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Abstract� 

Fuzzy ARTMAP is compared to a classifier system (CS) caned PASS (predictive 

adaptive sequential system). Previously reported results in a benchmark classification 

task suggest that Fuzzy ARTMAP systems perfonn better and are more parsimonious 

than systems based on the CS architecture. The tasks considered here differ from 

ordinary classificatory tasks in the amount of output uncertainty associated with input 

categories. To be successful.leaming systems must identify not only correct input 

categories. but also the most likely outputs for those categories. Perfonnance under 

\arious types of diffuse patterns is investigated using a simulated scenario. 

1 Introduction 

Carpenter. Grossberg. Markuzon, Reynolds and Rosen [3] present results in a 

letter recognition task indicating that Fuzzy ARTMAP systems perfonn better and use 

fewer resources than the classifier system <CS) schemes considered by Frey and Slate 

[4]. In this paper. we propose various pattern learning tasks and analyze the behavior 

of Fuzzy ARTMAP and a different CS implementation called PASS (predictive adaptive 

sequential system) [6]. The tasks considered here involve learning the association 

between a binary input vector and an output scalar, but they differ from ordinary 

classificatory tasks in the amount of output uncertainty associated with input categories. 

Thus. these patterns reflect more statistical regularities than function-like assignments. 

1 Correspondence to the first author. Support from DGICYT grant PB92·0246 (Spain) and CICYT 
grant TIC93-070~-CO~-O~ (Spain) is gratefully acknowledged. 
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The patterns we consider can be made increasingly diffuse in various ways. We 

first focus on the effect of raising the output uncertainty associated with input 

categories. High-uncertainty patterns are interesting in that they reflect situations in 

which the output is read with considerable noise and/or the chosen input vector misses 

important variance-explaining features or predictors. Patterns can also be diffuse in the 

sense of presenting a low signal-to-noise ratio. This will be of interest when only a 

relatively small fraction of the data is expected to contain useful regularities. Finally, we 

consider patterns with rather general (large) input categories, that is, patterns where 

only a few input coordinates are actually relevant to detennine the most likely output. 

To gain some initial understanding of the strengths and weaknesses of the two families 

of systems, each of these diffuse patterns will be studied separately in this paper: the 

mixed case in which resources must be shared with more obvious (sharper) patterns is 

postponed for future work. 

The organization is as follows. Section 2 introduces the data-generating mechanism 

and sets up the language to define each type of diffuseness. Sections 3 and 4 briefly 

summarize the main aspects of the algorithms. Section 5 reports on the empirical results 

and presents some preliminary conclusions. 

2 The data source 

We consider a simple (stochastic) pattern learning task in which data pairs (x,y) 

are independently drawn from a mixture distribution on the joint sampling space 
{G.l}n x (0.1). This distribution involves c~1 elementary components or patterns 

specifying particular regularities to be observed from time to time by the systems. 
Each pattern is defined by a triple (S .1l.lJ), where O<Ss; 1 is the mixing proportion, II 

is a schema (a subspace formed by fixing some coordinates), and t' is a probability 

distribution on (0,1). A minimum coherency requirement is enforced by considering 
disjoint lli only, which also permits straightforward calculation of the optimal level of 

performance attainable by the systems. For simplicity, u distributions are always 

taken from the beta family, so they are identified by their parameters a and ~. 

Further. we only consider unimodal densities (a,~ ~l) here. 

If possible. the previous set of elementary patterns is automatically augmented 
with n()ise; noise is devised as the triple (So' llo,uo), where 110 denotes the uniform 

distribution over the unit interval and So and llo represent respectively the complement 
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to 1 of the sum of Si and the complement of the union of lli. Thus, the resulting 

distribution is a particular case of the "signal vs. noise" paradigm. 

Sampling proceeds then as follows: a triple is selected at random according to the 

relative frequencies Si, 0=0,1, ... , c), x is obtained by either randomly filling up the 

undefined coordinates in 11i (i~l) or simply choosing a string at random from llo, and 

y is taken as an independent realization of Vi. A wide array of situations can be 

obtained by varying the amount of noise, the number of elementary patterns, the 

specificity of schemata II and the sharpness of distributions v. For example, using the 

standard "don't care" or "wildcard" symbol #, the pattern defIDed by S=.7, 

ll=(OOOII#) and a=8. ~=1 is very different from the (rather diffuse) pattern 8=.02, 

11=(0#####) and a=2, ~= 1. 

3 FuzzJ ARTMAP 

ARTMAP systems are based on the long-introduced Adaptive Resonance Theory 

(ART) in neural network modelling [1,2]. Given the present nature of the data, we 

consider Fuzzy ARTMAP systems only [3]. 

In a nutshell. Fuzzy ARTMAP systems learn by simultaneously (i) establishing 

suitable categories in both input and output space (tasks carried out within the so-called 

A and B modules respectively). and (ii) linking input and output categories according to 

joint occurrence and predictive success (the linkages being stored in a special unit called 

the map field or AB module). Modules are made out of fields and fields are made out of 

neurons (nodes). All categorization and learning are achieved by sequentially modifying 

three sets of neuron weights, one in each module. The number of weights in the A and 

B modules are system parameters detennining the number and dimension ofthe 

weights in the AB module. During training, both x and y are provided as input to the A 

and B modules, which causes activation to flow from the excited neurons (categories) 

in A and B into AB. and then (potentially) back from AB into A (see below). During 

testing. a given input vector typically activates (predicts) a single category in the Band 

AB modules. 

In ARTMAP systems, data can be processed with either natural or complement 

coding 12.3]: if natural coding is used, a data item d is processed "as is", otherwise, d 

is augmented with dC, the (coordinatewise) complement to 1. Thus, if d is a n­

dimensional binary vector x. then the system actually works on a 2n-dimensional 
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binary vector containing n ones and n zeros, whereas, if d is a scalar y, then the vector 

(y, l-y) is supplied. Natural coding introduces an asymmetry in the treatment of zeros 

and ones which does not correspond with the symmetric role played in the task of 

interest here. Also, under complement coding, the weight vectors in the A module can 

be related to schemata like the lli in section 2. 

Within a given A or B module, the tendency of the system to commit new neurons 

(as opposed to using previously commited neurons) is controlled by the so-called 
vigilance parameter(kpsl. When p is large, the system tends to commit neurons more 

easily: otherwise, relatively fewer (and therefore larger) categories are constructed. 

Vigilance parameters in the A and B modules are denoted by Pa and Pb respectively. 

During training in the A module, a first decision is made on the basis of a similarity 
measure between the binary input 1and the existing categories Uj ; this is defined as 
ll 

",U\I\ . where b>O is a system parameter, 1\ is the fuzzy AND operator (defined asb+IUJ� 

coordinatewise minimum), and 11 stands for the sum of coordinates of its argument.� 

The \J,'inning category maximizes this measure. Parameter b controls the degree to� 

which categories that match I exactly tend to win over partial matches.� 

One of the peculiarities ofARTMAP systems is the fact that the winning category is 

'f d . '1 . d fi d "iUj1 1I.o\ujlselected on Iy I a secon Slm] anty measure, e me as I1 = n ,surpasses Pa, 

Otherv.;ise. the best candidates from the first test are tried out in turn until one succeeds 

or a fresh neuron is committed. 

Let J and K denote respectively the (overall) winning categories in modules A and 

B. When learning is triggered. the associated weight vector in A (say) is updated as 
uJ( new) = O-I.a) uj(old) + Aa lI\uj(old) (O<Aas1; all weight vectors are initialized 

with ones). Thus. under "fast-learning" (/"a=I), the designed schema Uj in module A 

generalizes to the schema I"Uj. Under the "fast-Ieam/slow-recode" option 

(recommended for noisy data), Aa= 1only when a node is first committed, thereafter it 

is fixed and strictly lower than 1. As regards module B, 1.\)=1 throughout this paper. 

If there is disagreement during training between the system's prediction (determined 

by J) and the observed response category (K). the system revises its prediction by 

raising the vigilance parameter Pa by the minimal amount needed so J no longer passes 

the second similarity test (and is therefore turned off). The process continues in the A 

module as described earlier: new winners j' are tested until perhaps an agreement is 

4 



reached in AB, in which case new learning occurs. Parameter Pa returns in either case 

to its "baseline" value before the next training pair is presented. 

During testing, input is fed into the A module, where two things may happen: either 

a winner J is excited or not. If it is, then the system's predicted category in output space 

may be read off the associated AB weight vector; otherwise, no prediction is offered 

and the system issues an "I don't know" flag. Of course, a high baseline value for Pa 

increases the frequency of nonresponse during testing. 

4 PASS 

We now turn our attention to PASS [6]. Like "fast-learning" Fuzzy ARTMAP, 

PASS also expresses its predictions as links between schemata in input space and 

certain regions in output space. yet it does not build categories in output space, only in 

input space. In output space, it constructs a conditional probability distribution given an 

input vector. In this paper, however. we simply replace this distribution by its 

(bounded) support. so we can compare predictive success on the same grounds. 

Like any other classifier system (CS) [5], PASS consists essentially of performance 

system and learning operators. The performance system is based on an unstructured 

population of elementary predictive rules called classifiers. Each classifier in PASS has 

the fonn 

IF s THEN PREDICT d 

(WITH STRENGTH S, RECALLING E), 

where s is a schema. d is a subinterval of (0,1) of bounded length, S is a scalar quantity 

called strength. and E is a small list of observed pairs (x,y). Strength reflects the 

classifier's previous success. The exception list E contains a few recent cases where the 

classifier proved wrong: heuristic operators act on these lists when they reach a (small) 

threshold length. with the result that new classifiers are formed andlor old ones 

modified 16]. Thus. PASS classifiers incorporate the additional structures Sand E 
representing two forms of memory not available in ARTMAP systems. 

Learning in PASS is "slow" in the sense that no decisions on schemata or 

predictions are made on the basis of single data items. every action is based on 

accumulated data. On the other hand, classifiers may be and often are discarded 

altogether whenever the system decides to try some other alternatives. As in Fuzzy 
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ARTMAP, no overall check for consistency or completeness is contemplated, and no 

provision for the emergence of structure within the population is made explicitly. 

Predictions in both PASS and Fuzzy ARTMAP are based on competitive processes 

(called auctions in CS parlance). A number of winners are selected and predictions 

fol low the opinion of these winners. In PASS, however, winners are considered 

simultaneously, and the outcome of the competition is stochastic. The elementary 

predictions read off the winners are combined (weighted by strength) to yield the 

system's predictive distribution (from which both bounded-length convex and non­

convex predictive supports can be formed). PASS enjoys then a potentially higher level 

of communication among classifiers, at the price that decisions do not necessarily 

reflect the "best" knowledge currently available in the system. 

As in Fuzzy ARTMAP, the proportion of specified coordinates or specificity D of 

competing schemata participates explicitly in the auction, this time together with S. 

PASS adheres to the traditional auction in which matched classifiers place bids 

B=KSDY. and effective bids B*=Bcj>D~. the probability of winning being then 

proportional to B* (all system parameters are nonnegative). This auction can be made 

highly dependent on D alone. yet competition is usually (and here in particular) 

restricted to perfect-matching schemata. The number of winners to draw from the list of 

matched classifiers. say m, is a critical parameter controlling both the amount of mixing 

prior to prediction and the relative frequency at which classifiers are tested out. 

The auction is one but the situations in PASS where stochasticity is present. A 

\ersion of the genetic algorithm performs in the background, though it has not been 

found to contribute much in its present form [6]. The set of procedures acting on the 

exception lists contribute more to learning and are partly randomized as well. Reward 

itself is stochastic: the strength of a "correct" winning classifier is updated as S(new)= 
(1- tax) S( old) - B + R. where tax is a small fraction of strength usefully collected from 

matched and not matched classifiers at every time step, and R=+RO or -3tS depending 

on its prediction's "coverage" of the associated pattern distribution(s) lJ. The recurring 

presence of stochasticity in PASS is in sharp contrast with the strict determinism found 

in Fuzzy ARTMAP. 

S Experimental results 

We now present a summary of our experiments. We have tried the algorithms just 
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described in three different pattern learning tasks. In each task, we provide the systems 

with a training sample of size 500. Perfonnance is measured as the proportion of 

correct predictions on an independent test set of 500 observations (no voting straJegies. 

as suggested in [2], are considered, although they are probably quite powerful here as 

weH). Data are processed using complement coding in Fuzzy ARTMAP and natural 

coding in PASS. While no further learning occurs in either system during testing (no 

new categories or classifiers are created nor old ones modified), strength continues to 
be updated as usual. 

For the sake of comparison, the number of neurons in module A of Fuzzy 

ARTMAP and the number of classifiers in PASS are both set to a maximum of Jl=50. 

To understand the full effect of this constrain is an interesting research area in both 

systems: in ART-based systems, vigilance parameters act critically on the number of 

categories finally created by the system, while dynamic manipulation ofJl (along with 

m) may promote some fonn of "knowledge condensation,. in CS and seems useful in 

PASS (see below). Note that fixing Jl does not make the systems equally demanding, 

as classifiers in PASS require additional memory to implement their exception lists. 

Also. the bound set by lA in PASS plays more the role of an attractor rather than a hard 

limit. 

The systems must also be granted the same scope in their predictive effort. Both 

Fuzzy ARTMAP and PASS include system parameters that bound the length of their 

predictions. For our current purpose, a bound of 3 seems appropriate and is used in all 

runs (the most direct way, though not the only one, of achieving this in Fuzzy 
ARTMAP is to set Pb to .7, preserving the original spirit of the architecture). This 

bound determines the maximum level of perfonnance attainable by either system at any 

given task. which provides a useful reference value. 
The versions we have investigated differ in system parameters Pa. b and Aa in 

Fuzzy ARTMAP, and m, lA and the activity rate of the rule-generating procedures (w) in 

PASS. Results are reported below on the perfonnance of "slow-recode" Fuzzy 
ARTMAP with (baseline) Pa between 0 and .2, b between .05 and .1 and Aa between 

.05 and .1. Auction/reinforcement parameters in PASS are ep-'V-y-l, 3t-lO%, 

tax=1%, K=.l, Ra-ISO and an initial strength of 200. Other system parameters are 

kept at values discussed in previous work [6], although the version used here is 

different in that (i) the initial strength of most newly-created classifiers is now set to the 

current median ofthe population, and (ii) certain (namely, explain-N) modifications 
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replacing the classifiers that suggested them). 

Training in PASS was manually split into two epochs: for the first two 
presentations (cycles), m=5, 14=50 and 0) was "high", while for the remaining two, 

m=3, 14=40 and 0) was "low" (in test mode, m=3 and 00=0). Four is a "small" number 

of presentations for PASS, for the system usually benefits from an additional four or 

six cycles. In contrast, the number of training cycles in Fuzzy ARTMAP varied 

between 10 and 40. Indeed, Fuzzy ARTMAPs high speed of processing allows for a 

much larger number of training cycles in considerably less time. However, the ultimate 

comparison in terms of processing time is hopeless until parallel versions of the 

algorithms are confronted. 

The systems were tested in three (toy) tasks described in Table 1. Task I presents 

six high-uncertainty patterns intertwined with noise at a 10% rate; since patterns occur 

relatively often and their schemata are sharply defined, the main difficulty resides in the 

slight departure from uniformity. The same schemata define task n, except now noise 

occurring at a 52% rate makes it hard to detect the otherwise obvious departure from 

uniformity. In task Ill, moderate noise joins a moderate departure from uniformity. but 

the number of irrelevant parameters is large. 

Table 1. The problems 
(a) Task I� 

(optimal performance rate=62.0%)� 
8=.15, 1l=(0##1#00#0##l), 0=1, ~=3
 

8=.15, ll=(l###OI###OIO), 0=1, ~=3
 

8=.15, 1l=(#00##10##1#l), 0=1, ~=3
 

8=.15, 1l=(##O1#11#O#O#), 0=3, ~=1
 

8=.15, 11=(0##01#1#11##), 0=3, ~=1
 

8=.15, 1l=(l##1#0#1O##1). 0=3, ~=1
 

(b) Task II� 
(optimal performance rate=59.6%)� 

8=.08. ll=(O##I#OO#O##I), 0=1, ~=7
 

8=.08, ll=( 1###01###010), 0=1, ~=7
 

8=.08. 1l=(#00##10##1#l), 0=1, ~=7
 

8=.08. 1l=(##O1#11#O#O#), 0=7, ~=1
 

8=.08, ll=(O##OI#I#II##), 0=7, ~=1
 

8=.08, 1l=(1##1#0#10##l), 0=7, ~=1
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(c) Task JII� 
(optimal perfonnance rate=72.6%)� 

8=.2, 11=(0#######0###0##), a=1, ~=5
 

6=.2, 11=(0#######1######), a=5, ~=1
 

8=.2, T}=(1#1#########1##), a=l, ~=5 

8=.2, fl=(1#######I###O##), a=5, ~=I 

We found "fast-learning" Fuzzy ARTMAP not to be competitive in these tasks, 

which is in contrast with the previously reported success in less diffuse problems [3]. 

We also found "slow-recode" Fuzzy ARTMAP and PASS to reach comparable levels 

of performance in tasks I and 1I (see figure 1), a surprising fact given the nature of the 

architectures and learning mechanisms. The high sensitivity of Fuzzy ARTMAP with 

respect to Pb is also manifest. In Task Ill, PASS proves somewhat superior. Fuzzy 

ARTMAP's relative lack of success in Task III suggests a type of regularity that it 

might find hard to detect in general. In the same direction, we plan to investigate a 

"contaminated" pattern learning task where some training x vectors have crucial 

coordinates flipped. 

Figure 1. Performance summarv. 
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Each boxplot is based on five independent runs: while the same version of PASS was 

used in the three tasks, Fuzzy ARTMAP parameters were slightly tuned in each case. 

Frames correspond (left to right) to tasks in Table I. Within each frame, the first two 

boxplots correspond to "slow-recode" ARTMAP con Pb=213 and Pb=.7 respectively, 

the third corresponds to PASS. The first and last boxplots in each frame are not of 

course really comparable, as they refer to different optima). 
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We also note that neither system is completely successful at recovering all defining 

schemata. It appears that PASS categories tend to be larger than needed (sometimes 

ingeniously exploiting "hidden" aspects of the set ofpattems), whereas Fuzzy 

ARTMAP categories tend to be finer (under the "slow-recode" option, category 

interpretation is of course complicated by weight coordinates far from 0 or 1). 

We conclude by pointing out some further directions for research. It seems to us, 

for example, that the joint election of several winners, along with the associated 

combination of beliefs, may improve Fuzzy ARTMAPs performance dramatically. It 
would also be very interesting to develop adaptive schemes for Pb (and pa). As regards 

PASS, automatic manipulation of both the exploration rate (00) and the number of 

winners (m) during training seems crucial to attain additional stability and convergence; 

natural heuristics to guide such manipulations may be obtained from the slope of the 

learning curve. 
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