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1. Introduction 

Beginning with the last decade, the construction of forward looking models raised a 

number of important computational issues, which motivated the initiation of some re

search programs, most of them in progress. These computational problems are twofold: 

part of them derives from the specific mathematical and numerical implications of for

ward expectations schemes, and the other consists in the feasibility limitations arising 

in the simulation of large scale models (say models of some hundrecls of equations). 

Forward expectations based models are dynamically non-recursive, in the sense that 

initial boundary values (initializing lagged variables) are no longer sufficient to compute 

the solution paths. To solve such models, second boundary values are needed. However, 

as most macroeconometric models have an infinite time support, the latter values are 

actually chosen by the practitioners according to some precise criteria. 

lf we take the following elementary forward-looking model: 

and Yo given, 

with Y (resp. z) the vector of endogenous (resp. exogenous) variables, fU a well

dimensioned vector funetion and t the time index, the second boundary value or terminal 

condition can be represented by the constraint g(YT+l' YT, YT-l) = 0, where g(.) is a 

chosen vector function with the same dimension as function f(·) and T the selected 

solution time horizon. The finite-time approximation to be solved is: 

ST 

There is an abundant literature concerned with the specification of the terminal con

straint (see for example Wallis et alii (1986) or Fisher (1992)). In this literature, the 

choice of the terminal conditions depends upon the existence of computed long run equi

libria for the models under consideration. For a given model, if a long run equilibrium 
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exists, say yS, then the fixed value condition, YT+l = yS, is legitimated. Otherwise, one 

could use for example the alternative constant level condition YT+l = YT. The latter 

restriction is of course more general and in certain cases, it provides better performances 

for the precision issue addressed in this paper, as we will show in the next section. In 

our setting we assume that both terminal conditions can be used, or equivalently that 

we can characterize a kind of long run equilibria of the models under consideration. We 

take this approach for two reasons at least: 

(i)� First, we just consider the "nonexistence" oflong run equilibria as a non-property, 

rather than a valuable unavoidable characteristic of the models. It is known (see 

for example, Deleau et alii (1990)) that slight modifications in the specification 

or the parameterization of the models allow generally to find out such equilibria, 

inc1uding large scale models (see Loufir and Malgrange (1994)) in the case of the 

multicountry model MULTIMOD developed by Masson et alii (1990)). 

(ii)� Although long run equilibra do not "exist" on the structural forms of the mod

els, adding residuals to the models' equations in a convenient way permits the 

identification of baseline solutions paths, playing the role of long run equilibria 

for the residuals-augmented forms (see also Masson et alii (1990) in the case of 

MULTIMOD) .. 

This paper investigates the role of the terminal condition specification in the goodness 

of the finite time approximation, represented by the system STo We do not address 

the difficult problem of the optimal terminal condition regarding to the approximation 

quality, which seems quite intractable. Indeed, we study a precise computational issue 

related to the simulation of large scale forward-looking models. In the latter case, the 

use of high solution time horizons is impossible: in practice, the two boundary values 

systems, represented by ST, are solved within solution horizons of sorne tens of periods. 

Given this feasibility constraint, sorne authors put forward a number of experimental 

instruments to improve the approximation quality of systems ST, for such short solution 

time horizons. A natural instrument turns out to be the terminal condition specification: 

in our setting, different admissible analytical forms for function g(.) will not provide the 
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same solution paths if the solution time horizon is not sufficiently high. The key issue 

consists consequently to find out the terminal constraints which guarantee an acceptable 

approximation quality. 

A first contribution on this topic is due to Fisher (1992). The author considers the 

following model (page 85): 

Pt = apt+l + Ut 

Ut = 10 +11 Ut-l with Uo given. 

Then, he evaluates the approximation quality of the corresponding systems ST, for dif

ferent terminal conditions and different spectra of the considered model, by comparison 

with the explicit solutions. 

In this paper, we present the corresponding results on a general multivariate opti

mization based model. The model is the principal example considered in Stokey and 

Lucas (1989), chapter 6, to formalize economic central planner problems (ie: optimiza

tion under constraints of a unique objective funetion). On this model, we study the 

robustness of Fisher's results increasing the scope of sorne of them and challenging the 

others. 

Almost aH the simulation exercises are performed using Laffargue's algorithm (1990). 

The algorithm uses Newton-Raphson relaxation steps, with a specific triangulation pro

cedure allowing to compute per-relaxation step Newton-Raphson improvements. A 

theoretical analysis of this technique is given by Boucekkine (1995). The algorithm has 

been adapted to Gauss language, coded and extended by Juillard (1994a, 1994b). Of 

course, given the issue addressed here, our results are quite insensitive to the simulation 

method. 

The paper is organized as follows: section 2 provides the theoretical results on a 

linearized central planner model. Section 3 is devoted to numerical corroboration. We 

conclude by sorne methodological recommendations on the simulation of short time 

horizon forward-looking systems. 
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2. Theoretical analysis 

As announced in the introductive section, we begin by finding out sorne theoretical 

results on the precision performances of different terminal conditions. The analysis is 

conducted on the linearized form of the central planner model considered by Stokey and 

Lucas (1989), chapter 6. 

Beginning with the canonical optimization problem 

sup L
00 

f3 tF(xt,xt+d 
XtER" t=O 

s.t. Xt+l E r(xd 

where Xo given and r(xd being the set of feasible states depending on Xt, they show 

that the linear approximation around the steady state {x;} of the Euler equations, can 

be written as: 

with y = x - x* an (n X 1) vector and A,B two (n x n) square matrices of constants. 

Relatively to the model considered in section 1, we suppress the exogenous variables 

vector Zt for ease of exposition. We assume that the model has no unit root, to deal 

with a unique stationary equilibrium, Y* = O. The initial value Yo is obviously assumed 

non zero, otherwise the solutions Yt, would remain at Y* = Ofor every t. 

The model can be rewritten as: 

(M) Yt+l ] [A B] [Yt+l][ Yt - I(n) O(n) Yt ' 

where I(n) (resp. O(n)) is the identity matrix (resp. null matrix) of dimension n. We 

set 

and we assume that 

(H1 ) matrix F is diagonalizable. 
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So, it exists an invertible matrix P and a diagonal matrix A such that F = PAP-1. 

We can always assume' that elements of A are in increasing order. P, A and p-1 are 

partitioned as fo11ows: 

P = [~~~ ~~:] 
with Pll (resp. P22 ), the submatrix (n x n) corresponding to the first (resp. last) n 

rows and columns of P, and P12 (resp. P21 ), the submatrix (n x n) corresponding to 

the first (resp. last) n rows of P and to the last (resp. first) columns of P, 

ll 
-1 [P P12]

P = p 21 p 22 

with the same conventions as before, and 

with '\1 and .'\2 of dimension n , the eigenvalues being ordered in an increasing order. 

,:re assume that the saddlepoint conditions are fulfi11ed to avoid multiplicity (see 

Boucekkine (1993) for a general discussion on the same model). 

(H2 ) A11 the elements of Al (resp. A2) are less than one (resp. greater than 

one) in modulus. 

'Ve specify no'" the terminal co~ditions under consideration. As we are dealing with a 

linear model , we set the two fo11owing linear terminal constraints: 

(i) The fixed-value terminal condition: YT+1 = Y*(= 0), and 

(ii) the constant-level terminal condition: YT+1 = YT. 

The two conditions involve two different finite time approximations: 

Yo =f O given, 

ST(FV) Yt+ 1] = F [ Yt ] for 1 ~ t ~ T,[ Yt Yt-1{ 
YT+1 =f O given, 

and 

Yo =f O given, 

ST(CL) [ Yt+1] = F [ Yt ] for 1 ~ t ~ T,
Yt Yt-1{ 

YT+1 = YT glven, 
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Under assumption H 2 , the two systems are obviously equivalent when T goes to infinity, 

but not in the short runo The true value of Yl can be for example computed by solving 

the system ST(FV) for T going to infinity. 

Our general approach consists first in computing this true value, denoted Yl (00 ) 

hereafter, and then computing the solution value of Yl obtained for both systems for a 

fixed "short" horizon T. We denote by y[V(T) (resp. yfL(T)) this solution value for 

the system ST(FV) (resp. ST(CL)). 

To obtain explicit solutions, we set the fol1owing regularity condition:� 

(H3 ) Submatrices Pll and P12 are invertible.� 

The results are summarized in the fol1owing proposition: 

Proposition Under assumption H 3 : 

(i) All the submatrices Pij and pij, for i and j = 1,2, are invertible. 

Let us define matrices Xl(T), Zl(T), X 2(T), and Z2(T) as follows, assuming that H 3 

holds: 

Xl(T) = (p2l)-lA2"1-T(P22)-lP2l Ai+Tpll ,� 

X 2(T) = (p21)-1 A2"T(A2 - I(n))-1(P22)-1 P21 (A l - I(n))Aip ll ,� 

Zl (T) = A2"l-T(P22 )-l P2lA~+TP 12 (P22 )-1, and� 

Z2(T) = AzT(A 2 - I(n ))-1 (P22 )-1 P21 (Al - I(n))Ai p 12 (P22 )-1,� 

Then 

(ii) For a fixed T, the system ST(FV) (resp. ST(CL)) admits a unique solution if 

and only if matrix I(n) +Xl (T) (resp. I(n) +X 2(T)) is invertible 

If the conditions stated in (ii) hold, then: 

(iii) The absolute error of both terminal conditions is given by 

(a) y[V(T) _ Yl (00) = {(p2l )-1 p22 - [ I(n) +Xl (T) tI (p2l )-1 [ I( n) + Zl (T) ]p22}yo 

(b) yfL(T) - Yl(oo) = {(p2l)-1 p22 - [I(n) +X 2(T) t l (p2l)-1[ I(n) + Z2(T) ]p22}yo 
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Prool 01 the proposition: Property (i) is derived in the appendix 1, using traditional 

linear algebra arguments. To establish property (ii), we need to solve both systems 

5T(PV) and 5T(CL). For the former, observe that the terminal condition YT+l = O 

could be written as AYT + BYT-l = O, or [A B] [ YT ] = O. Thus, using the stacked 
YT-l 

equation form (M), it yields 

[A B]pT
-

1 [Yl] = O. 
- Yo 

Setting C, D the matrices defined by the relation 

[e' D] = [A B]P, 

and given the partitioned forms of matrices P, p-l and A, it follows 

(EPV) 

Similady, observing that the terminal condition YT+l = YT could be rewritten as (A _ 

I(n))YT + BYT-l = O, it is easy to prove that yfL(T) is determined by 

(ECL) 

with C' and D' the matrices defined by 

[C' D'] = [A - I(n) B]P. 

To achieve the proof, we need the following intermediate result: 

Lemma Under assumption Hl, and by definition 01 the matrices C, D, C ' and D', the 

lollowing equalities hold: 

D = P22 (A 2 )2, C = P21 (Ad 2
,� 

D' = P22 A2 (A 2 - I(n)), and C' = P21 A1(A 1 - I(n)).� 

The proof of the lemma is given in the appendix 1. 
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Observe that the four matrices are therefore invertible under assumptions H 2 and 

H3 . Multiplying equation (EFV) by (DAf-1 P21)-1 and then replacing C and D by 

their expressions given in the lemma, it fol1ows: 

L being the altered right side of equation (EFV). It fol1ows that for a fixed T, (EFV) 

admits a unique solution if and only if the matrix I(n) +Xl (T) is invertible. The same 

device could be used to show that equation (ECL) admits a unique solution if and only 

if matrix I(n) + X 2 (T) is invertible. 

Actual1y, given that the saddlepoint conditions are assumed to hold, I(n)+X1(T) and 

I(n) + X 2 (T) must be invertible, for sufficient1y high solution horizons T. We assume 

that this property holds either for short T. Let us prove now the most important 

property (iii). 

It is straightforward to show that the term L of equation (EFV) is given by 

Thus 

The true value Yl (00) is obtained, for example, as the limit of y[V (T) when T goes 

to infinity. Under assumption H 2 , both XI(T) and ZI(T) go to zero, such that 

We can check that the difference y[V (T) - YI (00) is given by the expression (a) of 

the proposition. Similarly the difference yfL(T) - Yl (00) is given by the proposition

expression (b). Q.E.D. 

The previous theoretical analysis al10ws to bring out various interesting conclusions 

on the smal1-sample precision properties of both terminal conditions. More concretely, 

this analysis provides sorne theoretical foundations to sorne heuristic results put forward 
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by certain practitioners (as Fisher (1992)), as well as it rejects sorne others. We focus� 

on two heuristic findings emphasized by Fisher (1992), page 84:� 

(PI)� If the lowest unstable root is close to one, then if the largest stable 

root is not close to one, the fixed value terminal condition dominates 

in terms of precision. 

(P2 )� For intermediate spectral situations, the constant level terminal con

dition is more efficient in terms of precision. 

Property PI can be checked in our framework. As one can see, the difference between 

the absolute precision indicators of the two terminal conditions consists in the terms 

(l(n) - A2)-1 and (l(n) - Al) affecting the constant level terminal condition precision 

indicator. When the lowest unstable root goes to unity whereas the greatest stable root 

is not close to unity, the precision of the constant level condition worsens considerably 

because of the term (l(n) - A2 )-1, while the solution value y[V(T) adjusts quickly to 

the true value YI (00). 

On the contrary, it is not clear at all why the constant level condition should dominate 

for intermediate spectral configurations. The only conclusion allowed by our theoretical 

treatment is that the precision difference between the two terminal constraints should 

be relatively small in such cases. In the following subsection, we present a numerical 

counterexample against property P2 • Our theoretical analysis allows to conclude for 

another case: 

(P3 ) If the largest stable root is close to one, then if the lowest unstable 

root is not close to one, the constant level condition dominates. 

However, we cannot conclude for the case where both the lowest unstable root and 

the largest stable root go to one. The cumulative effect of the terms (l(n) - A2)-1 

and (l(n) - Al) in the expression of the constant level condition precision indicator is 

defini tively unclear. 

Indeed, the general forms of the error expressions given in the proposition are so com

plicated that it is impossible to bring out simple conclusions, except in the two cases 
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mentioned above (statements PI and P3 ). One would like to get out general compar

ison results of the type: "if the lowest unstable root is closer to one than the largest 

stable root, then the fixed value terminal condition dominates in terms of precision." 

Unfortunately, despite the simplified structure of the considered formal model, this is 

not possible: a quick look at the error expressions is sufficient to account for the model 

dependence of the results, through the terms in matrices P and P-I. As acknowledged 

by Fisher (1992), chapter 4, this feature (model dependence) is inherent to the use of 

terminal conditions as numerical control instruments. 

\Ve propose now a numerical evaluation of the latter theoretical outcomes, first on a 

central planner model, then on a general equilibrium model. 

3. Numerical study 

S.l. A corroboration 

\i\Te consider the fo11owing model a la Ramsey: 

Ct + kt + (1 - 8)kt- 1 = Aztkf_1 (1) 

c;'Y = (1 + ,B)-lc;+'YI(AazHIkf-1 + 1- 8) (2) 

A11 variables are per capita. Equation (1) is the supply-demand constraint of the econ

omy; at each date t the consumption level Ct plus the investment level kt - (1 - 8)kt- l , 

where kt is the capital stock, are equal to production, z being the productivity exogenous 

shock. Equation (2) is the Euler equation associated to the intertemporal optimization 

behaviour of the consumer with an isoelastic utility function. The model obviously fits 

the formalization of the previous section. Replacing Ct and CHI in equation (2) by their 

corresponding expressions in kt , kt - 1 and kt+l , using equation (1), we can see that the 

model is reducible to a single equation involving only the capital variable in its three 

temporal forms, kt , kt - 1 and kH1 . Linearizing this equation, we obtain the linear form 

adopted in our theoretical section (with Yt = kt and n = 1). However, we solve here the 

structural nonlinear form of the model using Laffargue's Newton Raphson algorithm. 

Indeed
1 

as the convergence of the algorithm (for the considered tolerance level) requires 
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at most three linearizations, the model is quasi-linear and so, the numerical results 

presented in this subsection are rather an illustration of the theoretical outcomes seen 

aboye. 

We assume, as in Taylor and Uhlig (1990), that the exogenous shock evolves according 

to: 

We assume that Ut is always zero except at t = 1 and Zo = 1. To obtain explicit 

solutions for the model, we assume that the capital stock has a unitary depreciation 

rate Ó = 1; the under1ying utility funetion is set logarithmic , = 1. The exact solutions 

are consequently: 

We set z] = 0.97 and p = 0.25. We solve numerically the model with Laffargue's 

algorithm for both terminal constraints, initializing the capital variable by its stationary 

value. To generate the different local spectra configurations, we vary 0:, (3 and A. 

V/ith the values assigned to Zl and p, the exogenous variable returns to its long run 

value (ie. returns to one) at t = 12. We set T = 12. We compare the numerical 

solutions for consumption and capital with the exaet ones, over the time interval [O 10]. 

Denoting by {k[V, c[V, t = 1, ... , ID} (resp. {kfL, cfL, t = 1, ... , ID}) the numerical 

solutions obtained with the fixed value (resp. constant level) condition, the finite time 

approximation error indicator is defined as 

E = f {Ik~ - k~' + Ic:n - c~l} 
m ks Cs

t=O 

with m E {FV, eL} and ks , Cs the stationary values for capital and consuption respec

tively. 

The table 1 below displays the precision results obtained with a convergence tolerance 

level (of the resolution algorithm) set to 10-4
: 
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[Table 1 around here] 

As announced in the theoretical subsection, the fixed value condition is shown.to dom

inate for certain intermediate spectral configurations (in the sense of Fisher). For both 

parameterizations 1 and 3, the results contradict property P2. For parameterization 2, 

the comparison is favorable to the constant level condition, as the unstable root presents 

a larger deviation with respect to unity than for the parameterizations 1 and 3. The 

outcome fits the statement P3 of the theoretical subseetion. Aetually, as emphasized 

before, it is worth pointing out that the precision difference between the two conditions 

is quite negligible for intermediate spectral situations. This is definitely not the case 

when both roots are close to unity-parameterizations 4 and 5. Especially for the last 

parameterization, the fixed value condition is twice more precise than the constant level 

one. Nonetheless, parameterization 4 shows that no clear comparison outcome can be 

got out for such spectra. On the other hand, observe that in both parameterizations 4 

and 5, the stable root is closer to one than the unstable eigenvalue, but the precision 

results are extremely different. This confirms our remark ending the theoretical section: 

it is really impossible to conclude in a simple way just regarding to the eigenvalues 

magnitudes, for such important spectral configurations. Only a posteriori qualitative 

reasonings are allowed. We will follow this approach in the general equilibrium model 

example studied below. 

Before, let us point at a final methodological detai1. As we use numerical solutions 

to evaluate the precision outcomes, we must separate the numerical bias due to the 

finite time approximation and the one generated by the numerical resolution. Rere 

the second bias is indeed negligible (see Boucekkine (1994), for the numerical precision 

performances of Laffargue's algorithm on the same model). 

3.2. A general equilibrium model example 

Vv'e consider now a general equilibrium model example, contrasting with the simple 

central planner setting considered so faro Formally, the former models are obviously 

more sparse because they involve different optimization blocks (ie: household's be
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haviour, firm's behaviour, etc... ), each of them with its own control variables. In 

general, this involves that sorne of the matrices, assumed invertible in our theoretical 

section, will be singular. 

Nonetheless, fol1owing the empirical work conducted by the practitioners of the ESRC 

Macroeconomic Model1ing Bureau on various models (see again, Fisher (1992)), it is 

very likely that properties PI and Pa, stated in section 2, still hold on such sparse 

models. In fact, they should hold for intuitive reasons. For example, we can justify 

property PI as fol1ows, introducing the usual dichotomy-implicte in our theoretical 

setting- between forward-Iooking variables driven by the unstable roots of the models 

and the predetermined variables driven by their stable roots. Given that the constant 

level terminal condition consists in a general level stability rule on forward-Iooking 

variables, the convergence speed of the latter (to the corresponding long run values) 

is the major determinant of the approximation quality of this terminal condition. As 

unstable roots drive the dynamics of forward-Iooking variables, the approximation error 

induced by the constant level condition should be important in the short run if the lowest 

unstable root is very close to one. On the other hand, the stickiness of forward-Iooking 

variables plays by construction a less important role in the approximation quality of 

the fixed-value terminal condition. In the latter case, the stickiness of predetermined 

and non-predertermined variables are equally important, such that in the case of sticky 

forward-Iooking variables and quickly converging predertermined variable (ie. when the 

stable roots depart significantly from unity), the approximation quality of the fixed

value terminal condition should be better, which corresponds exactly to the statement 

of property PI' To justify property Pa, one can use a symmetrical reasoning. 

Here, we present a number of numerical experiments much more relevant in practice. 

Indeed, a basic characteristic of the existing macroeconometric models is the closeness 

to unity of both the unstable and the stable roots of these models. By considering two 

parameterizations of an example model, involving two representative local spectra, we 

study the respective finite-time approximation bias. In particular, we illustrate a major 

feature: more importantly than the terminal condition specification, the practitioner 
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needs to primarily isolate high convergence speed economic variables (to their corre

sponding long run values) from the "slow" variables. For short time solution horizons, 

the per variable bias looks indeed very heterogeneous, and the practitioner should take 

into account this feature for convenient1y solving the models. 

In this subsection, we consider the general equilibrium model cal1ed PLM, developed 

by Laffargue et alii (1992). The model includes about twenty equations and is nu

merical1y calibrated on quarter1y French data. It describes an economy working under 

imperfect competition on both labor and goods markets. The closure of the model is 

obtained by household consumption (permanent income), by public expenditures and 

by foreign trade. 

The considered first parameterization is the one used by the authors. It generates 

the fol1owing local spectrum (around the steady state): 1.2085, 1.0676, 1.0094, 0.9937, 

0.9418 and 0.8439. Both the largest stable root and the lowest unstable root are very 

close to one. We denote this model MI' 

To obtain eigenvalues less close to one, we modify a parameter of the models equation 

relating interest rates to foreing debt, denoted <PI by the authors. Increasing this pa

rameter from 0.1 to 1.4, we get a more "stable" model with the fol1owing local spectrum: 

1.2094, 1.0688, 1.0300, 0.9732, 0.9414 and 0.8431. We denote this model Mz hereafter. 

The simulation exercise consists in computing the model response, initial1y on rest, to 

a transitory increase in public expenditures. Precisely, we assume that the expenditures 

G increase from 0.7972 by b.G = 0.05 during the first ten periods. 

Solving the models using Laffargue's algorithm, for short time horizons, T = 10, 20, 30 

and 40, and for both fixed value and constant level terminal conditions, we measure the 

average percentage error occuring in the computation of the multipliers of six variables: 

production, consumption, prices, imports, sales and inventories. Denoting by Xt(T) the 

solution value of a variable X for a solution horizon T, at the date t, and by X t ( 00) the 

corresponding "exact" solution obtained for very high solution time horizons, we use 

15 



the following error measure: 

Ex(T) = 2-{ I: Imf(T) - mf(oo) I} X 100 
To t=l mf(oo) 

where X s is the long run value of variable X and To > 1 a chosen integer. Given that 

the models are initially on rest , mf(T) measures variable X's multiplier obtained for 

the solution horizon T whereas mf (00) gives the corresponding "exact" value. Tables 

2 and 3 prm'ide the error values obtained for each parameterization, when To = 5; with 

a tolerance convergence level equal to 10-4 for the resolution algorithm: 

[Tables 2 and 3 around here] 

Let us comment the previous results in the following few points: 

(i) First , observe that the finite time approximation is better in the case of parame

terization 11'12 , This is indeed a trivial outcome deriving from the fact that the roots are 

less close to one in the latter case. The apparent erratic convergence of the production 

variable for parameterization MI (ie: an average error equal to 15% at T = 10, to 19% 

at T = 30 and 17% at T = 40) is purely anecdotic. For this typical parameterization 

where the largest stable root and the lowest unstable root are very close to one, the 

required solution time horizon to reach the steady state (for an absolute precision of 

10-4 ) is around 500 periods. As the model is nonlinear, such a phenomenon is not im

possible when convergence is far from being achieved. We check that the bias decreases 

continuously beginning with T = 30 for all the variables. 

(ii) In both parameterizations, the fixed value terminal condition dominates in terms 

of precision, although the largest stable root is closer to one than the lowest unstable 

root, in both cases. But the most interesting result follows from the second parame
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terization M 2 : for T = 40, the precision performances of the two terminal conditions 

are analogous. In fact, for such local spectra, the precision differential between the 

two terminal conditions considerably decreases beginning with T = 30. We can check 

this heuristic finding on the comparable parameterizations 4 and 5 of Ramsey's model 

given in the previous subsection. For macroeconomic models like MULTIMOD (the 

roots c10sest to one, for example of its German block being 0.9836 and 1.0212), it is 

very likely that the choice of the terminal condition is not crucial if the solution horizon 

is set to 40 or 50. But the bias registred at the solution time horizon values is not 

negligible and depends strongly upon the variables. 

(iii) Indeed, in the case of parameterization M 2 , for example, the per variable bias is 

very heterogeneous. For T = 40 and for the fixed value terminal condition, production 

and price variables exhibit a bias around 7% whereas inventories and sales variables 

produce an average error around 1%. This differenciated bias depends of course upon 

the convergence speed of each variable to its corresponding equilibritun value. This 

feature is more "dramatic" for parameterization M}. More than the terminal condition 

specification, the heterogenous per variable bias, and so the convergence speed of each 

variable 1 seems to be the most important aspect to investigate when solving short time 

horizons forward-looking systems. Even if such prior investigations will not allow to 

surmount the feasibility limitations, they are likely to provide the Htouch of rigor" that 

lack most of the experiments usually conducted on large scale models, simply because 

they permit the discrimination between the acceptable variables solution paths and the 

others. 

4. Conclusion 

In this paper, we provide a critical evaluation on the use of terminal conditions spec

ifications to improve the ntunerical precision of short time horizons forward-looking 

mode1s solution paths. Using the basic economic optimization model, we show how it 

is theoretically impossible to bring out simple devices on terminal conditions specifi

cation selection. We point at the model-dependence inconvenient of such instruments. 
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Final1y, after providing a number of heuristic results, we emphasize the heterogenous 

per variable bias outcome of such experiments. A prior investigation of the convergence 

speed of each variable seems to us the unique way to conveniently utilize the solution 

paths of short time horizons forwaxd-looking systems. This suggests the extension of 

sorne of the existing methods (see, for example, the technique developed for backward

looking models by Le Van and Malgrange (1988)) taking into account the large scale 

chaxacteristic of the models under consideration. 
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Technical appendix 

Proof of the property (i) To establish this property, we use the particular form of matrix 

If A¡ is an eigenvalue of F, then the associated eigenvector takes the form E¡ = [A~~i ] 
with e¡, a normalized element of the kernel of the matrix with ei, a normalized element 

of the kernel of the matrix with ei, a normalized element of the kernel of the matrix 

A;I(n) - A¡A - B. 

Consequently, if F is assumed diagonalizable (assumption Hd, the submatrices of 

the transition matrix P, defined in the text, must satisfy the relations 

By assumption H3 , Pll and P12 are invertible. It follows that P21 and Pn are also 

invertible. By symmetry, the corresponding submatrices of p-l are necessarily regular. 

Q.E.D. 

Proof of the lemma Let us prove the results concerning matrices D and D', the proof 

for matrices e and e' being very similar. 

By definition we have D = AP12 + BP22 . As 

it follows 

As the eigenvectors ek, n+ 1 ~ k ~ 2n, are in the kernel ofthe matrix A~I( n) - AkA - B, 

it yields 
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On the other hand, D' = (A - I(n))P12 +BP22 . Thus, using the expressions oí P12 
and P22 given aboye: 

As ek, n + 1 ~ k ~ 2n, are in the kernel oí A¡I(n) - AkA - B, then 

Q.E.D. 

20 
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Table 1. Ramsey's model parameterizations and precision results 

Model a (3 A Eigenvalues Epv ECL 

1 0.8 0.05 1.5 1.328; 0.814 0.01332 0.01412 

2 0.8 0.25 1.75 1.575; 0.817 0.00825 0.00576 

3 0.8 0.001 1.25 1.268; 0.813 0.01533 0.01933 

4 0.96 0.05 1.1 1.105; 0.979 0.30289 0.26902 

5 0.96 0.001 1.1 1.061; 0.972 0.27503 0.61052 

* E FV : Absolute error due to the fixed value terminal condition for a 

solution time horizon T = 12. 

* Ec L: Absolute error due to the constant level terminal condition 

for a solution time horizon T = 12. 
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Table 2. The error measures in % obtained for the 

parameterization MI of PLM 

T 10 20 30 40 
Production 15;100 15;78 19;55 17;40 
Consumption 44;252 18;90 14;50 12; 33 
Prices 19;100 16;82 20;58 18;42 
Sales 12;100 8;40 8;25 7;17 
Imports 2;100 11;55 12;36 11;25 
Inventories 31;100 3;14 0.5;4 0.4; 2 

Note: For a given variable X and a selected time horizon value T, 

the first (resp. second) figure provides the error measure Ex(T) 

obtained with the fixed value terminal condition (resp. constant 

level terminal condition). 
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Table 3. The error measures in % obtained for the 

parameterization M 2 of PLM 

T 10 20 30 40� 
Production 45;101 33;59 16;23 7;9� 
Consumption 54;137 20;32 8;10 3;4� 
Prices 46;101 37;67 18;27 8;10� 
Sales 42;100 13;21 5;7 2; 2.5� 
Imports 43;100 17; 28 7;10 3;4� 
Inventories 42;100 10; 14 3;4 1;1� 

Note: For a given variable X and a selected time horizon value T, 

the first (resp. second) figure provides the error measure Ex(T) 

obtained with the fixed value terminal condition (resp. constant 

level terminal condition). 
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