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29428768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FERNÁNDEZ AND ISASI: LOCAL FEATURE WEIGHTING IN NEAREST PROTOTYPE CLASSIFICATION 41

classification (ENPC) algorithm [12], a nearest prototype (NP)
approach that follows an evolutionary process to compute a
correct number of prototypes. We have called this extension
local feature weighting in nearest prototype classification
(LFW-NPC). In this new approach, weighting vectors are
computed at the same time as prototype locations, given that
both are considered as characteristics of the prototypes, and
both can be modified in the evolutionary process.

Section II summarizes the related work. Section III defines
our method for local feature weighting (LFW) in NP classifiers.
Section IV shows how LFW is integrated in the previously de-
veloped ENPC algorithm. Section V describes the experiments
performed, and Section VI summarizes the main conclusions.

II. RELATED WORK

Reducing dimensionality can be done by projecting the input
space into a new low-dimensional “effective” subspace, where
the relationships between variables allows a better classifica-
tion performance. Torkkola [9] proposed using nonparametric
estimation of some relationship between input space and output
space, so called mutual information, to find an “effective” sub-
space represented by a matrix that maximizes that relationship.
In a similar way, Bach and Jordan [13] show how to use repro-
ducing kernel Hilbert spaces to characterize marginal indepen-
dence between pairs of variables, and thereby, design an objec-
tive function for independent component analysis (ICA). This
work has been extended in [8] to achieve conditional indepen-
dence to generate projection functions to reduce dimensionality.
Estébanez et al. [14] automatically generate those projection
functions by genetic programming, for some specific domains.
Some other approaches follow the idea of optimizing the metric
of the nearest neighborhood rule. In [15], the authors propose to
search this measure in a local way. First, the set of prototypes
are extracted in the learning phase, and then, for such a distri-
bution of prototypes, a metric is searched trying to optimize the
accuracy.

In the following, we will focus on approaches similar to our
proposal, i.e., methods for reducing the dimensionality by using
weighting factors in the NN rule. Such methods are typically
based on the weighted euclidean distance, defined in1

(1)

where is the weighting vector, in the -di-
mensional space. For instance, Peng et al. [17] introduce a lo-
cally adaptive neighborhood morphing classification method to
try to minimize the bias due to the curse of dimensionality. The
authors use local support vector machine (SVM) learning to es-
timate an effective metric for producing neighborhoods that are
elongated along less discriminant feature dimensions and con-
stricted along most discriminant ones. As a result, the class con-
ditional probabilities can be expected to be approximately con-
stant in the modified neighborhoods, which is the assumption
needed for -NN techniques to work optimally. In this method,

1An extensive discussion on different distance metrics for local weighting can
be found in [16].

the authors uses the weighted Euclidean distance defined in (1),
where does not evolve, but it is adapted from the query (so

depends on the query) following:

(2)

where is a constant and is computed by following an
SVM scheme. It captures the relevance information along each
individual dimension. In this way, the neighborhood changes
while decreasing the distance between the query and the deci-
sion boundary, making it more elliptical. This method has three
main parameters: or the number of NNs in the final NN rule,

or the number of NNs in the final nearest neighborhood
for SVM computation, and or the positive factor for the
exponential weighting scheme defined in the (2).

Hastie and Tibshirani [18] iteratively change the weights of
the attributes for each query. They select the neighborhood of
a query and apply local discriminant analysis to shrink the dis-
tance, parallel to the boundary between decision classes. This
new metric is then used to select the -NNs as usual.

Domeniconi et al. [19]–[21] use a similar idea, but they use
SVM instead of local discriminant analysis to shrink the dis-
tance. In [22], they propose an adaptive -NN classification
method, also to minimize the estimation bias in high dimen-
sions. They estimate a flexible metric for computing neighbor-
hoods based on chi-squared distance analysis. This technique is
capable of producing a local neighborhood in which the poste-
rior probabilities are approximately constant and that is highly
adaptive to query locations. They utilize the same weighted dis-
tance computation as in (1) and [18]. The weights are assigned
for each query in an iterative process: The weights are initialized
to one for each query, and then modified in an iterative process
that ends after some few iterations. In a more recent work [23],
SVM is used to determine the most discriminant direction in a
neighborhood around a query, providing also a LFW scheme.

The aforementioned methods are instances of lazy learning
methods, and need to execute the whole training procedure for
each query. That makes -NN algorithms impractical when fast
answers are required over large databases, given that answer
time should be very long. This problem is typically mitigated
using different organization methods as trees [24]. However,
when the distance metric depends on the query, it is not clear
how to perform such an organization.

Another way to minimize the answer time of a query is by
using the NP classification, which represents the whole data set
with a reduced set of prototypes. Feature weighting has also
been applied to the NP approaches, and some methods have
been proposed to adapt metrics during training. For instance,
distinction sensitive learning vector quantization (DSLVQ) [25]
automatically determines weighting factors to the input dimen-
sion of the training data. These weights are adapted according
to some heuristics.

Hammer and Villmann [26] try to automatically scale the
input dimensions and to adapt the Euclidean metric to the spe-
cific training problem. The idea is to introduce weighted fac-
tors that could be adapted automatically to minimize the clas-
sification errors. This scheme is similar to the LVQ2 where the
NP is attracted to the query if it belongs to the correct class,

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

42 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

and it is repelled otherwise. LVQ2.1 works similarly, and the
nearest correct prototype is attracted while the nearest wrong
prototype is repelled. Different authors use a similar scheme,
where attraction and repulsions are implemented by sigmoidal
functions. This leads to the generalized learning vector quanti-
zation (GLVQ) method [27]. However, the computation of dis-
tances for selecting the NPs are still based on Euclidean dis-
tance. A modification of this method, called relevance learning
vector quantization (RLVQ), has been proposed in [28], where
the computation of the distance is also weighted [following (1)]
and the weights are updated following:

if and same class

otherwise.
(3)

This same scheme is used in generalized relevance learning
vector quantization (GRLVQ), where the updating of the
weights changes, using the same sigmoidal function as for the
updating of the prototypes.

In all those last cases, authors are not using a lazy perspective.
However, they follow a global weighting approach. In this paper,
by the opposite, we describe an approach for LFW in a nonlazy
way, by following the NP approach. The idea is to provide each
prototype with its own weight vector, so each prototype is given
a different distance metric. Thus, the distance metric depends
on the prototype and not the query, as the previously mentioned
methods for LFW in -NN do.

There are some previous approaches for local metric adap-
tation in NP classification. For instance, soft nearest prototype
classification with relevance learning (SNPC-R) adapts its
metric providing the distance measure with a weighting vector
parameter . That work describes the idea of using an individual
parameter for each prototype (like LFW-NPC does) or a
classwise metric shared within prototypes with the same class
label. The second approach was implemented resulting in the
LSNPC-R algorithm [29].

There are other clustering methods that use adaptive metrics
for each prototype. For instance, the fuzzy clustering algorithms
Gustafson–Kessel [30] and Gath–Geva [31] compute the dis-
tance of any data point from the cluster prototype as de-
fined in

(4)

with symmetric and positive definite. The matrices s
allow variations in the shape of the clusters, like our approach
does, although our approach is for supervised learning.

Providing each prototype with its own weight vector gener-
ates nonlinear Voronoi regions among the different prototypes.
These nonlinear regions are computed from a set of training in-
stances, in a nonlazy way, and are afterward used to classify
future queries. The definition of nonlinear Voronoi regions pro-
vides the classifier with a more accurate definition of the bor-
ders between categories, and improves the performance of pre-
dicting the class to whom the queries belong. This new local
weighted NP (nonlazy) perspective, and the way of computing
the weights, are explained in Section III.

III. LOCAL FEATURE WEIGHTING

LFW-NPC requires a set of prototypes .
Each of these prototypes is composed of its location, class, and
weight vector, so , where ,
(the set of all the possible classes), and ,
with . Next, we include a formal description of the
distortion measure used and the NP rule.

A. Distortion Measure and the NP Rule

Weighted Euclidean distance, defined in (5), is typically ap-
plied to global weighting in NNs methods

(5)

where is the dimension of the data, and are the elements
for which we are computing the distance, and is the weighting
vector. This vector is the same for the whole feature space. How-
ever, to introduce local weighting, we are interested in using a
different weighting vector for measuring the similarity of any
instance to each prototype. This new similarity function
is defined in

(6)

where is the weight vector associated with the prototype
For simplicity of the notation, the weight vector of a prototype
, will be also denoted by . Given the new similarity

function, membership function of an instance to a region of a
prototype can be defined using the NP rule defined in

then iff

(7)

where is the location of the example and its associated
class

This new NP rule shows how the similarity between the in-
stances and each prototype is computed using the weight vector
of each prototype. This property provides the method with an
interesting advantage: borders generated among the different
Voronoi regions are not linear, as is described in Section III-B.

B. Nonlinear Decision Boundary Between Voronoi Regions

Given two prototypes and with weighting vectors
and , respectively, the classification boundary among them is
defined by the points , which satisfy

(8)

Following the NP rule defined in (5), we can transform the
previous equation in

(9)

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

FERNÁNDEZ AND ISASI: LOCAL FEATURE WEIGHTING IN NEAREST PROTOTYPE CLASSIFICATION 43

For simplicity, let us assume that . If we develop both
sides of the equation, the following is achieved:

(10)

If we put all the terms depending on to one side, and the
terms depending on to the other side, we have

(11)

Extending the squared terms, we obtain

(12)

Finally, reorganizing the terms, we can obtain the equation of
the border, shown in

(13)

We can see that each side of the equation is quadratic and
depends on and , respectively. Furthermore, we can
see how the quadratic terms on both sides depend on the dif-
ference between the weights of the prototypes,
for the left-hand side of the equation and for the
right-hand side. If the weights of both prototypes are the same,
for instance, the weight vector as it occurs in global weighting
methods, the difference becomes zero, eliminating the quadratic
behavior and obtaining (14). This equation is a developed ver-
sion of the linear boundary equation between Voronoi regions
when the Mahalanobis distance is used. If in (14) we make the
weight vector to take the value of , the Mahalanobis dis-
tance reduces to the Euclidean distance [32]

(14)

Therefore, the distance function can be considered as a gen-
eralization of the Mahalanobis distance, where each prototype
receives a different weight factor, in a similar way that adap-
tive metrics for fuzzy clustering introduced in Section II do. Our
case is also equivalent to the use of a different covariance ma-
trix for each cluster when generating discriminant functions for
a Bayesian classifier, assuming that the class-conditional proba-
bility densities are multivariate normal. Therefore, the decision
surfaces are hyperquadratics, and may assume any of the gen-
eral forms: pairs of hyperplanes, hyperspheres, etc., [32].

C. Computing the Weights of the Prototypes

Computing the weighting vectors of the prototypes is based
on a local normalization of the data. The normalization is based

on the variance of the location of the instances of each region
with respect to the average, i.e., the centroid of the region or
prototype. From a practical point of view, it is intended to en-
sure that all the features produce the same contribution to the
total distortion. This must be done in a local way, i.e., for each
prototype. So, each prototype is given one weighting vector that
defines its own similarity metric in order to attract or to move
away the training examples.

The average distortion of a prototype (or a region)
, say , is defined as the average dis-

tortion contributed by each training instance belonging to the
region with respect to the prototype, as defined in [33]

(15)

where is the size (number of elements) of the set (the
set of all the instances for which is the closest prototype).

Furthermore, we can obtain an average distortion vector for
this prototype , which contains the distortion contributed by
each feature, as defined in

for (16)

which uses the similarity function defined in (6)
Formally, if we assume that the prototype is the centroid of

the region, average distortion is the average squared distance of
the location of all the instances in the region from the centroid.
Then, the goal of this method is for the values of all the com-
ponents of the distortion vector of a prototype to be the same.
More formally, this can be seen as a normalization of the data
in the region of the same variance that mathematically is repre-
sented by

(17)

The way of computing the weighting vectors derives from
(17). For simplicity, suppose and a prototype

. The previous goal can be defined as

(18)

which is transformed using (16) into

(19)

However, when data is not normalized, the typical situation
is that or that . To ensure the
equality becomes true, we can add a modification factor ,
as defined in

(20)

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

44 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

If we operate in (20), we obtain

(21)

This, generalized for features, is transformed in (22). The
first component has been taken as a reference (any other
component could have been taken)

(22)

Furthermore, given that the first feature is taken as reference,
we can fix it to a defined value, say 1 . Then, (22)
can be simplified to

(23)

From (23), we can compute the new weights of any prototype
using the formula defined in (24). In the equation, a smoothing
parameter has been included to adjust the intensity
of change of the weights. In the experiments in Section V, we
show that by modifying these parameters different results can
be obtained

when
otherwise.

(24)

Equation (24) includes a temporal element . That means that
we need to define how often the weights of the prototypes are
updated. That depends on how LFW is integrated in an NP al-
gorithm. Section IV defines that for the ENPC algorithm.

IV. LFW IN ENPC

In this section, we introduce the main concepts of the ENPC
algorithm. Furthermore, we describe the modifications intro-
duced in the algorithm in order to provide it with the LFW ca-
pability.

A. Evolutionary Nearest Prototype Classification

The ENPC is based on the adaptation of a set of prototypes in
a competitive domain. The biological inspirations of this algo-
rithm are defined in [34]. The algorithm performs iteratively the
evolution of a set of prototypes (initially only one) based on the
execution of different prototype operators. The operators allow
the prototypes to modify their characteristics in order to improve
their quality, where this quality measure is related to their con-
tribution to the classification success of the whole classifier. In
this section, we introduce the main concepts of the algorithm,
although extensive explanations can be found in [12].

1) Algorithm Basis: The ENPC is composed of set of
prototypes . Each prototype is character-
ized by its quality, say quality . This quality is defined as a
function of the goodness of the prototype, taking into account

Fig. 1. ENPC algorithm flow.

the number of patterns in its Voronoi region, and whether those
patterns belong to the same class as the prototype or not, as de-
fined in

quality accuracy contribution (25)

The main idea is that the quality of a prototype is high only if
it classifies correctly, what in the equation is called accuracy of
the prototype, and if it classifies a sufficient amount of patterns,
it is called contribution. The value is limited to the range .
Extended explanation, as well as an exact formulation of how to
compute both accuracy and contribution of a prototype, can be
found in [12].

Most of the operations that the prototypes can execute de-
pends on this quality measure. The learning process is defined
by the flow shown in Fig. 1.

The learning process begins with a classifier of only one pro-
totype. Then, the different operators are executed in the iterative
cycle represented in Fig. 1 that ends when a predefined number
of iterations has been executed. The goal is that the prototypes
evolve until a stable situation is achieved. In that situation, pro-
totypes are supposed to produce a successful classifier. In the
evolutionary process, the prototypes are allowed to execute dif-
ferent operators, some of them taken from the literature. This ap-
proach uses them from an evolutionary point of view, giving the
prototype capabilities to decide when to execute each of the op-
erators and introducing a high level of randomness in those deci-
sions. Next, the different operations that the prototypes can ex-
ecute are briefly defined. An extended description can be found
in [12].

2) Initialization: To avoid the definition of parameters is al-
ways a desirable feature of a new algorithm [35], and one of
the main features of our method is the absolute lack of ini-
tial conditions. These initial conditions, typically summarized
in the number of prototypes, the initial set of prototypes, and a
smoothing parameter are avoided given the following.

• The initial number of prototypes is always one. The
method is able to generate new prototypes stabilizing in

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

FERNÁNDEZ AND ISASI: LOCAL FEATURE WEIGHTING IN NEAREST PROTOTYPE CLASSIFICATION 45

Fig. 2. Example of execution of the mutation operator.

Fig. 3. Example of execution of the reproduction operator.

the most appropriate number, in terms of the previously
defined “quality” measure.

• The initial location of the only prototype is not relevant (it
clusters the whole domain, wherever it is located).

• There are no smoothing parameters. The method automat-
ically adjust the intensity of change in prototypes taking
into account their qualities in each iteration.

3) Mutation Operator: The goal of this operator is to label
each prototype with the most populate class in each region. Fol-
lowing the NN rule, each prototype knows the number of pat-
terns of each class located in its region. Then, the prototype
changes, if needed, and becomes the same class as the most
abundant class of patterns in its region. Fig. 2 shows an example
of this operator. In the example, a prototype of class 2 changes
to class 1, given that it has 19 patterns of class 1 and only 7 of
class 2.

This approach to obtain the main class is typically used when
unsupervised learning is applied to supervised classification
[36], [37].

4) Reproduction Operator: The goal of this operator is to
introduce new prototypes in the classifier. The insertion of new
prototypes is a decision that is taken by each prototype, in the
sense that each prototype has the opportunity of introducing a
new prototype in order to increase its own quality. Thus, the
regions with patterns belonging to different classes can create
new regions containing the patterns of a different class from the
class of the prototype, as it is shown in Fig. 3. The probability
of reproduction is proportional to the difference in the number
of instances belonging to the same and different classes.

5) Fight Operator: This operator provides the prototype with
the capability of obtaining patterns from other regions. The steps
to execute are defined as follows.

1) Each prototype chooses the prototype against which
to fight. Prototypes are chosen from the set of prototypes

Fig. 4. Example of execution of the fight operator with competition.

Fig. 5. Example execution of the fight operator with cooperation.

in its neighborhood. To decide which prototype to choose
from the neighbors set, a roulette is used assigning to each
region neighbors a slice of size proportional to
the difference between its quality and the quality of .

2) Decide whether to fight or not. The probability of fighting
between prototypes and is proportional to the dis-
tance of their qualities.

3) If prototype decides to fight against prototype , there
are two possibilities. Given as the class associated to
and as the class associated to , we have the following
possibilities.

a) If (cooperation). Both prototypes belong to
different classes. In this case, the prototype will
give the prototype the patterns of the class . Fig. 5
shows an execution of this operator, where the proto-
type 1 that owns patterns of the classes 1 and 2 gives
the patterns of class 2 to the prototype 2.

b) If (competition). Fig. 4 shows an execution
of this operator, where prototype 1 steals some pat-
terns from prototype 2. The winner is decided again
by using a roulette with only two slices, each slice
belonging to each prototype, and sizes proportional
to the qualities of each prototype. Furthermore, the
amount of patterns that are transferred depends on a
probability proportional to the qualities of both pro-
totypes.

Figs. 4 and 5 show that the translation of patterns from one
set to another changes the border between the regions. For ex-
ample, suppose there were instances of class 2 at the top left
of Fig. 5. A cooperative fight would transfer them to the pro-
totype of class 2, even though there is no simple movement of
the border that corresponds to this. The real modification of the

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

Fig. 6. Example execution of the move operator.

border will be performed with the execution of the move oper-
ator, that will move the prototype location, and hence, the bor-
ders of the Voronoi regions, as explained in Section IV-A6.

6) Move Operator: The move operation relocates each pro-
totype to the best expected place. This is the centroid of all
the training data in its region that belongs to the same class.
Fig. 6 shows the execution of the move operator from the situ-
ation achieved in Fig. 5. The figure shows how the prototype 2
changes its position to the centroid of the region 2. This opera-
tion, based on the second step of Lloyd iteration [38], allows us
to make a local optimization of each prototype, increasing the
performance of the whole classifier.

7) Die Operator: Probability to die is 1 minus the double of
the quality, as defined in (26). Successful prototypes will survive
with probability of 1, while useless prototypes with quality less
than 0.5 may die

when quality
quality when quality

(26)

8) End Condition and Classifier Selection: In [12], several
end conditions as well as methods for selecting the output clas-
sifier are defined. However, in that work, it was shown that ex-
ecuting the algorithm a limited number of iterations is a single
way to obtain successful results. On the other hand, the algo-
rithm generates a different classifier in each iteration, so any of
them can be chosen as an output. However, the best one obtained
in training is typically chosen, although sometimes, a validation
set can be used to improve generalization capabilities.

B. Applying LFW in NP Classification

A way to apply LFW in ENPC algorithm is by including the
computation of the weights of the prototypes (described in Sec-
tion III) at the end of each iteration, as it is defined in Fig. 7.
The weighting vector of the only prototype included at the be-
ginning of the algorithm is set to 1 for all its components.

Weight updates are executed as a new operator of the evolu-
tionary process of the original ENPC algorithm. First, at the end
of each iteration, and after executing the die operator, all the pro-
totypes recompute their weight vector following (23) and (24).
Second, given that the equation introduces a learning factor ,
the original ENPC algorithm can be seen as LFW-NPC with

(no change in the weights is performed). Last, the move
operator ensures that prototypes are located in the centroid of

Fig. 7. LFW-NPC algorithm flow.

TABLE I
CLASSIFICATION OF THE LFW-NPC ALGORITHM FOLLOWING

DIFFERENT DIMENSIONS

the regions if all the instances in the region are of the same class
of the prototype. It means that, for such regions, the average dis-
tortion defined in (15) agrees with the variance in the location of
the instances in each region with respect to the average. There-
fore, we can ensure that the normalization process is performed
correctly.

The introduction of this new operator only influences the re-
production operator, in the sense that the new prototype must
inherit the weight vector of the ancestor. The other operators re-
main as before. The evolutionary process ensures that the right
weight vectors are computed, obtaining successful results, as
will be demonstrated in Section V.

We have shown that the integration of LFW in ENPC is per-
formed very easily. We believe this is an interesting advantage
of LFW that could also be integrated with other algorithms very
easily. Table I summarizes the characteristics of LFW-NPC fol-
lowing the framework introduced in [10].

V. EXPERIMENTS

In this section, we describe the experiments performed with
the LFW-NPC algorithm both in artificial and real data sets.
The artificial ones are the XOR data set and waveform, which

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

FERNÁNDEZ AND ISASI: LOCAL FEATURE WEIGHTING IN NEAREST PROTOTYPE CLASSIFICATION 47

TABLE II
EXPERIMENTAL RESULTS ON THE XOR DOMAIN

Fig. 8. XOR domain.

have been obtained from the University of California at Irvine
(UCI) Machine Learning Repository [39]. The real data sets,
also extracted from the UCI, are glass identification, heart
disease (Cleveland), Pima Indians diabetes, and liver disorders
(Bupa).

The goal of this experimentation is to characterize the types of
data sets for which LFW is more powerful than methods based
on a nonweighted Euclidean distance. We want to identify in
which data sets such algorithms fail, and to verify that LFW im-
proves their result. Specifically, we will compare with an NN
approach—the IBK algorithm, and with an NP approach—the
ENPC algorithm. The advantage that LFW provides could be
extended to other NP-based algorithms in the future. The exper-
iments also demonstrated that the LFW-NPC algorithm works
well when compared with other methods. In all the experiments
with ENPC and LFW-NPC, we have run both algorithms for
300 iterations.

A. Artificial Data

1) XOR Domain: The problem of the ENPC algorithm, simi-
larly to most of the nonweighted NN-rule-based algorithms, ap-
pears when not all the features have the same contribution to
the classification task. This problem is illustrated with the do-
main described in Fig. 8, which shows the continuous XOR do-
main. The data in this data set is continuously and uniformly dis-

tributed between predefined values. The data belongs to one of
the two different classes, separated by straight line boundaries.

This domain, which seems to be very simple, is a hard do-
main for several classifiers, mainly when the range of values of
the features and is different, and when additional irrelevant
features are included. For instance, Table II shows the results of
executing a tenfold cross validation of several algorithms over
a set of 1000 instances randomly generated, following the uni-
form distribution shown in Fig. 8. In this case, and

and and are variables and are defined in the
first column of the table. Furthermore, several experiments have
been performed adding noisy features. The additional noisy fea-
tures follow a uniform distribution in the same range defined for
feature . Thus, DIM2 means that the data has only two original
dimensions, but DIM3 means that one additional feature has
been added, DIM4 means that two features have been added,
and so on.

The experimentation has been executed with ENPC and
LFW-NPC, using a value of . We also have used other
algorithms, like decision trees (J48) [40], decision rules (PART)
[41], voted perceptron [42], SVMs [sequential minimal opti-
mization (SMO)] [43], naive Bayes [32], [44], and IBK [45] for
different values of . The implementation of these algorithms is
provided by WEKA [45], and they are used with the predefined
parameters.

From Table II, several conclusions can be obtained. First, J48,
naive Bayes, SMO, and voted perceptron fail in this simple do-
main, obtaining very poor results with the default parameters.

Second, IBK is not influenced by the range of the feature
given that, by default, the WEKA implementation of IBK nor-
malizes the values of the different features. However, IBK is in-
fluenced by the number of dimensions. As the number of dimen-
sions increases, the performance is reduced from around 98%
to 89%. Interestingly, as the value of the parameter becomes
lower, the method is more sensitive to the irrelevant features.
Last, ENPC is influenced both by the range of the feature and
by the number of noisy features.

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

TABLE III
EXPERIMENTAL RESULTS OF ENPC/LFW-NPC ALGORITHMS ON THE XOR DOMAIN. IN EACH PAIR OF NUMBERS,

THE LEFT NUMBER IS FOR ENPC AND THE RIGHT NUMBER IS FOR LFW-NPC

Thus, ENPC and IBK fail in this domain, because the non-
weighted Euclidean distance fails. The table shows that the re-
sults of the LFW-NPC algorithm remain very similar (around
98%) independently of the number or the range of the features
that are used. When the dimension of the data set is 2 (no addi-
tional features have been added), the results are very close to the
results of IBK, but when the number of features increases, the
results of the new approach significantly improve the first one.
The improvement is higher when compared with its ancestor
ENPC, which has worse results when the number of dimensions
and the differences among the values of the features increases.

The reason for the strong improvement of LFW-NPC over
its ancestor ENPC is illustrated in Table III, which shows the
results of executing both the ENPC and LFW-NPC algorithms
on the XOR domain, for , , and

. Each row represents the results obtained for the
number of dimension indicated, and in each cell, the first value
corresponds with ENPC (or LFW-NPC for), and the
second with LFW-NPC, for . The table shows the iteration
where the best classifier was obtained in training, the success of
that classifier on training and test, and the number of prototypes
of the classifier. The values shown are the average and standard
deviation of ten executions performed in the cross-validation
process.

The table shows that the improvement obtained with
LFW-NPC over ENPC is very strong, mainly, because of
its capability to avoid overfitting, which is illustrated by the
following: 1) the difference between test success and training
success is around one point in all the cases for LFW-NPC,
while for ENPC, it is of more than 40 once an additional
feature is inserted and 2) the number of prototypes obtained for
LFW-NPC is very small (around 5), and it does not increase
with the number of irrelevant features. However, for ENPC,
the number of prototypes obtained grows with the number of
irrelevant features. Thus, we can say that LFW is required in
situations in which the nonweighted Euclidean distance fails,
i.e., where the ENPC algorithm fails.

Fig. 9 shows an example of the borders between the Voronoi
regions. The four prototypes shown in the figure are obtained by
executing the LFW-NPC in the XOR domain with two dimen-
sions (DIM2), , and .
The figure shows the decision borders between the region gen-
erated by prototype and the other prototypes, showing that
these borders corresponds with parabolas. In this case, the ad-
vantage of using weighted Euclidean distance is that the deci-
sion boundaries are less influenced by small differences in the
location of the prototypes. For instance, prototype 1 is located
in the position (0.74, 37.48), while prototype 4 is located in

Fig. 9. Nonlinear borders between Voronoi regions in the XOR domain.

(0.24, 38.81). Although the difference between the compo-
nent of the two prototypes seems small (only 1.35), it is huge
when compared with the range of the component, which is
only 1. This situation produces a nonweighted Euclidean dis-
tance to generate a decision boundary almost horizontal in the
figure, producing a very high classification error. Obviously, a
method for global weighting should be also useful in this do-
main, but local weighting is required in many domains.

2) Waveform: This domain has been obtained from the UCI
Machine Learning Repository [39]. The first version of this do-
main, called waveform-21, consists of 21 relevant features to
discriminate three different classes. The 21 features are contin-
uous. The second version adds another 19 irrelevant features.
The data set consists of 1000 data and results are obtained from
a tenfold cross validation. The goal of this experimentation is to

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

FERNÁNDEZ AND ISASI: LOCAL FEATURE WEIGHTING IN NEAREST PROTOTYPE CLASSIFICATION 49

TABLE IV
COMPARATIVE RESULTS ON THE WAVEFORM-21 AND WAVEFORM-40 DATA SETS

compare the results obtained by LFW-NPC with the results ob-
tained by different methods of features selection and weighting
included in [10]. Table IV summarizes the results.

From the results, several following conclusions can be
obtained.

1) SMO obtains the best results, both for waveform-21 and
waveform-40.

2) Naive Bayes is influenced by the 19 more irrelevant fea-
tures included in waveform-40, decreasing its performance
in around three points.

3) IBK obtains results under 80% in all the cases and, in the
same way as in the XOR domain, the influence of the irrel-
evant features is stronger for lower values of .

4) Decision trees and rules (J48 and PART, respectively) also
obtain poor results, but they do not seem to be very influ-
enced by the irrelevant features.

5) Both relief-F and -NN obtain good results both for
waveform-21 and waveform-40. The common element of
both algorithms is that they are performance bias methods,
as described in [10].

6) In this case, preset bias methods [CCF, VDM, modified
value differenced metric (MVDM), and MI] also obtain
similar results for both data sets, showing that their capa-
bility to manage irrelevant features is also high.

7) ENPC obtains very good results both in waveform-21 and
waveform-40.

8) LFW-NPC (with) obtains the second best result
for both waveform-21 and waveform-40, showing that it
is not influenced by the irrelevant features. This algorithm
is also a preset bias algorithm, given that it does not follow
a performance-based policy to weight the features, but the
weighting process is only guided by the average distortion,
as it was defined in Table I.

Opposite to the XOR domain, in this domain, the nonweighted
Euclidean distance seems to work well, so LFW does not provide
a strong improvement. Section V-B describes additional experi-
mentation to show the performance of LFW over real data sets.

B. Real Data Sets

This section describes the results obtained by the LFW-NPC
algorithm in several data sets. The data sets are composed of real
data, and have been extracted from the UCI Machine Learning

TABLE V
SUMMARY OF THE DATA SETS

Repository. The domains are Pima Indians diabetes, glass iden-
tification, heart disease (Cleveland), and liver disorders (Bupa).
The characteristics of each domain (number of instances, at-
tributes, and classes) are summarized in Table V.

First, we are interested in evaluating if the LFW-NPC algo-
rithm is very sensitive to its parameter , and we use the Pima
Indian diabetes data set for such purpose. Table VI shows the
results for different values in the Pima Indian diabetes data set
when a tenfold cross validation is performed and repeated ten
times (due to the stochastic behavior of the ENPC algorithm).
For each value of , the table shows the execution time, in sec-
onds, of the LFW-NPC algorithm (on an Intel Pentium 4, 3.6
GHz), the performance on learning, on test, and the number of
prototypes of the classifier obtained. For all of them, the average
and the standard deviation is provided.

The results show several important conclusions. First, higher
values of the parameter produce higher test accuracy, which
grows from 67.55% for up to the 74.39% obtained for

. Another interesting element is the number of proto-
types. Notice that for , the number of prototypes obtained
by the classifier is only 5.31, while with it generates around
140. This reduction in the number of prototypes is a signal of the
generalization capabilities of the algorithm, which are also re-
flected in the differences among the results on training and test.
For instance, for , difference between test and trial success
is around 23 points, while for , the difference is lower than
4. That shows that LFW-NPC is able to avoid overfitting to the
training data, obtaining very successful results on test.

Another interesting result is that, when performing a t-test
with a 95% confidence level, the accuracy in test obtained when

is only significantly different than the one obtained when
and . Thus, we can say that the accuracy obtained

is not very sensitive to the parameter.
Last, execution time depends on the number of prototypes

obtained. If such number is low, as is the case of and

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

TABLE VI
EXPERIMENTAL RESULTS ON THE PIMA INDIANS DIABETES DATA SET

TABLE VII
COMPARATIVE RESULTS OVER PIMA INDIAN DIABETES DATA SET

TABLE VIII
AVERAGE CLASSIFICATION ACCURACY OF SEVERAL ALGORITHMS ON DIFFERENT DATA SETS

higher, execution time is under 1 s. While the number of pro-
totypes obtained grows, the execution time also grows. Thus,
although LFW-NPC adds some complexity to the ENPC algo-
rithm, due to the reduction on the number of prototypes of the
evolving classifier, the resulting execution time is much smaller.

We have compared these results with other classification al-
gorithms, summarizing the results in Table VII. We can see that
there are other algorithms that improve the results of LFW-NPC,
but LFW-NPC obtains the result close to the best one.

Given that small variations in the parameter do not provide
significant differences in the accuracy, for the rest of domains,
we have executed the LFW-NPC algorithm with the value of

. For comparison reasons, we also include the result when
(equivalent to ENPC). Furthermore, we have executed

J48, PART, naive Bayes, SMO, and IBK for and ,
all of them with the default parameters defined in WEKA. We
execute the default parameter setting given we do not perform
any parameter optimization in the LFW-NPC algorithm either.
The only parameter set for LFW-NPC and ENPC is the number
of iterations, which has been set to 300 in all the cases. For all

the algorithms and domains, a tenfold cross validation has been
performed. In addition, given that some of the algorithms have a
stochastic behavior, we repeat the learning and test processes of
each fold ten times. Table VIII summarizes the results obtained
for each algorithm. The reported value is the average of the 100
executions.2 Table IX reports the standard deviation of each se-
ries of the new experiments.

A two-tailed t-test has been performed to study whether the
differences of the results are significant or not. Specifically, we
are interested in knowing when the results of the LFW-NPC al-
gorithm are significantly better or worse than the results of the
other algorithms for each domain. Thus, following the notation
introduced in [53], the superscripts “ ” and “ ” indicate that
LFW-NPC’s average accuracy was significantly higher that the
other method’s average accuracy at a 90% and 95% confidence
level, respectively. Similarly, superscripts “ ” and “ ” indi-
cate that LFW-NPC’s average accuracy was significantly lower

2The use of the same training and testing set in each group of ten repetitions
could overestimate the significance of differences due to stochasticity of the
method, underestimating the variations in training and test data distributions.

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

FERNÁNDEZ AND ISASI: LOCAL FEATURE WEIGHTING IN NEAREST PROTOTYPE CLASSIFICATION 51

TABLE IX
STANDARD DEVIATION OF THE CLASSIFICATION ACCURACY OF SEVERAL ALGORITHMS ON DIFFERENT DATA SETS

that the other method’s average accuracy at a 90% and 95% con-
fidence level. The superscript “ ” indicates that differences are
not significant at such confidence levels.

From these results, we can evaluate when our method for
LFW should be applied, and when it should not. LFW provides
additional capabilities to NP methods based on a nonweighted
Euclidean distance, so LFW should be useful in domains where
such a distance metric fails. A way to evaluate when such a
distance fails is by studying when the methods that use it fail,
i.e., when NP (ENPC) and NN (IBK) algorithms fail. When we
have a new and unknown domain, we cannot use test data to do
this evaluation. However, we can always use a validation set ob-
tained from training data, in a similar way as it was used in [12].
The obtained results in the validation can be used as a way of
telling when to use LFW-NPC without using test data results.

For instance, in the glass data set, both ENPC and IBK ob-
tain very good results, around 70%, which is a value similar to
the ones obtained by J48 and PART, and higher than the ones
obtained by SMO and naive Bayes. In this domain, LFW-NPC
obtains a poor result, similar to SMO and naive Bayes. In the
BUPA data set, ENPC and IBK also obtain good results and,
in this case, LFW-NPC also does. However, in the Cleveland
domain, ENPC and IBK with fail, obtaining the worst re-
sults. That means that the distance metric is failing. In this case,
LFW-NPC improves the result of ENPC in almost 20 points.
Last, in the Pima Indians data set, where ENPC and IBK also ob-
tain the worst results, LFW-NPC significantly improves them.

These results extend the conclusions obtained in the XOR

domain, where we demonstrated that LFW-NPC obtained very
good results in the data sets where methods based on the non-
weighted Euclidean distance failed. The failure of the distance
metric can be identified both through the results of IBK and
ENPC. In the case of IBK, a fail in the distance metric produces a
very low classification accuracy for . Such result may be
improved with a higher value of . In the case of ENPC, a fail in
the distance metric produces both a huge number of prototypes
and very high differences between the accuracy on training and
the accuracy on test. In such cases, LFW provides better results.

VI. CONCLUSION

In many real classification problems, it is usual to find do-
mains that contain a great number of attributes. These attributes
sometimes are essential in the classification task, but at other
times are superfluous. In addition, it could be the case that a de-
pendency, more or less complex, exists between the attributes,
in such a way that it makes difficult both the classification task
and the detection of the irrelevant attributes. It could also be pos-
sible that the ranges of values of the attributes are very different.

NN and NP approaches use a distance function in the -di-
mensional space defined by the features of the data. This func-

tion is affected by all the features of the data set that, as de-
fined previously, may include noisy and/or irrelevant informa-
tion which could make the distance function fail. As an example,
in a bidimensional space in which one of the dimensions has a
rank much greater than the other, the Euclidean distance will de-
tect differences in the greatest dimension, although the classifi-
cation can depend on both. This is the reason why the systems
based on neighborhoods give poor results when they are eval-
uated in domains with these characteristics. Furthermore, these
differences are not uniform in the whole space, but they depend
on small regions in such a space, and therefore, global weighting
methods cannot be successfully applied.

We have described a new method for LFW in NP classifi-
cation. The main ideas of the method are as follows: 1) each
prototype owns a weight vector, so the NN rule is based on a lo-
cally weighted similarity function and 2) weight vector compu-
tation is performed based on local normalization of the data. The
method generates Voronoi regions whose borders are not linear.
This property is very important, because it allows the method to
generate nonlinear partitions of the space that adapt better to the
real data generated by the problem.

We have integrated our method for LFW in a previous algo-
rithm, called ENPC, which has proved to obtain good results
following an iterative process where a set of prototypes evolves
by executing several operators to modify their characteristics,
like location, class, etc., [12]. A new phase, called prototype
weights update, is added in each iteration to modify the weight
vector of each prototype, obtaining the new version of the algo-
rithm, called LFW-NPC.

Experimental results have shown that the methods that use
the nonweighted Euclidean distance (as ENPC and IBK) fail in
the same domains due to the distance metric. In such domains,
LFW-NPC improves the results of its ancestor. The improve-
ments are based on a higher generalization capability, reflected
in its capability to generate classifiers with less prototypes, and
to generate a lower difference among training and test results.

Analyzing the results of Table VIII, it is possible to remark
that there is not a method that performs better than the rest in
all domains. In a first look, it could be concluded that SMO
performs better in most of the domains. However, experiments
prove that in such domains in which SMO performs not well, it
performs worse, showing a very high domain dependence. By
the opposite, our approach has a more regular behavior in all
domains. It can be observed how the performance of LFW-NPC
is either optimal or near the optimum in the cases where some
other technique performs better.

The results yield the conclusion that when there is no domain
knowledge that can tell what is the best method, our approach
can be the best choice, because of its characteristic of regularity
in the performance.

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

ACKNOWLEDGMENT

The authors would like to thank N. Crespo for her help in the
development of the LFW-NPC algorithm.

REFERENCES

[1] J. C. Bezdek and L. I. Kuncheva, “Nearest neighbour classifier designs:
An experimental study,” Int. J. Intell. Syst., vol. 16, pp. 1445–1473,
2001.

[2] L. I. Kuncheva and J. C. Bezdek, “Nearest prototype classification:
Clustering, genetic algorithms, or random search?,” IEEE Trans. Syst.,
Man, Cybern. C, Appl. Rev., vol. 28, no. 1, pp. 160–164, Feb. 1998.

[3] T. Kohonen, Self-Organization and Associative Memory, 3rd
ed. Berlin, Germany: Springer-Verlag, 1984, 1989.

[4] S. Seo and K. Obermayer, “Soft learning vector quantization,” Neural
Comput., vol. 15, no. 7, pp. 1589–1604, 2003.

[5] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New
York: Wiley, 2001.

[6] R. Bellman, Adaptive Control Process. Princeton, NJ: Princeton
Univ. Press, 1961.

[7] J. Li, M. T. Manry, P. L. Narasimha, and C. Yu, “Feature selection
using a piecewise linear network,” IEEE Trans. Neural Netw., vol. 17,
no. 5, pp. 1101–1115, Sep. 2006.

[8] K. Fukumizu, F. Bach, and M. Jordan, “Dimensionality reduction for
supervised learning with reproducing kernel Hilbert spaces,” J. Mach.
Learn. Res., vol. 5, pp. 73–99, 2004.

[9] K. Torkkola, “Feature extraction by non-parametric mutual informa-
tion maximization,” J. Mach. Learn. Res., vol. 3, pp. 1415–1438,
2003.

[10] D. Wettschereck, D. Aha, and T. Mohri, “A review and empirical eval-
uation of feature weighting methods for a class of lazy learning algo-
rithms,” Artif. Intell. Rev., vol. 11, pp. 273–314, 1997.

[11] D. Aha and R. Goldstone, “Concept learning and flexible learning,” in
Proc. 14th Annu. Conf. Cogn. Sci. Soc., 1992, pp. 534–539.

[12] F. Fernández and P. Isasi, “Evolutionary design of nearest prototype
classifiers,” J. Heuristics, vol. 10, no. 4, pp. 431–454, 2004.

[13] F. Bach and M. Jordan, “Kernel independent component analysis,” J.
Mach. Learn. Res., vol. 3, pp. 1–48, 2002.

[14] C. Estébanez, J. Valls, R. Aler, and I. Galván, “A first attempt at
constructing genetic programming expressions for EEG classifica-
tion,” in Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 2005.

[15] F. Ricci and P. Avesani, “Data compression and local metrics for
nearest neighbor classifiers,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 21, no. 4, pp. 380–384, Apr. 1999.

[16] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” Artif. Intell. Rev., vol. 11, pp. 11–73, 1997.

[17] J. Peng, D. Heisterkamp, and K. Dai, “LDA/SVM driven nearest
neighbor classification,” IEEE Trans. Neural Netw., vol. 14, no. 4, pp.
940–942, Jul. 2003.

[18] T. Hastie and R. Tibshirani, “Discriminant adaptive nearest neighbor
classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 6,
pp. 607–616, Jun. 1996.

[19] C. Domeniconi and D. Gunopulos, “Adaptive nearest neighbor classi-
fication using support vector machines,” in Advances in Neural Infor-
mation Processing Systems. Cambridge, MA: MIT Press, 2001, vol.
14.

[20] C. Domeniconi, J. Peng, and D. Gunopulos, “An adaptive metric for
pattern classification,” in Advances in Neural Information Processing
Systems. Cambridge, MA: MIT Press, 2000, vol. 13.

[21] C. Domeniconi and D. Gunopulos, “Efficient local flexible nearest
neighbor classification,” in Proc. 2nd SIAM Int. Conf. Data Mining
(SDM), 2002.

[22] C. Domeniconi, J. Peng, and D. Gunopulos, “Locally adaptive metric
nearest neighbor classification,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 24, no. 9, pp. 1281–1285, Sep. 2002.

[23] C. Domeniconi, D. Gunopulos, and J. Peng, “Large margin nearest
neighbor classifiers,” IEEE Trans. Neural Netw., vol. 16, no. 4, pp.
899–909, Jul. 2005.

[24] T. Liu, A. W. Moore, A. G. Gray, and K. Yang, “An investigation of
practical approximate nearest neighbor algorithms,” in Proc. Neural
Inf. Process. Syst. (NIPS), 2004, pp. 825–832.

[25] M. Pregenzer, G. Pfurtscheller, and D. Flotzinger, “Automated feature
selection with distinction sensitive vector learning quantization,” Neu-
rocomputing, vol. 11, pp. 19–29, 1996.

[26] B. Hammer and T. Villmann, “Generalized relevance learning vector
quantization,” Neural Netw., vol. 15, pp. 1059–1068, 2002.

[27] A. S. Sato and K. Yamada, “Generalized learning vector quantization,”
in Advances in Neural Information Processing Systems, G. Tesauro, D.
Touretzky, and T. L. , Eds. Cambridge, MA: MIT Press, 1995, vol.
7, pp. 423–429.

[28] T. Bojer, B. Hammer, D. Schunk, and K. Tluk, “Relevance determina-
tion in learning vector quantization,” in Proc. Eur. Symp. Artif. Neural
Netw. (ESANN), Brussels, Belgium, 2001, pp. 271–276.

[29] F. Scheleif, T. Villmann, and B. Hammer, “Local metric adaptation
for soft nearest prototype classification to classify proteomic data,” in
Lecture Notes on Artificial Intelligence, ser. 3849. Berlin, Germany:
Springer-Verlag, 2006, pp. 290–296.

[30] D. E. Gustafson and W. Kessel, “Fuzzy clustering with a fuzzy co-
variance matrix,” in Proc. IEEE Conf. Decision Control, 1979, pp.
761–766.

[31] I. Gath and A. Geva, “Unsupervised optimal fuzzy clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 773–781, Jul. 1989.

[32] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[33] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Norwell, MA: Kluwer, 1992.

[34] F. Fernández and P. Isasi, “Automatic finding of good classifiers fol-
lowing a biologically inspired metaphor,” Comput. Inf., vol. 21, no. 3,
pp. 205–220, 2002.

[35] E. Berglund and J. Sitte, “The parameterless self-organizing map algo-
rithm,” IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 305–316, Mar.
2006.

[36] S. Bermejo and J. Cabestany, “A batch learning algorithm vector
quantization algorithm for nearest neighbour classification,” Neural
Process. Lett., vol. 11, pp. 173–184, 2000.

[37] N. R. Pal, J. C. Bezdek, and E. C.-K. Tsao, “Generalized clustering
networks and Kohonen’s self-organizing scheme,” IEEE Trans. Neural
Netw., vol. 4, no. 4, p. 1993, Jul. 1993.

[38] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, no. IT-28, pp. 127–135, Mar. 1982.

[39] C. L. Blake and C. J. Merz, “UCI Repository of Machine Learning
Databases,” 1998 [Online]. Available: http://www.ics.uci.edu/
~mlearn/MLRepository.html

[40] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo,
CA: Morgan Kaufmann, 1993.

[41] E. Frank and I. H. Witten, “Generating accurate rule sets without
global optimization,” in Proc. 15th Int. Conf. Mach. Learn., 1998, pp.
144–151.

[42] Y. Freund and R. E. Schapire, “Large margin classification using the
perceptron algorithm,” Mach. Learn., vol. 3, no. 37, pp. 277–296, 1999.

[43] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[44] G. H. John and P. Langley, “Estimating continuous distributions in
Bayesian classifiers,” in Proc. 11th Conf. Uncertainty Artif. Intell.,
1995, pp. 338–345.

[45] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. New York: Elsevier, 2005.

[46] K. Kira and L. A. Rendell, “A practical approach to feature selection,”
in Proc. 9th Int. Conf. Mach. Learn., 1992, pp. 249–256.

[47] D. Wettschereck, “A description of the mutual information approach
and the variable similarity metric,” German Nat. Res. Center Comput.
Sci., Artif. Intell. Res. Div., Sankt Augustin, Germany, Tech. Rep. 944,
1995.

[48] R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz, “Trading
mips and memory for knowledge engineering,” Commun. ACM, vol.
35, 1992.

[49] C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Commun.
ACM, vol. 29, pp. 1213–1228, 1986.

[50] S. Cost and S. Salzberg, “A weighted nearest neighbor algorithm for
learning with symbolic features,” Mach. Learn., vol. 10, pp. 57–78,
1993.

[51] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Technol. J., vol. 27, pp. 379–423, 1948.

[52] P. E. Hart, “The condensed nearest neighbor rule,” IEEE Trans. Inf.
Theory, vol. IT-14, no. 3, pp. 515–516, May 1968.

[53] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance
based learning algorithms,” Mach. Learn., vol. 38, pp. 257–286, 2000.

[54] G. L. Ritter, H. B. Woodruff, S. R. Lowri, and T. L. Isenhour, “An
algorithm for a selective nearest neighbor decision rule,” IEEE Trans.
Inf. Theory, vol. IT-21, no. 6, pp. 665–669, Nov. 1975.

[55] D. Deng and N. Kasabov, “On-line pattern analysis by evolving orga-
nizing maps,” Neurocomputing, vol. 51, pp. 87–103, 2003.

[56] T. Kohonen, Self-Organizing Maps. Berlin, Germany: Springer-
Verlag, 1995.

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

FERNÁNDEZ AND ISASI: LOCAL FEATURE WEIGHTING IN NEAREST PROTOTYPE CLASSIFICATION 53

Fernando Fernández received the B.S. and Ph.D.
degrees in computer science from Universidad
Carlos III de Madrid (UC3M), Madrid, Spain,
in 1999 and 2003, respectively. In his Ph.D. dis-
sertation, he studied different nearest prototype
approaches for the discretization of the state space
in reinforcement learning problems.

He has been a member of the faculty of the Com-
puter Science Department, UC3M, since October
2005. In 2001, he became an Assistant and Associate
Professor. In fall 2000, he was a Visiting Student at

the Center for Engineering Science Advanced Research, Oak Ridge National
Laboratory, Oak Ridge, TN. He was also a Postdoctoral Fellow at the Computer
Science Department, Carnegie Mellon University, Pittsburgh, PA, from October
2004 to December 2005. He published more than 30 journal and conference
papers, mainly in the field of machine learning and planning. His interests are
in intelligent systems that operate in continuous and stochastic domains. His
research is also focused on nearest prototype approaches for data analysis, both
with classical attribute value and relational representations.

Dr. Fernández is a recipient of a predoctoral FPU fellowship award from
Spanish Ministry of Education (MEC), a Doctoral Prize from UC3M, and a
MEC-Fulbright postdoctoral Fellowship.

Pedro Isasi received the computer science degree
and the Ph.D. degree from the Universidad Politéc-
nica de Madrid (UPM), Madrid, Spain in 1994.

Currently, he is a Full Professor at the Computer
Science Department, Universidad Carlos III de
Madrid (UC3M), Madrid, Spain, where he is the
Head of the Neural Networks and Evolutionary
Computation Laboratory (ENANNAI). His main
research areas are the artificial intelligence, the
optimization problems, automatic learning, all
mixed with evolutionary computation techniques

and neural networks.
Dr. Isasi is the Chief of the Computational Finance and Economics Technical

Committee (CFETC) of the IEEE Computational Intelligence Society (CIS).

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 24, 2009 at 13:45 from IEEE Xplore. Restrictions apply.

