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In this paper we describe the use of Gibbs sampling methods for drawing posterior inferences in 

a model with an asymptotically ideal price aggregator, non-constant returns to scale and composed 

error. An empirical example illustrates the sensitivity of efficiency measures to assumptions made 

about the functional form of the frontier. 
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Cost or production functions with composed. error are 
commonly used by microeconomists in the measurement of firm 
inefficiency. At the same time, the development of 
seminonparametric methods has allowed researchers to work with 
very flexible cost functions without composed error. In this 
paper, we unite these two strands of the literature and develop 
Bayesian techniques for analyzing flexible functional form cost 
functior.s with composed error. We argue that such techniques 

allow for much more accurate understanding of firm efficiency 
than do traditional methods. 

The paper is organized as follows. Section 1 discusses 
composed error models. Section 2 describes the asymptotically 
ideal model (AIM) which forms the basis of the seminonparametric 
approach we use in the paper. Section 3 introduces the AIM cost 

function with composed error and develops the Gibbs sampler. 
Section 4 applies our method to an empirical example, and Section 
5 concludes. 

Section 1: Compoaed Brror Modela 
Composed error models were first introduced by Meeusen and 

van den Broeck (1977) and Aigner, Lovell and Schmidt (1977). 
Bauer (1990) provides a survey of the literature. The basic model 

is given by: 

(1) 

This model decomposes the log of observed costs for firm i (C~) 

into three parts: i) The log of the actual frontier which depends 
on S~, a vector of exogenous variables, and which represents the 
minimum possible cost of producing a given level of output with 

certain input prices. ii) A non-negative disturbance, Zi' which 
captures the level of firm inefficiency. iii) A symmetric 
disturbance, Vi' which captures other effects due, for instance, 

to measurement error. 
In an empirical exercise assumptions are commonly made about 

these three components. Usually one takes the ViS to be i.i.d. 
N(0, (12) and independent of the ZiS, an assumption we maintain 
throughout this paper. Assumptions, which are not so innocuous, 
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must also be made about h(.,.) and Zi' Typically, Zi is taken to 
be i.i.d. D(.), where D(.) is some one-sided distribution on 9t. 
Common choices for D( .) are truncated Normal, exponential or 
Gamma. Since interest usually centers on firm inefficiency, 
accurate estimation of the ZiS is essential, and choosing an 
inappropriate D(.) may have harmful consequences. In a previous 
paper (van den Broeck, Koop, Osiewalski and Steel (1993), 

hereafter BKOS), four different choices for D( .) were used: ) 

truncated Normal, and Gamma with shape parameters I, 2 and 3. 1 

We were able to take weighted averages across our four choices 
for D(.) by using posterior model probabilities as weights, and 
argued that such an approach was preferable to choosing one 
particular distribution for D(.). 

Al though BKOS addressed the issue of uncertainty about D( . ) , 
it assumed that h(.,.) was linear in y, an assumption we propose 

to relax in this paper. The exact functional form used is ) 

described in Section 2. For present purposes it is sufficient to� 
note that estimates of Zi can be sensitive to choice of h(., .),� 
and that most of the existing literature assumes that h ( . , . )� 
takes a simple form (eg. Greene (1990) and BKOS use a variant of )� 

the Cobb-Douglas cost function). Acco~dingly, we intend to� 
examine to what extent inferences on firm efficiencies, usually� 
the prime objective of composed error models, can depend on the� 

functional form of the frontier. 2 By using seminonparametric )� 

methods, we intend to let the data reveal what h(.,.) should be.� 

:The Gamma with shape parameter 1 is the exponential 
distribution. 

2The use of panel data can eliminate the need for 
distributional assumptions to be made for %1' However, even with 

Jpanel data it is important to specify h(.,.) correctly. Thus, the 
techniques of this paper are relevant even without the composed 
error framework. Indeed, it is worth stressing that the Gibbs 
sampling techniques developed here are innovative even for the 
analysis of standard cost functions. By eliminating the %1 term, 
our techniques are able to provide an exact Bayesian analysis of 
the standard ASYmptotically Ideal Model with nonconstant returns 
to scale. In addition, they can be extended quite easily to other 
nonlinear models such as the generalized translog. 
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Section 2: The Asymptotically Ideal Mode1 3 

The large amount of research that has gone into finding 
(� flexible functional forms testifies to the great importance of 

avoiding gross specification error. This is especially so in the 
case of composed error models since measures of inefficiency can 
be very misleading if an inappropriate choice for h ( . , .) is made. 

C� The separation of the two error terms is the main challenge in 
these models, and generally proves to be least robust to 
arbitrary assumptions made by the user .In view of this problem, 
we propose using seminonparametric techniques to approximate the 

( underlying cost function. 
Such techniques involve taking an expansion of a parametric 

form for the cost function. If properly chosen, the resulting 
seminonparametric cost function can, as the order of expansion 

C� increases, approach any possible function. The seminonparametric 
approximation we use in this paper is based on the Muntz-Szatz 
expansion and results in the ASYmptotically Ideal Model (AIM) 
discussed in Barnett, Geweke and Wolfe (1991b). To motivate the 

~.	 advantages of the AIM, let us consider two criteria for judging 
a cost function: regularity and flexibility. If a cost function 

It 

is regular, it satisfies the restrictions implied by economic 
theory; if it is flexible, it includes a wide variety of 
functional forms. A cost function such as the translog, which 
involves taking a second order Taylor Series expansion about a 
point,� is locally flexible but not regular. The translog may be 
made regular at a particular data point by imposing restrictions. 
However, since such restrictions involve both parameters and the 
data, they can only be imposed at a point. In contrast, the AIM 
model uses the Muntz-Szatz expansion, which is globally flexible. 
Global� regularity is imposed on the AIM model through parametric 
restrictions alone. 4 

Seminonparametric methods are useful in that they allow for 

3Much of the material in this section is drawn from Koop and 
Carey (1992). 

4The importance of being able to impose global regularity 
has been emphasized by many authors. See Barnett, Geweke and 
Wolfe (1991b), p. 15, for an extensive bibliography. 
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the data to determine what the key properties of the cost 
function should be. A danger associated with some 
seminonparametric methods is the possibility of overfitting. 
Early seminonparametric models (Gallant (1981)) used Fourier 
expansions such that economic functions of interest were 
approximated using sines and cosines. Since cost functions are 
concave, many terms in the Fourier expansion are typically 
necessary, increasing greatly the risk of overfitting. It is for 

) 

this reason that we favor the Muntz-Szatz expansion over the 
Fourier expansion; it allows for the approximation of globally 
regular cost functions with an expansion globally regular at 
every degree. The AIM model fits only that part of the data that J 

is globally regular, thereby eliminating the risk of overfitting. 
For a more detailed discussion of overfitting see Barnett, Geweke 
and Wolfe (1991a) pp. 433-434 or Barnett, Geweke and Wolfe 
(199lb) p. 12. 

More specifically, consider the model with one output (Q) 
and three input prices (P={Pl,PZ,P3) '). If constant returns to 
scale hold, then there exists a price aggregator, f (p), such that 
the frontier cost function takes the form: 

• 
C(Q,p) =Qf{p) • (2) 

A seminonparametric approach to this simple case would involve 
choosing an expansion to model f{p). Barnett, Geweke, and Wolfe 

) 

(1991b) use the Muntz-Szatz expansions and call the resulting 
model the AIM model. Note that, while the model given above is 
globally flexible, in the absence of restrictions it is not 
globally regular, since f{p) can be any function, including non­
concave or non-homogeneous (or even negative outside the range 
of the data). Barnett, Geweke and Wolfe describe how linear 
homogeneity can be imposed on f{p) in a simple way. In addition, 
the authors ensure that C(Q,p) is quasi-concave and non­

) 

decreasing in input prices by requiring that all the coefficients 

SWe define the Muntz-Szatz expansion later. For present 
purposes it is sufficient to note that this expansion has the 
property that it can reach any continuous function if enough 
terms in the expansion are taken. 
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of f(p) be non-negative. Their resulting AIM model is globally 
regular in that any order expansion will satisfy the restrictions 

C implied by economic theory. 

It is worth noting that the restriction that the 
coefficients of f (p) be non-negative is a sufficient but not 
necessary condition for monotonocity and quasi-concavity. Hence 

(� the AIM model with this restriction is not globally flexible; 
that is, there exist some regular functions which cannot be 
approximated by C(Q,p) once the coefficients are constrained to 
be non-negative. Despite this dx:awback, Barnett, Geweke and Wolfe 

( argue that the restricted AIM specification is extremely flexible 
and adequate for their purposes (Barnett, Geweke and Wolfe 
(19 91b), p. 18).6 

Non-constant returns to scale that vary with output can be 
C� incorporated by specifying the frontier cost function as: 

C(Q,p) =Q~,~,ln"f(p) .� (3) 

The above cost frontier will be adopted here with an AIM(q) 
form for f(p), where q is the order of the expansion. The Muntz­
Szatz expansion has yet to be explicitly defined, as its general 
formulation is complicated. Once we impose linear homogeneity, 
however, it can be greatly simplified. Below we give the linear 
homogenous Muntz-Szatz expansion for f(p) for q=l and 2, for the 
case where there are three inputs. (Since our empirical example 
involves only 123 firms, setting q=3 or higher would probably 
provide too rich a parameterization. In any case, the evidence 
we obtain clearly suggests that q=2 is sufficient for our 
application) . 

6There are other ways of imposing regularity. For example, 
Gallant and Golub (1984) develop computational methods for 
imposing curvature restrictions at any arbitrary set of points. 
Their methods can be used to ensure that a cost function is 
quasi-concave at each data point. Terrell (1992) develops a 
Bayesian method for imposing regularity conditions over regions 
of prices, rather than simply at particular data points. Since 
it is very simple to impose, we use the non-negativity 
restriction given in Barnett, Geweke and Wolfe (1991b) here. 
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ftp) for use in AIM(l) 

ftp) for use in AIM(2) 

1 1 1 1 1 1 
2f (p) =Cl 1P 1 +Clz,Pz +ClJ1'3 +CI~? 1'2 +ClsPl,2P32 +CI,R-?PJ2 

31 31 31 13 13 

+CI,.P1'i1'2'i +Cle.P1'iP3'i +CltPz'iP3'i +Cl ol'l'i.Pz4 +Clll~PJ'i1
1 3 111 111 111 

+Cl121'2"iP34 
+ClaP?1'2"iP34 

+Cl16Ih41'22PJ"i +Cl15P?1'24PJ2 

Linear homogeneity in input prices is assured, since the 
exponents in each term sum to one. If each element of 
a=(a1, .. ,ak )', (k=6 for AIM(l) and k=15 for AIM(2)) is non­
negative, then ftp) is non-negative, non-decreasing and quasi­
concave for all positive input prices. It is worth noting that 
the first degree expansion yields a cost function identical to 
the commonly used generalized Leontief model. 

Section 3: The Gibbs Sampler7 

If we use (3) to model the log of the cost frontier, h(Si'Y) 
in (1), we obtain the model used in this paper: 

where Vi is LLd. N(O,02), Zi is Li.d. exponential8 with 
parameter A. and Pi= (PU,P2i,P3i) '. The likelihood function for the 
model based on a sample of size N can be easily derived as in 
BKOS (Section 3), but for the sake of brevity we do not present 
it here. We assume a reference prior density which is flat on 

7The Gibbs sampler is a technique for obtaining a random 
sample from a joint distribution by taking random draws only from 
the full conditional distributions. A detailed description of the 
technique can be found in Casella and George (1992) and Gelfand 
and Smith (1990). 

8It would be trivial to allow Zi to take other forms. 
However, we do not do so here in order to focus analysis on the 
modelling of the frontier. Note that the posterior odds analysis 
in BKOS favored, for the same application considered here (albeit
with a Cobb-Douglas price aggregator), the exponential assumption 
for Zi' 
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~=(~l'~2)" In(02) and In(A.), but where the elements of a are 
restricted to be nonnegative. That is, 

where p(a)=l if all the elements of a are nonnegative and =0 
otherwise. These assumptions define our Bayesian model from which 
posterior inferences on the parameters or the ZiS can be made. 

In BKOS we carried out a Bayesian analysis of a similar 
model using Monte Carlo integration with importance sampling. In 
a subsequent paper (Koop, Steel and Osiewalski (1992), hereafter 
KSO), we argued that the computational difficulties surrounding 
Monte Carlo integration with importance sampling were truly 
daunting and recommended the use of Gibbs sampling methods 
instead. The Gibbs sampler derived in KSO was found to work very 
well and yielded very accurate results with a relatively light 
computational burden. However, the Gibbs sampler in KSO was 
derived for a Cobb-Douglas price aggregator in (3), implying that 
h(.,.) was linear in y. Because the log of the AIM cost function 
used in this paper is not linear in a, a subvector of y' =(a' , ~' ) , 
the Gibbs sampler is different from that developed in KSO. It is 
worth emphasizing that, although the Gibbs sampler derived here 
is for the extension to the AIM cost function given in (3), 
similar methods can be used to carry out a Bayesian analysis of 
other nonlinear cost functions. 

To develop our Gibbs sampler we begin with some notation: 
let Yi=-ln(C i ), xi=(-ln(Qi) -ln2(Qi))" and wi'a=f(p~) (ie. let w~ 

contain the decreasing fractional powers of Pi given in Section 
2). Furthermore, let X, Z, Y and Wa indicate the vectors or 
matrices containing data on all firms for Xi' Zi' Yi and In (Wi 'a) . 

Since, conditionally on a, the frontier is linear, we can 
draw on results from KSO to state: 

p(~,o-21 Data, z,a,A.-1 ) ·p(~,o-21 Data, z,a) = 
fa (0-2 1 ~, j (y+z+wa-XI3) I (y+z+wu-XI3) )fN(~ I a, o~ (X' X) -1), (5) 

where 
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a= (X' X) -lX' (y+Z+Wo;) , 

and fN(·la,A) and fG(.lb,c) denote the Normal density with mean 
vector a and covariance matrix A and the Gamma density with mean )i 

b/c and variance b/c 2
, respectively. Furthermore, given z, A is 

independent of all the data and the other parameters such that: 

) 

where 1 is an Nx1 vector of ones. The conditional posterior for 
z takes the form: 

2 N )p(zl Data,a,~,A-l,a-2)ocfN(zlxf3-Wo;-y-~1,a2IN)III(Zl~0) (7) 
. 1-1 

where I(.) is the indicator function and IN is the NxN identity 
matrix. 

Given ~, a- 2 and z we have a nonlinear regression model in 
a, which leads to: 

(8) ) 

A Gibbs sampler can be set up in terms of conditional 
densities (5), (6), (7) and (8).9 Note that, with the exception 
of (8), it is easy to take random draws from all of these 
densities. To take draws from (7) we use the truncated Normal 
random number generator suggested in Geweke (1991), while (5) and 
(6) involve Normal and Gamma distributions only. ) 

It remains to discuss random number generation from (8), 
which does not take the form of any standard density. To this 
end, we set up an independence Metropolis algorithm (see Tierney 
(1991) for a theoretical discussion and Chib and Greenberg (1992) 
for an application). Like the Gibps sampler, the Metropolis 
algorithm, originally proposed by Metropolis et al. (1953), is 

based on a Markov chain. We use a special case of the Metropolis 
implementation in Hastings (1970). A Markovian transition kernel J. 

"In practice we draw in the order (8), (5), (6) and (7). 
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drives the chain by generating candidate values for the next 
draw. These candidates are then either accepted with a certain 

( probability, or rejected, in which case the chain remains at the 
current value. The independence Metropolis chain draws candidates 
independently and always from the same density, e(.). So, on the 
ith pass, this algorithm generates a candidate, a*, from e{a). 

C The random draw from (8), ai, is then either a* or a i-l with a 
certain probability. If the procedure stays at the same value for 
a over several passes, the value acquires more and more weight. 
As a consequence, the algorithm will, generate a serially 

( correlated sample from (8). Tierney stresses that this method 
works best if e (a) is a good approximation to the actual 
posterior. 

Since equation (8) takes the form of a nonlinear regression 
model in a, we let eta) be a multivariate Student-t distribution 
truncated to the nonnegative orthant .10 The mean, a o, and 
covariance matrix, 0, of the underlying Student-t distribution 
are calculated using an approximate generalized least squares 
procedure. ll Thus, we take candidate draws from 

where p{a) is our prior for a which ensures nonnegativity and 
fsK{.lu,ao,A) is the k-variate Student-t density with u degrees 
of freedom, location vector a o and precision matrix A (ie. 
covariance matrix 0= (u/u-2)A-l ) . Moreover, we denote by t(a) the 
ratio of the kernels of p(aIData,z,~,a-2) and e(a): 

l~e use the algorithm described in Geweke (1991) to draw 
from this truncated distribution. 

llThe approximate GLS procedure is based on the fact that 
y·=exp(X~-y-z) is approximately linear in a. In particular, 

y·.w'a exp (v)a:w'a (l+v) .w'a+v·, 

where v· is Normal with standard deviation w'aa. Hence, given 
starting values for ~ and z, we can use two- or three- step GLS 
to obtain an estimate for a as well as a covariance matrix. a~ 
and 0 are then set equal to these values. 
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The degrees of freedom parameter, U, is chosen on the basis of 
computational considerations. It is important that 9 (a) have 
tails at least as fat as (8) to avoid the algorithm getting stuck ) 

at a tail value for a with very high t(a). In practice, we set 
u=3. Our independence Metropolis algorithm for 
then be defined as follows: 

Step 1: Take a draw, a*, from 9(a).� 

Step 2: Calculate K=t(a*)/t(a i - 1 ).� 

Step 3: Take a draw, u, from the uniform (0,1)� 

drawing a i can 

distribution. 
) 

In practice, this algorithm works quite well, provided a o, A and 
U are chosen according to the strategy outlined above. The Gibbs 
sampler seems much less sensitive to choice of initial values for

• 
~, 0- 2 and 1..-2

• Tierney (1991) mentions the combination of Gibbs 
and Metropolis steps in a single Markov chain strategy, as used 

,here, and notes that such a hybrid chain is uniformly ergodic )' 

provided t(a) is bounded, which leads to the strongest form of 

convergence. 

Section 4: Bmpirical Re8ult8 
The application discussed in this section is the same as 

that analyzed in BKOS, KSO and Greene (1990), who provides a 
complete listing of the data. The data set contains observations 
from N=123 electric utility companies in the United States in ) 

1970. In addition to output and cost figures, the data set 
contains information on three input prices: labor price (Pl)' 

capital price (P2) and fuel price (P3)' 

The version of the Gibbs sampler we adopt is that described 
in Gelfand and Smith (1990). That is, instead of starting the 
Gibbs sampler and then taking one long run, we take several 

10 ) 
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shorter runs each statting at the same initial values. We carry 
out M runs, each containing L passes, and keep only the Lth pass 
out of these runs. 

The issue of whether to use one long run from the Gibbs 
sampler (sequential Gibbs sampling) or to restart every Lth pass 
(parallel Gibbs sampling) has been discussed in the literature 
(see, for example, Tanner (1991), Carlin et al. (1992), CaseI la 
and George (1992), Gelman and Rubin (1992) and Raftery and Lewis 
(1992)). The question of which variant is preferable is no doubt 
a problem-specific one, but in our application, the restarting 

,- method was found to work best. As in KSO, restarting is required 
\­

to prevent the path from becoming -temporarily trapped in a 
nonoptimal subspace- (Tanner (1991), p. 91; see also Zeger and 
Karim (1991) and Gelman and Rubin (1992)). 

We set starting values for a in AIM(l) to a o based on the
( 

GLS procedure explained in footnote 11 and choose posterior means 
from KSO as starting values for the other parameters and ri=exp(­
z:), i=l, .. ,N. For AIM(2) we start a at the posterior means from 

( 
the A!M(l) model for a l , •• ,a6 and at zero for the other elements 
of a, retaining KSO starting values for the rest of the 
parameters. 

It is also important to evaluate the accuracy of our Gibbs 
sampling methods. To this end, we present numerical standard 
errors (NSEs) calculated using the formula given in Geweke 
(1992). This formula involves the use of spectral methods for 

which we use a Parzen window with truncation point 2W.:2 

Results with M=2500 and L=50 are given in Tables 1 and 2 and 
Figure 1. Table 1 contains posterior means and standard 
deviations of all the parameters along with NSEs corresponding 
to the means. In Table 2, results from KSO (based on 10,000 draws 
with L=5) are added for comparison. Since our focus is on the 
efficiency measures, Table 1 can be dealt with quickly. For 
present purposes it its sufficient to note that: i) NSEs are very 
small; hence our estimates are quite accurate and RNEs (not 

12For a more thorough discussion of the practical details 
required to implement our Gibbs sampler, the reader is referred 
to KSO. 
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presented here) indicate that the restarting has partly broken 
the positive serial correlation of the draws, leading to even 
higher efficiencies than i.i.d. sampling from the posterior for 
all the parameters except a. Due to the positive correlation 
inherent in the independence Metropolis chain for a, its RNEs are 
somewhat lower. ii) The results of AIM(l) and AIM(2) are very 
similar, indicating that we need not proceed with higher order 
approximations (ie. q>2). iii) Posterior moments of common 
parameters clearly indicate substantial differences between the 
AIM specification used here and that used in KSO ..� 

Note that returns to scale (RTS) can vary across firms. The 
posterior means of RTS for the minimum, median and maximum output 
firms are 2.86, 1.04 and .85, respectively, for the AIM(l) 
specification. The corresponding numbers for AIM(2) are 2.74, 
1.04 and .87. These results indicate that average sized firms 
tend to exhibit roughly constant RTS while small (large) firms 
tend to exhibit increasing (decreasing) RTS. 

Table 2 and Figure 1 present evidence on the efficiency 
measures. We define ri=exp(-zi) as our measure of firm specific 
efficiency and r f as the efficiency of a hypothetical average 
unobserved firm (see BROS for details). Table 2 presents 
posterior moments of r f and r i (i=l, .. , 5) for the AIM (1) and 
AIM(2) expansions. Results from RSO are reproduced at the bottom 
of the table for comparative purposes. Two major findings are 
immediately apparent: using the AIM model, efficiency measures 
are much closer to full efficiency than in RSO as well as showing 
much less variation over firms. These results are reinforced in 
Figure 1 which plots rf for all three models considered. Finally, 
we note that AIM(l) and AIM(2) lead to virtually identical 
inference on efficiencies. 

It cannot be overemphasized that the results presented in 
this section are not caused by overfitting, since the 
restrictions imposed on our cost frontier ensure that it is 
globally regular. Hence our frontier only fits that part of the 
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data that is globally regular. 13 In fact, the measure of fit 
described in Appendix A indicates that the cost function used in 
RSO and the AIM(2) here fit the data equally well, but give very 
different inferences about the relative importance of symmetric 
and asymmetric error components. 14 

Insofar as they hold in other data sets, the findings of 
this section convey a serious warning to empirical researchers 
working with stochastic frontier models. Estimated efficiency 
measures are found to be quite sensitive to the choice of 
functional form for the frontier. Furthermore, it is found that, 
for our AIM model, which is very flexible but globally regular, 
inefficiencies are quite small. This suggests that it is not 
unlikely that previous measures of efficiency reported in 
empirical studies do not reflect efficiency at alIi but rather, 
merely misspecification of the frontier. 

Section 5: Conclusions 
This paper carries out a Bayesian analysis of the AIM cost 

function with composed error. Two important contributions to the 
existing literature are made: 1) On a theoretical level, the 
paper develops a Gibbs sampler for analyzing the AIM cost 
function with non-constant returns to scale and with composed 
error. It emphasizes that the techniques developed can be easily 
extended to other nonlinear models as well as to models without 
composed error. 2) Empirical' results presented here indicate that 
measured efficiencies can be very sensitive to the choice of 

functional form for the f1Ii,~;jl~'i' In fact, the cost function 

13That is, we assume that the part of the data that is 
globally regular is the frontier, while any remainder is 
allocated to the composed error, It is always necessary to make 
such an assumption in composed error models. 

14This measure of fit is .0302 for AIM(l), .0301 for AIM(2) 
and .0301 for the KSO s.(:?~;,i,Fation. The propor~ion of this 
measure that comes from Ineas~tement error (vJ 1.S .9049 for 
AIM(l), .8972 for AIM(2), but only .4426 f?r th7 KSO 
specification. Thus, although our different front1.ers f1.t the 
data equally well, the KSO specification allocates much more of 
the residual to inefficiency (and much less to measurement error) 
than do the AIM specifications. 
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based on the AIM aggregator converges to a very different 
frontier from that based on the Cobb-Oouglas aggregator. This 
latter finding should be a warning to researchers working with 

stochastic frontier models. 
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Appendix A: Nea.uring Pit in Compo.ed Brror Nodel. 

The actual deviation from the theoretical frontier is 
£ i =Vi +Zi' where Vi and Zi have the properties described in the body ),of the paper. Thus, a natural sampling characteristic of fit is 

E (£: I0 2, A.) =E (vi I0 2) +E ( Z i I A.) 
=02+var (zil A.) +E2 (Zl I A.) =02+2A.2. 

)From a Bayesian standpoint, this is a random variable, so that 
we use as a measure of fit the posterior expectation: 

E(02+2A.2 1 Data) -E(021 Data) +2 [var(A.1 Data) +E2 (A.I Data)] • 

All the quantities in the equation above can easily be calculated 
in our Gibbs sampling procedure. 

The same posterior measure of fit can be obtained in a 
predictive Bayesian fashion. Consider an unobserved (forecasted) 
firm, for which the deviation is £f=Vf+Z f • Assuming independent
sampling, the posterior expected squared deviation for this 
unobserved firm is 

E (£ ~ I Da t a) =IIE (£ ~ I 0 2, A.) p (02, A. I Da t a) 002aA 

=E(02+2A.2 / Data) • 

It should be stressed that this is not the same measure of 
fit as that used in BKOS. All the models in that paper used the 
same theoretical frontier and, hence, ignored the systematic part 
of the deviation. The measure used in BKOS is given by 

TVt=var(£tl Data)=E(£~1 Data)-E2(ztl Data). 
) I 

'I 
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Table 1: Po.terior Moment. of Parameter. 

AIM (1)� AIM (2) 
( -

Mean NSE St Dev Mean NSE St Dev 

~: .241 .001 .052 .257 8.16E-4 .043 

~: .041 7.18E-5 .004 .040 5.80E-5 .003 
0-2 37.471 .095 5.813 37.864 .112 5.721c 
A. -1 41. 462 .507 30.069 39.891 .602 33.080 

0 2 .027 ---- .004 .027 ---- .004 

A. .034 ---- .018 .035 ---- .018 

a l 1.93E-6 1.32E-7 1. 39E-6 1.39E-6 1.48E-8 7.60E-7 

a 2 1.68E-4 8.26E-6 1.19E-4 1.21E-4 1.47E-6 6.69E-5 

a 3 7.83E-4 3.87E-5 4.63E.-4 6.78E-4 5.81E-6 3.23E-4 

a 4 2.08E-5 1.43E-6 1.75E-5 1.43E-5 1.63E-7 8.24E-6c 
< ~	 

a: 1. 31E-4 4.65E-6 5.14E-5 7.89E-5 1.35E-6 5.55E-5 

a 6 5.54E-4 3.20E-5 3.56E-4 3.77E-4 5.16E-6 2.18E-4 

a., ---- ---- ---- 1.25E-6 4.29E-8 2.11E-6 

c,� a e ---- ---- ---- 2.08E-6 6.68E-8 3.58E-6 

a. ---- ---- ---- 5.60E-5 2.12E-6 9.49E-5 

a:_? ---- ---- ---- 1.10E-5 3.97E-7 1.90E-5 

a:: ---- ---- ---- 5.85E-5 2.11E-6 9.57E-5 

a:: ---- ---- ---- 1. 61E-4 6.11E-6 2.67E-4 

a: 3 ---- ---- ---- 6.47E-6 2.24E-7 1.12E-5 

a: 4 ---- ---- ---- 1.94E-5 6.05E-7 3.28E-5 

(' a:: ---- ---- ---- 3.45E-5 1.16E-6 5.77E-5 
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Table 2: Po.terior Moment. of Bfficiency Ke••ure. 

r f r 1 r 2 r 3 r 4 r s� 
AIM(l)� 

Mean .968 .972 .979 .964 .972 .976� 

NSE 2.99E-4 ---- ---- ---- ---- ----�
St Dev .038 .033 .022 .041 .032 .026� 

AIM(2)� 

Mean .967 .970 .979 .962 .970 .973 

NSE 3.06E-4 ---- ---- ---- ----
St Dev .039 .033 .022 .043 .032 .028 ),

;J I 

KSO·� 

Mean 0.917 0.730 0.973 0.943 0.926 0.963� 

NSE 7.4E-4 ---- ---- ---- ---- ---­
,
J,St Dev 0.077 0.111 0.026 0.047 0.058 0.034 

*KSO indicates results from the exponential model with linear 
frontier analyzed in KSO. 
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FIGURE 1: POSTERIOR EFFICIENCIES 
2500 passes through the Gibbs sampler 
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