
Working Paper 93-27 Departamento de Estadfstica y Econometrfa 
Statistics and Econometrics Series 21 Universidad Carlos III de Madrid 
October, 1993 CaIle Madrid, 126 

28903 Getafe (Spain) 
Fax (341) 624-9849 

COMPUTING MISSING VALUES� 

IN TIME SERIES� 

Victor Gomez, Agustfn Maravall and Daniel Pefia*� 

Abstract _ 

This work presents two algorithms to estimate missing values in time series. The first is the 

Kalman Filter, as developed by Kohn and Ansley (1986) and others. The second is the additive 
outlier approach, developed by Pefia, Ljung and Maravall. Both are exact and lead to the same 
results. However, the first is, in general, faster and the second more flexible. 

Key Words� 
Kalman filtering, additive outliers, nonstationary ARIMA processes, concentrated likelihoods.� 

*G6mez, Instituto Nacional de Estadfstica, 28046 Madrid (Spain); Maravall, European University 

Institute, 1-50016 S, Domenico di Fiesole (FI), Italy; Pefia, Departamento de Estadfstica y 

Econometrfa. Universidad Carlos III de Madrid. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29428637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Computing Missing Values in Time Series 

Victor G6mez, Agustin Maravall and Daniel Pefia 

Instituto Nacional de Estadistica. 28046 Madrid, Spain.� 

European University Institute. 1-50016 S. Domenico di Fiesole (PI), Italy.� 

Universidad Carlos III de Madrid. cl Madrid, 126. 28903 Getafe, Madrid. Spain.� 

Abstract 
This work presents two algorithms to estimate missing values in time series. The first 

is the Kalman Filter, as developed by Kohn and Ansley (1986) and others. The second is the 
additive outlier approach, developed by Pefia, Ljung and Maravall. Both are exact and lead 
to the same results. However, the first is, in general, faster and the second more flexible. 

Key words: Kalman Filtering, additive outliers, nonstationary ARIMA processes, 
concentrated likelihoods. 

1. INTRODUCTION 

The analysis of time series represented by ARIMA models when some data points are 
missing has received considerable attention in the literature. Brubacher and Wilson (1976) 
developed by least squares an interpolation procedure that led to an estimator which is a 
linear function of the known terms in the series and has minimum squared error. Miller and 
Ferreiro (1984) showed that the least squares estimators of the missing values are equivalent 
to the conditional expectations of the missing observations given the data and the parameters 
of the model. This result can also be obtained directly from the decomposition of the exact 
likelihood function of an ARMA process with missing data made by Ljung (1982). lones 
(1980) used the state space representation of an ARIMA model and the Kalman Filter to 
compute the likelihood of an ARMA model, and showed how to use this recursive estimation 
procedure to estimate the parameters of the model when some observations are missing. 
Then, in order to estimate the missing values the fixed point smoother can be used. This 
approach was extended by Ansley and Kohn (1983), Harvey and Pierse (1984) and Kohn and 
Ansley (1983, 1986), to the nonstationary case. The numerical problems involved in the 
maximization of the likelihood were analyzed by Wincek an4 Reinsel (1986). Kohn and 
Ansley (1986) introduced a general definition of the likelihood of a non-stationary ARIMA 
model that allowed, for the first time, the incorporation of missing values in the pre­
observation period of the series required to initialize the computations. The approach of these 
last authors resolved the problem, but required a modified Kalman filter to compute the 
likelihood and to predict future observations. Bell and Hillmer (1991) have shown that the 



same results could be obtained with a suitable initialization of the ordinary Kalman filter. 
G6mez and Maravall (1992) have presented an alternative definition of the likelihood that can 
be used with the standard Kalman Filter and, thus, does not require any modification of 
existing computational routines. 

Peiia (1987) showed the relationship between missing value interpolation, additive 
outlier estimation, inverse autocorrelations and measures of data influence in time series 
models. The relationship between missing values and additive outliers has also been explored 
by Ljung (1989). Pourahmadi (1989) presented the estimation and interpolation problem from 
the point of view of the EM algorithm. Peiia and Maravall (1991) analyzed the general case 
of any possible distribution of missing observations in an ARIMA time series model, with 
known model parameters and obtained analytical expressions for the optimal estimators and 
their associated mean squared errors, that involve solely the elements of the inverse 
autocorrelation function of the series. This approach leads to a different estimation procedure 
for the missing values based on replacing the missing values in the series with arbitrary 
numbers and treating then these numbers as additive outliers. This method, that will be 
called the Peiia-Ljung-Maravall procedure in this paper, leads to an efficient algorithm for 
parameter estimation and interpolation when the number of missing data is moderate. 

This paper analyzes these two main procedures for estimating missing data in time 
series and compares them from a computational point of view. The work is organized as 
follows. Section 2 presents the likelihood function of a non-stationary ARIMA process with 
missing data. Section 3 reviews the recursive approach to interpolation using the Kalman 
filter. Section 4 analyzes the Peiia-Ljung-Maravall method based on additive outlier 
estimation of the missing values. Section 5 presents the computational performance of these 
procedures. 

2. THE LIKELllIOOD OF AN ARIMA MODEL WITH MISSING DATA 

2.1 The Stationary case 

Suppose that over a time sequence of n periods we observe the discrete time series 

z = (Zc"'" Zc ) , 
1 '" 

where m < n and, therefore, we will have n-m = h missing data points. We assume that the 
complete data set Z=(Z\t ... ,ZJ, that includes Z and the vector Z. of h missing values, 
follows the univariate ARMA (P,q) model 

4>(B)Zc=6(B)a (2.1)c 

where cP(B) = (1-cP1B -...- cPpBP) and (J(B)=(1-(JIB-... -(JqBQ) have the roots outside the unit 
circle and do not have common roots, B is the backshift operator, and ~ is an LLd. N(O,er) 
process. Let us assume that the observed vector of data Z has zero expected values and erO 
covariance matrix, then, calling 13 the vector of parameters of model (2.1) the likelihood 
function is 

(2.2) 



Of course, when m=n (2.2) is the usual likelihood function of a stationary ARMA model. 

2.2 The nonstationary case 

Let us consider the case of a non-stationary time series that follows the ARIMA 
(p,d,q) model 

(2.3) 

where <t>(B), 8(B) and ~ are the same as in (2.1), and o(B) = (l-oIB-... -odBd) has all its roots 
on the unit circle, and includes the differencing operators. Calling 

t=d+l, ... , n (2.4) 

the values of the stationary transformation, the likelihood function for a non-stationary 
ARIMA process without missing values is defined by using the marginal density of Ut. 
Therefore 

1 (P Iu) = 1 exp{-_l_ u'O-lU} (2.5)n-d 202 u 
(2n:0 2 ) -2-I OuI 1/2 

where alOu is the covarlance matrix of the normal vector D, that has n-d components. 

Differencing a time series with missing data will introduce additional missing values 
into the differences series. Consequently, the likelihood function in this case needs to be 
written as a function of the original data Z. In order to express (2.5) in this way, let Z' = 
(Z'., Z'J' be the sample data, where Z'. is the (1 Xd) vector of starting values for (2.4) and 
Z'R the I x (n-d) vector of remaining observations. Then (2.4) implies the transformation 

(2.6) 

where Id is the identity matrix of rank d and T1 and T2 are triangular matrices given by 

1 
...-6 d -61 -61 1 

(2.7)T1 = T2 = 

-6d -6 d 

0 -6 d -~ 1 1 

The data Z is related to the starting values Z. and to the stationary variable u by 



---------

(2.8)� 

and calling A=-T201T1and 

(2.9) 

where A and v can be computed recursively as shown in Bell (1984), we have 

(2.10) 

In order to write the density function for Z we need some assumptions on the marginal 
distribution of Z•. Assuming that it is normal, the joint distribution of (Z., ZJ will be 
multivariate normal, as is the one of (Z., u), and the Jacobian of the transformation is, 
according to (2.6) equal to unity. Therefore 

f (Z R Iz*) = f (u Iz*) (2. 11) 

Making the assumption that u is independent of Z., the conditional distribution f(u I Z.) is 
identical to the marginal, which leads to likelihood (2.5). Also, as .4 I Z. is, for (2.10), 
normal with mean AZ., and calling t the covariance matrix of v, the likelihood (2.5) can 
also be written as 

Equation (2.12) suggests an alternative definition of the likelihood function when 
some observations are missing. Supose that we have observed a sample of size m of 
nonconsecutive observations of a time series that follows (2.3), and let us assume that the 
vector Z. of starting values is {Z" ZJ}, where ZI is the vector of observed data, that we 
assumed has k components (k:S; d), and ZJ the vector of missing data with d-k components, 
and ZR is {Zo, Z.}, where Zo includes the observed data, that we assumed has m-k 
components, and Z. the missing data (with n-m-(d-k) components). Then (2.10) can be 
written as 

(2.13) 

where B and C include the rows of A corresponding to the observed and missing data and, 
consequently, B is (n-d) xk and C is (n-d) x(d-k). Then, we can also partition ZR into the 
observed and missing parts and obtain for the observed data 

(2.14) 

where now Bo is (m-k) Xk, Co is (m-k) X(d-k) , and Vo is a (m-k) x 1 vector. Then, it is 
reasonable to define the likelihood function using the distribution of Zo conditional on ZI and 



Z], as before. The main difference from the stationary case is that now Z] will be an 
unknown parameter to be estimated. Calling 

(2.15) 

the likelihood function (2.12) will be written in this case as 

(2.16) 

where Y is known I:o is the covariance matrix of v0 and Z] is a vector of parameters to be 0 

estimated. This approach has been proposed by G6mez and Maravall (1992) as they showed 
this definition of the likelihood is equivalent to the one suggested by Kohn and Ansley 
(1986). Note that (2.16) is also the likelihood of the regression model 

(2.17) 

result that will be used in the next sections. 

3. COMPUTATIONS USING THE KALMAN FILTER 

3.1 The Stationary case 

A stationary time series that follows an ARMA model can be represented by the 
general AR( 00) model (Box and Jenkins, 1976) 

(3.1) 

where 7T'(B) = et>(B)O(Byl. Assuming that the sample size is large, and that the unobserved 
~ for t < 0 are zero, (3.1) can be written in matrix form using the approximation 

7tZ = • (3.2) 

where 7T' is a lower triangular matrix with ones in the main diagonal and coefficients {-7T'J 
in the rows. Thus, calling Ozu2 the covariance matrix of the vector Z we have 

(3.3) 

and 

(3.4) 

Expression (3.4) shows that the computation of the residual e can be done by using 
the Cho1esky decomposition of the covariance matrix of the process. The Kalman filter can 
be seen as an exact and efficient recursive algorithm to obtain this Cholesky decomposition. 
This algorithm computes the vector of one step ahead residuals 3;, and its variances, given 



by Iocr, where the elements 10 are the diagonal elements of the decomposition 

o = LL1• (3.5) 

The likelihood function (2.2) can be written as a function of these statistics as: 

L (6Iz) = log 1 (6\Z) =- m log 0 2 -1: log 1 .. -_l_ i 'i (3.6)
2 u 202 

and, for given values of the parameters cl> and e, the maximum of this function with respect 
to cr is always attained at rr = a'a/m. Therefore, we can concentrate rr out of (3.6) and 
maximize: 

L· (6Iz) =constant- m log j /i-1: log 1 ii=constant- m log S (3.7)
2 2 

where 

(3.8) 

This procedure is general and can be applied with and without missing values. In the 
first case, the terms 10 are computed directly by the Kalman Filter, as shown in lones (1980), 
and the minimization of (3.8) will provide an estimation of the parameters in the case of 
missing values. The estimation of the missing observations can then be computed by using 
the fixed point smoother algorithm (see Anderson and Moore, 1979). 

3.2 The non-stationary case 

For nonstationary series using (2.16) and (2.17) the Kalman filter will provide the 
residuals Lo·1(yo - CoZJ) and the diagonal element 10 needed to compute I Lo I , where now 
Eo = LoLo'. Then, the new vector of parameters (cl>, e, ZI) can be obtained by minimizing 

1 1 (3.9)
S=ILol m-k (L~lYo-L~lCOZJ)I(L~lYo-L~lCOZJ) ILol m-k 

and 

(3.10) 

A more efficient procedure can be obtained by concentrating ZI out of (3.9). In order 
to do so, the Kalman filter is applied to both the vector Yo, and to the columns of the matrix 
Co to obtain 

(3.11) 

now, the QR algorithm applied to Lo·tCoprovides an orthogonal matrix Q' = (Qt Q2)' which 
verifies 



(3.12) 

(3.13) 

and, therefore Z1 is estimated by 

Z =R-1Q'L -ly (3.14)
J 1 0 0 

and S can be written as 

1 1 (3.15)
S=ILolm:k (Q~L~lyo) '(Q~L~lyo) ILol m-k. 

The parameters (cP, 8) are estimated by minimizing (3.15) and the interpolated values 
are obtained by a smoothing algorithm. See G6mez and Maravall (1992) for the efficient use 
of the Kalman Filter to carry out the computations. 

4. COMPUTATIONS USING THE PENA-LJUNG-MARAVALL PROCEDURE 

4.1 The stationary case 

An alternative approach for the estimation of the missing values is to fill the gaps in 
the series with arbitrary numbers, and estimate the parameters and the missing data by using 
the relationship between additive outlier estimation and optimal interpolation indicated in 
Peria (1987), Ljung (1989) and Peria and Maravall (1991). Starting with the stationary case, 
let us call, as before, Zthe complete vector and Za and Z the missing and observed vectors. 
Then, the following relation among the densities: 

f (Z) = f (Z) (4. 1) 
f(Za/ Z) 

implies that, calling Q, {} and Qa the covariance matrices for the distribution of Z, Zand Z.lZ 
respectively, 

(4.2) 

(4.3) 

where E(Za I Z) =PZ is the minimum mean squared error interpolator of the vector of the 
missing values. NQ.w, let Zc be the series completed by filling the missing values with 
arbitrary numbers Za. Calling 

(4.4) 

we can write the vector Zof the complete unobserved series as 



(4.5) 

where X is a (n x h) matrix such that its columns are dummy variables (that is, there is a 
value equal to one and zero otherwise) corresponding to the h missing data. Then, by (4.5) 
we have transformed the unobserved Zinto a completely known series Zc but with h additive 
outliers w. The optimal estimate ofw can be obtain by inserting (4.5) and (4.4) in (4.3), with 
the following result: 

(Zc-Xw) '0-1 (Zc-Xw) =Z'C-1Z+ (Za- w- PZ ) 'C~l (Za- w- PZ ) • (4.6) 

The estimation of w requires the minimization of the right-hand side. This is clearly achieved 
by setting: 

~Z -PZ=Za -E(Z IZ) (4.7)
a a 

that means that the estimator of w is the difference between the arbitrary inserted value and 
the optimal interpolator, computed by the expected value of the missing vcg,ues given the rest 
of the data. This estimator can also be interpreted seeing that, for fixed ZI' w is a random 
variable according to (4.4) with a normal distribution. The minimum square error estimator 
of w will be its mean, and taking expectations conditional to the observed data Z in (4.4) 
again result (4.7) is obtained. On the other hand, the value that minimize the left-hand side 
is the generalized least square estimator 

(4.8) 

with estimated covariance matrix 

(4.9) 

Therefore, as (4.7) and (4.8) minimize (4.6) both must be the same. Also, as for (4.4) and 
(4.7) 

W-~=- (Z -E(Z /Z) )a a 

v(w) is also equal to 01' It is interesting to note that in (4.4) w is treated as a random 
variable, whereas in (4.8) it is treated as a parameter. A discussion of the conditions which 
leads to the same estimate in these cases can be found in Pena and Tiao (1991). 

To write the likelihood function for (3 given Z, we first note that I°I can be written 
for (4.2) and the expression (4.9) for 01 as a function of the fi matrix. Also, the exponent 
can be written as a function of fi by using (4.7) in (4.6): 

Z'O-lZ= (Zc-X~) '0-1 (Zc-XQ') (4.11) 

and, therefore, the likelihood function for {3 given Z is 

1 (P Iz) =(21t 0 2) -n/21 n1-1/2Ix'O-1XI-1/2 exp{- 2~2 (Zc-XQ') '0-1 (Zc-XQ') } (4.12) 

The maximization of (4.12) to obtain the parameters can be carried out again using 



the Kalman Filter, as shown in section 3.2, or in the following steps. (Step 1) insert arbitrary 
values in the missing values position (for instance, the mean of the series or the mean of the 
two adjacent points); (Step 2) estimate the parameters with the complete data set by the usual 
procedure; (Step 3) assume additive outliers at the missing value positions and estimate their 
magnitude by (4.8); (Step 4) correct the series of outliers by Zc - X VI and estimate again the 
parameters by the usual procedure but inserting an additional term I X' f)-IX I -1/2 in the 
likelihood. Repeat Step 3 and Step 4 until convergence. This procedure was first suggested 
by Pefia (1987) for the case of a single missing point and extended by Ljung (1989), and 
Pefia and Maravall (1991). 

It is worth stressing that if we have a complete series and assume that a vector of h 
additive outliers is affecting it, the likelihood function differs from (4.12) only by the 
determinant I X'OX I -1/2. This fact suggests that an approximate procedure to estimate 
missing values in time series is to introduce arbitrary values at the missing positions and then 
use any standard routine that allows for the inclusion of dummy variables in a time series, 
as discussed by Box and Tiao (1975). This intervention analysis approach can be easily 
carried out by standard software. 

4.2 The non-stationary case 

For non-stationary series it is convenient to express the likelihood as a function of the 
original data. Let ZR be, as previously, the complete unobserved series and let Zo and Z. be 
the set of observed and missing values for t>d. Then letting yo=CoZJ+vo=Zo-BoZI as 
defined in (2.15), and y=ZR-BZ" y.=Z.-B.Z" conditioning on ZJ, y, Yo and Y. are normal 
random variables, and we can write 

= f(y) (4.13)
f(yalyo) 

and f(yo) leads to the likelihood (2.16). We want, as in the stationary case, to express this 
likelihood as a function of 0, the standard covariance matrix. To achive this objective, the 
same procedure used to obtain the formulas from (4.2) to (4.11) can be applied by using (Yo, 
y, y) instead of (Zo, Z, Z) and (Eo, E. EJ instead of (0, 0, OJ. Note that Eo, E, E. are the 
covariance matrices for (Yo. Y, yJ and, also, the covariance matrices of the vectors (vo• v, 
vJ. Therefore, (4.13) implies 

(4.14) 

and 

(4.15) 

-
where E(y. I Yo) = C.ZJ + p.vO' Now, let Z. be the vector of arbitrary values inserted at the 
missing value positions, and let 

where we use w. instead of w to differentiate the stationary and non stationary case. 
Defining, as before, the matrix X. of dummy variables 



-
where Ze is the series completed with Z., and subtracting AZ. = BZ1 + CZJ from both sides 

(4.16) 

where Ye = Ze-BZI' It can be shown by introducing (4.16) into (4.15), that the optimun 
estimator of w. is 

(4.17) 

and has a covariance matrix 

(4.18) 

The matrix f; is the covariance matrix of y = C ZJ + V, and as CZJ is a constant, 
this matrix is also the covariance matrix of v. From (2.9) 

(4.19) 

and therefore 

(4.20) 

Equation (4.20) allows to express (4.17) and (4.18) using 0, as 

~a= (X~'n-1x=) -1 (X;'O-l UC) (4.21) 

(4.22) 

where 

is the result of applying the non-stationary operator T2 to the columns of X., and 

uC=T2 (YC-CZJ) =T2y C-T2CZJ (4.24) 

is the result of differencing the corrected series Ye and the correction term C. Then, the 
likelihood function will be 

( m-k) , { )
21 (6 IY) =(21&0 2 ) - 2 \n 1-1

/
2 Ix; n-1x; 1-1

/ exp - 2~2 (uc-x:~,,) '0-1 (Uc-X;~,,) 1 

(4.25) 

It is interesting to point out the relationship between the likelihoods in the stationary 
and non-stationary case. Comparing (4.12) to (4.25) we see that in both cases the likelihood 



uses the covariance matrix for the complete stationary process, 0, and in both a correction 
term appears over the standard likelihood for the additive outlier model. (See Pena, 1990). 
~n the stationary case this term is I X.'OX. I , whereas in the nonstationary case is I X.·' 
0-\ X: I where X.· is the result of applying the non stationary operators to the columns of 
X•. 

It is useful to concentrate the parameters Zs out of the likelihood function in the same 
way as it has been done for the parameters w. which ~stimate the missing values. Calling Z. 
the vector obtained by introducing arbitrary values Zs in the position corresponding to the 
missing Zs, we have 

(4.26) 

-
where z,. is the corrected series by filling all the holes, and XT is the matrix of all the 
dummy variables. Then 

(4.27) 

and using again (4.26) 

(4.28) 

where [-A I] is the n Xn matrix obtained attaching an identity matrix of dimensions (n-d) to 
the matrix A. Also, by (4.20) 

(4.29) 

and using that T\Z. + T2ZR = u, for (2.6) 

vIE -l V =(U~-X;WT) 10-1 (U~-X;WT) (4.30) 

where uc• = T\Z. + T2ZR is the differenced series, and XT• = [T\XS,T2XJ is the matrix 
obtained by differencing the columns of the XT matrix. From (4.30) and (4.15), and after 
some straightforward algebra 

(4.31) 

Therefore wT = (w's, W'.)' can be concentrated out of the likelihood (4.25) and 

m-k { }1 (8 IY) =(21t0 2 ) -2-10 1-1/2 Ix;'0-1x; 1-1/2 exp __1_ (U~-X;~T) 10-1(U~-X;~T) 
20 2 

(4.32) 

Note that in this concentrated likelihood the correction term only involves the missing 
observations for t> d, whereas in the exponent the entire XT• matrix appears. 



5. PERFORMANCE OF THE PROCEDURES 

We have run a simulation experiment to compare both methods. To avoid differences 
in performance due to differences in the maximization routines or in the computation of the 
likelihood, the same algorithm have been used, when possible, in both methods. For 
instance, the likelihood is computed always using Melard (1984) algorithm, but in the first 
case (KL from now on) it is applied to the series, whereas in the second (PLM from now on) 
it is also applied to columns of the matrix XT to concentrate the parameter w out of the 
likelihood. Then, in the first case (KL) the interpolation is carried out by using the fixed 
interval algorithm, whereas in the second (PLM) the interpolation is obtained by solving the 
regression linear equations with the QR algorithm. 

In order to check the loss of precision when dropping the correction term in the 
likelihood in the PLM method, we have also included under the heading AI (Intervention 
Analysis) the results for this case. The name is, of course, because then the likelihood used 
is the same as in the standard Intervention Analysis model. All the computation has been 
done with a 486 PC, and the length of the series simulated has always been 100. 

one missing (at 50) five missing (41 to 45) 
MOD E L -� e(O) MSE(O)e MSE t� t 

AR(l) KF -.0029 .5883 317 -.02284 1.328 326 
<I>� = .8 PLM -.0029 .5883 344 -.02285 1.328 798 

AI -.0035 .5883 343 -.02314 1.328 800 

MA(l) KF -.0027 .5266 382 .0078 1.297 394 
0=.7 PLM -.0097 .5804 420 .0078 1.297 965 

AI -.0001 .5303 436 .0077 1.299 1023 

ARIMA KF -.0081 .2016 363 -.0191 1.337 376 
(1,1,0) PLM -.0081 .2016 348 -.0191 1.337 781 
<I> = .8 AI -.0081 .2016 348 -.0190 1.337 781 

Table 1 
Results of the simulation experiment. e is the mean error and e(O) the mean of the five mean 
errors for the five missing. With the same notation, MSE is the mean square error and 
MSE(O) the mean of the five mean square errors. t is the time in seconds elapsed in the 1000 
simulations. 

Table 1 presents the mean, variance and square error of the interpolation error for 
1000 simulations of the three methods considered (KF, PLM, IM), with three different 
models and two structures of missing data. It can be seen that the accuracy of the three 
methods is roughly the same, and, therefore, we can conclude that the correction term in the 
likelihood has a very small effect on the computations. The table indicates the total time 
required to carry out the 1000 simulations, the estimation of the parameters and the 
interpolation. It is clear that when the number of missing values is large the first procedure 
is the fastest. However, for a small number of outliers and a nonstationary model the PLM 
can be faster than the standard KL algorithm, as shown in the case of an ARIMA model with 



a single missing value. The reason is that with a complete series we can use a very fast 
routine, as Melard (1984), to compute the likelihood, whereas if there are holes in the series 
the recursive routine is slower. This difference will be important for series with a large state 
space vector, as, for instance, monthly nonstationary seasonal data. On the other hand, when 
the number of outlier is very large this possible advantage will disappear because we need 
to apply the recursive routine to all the columns of the X matrix. 

A conclusion from table 1 is that both procedures are very fast. For instance, to 
estimate the parameters and to interpolate five values in an ARIMA (1,1,0) model takes an 
average of 0,4 seconds with KF and 0,8 with PLM in a 486 PC machine. It is clear that 
when variations of speed in this range are not important, other factors should be consider. 

The main advantage of the Pefia-Ljung-Maravall procedure is its flexibility: (1) it 
allows to compute the covariance matrix of the interpolators directly, before doing any 
computations; (2) it can be implemented easily in the version AI in many existing software; 
(3) it provides compact formulas for the estimators and, thus, leads to a deeper understanding 
of how the computations has been carried out. 
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