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Abstract 

We investigate a test for unit roots in autoregressive time eeries based on maximization of the 

unconditional likelihood. This is: the likelihood function appropriate for stationary time series. While 

this function is the true likelihood only under the .tationary alternative, it can nevertheless be 

maximized for any data including data from a unit root process. It thus gives a way to test for unit 

roots, provided percentiles can bl~ calculated. For models with estimated means, the power of the new 

test is better than that of some currently popular tests. 

1. INTRODUCTION 

Time series modeling often involves the selection and fitting of an ARIMA (autoregressive 

integrated moving average) model. The order of integration is defined as the degree of differencing 

required to make the series statil:mary where stationarity implies constant mean and variance over time 

and a covariance which depends only on the time separating two observations. The fitting of a series 

traditionally involves differencing the data if necessary, until they appear stationary then fitting 

autoregressive and moving average parameters to the, possibly differenced, data. 'We investigate 

statistical ways to check whethe:r differenting is necessary. 

Appropriate differencing rel1lders a series stationary and thus makes the resulting estimation theory 

easier to work out. The results tend to be classical in nature, for example normal limit distributions of 

estimators. Classic methods Cl,f estimation, such as least .quares and maximum likelihood are not 

necessarily poor estimation rnethodll for the parameters of nonatationary .eries, however the 

distributions are not standard even in the limit. If percentiles of the distributions can be obtained, 

then these can be used for hypothesis testing. 
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For ARIMA models, stationarity can be characterized by a condition on the roots of a polynomial 

involving the autoregressive coefficients, called the characteristic polynomial. If all the roots are larger 

than 1 in magnitude, the series is stationary. Therefore we can base a test for stationarity on the 

coefficients or roots of the characteristic polynomial. These in turn must be estimated in some way. 

Such tests are often called unit root tests (unit roots being the null hypothesis) but could arguably also 

be called tests for stationarity when that is taken as the alternative. The most important motivation 

for developing a test for stationarity is that certain economic hypotheses are mathematically equivalent 

to stating that there are unit roots in the corresponding data series. 

Tests based on least squares estimation are reasonably well known. Least squares maximizes the 

likelihood conditional on the initial observation(s). This is in contrast to the unconditional likelihood 

function for a stationary model that is used by computer programs written to do maximum likelihood 

analysis. This unconditional likelihood function can be maximized regardless of the true nature of the 

data and thus might be thought of as an objective function rather than a likelihood. Under the 

alternative hypothesis of stationarity, such an estimator should do well. However, it is not clear how 

well it would perform under the null hypothesis of a unit root nor is it clear what the distribution of 

the unconditional maximum likelihood estimator would be in this case. 

We show that the distribution in question is nonstandard and differs, even in the limit, from that 

of the least squares estimator. Further, this new estimator has superior power in some instances of 

practical interest. 

2. TEST CRITERIA, MEAN KNOWN (11 =0) 

While the case of a known mean is of little practical value, the algebra is simple and the ideas of 

the proof carry over to the more practical cases. In what follows, we outline the main steps of the 

development of the estimator. The interested reader can refer to Gonzalez-Farias (1992) for technical 
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details. 

Hasza (1980) and Anderson (1971, pg. 354) study the AR(I) case with known mean using the 

stationary likelihood function. They show that the maximum likelihood estimator of p in the model 

Y& = pY&.-1 +et, e& - N(0,(T2) can be written as the solution p to the cubic equation g(p) = 0 where 

Using the formula for the roots l:>f a cubic equation, a closed form solution can be given (see Hasza, 

1980). 

Although this gives a neat solution in the first order case, we want to look at higher order 

1 n-} 
processes. Let X = n(p -1) and divide g(p) by n.:r E Y~. The result is 

n &=2 

where p =( I:y~)_1( I:Y&Y&Ol) which is almost exactly the ordinary least squares estimator and 
&=2 &=2 

n-1 J1 [n ]p = Y~ + Y~) + E Y~ :L: Y&Yt-1 which is the symmetric estimator as defined in Dickey,~ &=2 &=2 

Hasza, and Fuller (1984). Both l1(p - 1) and n(p -1) are Op (1). Since the leading coefficient in qn(X) 

is l/n, we see that the probabilit;y limit of the polynomial qn(X) over any closed X interval is the same 

as the probability limit of the qUls.dratic 

Cl!(X) =2X2 
- ~n(p -1)] X+ ~n(p -I)} (2.1) 

Because of the Op (1) order of thll random coefficients and the fact that n(p -1) is strictly negative, we 

can find a closed X interval such that with arbitrarily high probability for a given 6 > 0, the roots of 

qn(X) are real, the largest two ar'e within the closed X interval, and these two are within 6 of the roots 

of Q(X). That is, the negative root of this quadratic polynomial will have the same limit distribution 
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as the maximum likelihood estimator. 

Using the notation of Dickey and Fuller (1979) we define 

(r,C) = lim (n2 EW~l' n-1 EW&-lZt) 
n~ &=2 &=2 

where Wt is the random walk defined by Wt = W&-l +Zt and Zt'" N(O, 1). Alternatively, Chan and 

Wei define (r, C) as (1 ~ W2(t)dt, l<W2(1) -1») where Wet) is Brownian Motion. The limit of 

expression (2.1) in terms of (r, C) becomes 

(2.2) 

Techniques described in Dickey (1976) can be used to simulate the random vector (r, () from which 
) 

the roots of (2.2) can be found, and percentiles tabulated. Table 2.1 contains percentiles of the 

unconditional maximum likelihood estimator's distribution for finite samples and the limit. These are 

labelled n(p ml-1). Also listed for comparison are the least squares estimate n(pob -1) as in Fuller 

(1976) and the symmetric estimator n(p -1) as in Dickey, Hasza, and Fuller (1984). Gonzalez-Farias 

(1992) also gives tables of the corresponding studentized statistics. 
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Table 2.1. Empirical cumulative distribution of the estimators of Pt P=1. 

C Sample Size Probability of a Smaller vAlue. 

n(1 ml- 1) 

n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

C 

C 

25 
50 

100 
250 
500 
00 

-12.19 
-13.18 
-13.81 
-14.29 
-14.50 
- 14.86 

-9.73 
-10.41 
-10.83 
-11.14 
-11.26 
-11.46 

-7.75 
-8.29 
-8.59 
-8.81 
-8.89 
-9.00 

-5.80 
-6.20 
-6.42 
-6.57 
-6.62 
-6.69 

-0.38 
-0.39 
-0.39 
-0.39 
-0.39 
-0.39 

-0.27 
-0.27 
-0.28 
-0.28 
-0.28 
-0.28 

-0.21 
-0.21 
-0.21 
- 0.21 
-0.21 
-0.21 

-0.16 
-0.16 
- 0.16 
-0.16 
-0.16 
-0.16 

n(pols -1) 

, 
" 

25 
50 

100 
250 
500 
00 

-11.90 
-12.90 
-13.30 
-13.60 
-13.70 
-13.80 

-9.30 
-9.90 

-10.20 
-10.30 
-10.40 
-10.50 

-7.30 
-7.70 
-7.90 
-8.00 
-8.00 
-8.10 

-5.30 
-5.50 
-5.60 
-5.70 
-5.70 
-5.70 

1.01 
0.97 
0.95 
0.93 
0.93 
0.93 

1.40 
1.35 
1.31 
1.28 
1.28 
1.28 

1.79 
1.70 
1.65 
1.62 
1.61 
1.60 

2.28 
2.16 
2.09 
2.04 
2.04 
2.03 

n(p -1) 

?.0 

50 
100 
250 
500 
00 

-12.90 
-13.27 
-13.87 
-14.25 
-14.38 
-14.51 

-9.67 
- 10.41 
-10.82 
- 11.08 
-11.17 
- 11.26 

-7.75 
-8.26 
-8.55 
-8.73 
-8.79 
-8.86 

-5.83 
-6.16 
-6.34 
-6.45 
-6.49 
-6.53 

-0.40 
-0.41 
-0.41 
-0.42 
-0.42 
-0.42 

-0.29 
-0.30 
-0.30 
-0.30 
- 0.30 
-0.30 

-0.23 
-0.24 
- 0.23 
-0.23 
-0.23 
-0.23 

-0.18 
-0.18 
-0.18 
-0.18 
-0.18 
-0.18 
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The limit distribution does not change if additional lags are included in the model. This will also 

be true in the case where the mean is estimated. To illustrate this result, consider a second order, i 

,:) 
AR(2), model. The AR(2) model with mean 0 can be written as i 

Y& = (ml +m2) Y&-l-mlm2 Y&-2+e& 

and the logarithm of the stationary likelihood for Dormal is 

where the sum of squares SSQ is 
) 

SSQ = t(y& - (m1+ m2)Y&ol + m1m2Y&_2)2
&=3 

Suppose the true value of (m1, m2) is (1, 0) with 101 < 1. Now let X = n(m1-1) and S = Jii(m2 ­ 0) 

and consider the function tn(L) for (X, S) in an arbitrary closed rectangular region R. Let a­2 denote 

the maximum likelihood estimator of tT2 for any given (X, S) and note that for (X, S) in R we have 

a­2 = SSQ/n + Op(l/n) = 0­
2+ Op(l/Jii ) 

since, in R, m1 = 1 + O(I/n) and m2 = 0 + 0(1/.;n). Substituting a­2 into In(L) we have the 

concentrated likelihood 

In(L) = - (n/2)tn(a-2) + (1/2)tn( - X/n) ­ (n/2)tn(2D) 

+(1/2)l~(1 + m1)(I- m~)(I-m1m2)2J- (n/2) 

Only the first two terms affect the limit distribution. In fact the X=n(m1 -1) and S=Jii(m2 ­ 0) 

which maximize In(L) are asymptotically the same as the (X, S) which maximize 

Fn(X, S) = [ - (n/2)l~(SSQ)/n)]+ (1/2)ln( - X) + C (2.3) 

where C is constant with respect to X and S. See Gonzalez-Farias (1992 appendix B). For (X, S) in R 

we have 

SSQ = &tJe& ­ X (Y&-1 -aY&-2)/n -S(Y&_1 ­ Y&-2)/Jii + XS(Y&-2/n3/2)t 

from which we see that 

)' 
I 
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Notice that XS in SSQ is multiplied by n2 Y'.2' a term whose sum of squares converges to O. 

c 
Furthermore I:[(YL-1- QY~2)/n (Y~1 - Y~2)/.Jii] converges to O. In the limit, then, the log likelihood 

is the sum of two functions, one iJrlvolving only S and one involving only X. Specifically, 5SQ/u2 ­
n
L: e~/u2 is a polynomial in (X, S) and converges uniformly in R to 
L=3 

2[- :2XC + x2rJ +[52/(1- 0. ) - 2 SVJ (2.4) 

where V - N(0, (1 - Q2r1} The derivatives of 55Q/u2 also converge to the derivatives of (2.4). This 

result follows from the well knl)Wn rates of convergence of sums of squares and cross products for 

c 
stationary and unit root process1es. Taking the derivative, with respect to X, of Fn(X, 5), we see thl\t 

the limit maximum likelihood estimator satisfies 

or 

! 
I which is the same as (2.2). Nol.e also that taking the derivative of Fn(X, 5) with respect to 5 gives the 
I 

i
C	 same limit normal distribution for J"(m2 - 0) that would be obtained from applying least squares or 

ma.'-.:imum likelihood to the model 

c Since the region R can be any dosed rectangular region with (X, 5)=(0. 0) an interior point, the orders 

of sums of squares and cross products in (2.3) imply that, given any 6 > 0, the (X, 5) which maximizes 

Fn is eventually within thin region with probability at least (1- 6). Over R, the function 

fn(L) - Fn(X, 5) converges uniiformly to 0, so the normalized maximum likelihood estimates of m l and 

m2 converge to the mL'CimizinlS (X,S). 

We have outlined the C&l!ie of the known mean since the algebra is relatively easy to follow and 

c involves only a few terms. In the next section, we look at the more practical case in which the mean ~ 

is estimated.	 The main ideas are similar to the case just presented, but the algebra is more tedious 

and, for example, the limit estimator will now be the solution oC a fifth degree polynomial (3.10). 
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3.	 TEST CRlTERlA, MEAN ESTIMATED 

Consider the model for Yl' "', YD 

Yt = p(1 - p)+pYt,.l+et' t=2, 3, •.• ;Ipl < 1 (3.1) 

where et is a sequence of iid N(O, er2) random variables. We will study the model (3.1) under 

two scenarios, namely, Y1 being fixed and 

3.1. Case 1: Y1 fIxed. 

When Y1 is considered fIxed, the estimator of p is obtained by maximizing the log likelihood 

function conditioned on Yl' namely 

L(JJ, p, (7'2) =- t log (2n) - t Jog (7'2 ­

1 (3.2)
2(7'2 

This is commonly called the conditional maximum likelihood estimator. If I' is estimated, the 

conditional maximum likelihood estimator is also asymptotically equivalent to the ordinary least 

squares estimator PIA,o'b of p, obtained by regressing Yt on 1 and Yt-l' Asymptotic properties of PIA,ols 

when p = 1 have been very well established in the literature, see for example, Dickey and Fuller (1979). 

The estimator's distribution does not depend on the value 0(1' in (3.1). 

Dickey and Fuller (1979) show that the pivotal statistic 

where S2 =n': 2 t e~ and Y(-I) =n': 1 I: Yt-1 and rp can be expressed as a function of standard 
...2	 2 . 
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normal variates. Again this statisl~ic does not depend on the true value-of P in (3.1). In fact. adding a 

c	 constant c to every observation hs no effect on either PIA,ob or f lA' Table 8.5.2 of Fuller (1976) gives 

the percentiles of the f P distribution. 

3.2. Case 2:	 Y1 - N(p. (12 / (1- ,p2») . 

(	 Consider n observations YI' "', Yn from the model (2.1). Then. the log likelihood function is 

given by 

(3.3) 

( 

where 1.*(P.	 P. (12) = -910g 211 _.~ log (12 + i log (1- p) 

o 
For any given p and (12. both 1. and L· are maximized at 

n-1 
Y 1 +Yn -(p-1) EYt 

jJ(p) = ~~ - (n - 2)(p -1)	 (3.4) 

where Yl =n ~ 2 t Yt . 
t=2 

Notice that jJ(p) is a weighted average of the data so that any statistic defined as a function of 

Yt - Mp) will be unchanged by j;he addition of a constant c to every observation. This shows that 

such a statistic is independent of the value of p in (3.1). 

Let jJ':n. p:n and (1~2 be the 'values of P. p and (12 that maximize L-. It is shown in Gonzalez­

Farias (1992) that the asymptotic distribution of (P':n. p:n. 0-:;) is the same as (Pml' Pm,ml' a-~.ml) the 

ma..~imum likelihood estimator of (P. P. (12). so it is sufficient to use L* as the objective to maximize. 

THEOREM. Suppose Y = Y t - 1 +e t where et is a sequence of iid (0, (1~) random variables with t 

E(et) = '1(1~. Without loss of generality. assume (1~ = 1. Let P~. P~ and 0-;; be the values of P, P. (12 
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that maximize L-(IJ, P, 0'2). Then 

(3.5) 

and 

where H- = H + 1=1~ and A-is the unique negative solution to 

a4X4 + B.:JX3+ ~X2 + a1X + &0 = 0 (3.6) 

The ai's are functionals of a standard Brownian motion W(t). Following Dickey and Fuller (1979), 

and Chan and Wei (1988), (f, H, T) = (J ~W2(t)db, J~W(t)dt, W(l»). 

Let f IJ = f - H2, (=~(T2 -1), and
 

(Jj = (- TH. Then
 

2
a4 = 2fIJ' a3= - 2«1J + H ) - SfJj'
 

a2 = SfIJ+S«Jj + H2) -1 ,
 
) 

a1 = -8«Jj+H2)+2(T-2H)2+4, ao= -4. 

Proof: We present here a sketch of a proof. A detailed proof appears in Gonzalez-Farias (1992). 

Taking partial derivatives of L- with respect to IJ, and 0'2 and setting them equal to zero we get 

•- ""'(.* )IJm = IJ Pm (3.i) 

(3.S) 

and 13~ is a solution to 

- i.1*4 - .0-3 + - .0-2 + -;Q. - 0 (3.9)a4ml-'m + ~ml-'m "2ml-'m a1ml-'m +aOm = 

where 13~=n(p~ -1), 

_, I o 

1 1 

---._------, ---------------- ­
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aj,n :: - srn." - 2(n." - (2/n)~ + op(j;), 

a2,n =srD,,, + S(n,,, +! ~ - 1+0p(Jn), 

ai,n == -S(D.,,-~ '\1+fi<Yn-2Vl)2+4+0p(~), 

and 

The coefficients a~n in (3.9) converge jointly in distribution to the coefficients aj in (3.6). 
,.-. 

By Theorem 13.8 of Breiman (196S), we can change to a new probability space on which ~ 

{a:"
I,ll 

,i =0, .• " 4} !{a.,
J 

i =0, •. " 4}. 

The limit polynomial given in (3.6) can be fadored giving 

and hence, we can show that it has a unique root X=A· in (-00, 0). 

Also, since ai,n = Op(1), i=O, ... , 4 and a4,n and a4 are positive random variables, it is possible to 

show that with a very high probability the polynomial in (3.9) has a solution, iJ:n in the interval 

(- n, 0). 

Then, using the Implicit FU1l1ction Theorem we get that with high probability, there exists a 

unique p:n that satisfies (3.9) and is a continuous function of aj',n' i=O," ,,4 and hence p:n .1 A·. 

. 1d' . f L( 2)' U --L..+at·(Il, p, (12»Note tat,h the partla envatlve 0 Il, p, (1 IS ~ = 2(I+p) 8p • 

After some algebra we get that the maximum likelihood estimator of p, or equivalently 

ir = n(p· 1-1) is a solution to a fifth degree polynomial, m m.m 
5 ••
E ai,np~ =0 (3.10) 
i=O 
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Note that the polynomial in (3.10) behaves similarly to the fourth degree polynomial we obtained 

for L· and hence the asymptotic distribution for the maximum likelihood estimator is the same as that 

f ( •• •• ..2)
o JJm, Pm' erm • 

4. Remarks 

1. The ma.."(imum likelihood estimators may also be obtained iteratively. For a given Pi -1 and ut-I' 
Pi may be obtained from (3.4). For a given Pi' we then obtain Pi and ut by ma."(imizing L(Pj' P, er'). 

It can be shown that p. is a solution to a cubic equation where the observations are centercd at p. and
1 I 

a closed form expression is given in Hasza (1980). 

2. When we assume that JJ=O in the model (3.1) then the MLE of P that maximizes l.(0, p, er') is 

obtained by solving (2.2), namely 

• GJ If ( (2 2 If'}
n(Pml- 1)-A=nr-{fi+r} . 

An empirical study that compares the powers of Pols and Pml indicates that there are essentially no 

differences in the power among these test criteria in the JJ=O case. 
') 

3. A Wald type pivotal t-statistic can be constructed for testing p=l , 

• (p -1)
t= 

JV(p) 

where V(M is determined from the negative matrix of the second derivatives of the corresponding 

objective function. 

4. For the higher order processes, we consider the model 

(3.11) 

where Zl is a stationary AR(p - 1) model, 1 > p ~ max Imjl and mil i =2, "', p are the roots of tile 

characteristic equation of the ZL process. Using methods similar to those in section 2, Gonzalez·Farias 

(1992) has shown that the limiting distribution of n(Pm,ml-1) where Pm. ml is the MLE of p for the 

'- \. 
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model (3.11), is the same as that of n(Pm,ml) derived for the AR(1) case. 

Tables of percentiles for the different estimators mentioned above are given in Table 4.1 - 4.2. 

The top panel of each table is the maximizer or L(p, p, (7") and the second the maximizer of 

L *(p, p, (12) as in (3.3). The ll~t two panels are the least squares and symmetric estimators as in 

Table 2.1 but with estimated mea.ns. 

( 

,', 
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Table 4.1 Empirical distribution of the normalized bias estimators. 

Sample Size Probability of a Smaller Value. )! 
~',-" 

n(pml, m-I) 

n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

25 -16.96 -14.23 -12.01 -9.69 -1.05 -0.74 -0.56 -0.42 ) 
~ .50 -18.05 -14.92 -12.45 -9.93 -1.03 -0.72 - 0.53 - 0.39 ' .... 

100 -18.70 -15.34 -12.72 -10.07 -1.01 -0.70 - 0.52 -0.38 
250 -19.19 -15.66 -12.93 -10.18 -1.00 -0.70 - 0.51 -0.37 
500 -19.40 -15.80 -13.02 -10.22 -0.99 -0.68 -0.50 -0.36 
00 -19.72 -16.01 -13.16 -10.27 -0.95 -0.66 -0.50 - 0.35 

) 
~) 

n(~-l) 

25 -17.31 -14.50 -12.26 -9.90 -0.99 -O.il -0.55 - 0.42
 
50 -18.33 - 15.12 -12.61 -10.04 -0.99 -0.70 -0.55 -0.42
 

100 -18.91 -15.49 -12.82 -10.13 -0.99 -0.70 -0.55 -0.42
 )
250 -19.31 -15.74 -12.97 -10.19 -0.99 -0.70 -0.55 -0.42 J 
500 - 19.46 -15.84 -13.04 -10.21 -0.99 -0.70 -0.55 0.42 
00 -19.66 -15.98 -13.13 -10.25 -0.95 -0.70 -0.49 -0.35 

n(p1-'.0).- 1) ) 
./ 

25 -17.2 -14.6 -12.5 -10.2 -0.76 0.01 0.65 1040 
50 -18.9 -15.7 -13.3 -10.7 -0.81 -0.07 0.53 1.22 

100 -19.8 -16.3 -13.7 -11.0 -0.83 -0.10 0047 1.14 
250 -20.3 -16.6 -14.0 -11.2 -0.84 -0.12 0.43 1.09 
500 - 20.05 -16.8 -14.0 -11.2 -0.84 -0.13 0.42 1.06 
00 -20.7 -16.9 -14.1 -11.3 -0.85 -0.13 0041 1.04 

n(p1-'. Iym -1) 

25 -17.9 -14.62 -12.49 -10.17 -1.52 -1.17 -0.95 -0.77 Y 
50 -18.64 -15.54 -13.09 -10.52 -1.48 -1.13 -0.90 -0.72
 

100 -19.39 -16.00 -13.39 -10.70 -1.46 -1.10 -0.88 -0.69
 
250 -19.85 -16.29 -13.56 -10.80 -1.45 -1.09 -0.87 -0.68
 
500 - 20.01 -16.38 -13.62 -10.83 -1.44 -1.09 -0.87 -0.68
 
00 - 20.16 -16.47 -13.68 -10.87 -1.44 -1.08 -0.86 -0.67
 

o 
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Table 4.2 Empirical distribution l:lf pivotal statistics 

( Sample Size Probability of a Smaller Value. 

tml,m 

n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

( 25 -3.49 -3.08 .- 2.76 -2.42 -0.90 -0.83 -0.79 -0.76 
'\- 50 - 3.31 -2.96 .- 2.68 -2.38 -0.91 -0.83 -0.79 -0.76 

100 -3.24 -2.92 ·-2.66 -2.36 - 0.91 -0.83 -0.79 -0.76 
250 -3.21 -2.90 ·-2.65 -2.36 -0.91 -0.83 -0.79 -0.76 
500 -3.20 -2.90 ·-2.64 -2.36 -0.91 -0.83 -0.79 -0.76 
00 -3.20 -2.90 ·-2.64 -2.36 -0.91 -0.83 -0.79 -0.76 

'\.' 
i-m 

25 -3.53 -3.10 ·-2.78 -2.44 -0.88 -0.81 -0.78 - 0.75 
50 -3.35 - 2.99 ·-2.70 -2.39 -0.90 -0.83 -0.79 -0.76 

r 
100 -3.36 -2.94 ·-2.68 -2.37 -0.90 -0.83 -0.80 -0.77 

'\' , 250 -3.21 -2.91 ·-2.65 -2.36 -0.91 -0.84 -0.80 -0.7i 
500 - 3.21 -2.90 ·-2.64 -2.36 -0.91 -0.84 -0.81 -0.78 
00 -3.20 -2.90 ·-2.64 -2.35 -0.91 -0.84 - 0.81 -0.78 

;." 

25 -3.75 -3.33 ·-3.00 -2.63 -0.37 0.00 0.34 0.72 
50 -3.58 -3.22 .- 2.93 -2.60 -0.40 -0.03 0.29 0.66 

100 -3.51 -3.17 ·-2.89 -2.58 -0.42 -0.05 0.26 0.63 
250 -3.46 -3.14 -2.88 -2.57 -0.43 -0.07 0.24 0.62 
500 - 3.44 -3.13 -2.87 -2.57 -0.44 -0.07 0.24 0.61 
00 -3.43 -3.12 -2.86 -2.57 -0.44 -0.07 0.23 0.60 

;'",sym. 

25 -3.40 -3.02 -2.71 -2.37 -0.83 -0.73 -0.65 -0.59 
50 -3.28 -2.94 -2.66 -2.35 -0.84 -0.73 -0.65 -0.58 

100 -3.23 -2.90 -2.64 -2.34 -0.84 -0.73 -0.65 -0.58 
250 -3.20 -2.88 -2.62 -2.34 -0.85 -0.73 -0.66 -0.58 
500 -3.19 -2.88 -2.62 -2.33 -0.85 -0.73 - 0.66 -0.58 
00 -3.17 -2.87 -2.62 -2.33 -0.85 -0.73 -0.66 -0.58 

-------~---_._--------'---------
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5.	 Power Study 

We generate 50 observations from the model 

Yt = p(l- p)+pYt-1 + et 

with Yo = 0, and et - NID (0, 1). We consider the values p=O and p=.98, .95, .90, .85, .80, and .70. 

For each parameter combination 5,000 data sets were generated and the percentage of runs for which 

the test criteria reject the unit root null hypothesis were recorded. 

In Fig. I, we give the empirical powers of the test criteria of the form n(p -I), often called 

normalized bias. We have 

PIJ,OLS: ordinary least squares estimator obtained by regressing Yt on 1 and Yt -1' This 

is the solid line. 

PIJ,sym: symmetric estimator obtained by regressing YL on I, YL-1 and on 1 and YL+1 as in 

Dickey, Hasza, and Fuller (1984). This is the middle dashed line. 

Pm. ml: ma..... imum likelihood estimator obtained as a solution to the fifth degree 

polynomial (3.10). This is one of the top, nearly coincident, dashed lines. 

p:n:	 approximate maximum likelihood estimator obtained as a solution to the fourth 

degree polynomial (3.9).	 This is the other dashed line at the top. 

Figure 2, shows the empirical powers of the corresponding pivotal statistics, t IJ' t IJ,.ym' tm , ml' and 

t:n. for testing p = 1. 

We observe that: 

1. The test criteria based on Pm, ml and its approximation p:n have much higher power than the 

criteria based on the OLS estimate. 

2. The test criteria based on the pivotal statistics have marginally higher power than the criteria based 

on the corresponding normalized bias statistics. Also, for some p values, the empirical power of t • mlm

is almost twice that of Dickey and Fuller (1979) statistic t IJ' 

3. The test criteria based on the symmetric estimator have powers between that of the OLS and Pm, ml' 

A more extensive study may be found in Chapter 4 in G-F (1992). 

4. It is not surprising to see the best power associated with the statistic whose 5th percentile, under the 

null hypothesis, is closest to O. After all, under the stationary alternative, the estimators in each table 

converge to the same distribution. 

,"
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Figure 1: Normalized Biases
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Figure 2': Pivotal Statistics
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