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1. Introduction 

Practical implementation of the Kalman filtering with a huge number (n) of state 

variables (e.g. physical/technological processes) might require a expensive operation time. The 

order of the operational cost for the solution of the filter equations is in general O(n3
) for each 

state update, if the implementation is serial (sequential). Cost and size of computer components 

have declined so sharply that parallel computers have become feasible. As a result, there is a 

increasing interest about designing algorithms that exploit both the parallelism inherent in the 

problem and that available on the computer (see [1]). 

From the computational point of view, this paper extent results in [3]. 

In this paper we describe a parallel Kalman filter algorithm based in the square 

root formulation of Kalman filter. The algorithm allows to reduce the operational cost to O(n) for 

each state update, like alternative approaches (see [4] y [5]) and is able to be implemented in a 

wide variety of commercially available parallel computers. The paper is organized as follows: 

section 2.1 contains a brief description of the square root Kalman filter developed in [3]. In 2.2 

the triangularization matrix procedure is described and in 2.3 the algorithm to update the state is 

explained. In section 3 we present how to implement the triangularization procedure for parallel 

computation. In section 4 we extent the algorithm in 2.3 to the case of the square root Kalman 

filter with contaminated observations. We include a special study for the m= 1 case (scalar 

observations). Concluding remarks and computational complexity of the algorithm are mentioned 

in section 4. Comparative results for sequential and parallel implementation are included. 
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2. Square root Kalman filter 

2.1. Fonnulation 

Let us consider a discrete-time dynamic linear system given by 

Xt+1 = Ftxt + Wt (2.1) 

Yt = Htxl + Vt (2.2) 

where Xt is the (n x 1) state vector, and Yt is an (m x 1) measurement vector (typically m::S; n). 

We suposse that the process noise Wt and the measurement noise Vt are mutually 

independent and verify 

E(wl ) = 0� 

E(vJ = 0� 

E(wo w'J = Ott Ql� 

E(vt, v'J = Ott Rt·� 

The matrices Ft> Ht, Qt and Rtare time varying of appropriate dimensions, and are 

supposed to be known at time 1. 

The classical Kalman filter gives the state estimate at time t (of:) as a linear 

combination of an state estimate at time t-l (x:: I ) and the observations data at time t-l(yt·l). The 

minimum variance state estimator x:=E[x, /Y1 and its covariance matrix 

P:=E[(x,-x:)(x,-x:)'/Y1 where yt = {Yo, Yt> ... , Yt} are then given by the recursive algorithm 
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i,'=i:- I +P:-IH:(H,P:-IH : +R,)-I(y,-H~:-I) (2.3) 

p'=p,-I_p,-IH'(HP',-IH'+R )-IHP,-I (2.4)I I I I I I I I I I 

Then, the predicted state is given by the recursive formula 

(2.5) 

(2.6) 

An analogous expression for the predicted state estimate is given by the recursive 

relation 

AI =F At-! +K(y -H-9,-I) (2.7)XI + 1 ftl I I ("I 

(2.8) 

where is the Kalman gain matrix with dimension (n x m), and 

Re,=H,P:-IH:+R, is the innovations covariance matrix with dimension (m xm). These 

expressions are obtained by substitution of (2.3) and (2.4) into (2.5) and (2.6). 

The square root Kalman filter formulation, which exploits the factorization property for 

a positive semidefinite matrix can be found in [4]. 

Then for any positive semidefinite matrix, specifically for Pt and Ret, we obtain 

the appropriate factorization by means of a unit lower triangular matrix , with units on the main 

diagonal, let say 4t and Let, and a diagonal matrix, denoted by Dpt and Det, Le. 

(2.9) 

I (2.10)Re,=LePe~e, 
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I .
Then, the Kalman gain matrix Kl and the covariance update P,+1 are then obtained 

from the triangularization of a particular matrix. 

2.2. Trianguklrization procedure 

The main idea is to transform a pair of matrices (A,D) such that 

, MxN dimensional 

where M = m + nand N = m + n + n, and 

R, 0 0]
D= 0 Dpl 0 , NxN dimensional. 

o 0 Q, 

into another pair (AO, DO) such that AO is a unit lower triangular (MXN) dimensional matrix with 

units on the main diagonal 

AO- [ L. 
0 

~]K~el Lp 1+1 

and DO is a (N xN) diagonal matrix 

[D. 
0 

;JDO= ~ Dp 1+1 

0 

D. is an arbitrary diagonal nXn dimensional matrix. Then, it holds that 

A D A' = AO D" A"' (2.11) 

See Appendix for the proof. 
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2.3. Algorithm 

The basis of the square root algorithm implementation is to maintain the 

triangularized form during each update computation. The scheme of the algorithm for one step 

is as follows 

Time t 

Input: 

t~O YI 

~I.l 
I 

Output: ~I+ 1I 

t>O Lp(I+J), Dp(l+l), and P"+l from (2.9) 

We calculate these prediction output values by means of: 

• Construct A and D matrices from input matrices Fo Ho RI, Do r,,1 and DpI 

• Obtain A* and D* matrices verifying (2.11) 

• Compute ~1+l1 (2.7) following: 

• Give ~t+l1 and L (l+l), Dp(t+l) as input values for next step.p
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3. Triangularization procedure by parallel computation 

In this section we describe in terms of parallel instructions how to obtain A" and 

0" matrices from A and 0 matrices. The key is the triangularization of matrix A. Basic ideas are 

in Palis (1989) (see [5]). 

Examples of primary parallel instructions (included as primitive instruction for 

example in the connection Machine parallel instruction set) are the scan operations. A scan 

operation takes a binary associative operator $ and an ordered set of elements [et e2 e3,"'] and 

computes the ordered set [et, et $ e2, et $ e2 E9 e3, ... ]. Example of scan operation is the scan­

with-add operator, where $ is the addition. We will make extensive use of this parallel 

instruction. 

A clear way to obtain the triangularization is t<;l zero out the rows of A one at time 

starting with the first row. The idea behind the parallel algorithm is to achieve zeros in each row 

of A using a constant number of scan operations. Thus, the total amount of parallel operations 

is O(M). 

For 1 ~ K ~ M let denote by A(k) and O(k) the corresponding matrices after 

zeroing out the k-th row of A. We denote the original A and 0 matrices by A(0) and 0(0). 

Let introduce S = ADA' = A"O"A"'. We define for k ~ i ~ M and k ~ j ~ N 

j 
(k-1) r (k-I) (k-1)d(k-1) (3.1)Sjj =L.J akJ au 11 

/.k 

More explicitly, the elements on the diagonal matrix O(k) take the expression 
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(k-I)
S j=k

d~~)= J'N (3.2)
'JJ 

Analogous form for the A(k) matrix 

at l
) for elements in RE {I SiSk-I,1 SjSN}V{1 SiSM,l SjSk-l} 

(k-I)
S iN for elements in R'e{kSiSMJ=k}

(k) (k-I)a..
IJ 

= Sw 

(k-I) 
(k-t) Si(j-I) (k-I) (3.3) 

a·· ---alrj for elements in Rile {kSiSM,kSjSN}
41 (k-I)� 

SkU-1)� 

Graphically, R, R' and R" represent the following positions for a M x N matrix 

R 

R' 

M 

R" 11
K 

K I 

~----N ~ 

The parallel procedure uses a M x N array of processors. Let denote them by 

P(i,j). At the first step, k=O, P(i,j) holds ai}O) and dl) values, with I S iSM and 

I S j S N. At the start of each k iteration I S k S M, P(i,j) contains a;tl), dl·1) and proceeds 
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as follow 

1.- P(i,j) holds akr· I ), k S isM, k s j s N 

3.- using scan-with-add operation for k S isM we get expression (3.1) 

k 

P( ' k) h id ~ k-I k-Idk-I k-I
I, 0 S� L..J a19 av jj =Sj);� 

i-k� 

N 

P(i,N) holds L atl)ar1)dX-I)=si~-\) 
j.k 

4 - P(I' J') then contal'ns ~ ..(k·l) s·· (k·l) k < I' < M k < J' < N 
"� ""1) "G-I) - - , - ­

5.- finally we compute aij(k), dl) 1 s iSM, 1 s j s N, in each P(i,j) following (3.2) and 

(3.3). 

After k=M iterations, P(i,j) contains the elements Cljt = ai/M) and djj* = djj(M) 

1 s isM, 1 s j s N. 

4. Square root kalman filter with contaminated observations 

4.1. Fonnulation 

In this section we obtain the parallel Kalman filter for the case of contaminated 

observations. 

Let consider a dynamic linear system of the form 
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X'+I =F, X, +"', "',-iid N(O,Q,)� 
y,=H, x,+v, v,- iid E-contaminated N(O,R,)� 

where residuals {wt} and {vt} are mutually independent. 

For the contaminated case, predictive values given by (2.5) and (2.6) can be 

obtained after some robustification procedure of the Kalman filter. For instance, an approach 

based on the M-estimation principle developed by the authors is given in [2]. It seems to be very 

efficient from the computational point of view, even in sequential implementation. 

The state estimates formulas in this work [2] are given by 

where Rt2 denotes the square root matrix of Rt, and Wt is the mXm diagonal matrix with 

elements 

iF I' ... , iFm are the robustifying psi-functions, and Cjt and bjt are the elements of vectors 

b l , Cl' 

R-1I2H = R-1I2 -, , and , y,­

bm' Cm' 

(RI•
I12 2is the inverse matrix ofRI

/ ) 
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So, the predictive formulas (2.7) and (2.8) can now be rewritten as 

x' =p;t-l+K(y _H~H)
1+I ("I I I ("I 

where 

and matrices Pt l and ReI follow (2.9) and (2.10) as appropriate factorization expressions. 

4.2. Algorithm 

We proceed as in Section 2.3, except the construction of 0 matrix. 

Time t Input: 

t ~ 0 YI 

~ 1-1 
I 

Output: 

t > 0 

Prediction values are obtained as follows: 

• Construct A «m+n) X (m+2n)) and 0 «m+2n) X (m+2n)) matrices 
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R1/2W-IR1/2 0 0I I� I 

D= 0 0A=[~	 DpI 

0� 0 Q, 

• Obtain� AO and 0° following Section 2.2, such that 

ADA' = AOOoAo, 

where� KtLet and Let are obtained from A°. 

• Give� xt+l\ 1,,(1+1) and Op(t+l) as input values for next step. 

We present the scalar observations as a special case: 

Let consider (2.1) and (2.2) with m= 1. The predictive values for time t constructed at time t-l 

following [2], are given by 

where 

K =F pHh' -I 
I ~	 I I reI 

I-Ih' rel=ht, ,+r, 

In this case matrices A«(1+n) x (1+2n)), 0«(1+2n) x (1+2n)), 

AO «(1+n) x (1+2n)) and 0° «(1+2n) x (1+2n)) take the form 
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r, 0 0 
A =[I hI-", 0] D= o Dp, 0 

o F!--p, I ' 
o 0 Q, 

re, 
A .= [I 0 0] o 01D·= o 0Dp'+1

K, Lp '+1 0 ' 
0 o Da . 

So we obtain KI, reI, L.,(I+I) and Dp(l+l) from A· and D· and the predicted values for 

t+ 1 at time t: 

Computational results 

We present early comparative results of the execution time for sequential and parallel 

methods of the algorithm described in section 4 (Kalman filter with contaminated observations). 

Time measures are presented for input/output operations (Figure 1), algorithmic calculus 

(Figure 2) and finally, total time (Figure 3) adds both. 

For each Figure and Table: 

dimension represents n=m values (dimensions of state and observation vectors), and 

time is execution time in 10-3 seconds. 

Software has been coded in C language, using Turbo C compiler version 2.0, and 486 

processor at 33 MHz as hardware resource. 
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1nIXlt/output 

1000 
900 
800 
700 
600 
£i00 
400 
300 
200 
100 

OO-C)---(:}-Cl1"""'W 

~NM~~~~~~O~NM~~~~~~O 
~~'-~~~"'~1"-"'N 

Dimension 

FIGURE I 

DIMENSION SEQUENTIAL (_) PARALLEL (0) 

I 40 44 
2 43 44 
3 48 53
4 53 55 
5 66 77
6 92 (l0
7 121 .55 
8 147 183 
9 208 223 

10 220 274 
11 296 327
12 311 385 
13 370 440 
14 422 495 
15 478 572 
16 532 659 
17 598 722 
18 677 787 
19 744 872 
20 814 9n 

TABLE I 
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Algorithmic calculus 

700� 

600 /500 

400 /-1 
300E-4 

.~ -4/
200 ~,..a---­

~ 
100 

0 I I I I I I I I I I I I I I , , I 

- N M 'It Lt'll.O,.... CO 010 -N M 'It ca ..... COIt)----- .... .... - .... ~~ 
Dimension 

FIGURE 2 

DIMENSION SEQUENTIAL (.) PARALLEL (0) 

1 34 55 
2 43 57 
3 48 58 
4 55 61 
5 67 67 
6 108 72 
7 141 100 
8 166 111 
9 170 118 

10 183 128 
11 211 133 
12 221 135 
13 266 166 
14 344 194 
15 399 199 
16 406 209 
17 480 221 
18 511 243 
19 556 255 
20 628 278 

TABLE 2 
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Total 

1600 

1400 

1200 

1000 

800 

600 

400 

200 
~J=(Jo-C:t--' 

O+-+----<l----4t--t__+__+--f--+--+--+--+-+--l----4t--t~__+__+___i 

-NMlIl:t LnCO,...COO)O-NMlIl:tLnCO",,"COc:nO 
~"''''''''~'''''''''''''''''''N 

Dimension 

nGURE3 

DIMENSION SEQUENTIAL (.) PARALLEL (0) [(SEQ-PAR)/SEQ] x 100 

1 74 99 -­
2 86 101 -­
3 , 96 111 -­
4 108 116 -­
S 133 143 ­
6 200 182 9 
7 262 25S 2,6
8 313 294 6 
9 378 341 9,7

10 403 402 ­11 507 460 9,2
12 S32 S20 2,2
13 636 606 4,7
14 766 689 10,0
IS 877 771 12
16 937 868 7,3
17 1078 943 12,S
18 1188 1030 13,2
19 1300 1127 13,3
20 1452 1250 13,9 

TABLE 3 
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Appendix 

Verification of the relation (2.11) 

R, 0 0 I 0 I
AD~'= I H~PI 0 0 DOL' u' L ,..'o F~ I pI pt'.I.1 p~ I =[ ]

pI 0 0 Q 0 I, 

RI +H~pPp~;Il: H~pP~;'F:] 
= [ F~pPp~;,H: F~pPp~;,F: +Q, = 

R +H PI-lH' H PI-IF']I [R Rel"'l",'I I I I I I el ] 

= [ F,:-1H: F,P:-I F:+Q, = K/?el P,'+I + K/?e/<: 

on the other hand 

, , ,
Lel K,LelLOO] Del 0 0 

A ODoAo'= el 0 D 0 , 
= pl+1 0 Lpl+1[K~el Lpl+I 0 0 0 D 

Q 0 0 

LePe~;,K: ] 

K~ePe~;,K: +Lp,+IDp,+IL;,+1 = 

• 
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