
Working Paper 93-22 Departamento de Estadfstica y Econometrfa 

Statistics and Econometrics Series 17 Universidad Carlos III de Madrid 
October, 1993 Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (341) 624-9849 

BOOTSTRAP TESTS FOR UNIT ROOT AR(l)
 

MODELS
 

Nelida Ferretti and Juan Romo·
 

Abstract _ 

In this paper, we propose bootstrap tests for unit roots in first-order autoregressive models. We 

provide the bootstrap functional limit theory needed to prove the asymptotic validity of these tests 

both for independent and autoregressive errors; in this case, the usual corrections due to 

innovations dependence can be avoided. We also present a power empirical study comparing these 

tl~sts with existing alternative methods. 

Key Words 

Autoregressive processes, bootstrapping least squares estimator, unit root, bootstrap invariance 

principle. 

·Ferretti, Universidad de la Plata, CONICET and Universidad Carlos III de Madrid; Romo, 

Universidad Carlos III de Madrid. Research partially supported by Catedra ARGENTARIA 

(Universidad Carlos III de Madrid) and DGICYT PB90-0266 (Spain). 



BOOTSTRAP TESTS FOR UNIT ROOT AR(l)
 
MODELS
 

NELIDA FERRETTI1 

Universidad de la Plata) CONICET and Universidad Carlos III de Madrid 

and 

JUAN ROM02 

UnilJcrsidad Carlos III de Madrid 

Abstract 

In this paper, we propose bootstrap tests for unit roots in first-order 
autoregressive models. We provide the bootstrap functional limit theory 
needed to prove the asymptotic validity of these tests both for independent 
and autoregressive errors; in this case, the usual corrections due to innova­
tions dependence can be avoided. We also present a power empirical study 
comparing these tests with existing alternative methods. 

Key words and phrases. Autoregressive processes, bootstrapping least 
squares estimator, unit root, bootstrap invariance principle. 

1 Research partially supported by Ccitedra ARGENTARIA (Universidad CarIos III de 
Madrid, Spain) 

2Research partially supported by DGICYT PB90-0266 (Spain) 

1 



1 INTRODUCTION 

Our aim in this paper is to develop bootstrap tests for unit roots in autore­
gressive models and to establish its asymptotic validity. The bootstrap is 
a powerful and versatile resampling methodology to approximate the distri­
bution of a statistic. It was introduced by Efron (1979) and since then, it 
has drawn a lot of attention from both the theoretical and practical points 
of view. It has been applied in many areas of statistics and it is of great 
potential use in econometrics. 

A problem arising in many time series applications is the question of 
whether a series should be differencedj this is related to asking if the time 
series has a unit root. 

Let {Xt }, t = 1,2, ... be a first-order autoregressive process defined by 

X t = (3Xt- 1 + Ut, Xo = 0, (1.1) 

where {ut} is a sequence of independent and identically distributed random 
variahles with E( Ut) = 0, and V(Ut) = O"~ < 00. We are interested in testing 
the null hypothesis 

Ho : (3 = 1. 

Let 

~.. = (t.XL.) -I t.XIXI-I 

be the least squares estimator of (3, based on a sample of n observations 
(Xl, ... ,X n ). 

The consistency of ffin was established by Rubin (1950) for all values of 
/3. The limit distribution of ffin is, however, different for the three possible 
situations: stationary ((3 < 1), explosive ((3 > 1) and unstable (f3 = 1). The 
limit distribution of ffin is normal for the stationary case and nonnormal for 
the two nonstationary behaviors. For instance, in the unstable case f3 = 1 it 
is known (see White (1958), Rao (1978, 1980)) that 

(1.2) 

where 
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1 (n )1/2
Zn = - ~X;_l (~n - (3) 

(1,.. t=l 

and {W(t)} is a standard Wiener process. So, it is interesting to study the 
bootstrap approximation for the distribution of ~n in the unstable model. 

A way of deciding if a time series should be differenced is visual inspection 
of the autocorrelation function of the deviations from the fitted model. One 
of the best known statistics for testing the adequacy of a time series model 
is the Box-Pierce statistic (Box and Pierce (1970)) 

m 

n~7'L 
k=l 

where 7'k is the usual lag k residual autocorrelation. If the innovations {Ut} 
are normal, this statistic is asymptotically chi-squared distributed with rH - P 
degrees of freedom for large n, where p is the number of estimated parameters. 
If {Xd satisfies (1.1) then p = 0 under Ho and the residuals are X t - Xt-l' 

A modified test based on 

m 

Qn,m = n(n +2) ~(n - ktlr~, 
k=l 

was recommended by Ljung and Box (1978). It was shown that it provides 
a substantially improved chi-square approximation. 

If the innovations {Ut} in the model are normally distributed, the likeli­
hood ratio test for the hypothesis Ho is a function of 

(1.3) 

where 

/2 L:;:"'2(Xt - ~nXt-l )2 
(1 = 

n n-2 

Dickey and Fuller (1979) derived representations for the limiting distributions 
of n(~n -1) and Z:l under the assumption f3 = 1 anc! they compared by Monte 
Carlo techniques the power of the tests based on n(f3n -1) and Z~ with that of 
Box-Pierce (1970) test statistic. Tables for the percentiles of the distributions 
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can be seen in Fuller (1976, pp, 371, 373 ) and a slightly more accurate one 
is given in Dickey (1976), 

More related work has been done by Sai'd (1982), Said and Dickey (1984, 
1985) and Said (1991) who extended the Dickey-Fuller test procedure to 
general ARIM A models. Evans and Savin (1981,1984) considered the AR(I) 
model and calculated the percentiles of the limiting distribution of the least 
squares estimator of the parameter {3 in the case {3 = 1. Solo (1984) derived a 
Lagrange-multiplier test for unit roots in ARIM A models. Hasza (1977) and 
Hasza and Fuller (1979) showed that the limiting distribution of the unit­
roots test is invariant with respect to the error distribution for autoregressive 
models with two unit roots. 

The above mentioned papers considered either normally distributed inde­
pendent innovations or independent and identically distributed errors with 
mean zero and variance er~. Dickey and Fuller (1981) showed that the limit 
distribution of the likelihood-ratio test associated with /371 is invariant when 
{ud in (1.1) is replaced by a stationary AR process. 

Phi11i ps (1987) and Phi1lips and Perron (1988) proposed an alternative 
procedure for testing the presence of a unit root in a general time series 
with weakly dependent and heterogeneously distributed innovations. This 
approach requires introducing adjustments to the Dickey-Fuller test statistics 
n(/3n - 1) and Z:,. They also showed that their modified test statistics have 
asymptotic distribution tabulated by Dickey and Fuller. 

Next, we present the contents of the paper. An introduction to bootstrap 
methodology is given in Section 2. We describe in Section 3 the bootstrap 
resampling scheme and we establish the asymptotic validity of the bootstrap 
test statistic for testing unit roots in AR(I) models when the innovations 
are independent. Section 4 contains a Monte Carlo study of the power of 
the proposed test compared to the Ljung-Box test, the Dickey-Fuller test 
and the test based on the bootstrap analogue of the statistic n(/3n - 1). 
In Section 5 we extend the bootstrap test and we establish its asymptotic 
validity for testing Ho when the innovations are a stationary autoregressive 
process. Finally, the proofs can be seen in an appendix. 

2 THE BOOTSTRAP METHODOLOGY 

The bootstrap, a resampling method introduced by Efron (1979), aims to 
. reproduce from the sample the mechanism generating the data and to use it 
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in the statistic of interest, replacing everywhere the unknown populational 
model. A formal description of the bootstrap in its simplest and original form 
is as follows. Let Y = (YI , • •• , Yn ) be a random sample of size n from a pop­
ulation with distribution G and let T(YI , ••• , Yni G) be the specified random 
variable of interest, possibly depending of the unkonwn distribution G. Let 
Gn be the empirical distribution function of Yj, ... , Yn , i.e., the distribution 
giving mass ~ to each of the observations Yj, ,Yn . The bootstrap method 
aims to approximate the distribution of T(Yj, , Yni G) under G by that of 
T(Yt"', . .. , Y,:; Gn) under Gn where Y;*, . .. ,Yn* denotes a random sample of 
size n from Gni although this later distribution cannot usually be explicitly 
calculated, it is always possible to approximate it very easily by Monte Carlo 
simulation since Gn is available from the sample. So, the bootstrap technique 
follows the next steps: 

(i) simulate artificially a random sample y* = (y;*, ... ,V,;;,) -m not 
necessarily equal to n- from the empirical probability Gn • 

(ii) evaluate T at the bootstrap sample to obtain the bootstrap version 
of the statistic T" = T(Yt,· .. , r:~; Gn ). 

(iii) replicate (i) and (ii) a large number B of times, in order to get B 
values of T", Tt = T(y*i; Gn ), i = 1, ... , B. 

Finally, a histogram (or, in general, any other estimate of the distribution 
of T*) is obtained from Tt, i = 1, ... , B; this is an approximation to the 
distribution of T" which in turn is the bootstrap estimation of the unknown 
distribution of T. 

Recently, the bootstrap has been adapted and studied for regression and 
autoregression models. More information on bootstrap for regression models 
can be seen, e.g., in Gonzalez Manteiga, Prada Sanchez and Romo (1992). 

The study of the bootstrap for time series and dynamic regression models 
was started by Freedman (1984). Bose (1988) has shown that, under some 
regularity conditions, the bootstrap approximation to the distribution of the 
least-squares estimator in stationary autoregressive models is of order o(n-!) 
a.s., improving on the normal approximation (which is O(n-! )); Thombs and 
Schucany (1990) give bootstrap prediction intervals in this case. The validity 
of the bootstrap for the least squares estimator in explosive AR(1) models 
has been established by Basawa et al. (1989) and Stute and Griinder (1990) 
have obtained bootstrap approximations to prediction intervals in this case. 
Basawa d al. (1991-a) prove that the bootstrapped least squares estimator 
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has a random limit distribution for the unstable first-order autoregressive 
model ((3 = 1); however, Basawa et al. (1991-b) present a modified sequen­
tial bootstrap which works in this situation. The bootstrap for state-space 
models has been considered by Stoffer and Wall (1991). Under no model 
assumptions, Kiinsch (1989) investigates blockwise bootstrap for stationary 
observations. 

Finally, we introduce some terminology that we will need in our work. 
As we have seen, a general goal of bootstrap resampling is to approximate 
the distribution PG{T(Y;G) ~ x} of the statistic T(Y;G) by using the 
distribution 

PGn{T(Y";Gn) ~ x} = P"{T(Y"';Gn) ~ x} 

of T(Y"; Gn ). This can be expressed in several ways. If T(Y; G) converges 
weakly to a distribution S(G), it suffices to show that T(Y"'; Gn ) converges 
weakly to S(G) for almost all samples Y1"~'Y;I'" (T(Y"jGn ) -tw S(G) 
a.s.) or to establish that the distance between the law of T(Y"'; G,J and 
the law of S(G) tends to zero in probability for any distance metrizing weak 
convergence (T(Y"'; Gn) -tw S( G) in probability). 

3 BOOTSTRAP UNIT ROOT TESTS (INDEPENDENT 
INNOVATIONS) 

For the model defined in (1.1) and to test Ho : (3 = 1, our bootstrap resam­
pling scheme can be described in the following way. Let Et = X t - ~nXt-l' t = 
1, ... ,H, and define tt = Et - H-

1 L:jl=l Ej, the centered residuals. Denote by 

Fn the empirical distribution function based on {ft: t = 1, ... , n} and take 
a random sample {E:l,t: t = 1, ... , n} from F,l' SO, the random variables 
{E:l,t: t = 1, ... , H} are independent and identically distributed with distri­

bution function Fn , conditionally on Xl" .. , Xn' Then, the bootstrap sample 
{X,:,t: t = 1, ... , n} is recursively obtained from the model for (3 = 1, 

t=l, ... ,n (3.4) 

with X~,o = O. The bootstrap least squares estimate is then given by 
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In the stationary case, I /3 1< 1, Bose (1988) showed the asymptotic 
validity of the bootstrap estimators corresponding to Pn and in the explosive 
case, 1/31> 1, this has been established by Basawa, Mallik, McCormick and 
Taylor (1989). If I /3 1= 1, the unstable case, Pn has the limit distribution 
given by (1.2), so it is interesting to study the bootstrap approximation in 
this situation. Basawa, Mallik, McCormick, Reeves and Taylor (1991-a) took 
LLd. {u;} with distribution N(O, 1) and they obtained {Xn from 

x; = 0, 

where Sll is the least squares estimate for the AR(1) model; they show that 
r /3-" - (,",11 X-, ..2) -I ,",11 X- .. x-,.. Ilor 11 - L...t=l t-l L...t=l t t-I' t le sequence 

converges to a random distribution not approaching the asymptotic correct 
one. Thus, this is an example of incorrect behavior of the standard bootstrap. 
Basawa, Mallik, McCormick, Reeves and Taylor .(1991-b) present a modified 
sequential bootstrap which correctly approaches the limit distribution of the 
least squares estimator of /3; also, they established the asymptotic validity 
of a bootstrap test statistic for unit roots based on residuals of the form 
X t - Xt-l. 

In related work, Rayner (1990) performed a Monte Carlo study to exam­
ine the small-sample behavior of the bootstrap and the Student-t approxi­
mations to the true distribution of the classical test statistic used for testing 
hypotheses on the slope parameter in the stationary first-order autoregres­
sive model. Bertail (1991) investigated using Monte Carlo techniques the 
bootstrap test for linear models and unstable autoregressive models. 

In this section, we prove that this resampling algorithm is asymptoti­
cally correct under Ho, in the sense that it converges weakly to the limit 
distribution given by (1.2) for almost all sample (XI, ... ,Xll ). 
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3.1 A BOOTSTRAP INVARIANCE PRINCIPLE 

The study of the asymptotic behavior of the bootstrap least squares es­
timate relies on a bootstrap invariance principle, a functional central limit 
theorem for a stochastic process built from the sequence of partial sums 
corresponding to the bootstrap resamples. 

Consider the sequence of partial sums S:,o = 0, S:,k = 2:j=l f:,j' k = 
1, ... , n, nE.N. A sequence of continuous-time processes {Y';(s) : s E [0, 1]}~=1 
can be obtained from 

{ S~ k : k = 1, ... , n} 00 , n=l 
by linear interpolation, i.e., 

Y;;(S) = . 1/:75,:,[,,8] + (tu: - [ns]). l/:7f~,[nS]+I' sE [0,1], nE.N (3.5)
u"yn U"yn 

2:U 
"'2 

where o-~ = V*( (l,t) = !~1 c) and [m] denotes the greatest integer less than 
or equal to m. 

Hereafter, P*, E*, V* will denote, respectively, the bootstrap probability, 
expectation and variance conditionally on the sample Xl, ... ,X". 

The sample paths of the process r:~(s) are in the space C[O,l] of real 
continuous functions on [0,1]. We endow it with the supremum norm 

11 f - 91100= sup I f(x) - 9(X) I, f,9 E C[O, 1]. 
xE[O,I] 

To obtain weak convergence on this space is enough to show weak convergence 
of finite dimensional distribution and tightness (see, e.g., Billingsley (1968) 
or Pollard (1984) for a detailed treatment). 

The first lemma establishes the weak convergence of the finite-dimensional 
distributions for almost all samples (XI, ... ,Xn ). 

Lemma 3.1. Conditionally on (XI, ... , X,,) and for almost all sample paths 
(X I ,X2 , •• •), 

(Y((Sl),"" r:;(Sd)) -+w (W(SI),"" W(Sd)) (3.6) 

for all (SI,'" ,.'Od) E [O,l]d. 
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The tightness of our sequence of stochastic processes follows from Lemmas 
3.2 and 3.3. 

Lemma 3.2. For any 1] > 0, 

limlimsup ~p.. { max IS~jl > 1]Ull -lTi} =0 
8!0 11-00 () l;5j;5[n8J+I ' 

conditionally on (Xl,"" Xli) and for almost all sample paths (Xl, X 2 , ••• ). 

Lemma 3.3. For any 1] > 0 and T > 0, 

lim lim sup P" { max IS,:,j+k - S~,k I> 1]UlI -ITi} = 0
8jO 11-00 1 :s j	 :s [nh] + 1 

o:s k $ [nT] + 1 

conditionally on (Xl,"" X,J for almost all sample paths (Xl, X 2 , ••• ). 

Now, we establish the bootstrap invariance principle. 

Proposition	 3.1. Let {fll}::l be a sequence of residuals as defined above. 

II 
1 I .. I d' '1' . d· 2::;=1 CJ 

ZLet F• )e t le emplnca lstn mtlOn assoCIate to fi = fi - n ' • = 
1, ... , n and let f:1,i, i = 1, ... , n be independent random variables with 

distribution F,1' Define {r;~(t) : t E [0, 1]}~=1 by (3.5). Then 

II1 e[O,l], where W is the standard one-dimensional Browllian motion on 
[0, 1]. 

3.2 ASYMPTOTIC BEHAVIOR OF THE BOOTSTRAP STATISTIC 

Let 
1 (n )1/2 •

Z,: =	 -. L: X':~_l (13~ - 1) (3.7) 
(111 t=l 
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be the bootstrap version of Zn under (3 = 1. 
Now, in Theorem 3.1 we derive the limit distribution of Z,:. To prove this 

theorem we will need the following lemma. 

Lemma 3.4. Let 

Then, conditionally on (Xl, ... ,Xn ) and for almost all sample paths (Xl, X 2 , • •• ) 

as n ~ 00. 

Our goal is to show that Z,: ~w Z almost surely and so this bootstrap 
resampling approaches properly the correct limiting distribution. Thus, our 
main result in this section is the following. 

Theorem 3.1. For Z,: defined in (3.7), under the model (1.1) with (3 = 1, 
we have that 

Z,: ~w Z 

conditionally on (Xl, .. " X n ) for almost all sample paths (Xl, X 2 , ••• ) where 
Z is defined in (1.2). 

4 EMPIRICAL POWER STUDY 

We have performed a Monte Carlo study to investigate the power of the 
test statistics reported in this article when the model is (1.1). 

Two thousand samples of size n = 25, 50, 100, 250 were generated for 
two different innovation distributions (Normal and Student with 3 degrees of 
freedom) and 5000 bootstrap samples. 

Table 1 and Table 2 show empirical powers of two-sided 5 % level tests 
for the test statistics: Qn.m(m = 5), Z:l' B~ (the bootstrap analogue of the 
statistic n(~71 - 1)) and Z,:. Values of (3 were 0.80, 0.90, 0.95, 0.99, 1.00, 1.02 
and 1.05. 

Table 3 and Table 4 give empirical powers of one-sided 5 % level tests 
(Ho : (3 = 1 versus HI: (3 < 1) for the test statistics: Z:l' B~ and Z,:. Values 

10 



of {3 were 0.80, 0.90, 0.95, 0.99 and 1.00. Tbe results for the one-sided 5 % 
tests of Ho : {3 = 1 against the alternative HI : {3 > 1 are not reported here 
because they are qualitatively similar to tbose of the alternative HI : {3 < 1. 

Several routines from IMSL Library were used: GGUBS (basic uniform 
(0,1) pseudo-random number generator), GGNML (normal random deviate 
generator), GGCHS (cbi-squared random deviate generator) and GGNQF 
(normal random deviate generator-function form of GGNML). The computer 
programmes wbere written in FORTRAN and performed in a DECstation 
5000/2000 under ULTRIX-32 at the Universidad Carlos Ill, Madrid. 

We observe tbat tbe power of tbe Ljung-Box Qn,m test was significantly 
lower than the power of the other tests considered in almost all cases. The 
performances of Z,: test, the Dickey-Fuller Z~ test and the B~ test were 
similar. The bootstrap Z~ test power is never lower than the power of their 
compet itors. 
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TABLE 1� 
Empirical power of Two-Sided Size 0.05 Tests� 

when f3 = 1 and F is Normal 

f3 

n Test 0.80 0.90 0.95 0.99 1.00 1.02 1.05 

25 Qll,lIl 0.08 0.06 0.06 0.06 0.05 0.08 0.17 
Z:l 0.21 0.08 0.06 0.05 0.05 0.07 0.20 
B~ 0.20 0.07 0.06 0.05 0.05 0.06 0.18 
Z,~ 0.28 0.10 0.07 0.06 0.06 0.12 0.31 

50 Qn ,7n 0.11 0.07 0.06 0.06 0.05 0.11 0.53 
Z:l 0.58 0.20 0.07 0.05 0.05 0.15 0.71 
B,: 0.57 0.20 0.07 0.05 0.05 0.14 0.70 
Z~ 0.64 0.23 0.09 0.05 0.05 0.24 0.70 

100 Qu"u 0.15 0.08 0.06 0.06 0.06 0.32 0.95 
Z:! 0.99 0.57 0.18 0.04 0.05 0.51 0.97 
B,~ 0.99 0.57 0.18 0.04 0.05 0.51 0.97 
Z,: 0.99 0.61 0.19 0.04 0.05 0.56 0.96 

2:30 Qn,71l 0.46 0.15 0.07 0.05 0.05 0.95 1.00 
Z:l 1.00 1.00 0.75 0.06 0.05 0.98 1.00 
B~ 1.00 1.00 0.75 0.06 0.05 0.98 1.00 
Z~ 1.00 1.00 0.76 0.06 0.05 0.97 1.00 
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TABLE 2� 
Empirical power of Two-Sided Size 0.05 Tests� 

when 13 = 1 and F is Student with three degrees of freedom 

13 

11 Test 0.80 0.90 0.95 0.99 1.00 1.02 1.05 

25 Qn,?n 0.07 0.04 0.04 0.04 0.05 0.05 0.16 

Z:l 0.19 0.08 0.05 0.05 0.06 0.08 0.19 
B~ 0.19 0.08 0.05 0.05 0.05 0.07 0.16 
Z~ 0.25 0.10 0.05 0.04 0.05 0.11 0.34 

50 Qn,'H 0.07 0.06 0.04 0.05 0.04 0.10 0.52 

Z:l 0.57 0.17 0.07 0.04 0.06 0.13 0.70 

B,: 0.58 0.17 0.07 0.05 0.06 0.11 0.69 

Z,: 0.64 0.20 0.09 0.04 0.05 0.23 0.70 

100 Qn,m 0.15 0.06 0.05 0.04 0.05 0.34 0.94 

Z:l 0.99 0.57 0.17 0.05 0.05 0.54 0.98 

B,: 0.99 0.58 0.17 0.05 0.05 0.53 0.98 

Z~ 0.~)9 0.60 0.18 0.05 0.05 0.58 0.97 

250 0.42 0.12 0.06 0.05 0.05 0.94 1.00Qn"a 
Z:l 1.00 1.00 0.74 0.07 0.05 0.97 1.00 

B,: 1.00 1.00 0.75 0.08 0.05 0.97 1.00 

Z~ 1.00 1.00 0.74 0.08 0.05 0.97 1.00 
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TABLE 3� 
Empirical power of One-Sided Size 0.05 Tests 

when� 13 = 1 and F· is Normal 

13 

n Test 0.80 0.90 0.95 0.99 1.00 

25� Z:l 0.33 0.17 0.09 0.06 0.05 
B,: 0.32 0.16 0.08 0.05 0.05 
Z~ 0040 0.21 0.12 0.07 0.06 

.50� Z:l 0.78 0.33 0.15 0.05 0.05 
B,: 0.78 0.33 0.15 0.05 0.05 
Z,: 0.81 0.37 0.17 0.06 0.06 

100� Z:l 1.00 0.78 0.32 0.08 0.05 
B~ 1.00 0.78 0.32 0.08 0.05 
Z~ 1.00 0.80 0.35 0.09 0.05 

250� Z:l 1.00 1.00 0.89 0.15 0.04 
B~ 1.00 1.00 0.89 0.15 0.05 
Z~ 1.00 1.00 0.89 0.16 0.05 
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TABLE 4� 
Empirical power of Two-Sided Size 0.05 Tests� 

when j3 = 1 and F is Student with three degrees of freedom 

j3 

11 Test 0.80 0.90 0.95 0.99 1.00 

25� Z:, 0.34 0.13 0.07 0.05 0.04 
BO< 

n 0.35 0.13 0.08 0.05 0.04 
ZI: 0.42 0.16 0.10 0.07 0.05 

50� Z:, 0.78 0.32 0.14 0.06 0.05 
BI: 0.79 0.33 0.14 0.06 0.05 
Z,: 0.83 0.36 0.16 0.07 0.06 

100� Z:, 1.00 0.76 0.31 0.07 0.05 
B,: 1.00 0.79 0.32 0.07 0.05 
Z~ 1.00 0.79 0.33 0.07 0.05 

2.50� Z:, 1.00 1.00 0.90 0.13 0.05 
B,: 1.00 1.00 0.91 0.13 0.05 
Z,: 1.00 1.00 0.91 0.13 0.05 
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5 BOOTSTRAP TESTS FOR A UNIT ROOT 
(AUTOREGRESSIVE INNOVATIONS) 

In this section, we extend Theorem 3.1 on the asymptotic behavior of the 
bootstrap least squares estimator to models with autoregressive errors. For 
the process {X t }, t = 1,2, ... given by 

Xo =0, (5.8) 

consider now that the innovations {Ut}, t = 1,2, ... are a stationary autore­
gressive sequence defined by 

Uo = 0, I p 1< 1, (5.9) 

where {Vt} are independent and identically distributed random variables with 
E( Vt) = °and °< V (Vt) = (J~ < 00. We will make also the following� 
assumptions on the {Vt}:� 
AI. J 1 </>{7') I d7' < 00 where </> is the characteristic function of each Vt.� 

A2. SUPt E(I Vt 1')'+11) < 00, for some 'I > 2 and rj > 0. 

s 

A3. Mo = sup sup maxla:l P{ti + 11 E U Dj)1 < 00, 
m.s,k?: 1 Cl,T,V t j=1 

k+m-l _ 

where Dj = x (O'jt1 T.it), 11 = (Ilk, .. " Ilk+m_d, lJ = {Uk,"" Uk+m-d. 
t=k 

By l\1inkowski's inequality, assumption A2 implies that 

sup £(1 Ut 1')'+'1) < 00. 
t 

So, under AI-A:3, by Corollary 3 of Withers (1981), {ud is strong mixing 
with mixing coefficients am that satisfy 

L
00

a~.~2h < 00. 
m=1 

In particular, Gaussian AR( 1) processes satisfy A1-A3. 

Our goal is again to test the hypothesis Ho : {3 = 1 { under Ho, the model 
. defined by (5.8) and (5.9) is an ARIMA (I ,1 ,0) process). Let ~1l be the least 
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squares estimator of f3 based on a sample of n observations (XI' ... ,Xn). For 
the statistic . 

Tn= -.!.. (txLI) t (Pn -1), 
Sn t=1 

where 

n 
2 '"' ~ 2.'ltl = -

I 
L)Xt - f3n Xt-d , 

n t=1 

Phillips (1987) showed that under Ho, 

Pn ----+ P 1 as n -+ 00 (5.10) 

and 

(5.11 ) 

with 

O'~ = lim 2. tE(u;) (5.12) 
n--+oo n t=1 

and 

1 n 
0'2 = lim E(-(EUt)2). (5.13) 

n--+oo n t=1 

Note that for the sequence {ud given by (5.9), O'~ = 1~~2' On the other 
hand, since 0 < O'~ < 00 we have that the limit given in (5.13) exists and 
0'2 = (l:f~)2 > O. Finally, observe that for independent innovations, 0'2 = O'~ 
and this common value is the variance of the innovations in model (1.1); so, 
in this case, the limit distributions in (1.2) and (5.11) coincide. 

For the bootstrap test in this situation, we propose the following resarn­
pling strategy. Let Ut = X t - SnXt-l, t = 1, ... , n with Uo = 0 and let 
Pn be the least squares estimate of p obtained from UI, ... , Un' Consider 

IVt = Ut - PnUt-1 and define Vt = Vt - n- L:jl=1 Vj, the centered residuals. 
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Let Fn be the empirical distribution function based on {Vt : t = 1, ... , n} 
and take a random sample {v~,t : t = 1, ... , n} from Fn . Then, construct 
{u:l,t : t = 1, ... , n} from 

(5.14) 

and also the sequence of bootstrap pseudo-data under Ho, 

X~,t = X,:,t_l +u:,t, t = 1, ... ,n (5.15) 

with X,:,o = O. The bootstrap least squares estimate of /3 is 

Our first step is to establish a bootstrap lllvanance principle; for the 
proof, we will need the following lemma. 

Lemma 5.1. Under Ho and assumptions AI, A2 and A:3, we have 

(i) Pn ~p p. 

(ii) V* (v* ) = 
L.."J=1 

t)~ 
P 

• (j2
11' 

1 ,",'~ ~ n,t n J 

("') V*( * ) ~p. (ju'2III Un,t 

as 11 --+ 00, conditionally on (Xl,' .. , X n ) for almost all sample paths (Xl, X 2 , ••• ). 

Define now the sequence of partial sums R:l,o = 0, R~,k = L:j=l U:l,j' 
k = I, ... ,11, 11 E N. From 

{R:l,k : k = 1, ... ,n}~=11 

we obtain the corresponding sequence of continuous-time processes 

given by 

U,7C") = leR:1 [us] + (118 - [n$]) leU :1 [ns]+11 sE [0,1], nE N, (5.16)
(jyll ' (jyn ' 
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where now 
2 

2 (Tv ( 
(T = (1 _ p)2' 5,17) 

Herrndorf (1984) obtained functional central limit theorems for sequences 
of partial sums of dependent random variables. Applying his Corollary 1, we 
can prove the bootstrap invariance principle in probability that we need for 
our theorem. 

Proposition 5.1. Let {u;"t} and {U,:(s) : s E [0, 1]}~=1 be as defined in 
(5.14) and (5.16), respectively. Under Ho and assumptions AI, A2 and A3, 

u,: --+w W in p7'obability 

111 e[O,I], where W is the standard one-dimensional Brownian motion on 
[0,1] . 

Consider now the bootstrap version of the statistic T,,, 

T,: = J.- (t X':~_l) 
1 

2 (~,: 
. 

1). (5.18)-

Sn t=l 

The main result in this section is contained in Theorem 5.1 which gives the 
limiting distribution of the statistic T,;. 

Theorem 5.1. Let T,; be as defined in (5.18), under the model (5.8) wi th 
/3 = 1 and {ud following (5.9) and assumptions AI, A2 and A3. Then 

T,: --+w T in p7'obability 

where T is defined in (5.11). 

Remarks. (i) The asymptotic distribution in (5.11) depends on unknown 
parameters (T2 and (T~, To overcome this difficulty, Phillips (1987) introduced 
modified statistics with the asymptotic distribution given in (1.2) which is 
independent of (T2 and (T~. However, our bootstrap technique does not require 
any modified statistic because it directly approaches the unknown limiting 
distribution. 
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(ii) When P = Po is known in model (5.9), the bootstrap convergence in 
probability of Theorem 5.1, could be strength to almost sure convergence. 
(iii) It is straightforward to extend this bootstrap results to model (5.8) with 
AR(p) innovations, under conditions analogous to assumptions A1-A3. 

6 CONCLUSION 

We have established the asymptotic correctness of bootstrap tests for unit 
roots in first-order autoregressive models, both for independent and autore­
gressive errors. The Monte Carlo comparisons lead us to conclude that, in 
the first-order autoregressive process with independent and identically dis­
tributed innovations, the power of the bootstrap analogue of the Zn test was 
similar and never lower to that of the Z:l test and the bootstrap analogue 
of n((3n - 1) test. Moreover, in the first-order autoregressive process with 
stationary autoregressive innovations, we have shown that the modifications 
to the Dickey-Fuller statistic Zn introduced by Phillips (1987) are not needed 
when using the bootstrap test. 

Acknowledgments. The authors wish to thank Ana Justel for some com­
ments and helping with the simulation work. 

7 MATHEMATICAL APPENDIX 

Proof of Lemma 3.1. It is enough to show that, for all 7',8 E [0,1], 

No\\', conditionally 011 (Xj, ... ,Xn ), since 

we obtain by the (;ebisev inequality that 

(7.19) 
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Therefore, 

1 [nr) [ns). 

II(Y;(7"), ~;(s)) - Unvn(.r;f~.i'j;f~.j)1I ~p. 0 a.s. 

and it suffices to prove that 

1 [nr) [ns) 

Unvn(j; f~,j'.r; f~,j) ~w (W(r), W(s)) a.s. 

This is equiva)ent to show that, conditionally on (Xll ... , X ),n 

a.s.; (7.20) 

but, since the components on the left hand side are conditionally independent 
random variables with zero mean and variance one, (7.20) follows by the 
the bootstrap central limit theorem for triangular arrays obtained by using 
Lindeberg condition. 0 

Proof of Lemma 3.2. By the bootstrap central limit theorem for triangular 

arrays , we have that (1/Un J[n8] + 1)S,:,['l6) +1 converges weakly almost surely 
to a standard normal random variable V. Fix). > 0 and let {CPk} f:: 1 be a 
sequence of bounded, continuous functions on ~ with CPk 11(-00,A)U[A,oo)' We 
have for each k, 

lim sup p. {I S,:,[n,6)+ 11 ~ )'Un~} 
11 ....... 00� 

::; lim E· (CPk (A ~S,:,[n6l+1)) = E"(cpdV )).
n.... oo Un n8 

Then, if k ---+ 00 we obtain 

(7.21) 

We now define T,: =min{j ~ 1 : 1S,:,j I > 77Un vn}. If 0 < 6 < f, we have 
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P* {. !11ax IS,:jl> 7JUnvn} $. P* {IS~ [n5]+11 ~ un vn(7J - VU)}I$J$[n5]+l ' ,� 

[n5]� 
+ :L P* {IS~,[n5]+I I < unvn(7J - VU) 17": = j} P* {7": = j}. (7.22) 

j=l 

But for 7",: = j, 

IS,:,[n5]+ll < unvn(7J - VU) 
implies IS~,j - S',:,[n5] +1 I > U1I J2n8, and by Cebisev inequality it follows that 

P* {IS~,[1I5]+11 < unvn(7J - VU) I 7": = j} 
1 ([n5]+l)

$. 2n8u 2 V* .~ f:1,i , 1 $. j $. [n8]. (7.23) 
n I=J+1 

Moreover, the right hand side in (7.23) is bounded above by 1/2. 
Therefore, going back to (7.22) 

P* { max 18,: j I > 7Junvn}
O$j $[n8]+1 ' 

$. P* {IS~,[n5]+ll ~ Un0i(1] - VU)} + ~P* {7",: $. [n8]} 

1 

$. P* {IS,: [n8J+1 I ~ Un vn(1] - VU)} + -2 P* { max IS,:jl > 7JUnvn}., 0$j$[n8]+1 ' 

It follows that 

P* { max IS~jl > 7JUn0i} $. 2P* {IS~[n5]+ll ~ unvn(7J - VU)}.0$J$[n5]+1 ' , 

Putting A = (7J - VU)/V8 in (7.21), we have 
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Now letting 6 10 the lemma follows. 0 

Proof of Lemma 3.3. Once we have Lemma 3.2, the proof follows as 
in Lemma 4.19 of Karatzas and Shreve (1988), page 69, replacing Sk by 
S~,k' k = 1, ... ,n, n EN. 0 

Proof of Proposition 3.1. Let rh, rh and rh be the sets where lemmas 3.1, 
3.2 and 3.3, respectively, hold. For all the sample paths in 0 1 n O2 n 0 3 , the 
proof in page 71 of Karatzas and Shreve (1988) gives the tightness of {Y;}~=I; 

this and the finite dimensional convergence in (3.6) imply, by theorem 4.15 
in Karatzas and Shreve (1988), the weak convergence in e[O,I]. 0 

Proof of Lemma 3.4. It is straightforward from Proposition 3.1. 0 

Proof of Theorem 3.1. Observe that 

Now, by squaring (3.4) and by summing, we obtain 

nIl n 
2'"' X" .. X .. '"' ..2 (7.24)L...J n,t-I (n,t = 2 n,n - 2L...J (n,t· 

t=] t=1 

Then, expn'ssing the quantities X~,t in terms of ~;(t), defined in (3.5), 
we have 

(7.25) 

and 
n n-I'

'"' xr ..2 2 '"' y" 2 ( l ) (7.26)AL...J n,t-I = nUn ~ 11 ;;. 

t=1 1=1 

It follows from (7.24), (7.25) and (7.26) that 
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By the bootstrap weak law of large numbers and Proposition 3.1, the nu­
merator converges, for almost all (Xll ••• , Xn ), to HW2(1) - 1). Moreover, 
from Lemma 3.4, Proposition 3.1 and the continuous mapping theorem, the 

denominator tends to (Id W2(t)dtf /2. Since can be easily proved that the 
bootstrap version of Slutsky's theorem holds, the theorem follows.o 

Proof of Lemma 5.1. (i) First, we will prove that 

Pn - Pn --+p 0, (7.27) 

where pn is the least squares estimate of P obtained from u}, ••• , Un' 

From Theorem :3.1 of Phillips (1987) for the sequence {Xd and by the law 
of large numbers of McLeish (1975) we have 

Pn = (t u:_ 1) -1 t Ut U t-1 

t=1 t=1 

= Pn'l/)n + op(l), (7.28) 

where 

n )-1n 
pn = (LU:-1 L UtUt-1, (7.29) 

t=1 t=1 

)_1
1/Jn = ( L

n 

1iL1 L
n 

U~_1 (7.30) 
t=1 t=1 

and op(l) is a sequence of random variables tending to zero in probability 
and, so it is enough to see that 

'I/)n --+p 1. (7.31) 

From the definition of 1it, we obtain 

(f3A )2 n 

+ n -1 LXL2' (7.32) 
n t=1 
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So, from Theorem 3.1 of Phillips (1987) for the sequence {Xtl, we deduce 

1 ~ -2 1 ~ 2 
- L.J ut _ 1 = - L.J ut _ 1 +op(1). (7.33) 
n t=l n t=l 

By� the law of large numbers of McLeish (1975) it follows that 

1 ~ 2 2 
- L.J u t _ 1 ---+p (J'u' (7.34) 
n t=l 

Then (7.31) follows from (7.30), (7.32), (7.33) and (7.34). Hence from (7.28), 
(7.29) and (7.31) one concludes (7.27). Therefore, from the consistency of 
Pn,� (i) follows. 

Now we will prove (ii). We have that 

= .!- tv;-� (7.35) 
n j=l 

First, we will prove that 

n1 
'" -2 2- L.J Vj ---+p. (J'v' (7.36) 

n j=l 

From the definition of Vt, we have 

II 1 II 2 '� '2II� n 
_
1
'" -2 __ '" -2 _ ...f!.!::. '" - .- . + Pll '" -2 (7.37)L.JVj - L.JUj L.JUJUJ-l L.J UJ-l· 

n j=l n j=l n j=l n j=l 

Moreover, from the definition of Ut we obtain 

~_111 ~_1n 
- II L: Uj-lXj-l - n L: U j X j _ 2 . (7.38) 

n j=l n j=l 

By Theorem 3.1 of Phillips (1987) for the sequence {Xtl and the law of large 
numbers of McLeish (1975), it follows that 
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1 1 71Tl 

- L UjUj_l = - L UjUj_l +opo(I). (7.39) 
n j=1 n j=1 . 

From the usual weak law of large numbers and the law of large numbers of 
McLeish (1975), one concludes 

In 1 (71 71 71) 
- LUjUj-l = -2 LU; + p2 LU;-1 - LV; 
n j=1 np j=1 j=1 j=1 

---+po pu:. (7,40) 

Then, from (7.33), (7.34), (7.35), (7.37), (7.38), (7.39), (7,40) and part (i) of 
the lemma, (7.:36) follows. 
Moreover, we have 

(7,41 ) 

and 

III III ~_ITl 
-LUj=-LUj- LXj- 1, (7,42)11 

n j=1 n j=1 n j=1 

Hence, from (7,42), the law of large numbers of McLeish (1975) and Theorem 
3.1 of Phillips (1987) for the sequence {Xd we obtain 

1 1Tl II 

- LUj = - LUj +op.(I). (7,43) 
n j=l n j=1 

So, from the law of large numbers of McLeish (1975) we have 

1 Tl - L Uj ---+po O. 
n j=1 

Then from (7,41), (7,43) and part (i) of this lemma, we deduce 

1- L 11

Vj ---+po O. (7,44) 
n j=1 

Hence, from (7.35), (7.36) and (7,44), (ii) follows. 
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Finally, (iii) is an inmediate consequence of (i) and (ii). 0 

Proof of Proposition 5.1. We have to show that for any distance d metriz­
ing weak convergence, 

d(.c(U~),.c(W)) --+p 0, 

where .c(X) is the distribution of the variable X. 
This is equivalent to prove that for any subsequence {U~/J, there exists a 
further subsequence {U':k}' such that 

} 

d(.c(U':k)' .c(W)) --+a.s. 0 
} 

(see, e.g., Gine and Zinn (1990)). 
From the convergence in probability in Lemma 5.1, it follows that given 

the subsequence {nd, there exists a subsequence {nk) of it for which the 
lemma holds almost surely. Now, we will check that conditions in Corollary 
1 of Herrndorf (1984) hold a.s. for the subsequence {U:

1k 
. t : t = 1, ... ,nk }.

} . } 

To simplify the notation we will just write {n} for the subsequence {nd. 
Obviously, 

E*«.t) = 0 (7.45) 

and 

E*( *2) (7.46)Un,t < 00. 

Now, we will first prove that 

E*(R*2 ) 2 nn 2 CTv--'---'-""","''- --+p. CT = as n --+ 00, (7.47) 
n (I-pP 

where R:"n = L.~l=l u:l,j' We have that 

Then, from Lemma 5.1 and the fact that I p 1< 1, we obtain (7.47). So, we 
have 
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E*(R:? n ) 2 
_....:....-.;.;.ko...:.,,,,,,k,-,- ~a.8. er as nk ~ 00, (7.48)

nk 

for a further subsequence. 
Now, we will show that {u:J is strong mixing with mixing coefficients Q'~ 

satisfying 

L
00

Q'~-2h < 00. (7.49) 
m=l 

For this, we first establish� 
Al *. f I </J*(1') I d" < 00, where </J* is the characteristic function of each V~,t.
 

A2*. SUPt E( I V~,t 1°) ~p. M I < 00 for some () > O. 

s 

A3*. sup supmaxla:tP(D*+I/E U Dj)l~p·M2<00, 
m,s,k2:1 n,T,lI t j=l 

k+m-l _ 

where Dj = x (O'jt, Tjt),II = (1Ik, ... ,IIk+m-d,U* = (U~k, ... ,u~k+m_l)
t=k ' I 

conditionally on (Xl, ... , X n ) for almost all (Xl, ... , X n , ... ) and, in this way, 
we get the condi tions of Corollary :3 in Withers (1981) for {v:.,t : t = 1, ... , n} 
almost surely along subsequences. 

Condition A1* is obvious, since the distribution of v;.,t is Fn • For A2*, 
let () = 1+ '7, where I > 2 and 7J > 0 are the same as in the assumption A2. 
We have 

E( I v;.,t 1°) :s 2°- 1 2. (t I i\ 1°+ I 2. t Vj 10) . (7.50) 
n j=l n j=l 

From the definition of vt, we deduce that 

(7.51) 

On tlie other hand, from the definition of Ut and (5.8) with {3 = 1, it follows 
that 
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1 n ~ 8 28
- ( n 8 A 8 n 8); ~ IUj-1 I ~ --;-

1 

f; IUj-1 I + I /3n - 1 I ~ IX j _ 2 I . (7.52) 

From assumption A2, the law of large numbers of McLeish (1975) and 
Theorem 3.1 of Phillips (1987) for the sequence {Xtl, we deduce that 

1 8 n 8A

-I /3n - 1 I I: IXj-2 I ---+po 0 (7,53) 
n j=2 

and 

1 n 
8 8- I:(I Uj-1 1 - E(I Uj-1 1 )) ---+po O. (7.54) 

n j=2 

Thus, from Lemma 5.1 (i), (7.51), (7.52), (7.53) and (7.54), we have 

1 n 28-1 n 
8- I: I Vj 1 ~ -I: I Vj 1

8 +opo(l). (7.55) 
n j=l n j=l 

Then, from (7.44), (7.50), (7.55), assumption A2 and the weak law of large 
numbers, condition A2* follows. 

Condition A:3* follows from condition A3 because the empirical distribu­
tion corresponding to {VI, .. " vn } tends to the distribution of Vt, by (7.44), 
Lemma 5.1 (i) and Boldin (1982). 

Finally, we will show that, for some ,* > 2 

o
(E*(I U~,t 1'Y°))lh ---+po M3 < 00. (7.56) 

By :Minkowski's inequality, it follows that 

<Xl o
(E*(I u:l,t 1'Y°))lho ~ (I: I Pn Ij)sup(E(1 V~,t 1'Y°))lh , 

j=O t 

Hence (7.56) follows the assumption A2* with ,* = 0, Lemma 5.1 (i) and 
the fact that Ip 1< 1. Thus, along a subsequence, we obtain 

(7.57) 
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So, from (7.45), (7.46), (7.48), (7.49) and (7.57), conditions in Corollary 
1 of Herrndorf (1984) are satisfied almost surely along subsequences and the 
proposition follows. 0 

Proof of Theorem 5.1. Note that 

T,7� - s~ (L~~1 X,7~_I//2 (~~ - 1) 
= s~ (L:~1 X~~_I) -1/2 (L~1 X~,t_l U~,t) . 

Then, by squaring (5.15) and by summing, we have 

11 1 1 n 
"" X* * X*2 "" *2 (7.58)L..J n,t-l Un,t = 2" n,71 - 2" L..J Un,t· 
t=1 t=1 

Hence, expressing the quantities X,~,t in terms of U,7(i), defined in (5.16), 
we obtain 

(7.59) 

and 
71 n-l'� 

"" u*2 ( Z ) (7.60)�""L..J A,,*2n,t-l = nu2 L..J n - . 
t=1� i=1 n 

From (7.58), (7.59) and (7.60) it follows that 

T,; = ;- (U,72(1) - -+ tU~:t) (~ I: U~2 (i)) -1/2
2'<;n U n t=1 n i=1 n 

By� the proof in page 297 of Phillips (1987) we have 

.,2 --+ ,.,.2 
'n pV u ' a," n --. 00.� (7.61 ) 

Finally, we have to show that for any distance d metrizing weak convergence, 

d(£(T,;), £(T)) --+p o. 
This� is equivalent to prove that for any subsequence {T: }, there exists a 

k 

subsequence {T,7
k 

}, such that 
J 
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d(.C(T:,J,£(T)) --+11.8. O. 
J 

Given a subsequence {nd, by the bootstrap weak law of large numbers, 
Proposition 5.1 and (7.61), there exists a further subsequence {nk } such that 

J 

the numerator converges, almost surely to -2(1 (W2(1) - 4). Moreover, from 
(1.. (1 

Lemma 3.4 (with {r:~(t) : t E [0, 1]}~=1 replaced by {U,7(t) : t E [0, 1]}~=1 ), 
Proposition 5.1 and the continuous mapping theorem, the denominator tends 

1 2 ) 1/2to ( ID W (t)dt , along the subsequence. Then, the proof of the theorem 
follows from the bootstrap version of Slutsky's theorem almost surely along 
a subsequence and so, in probability. 0 
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