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Abstract _ 

We discuss the use of bootstrap methodology in hypothesis testing, focusing on the classical F-test 

for linear hypotheses in the linear model. A modification of the F-statistics which allows for 

resampling under the null hypothesis is proposed. This approach is specifically considered in the 

one-way analysis of variance model. A simulation study illustrating the behaviour of our proposal 

is presented. 
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1 Introduction. 

The use of bootstrap methodology in hypothesis testing -essentially based on ap­

proximating the critical values by bootstrap distributions- has received less attention 

that its application in other problems like, for instance, the construction of confidence 

regions. Herl" are some recent references. Beran (1988) studies the asymptotic error 

in level of bootstrap tests and the improvement given by prepivoting the test statistic. 

In Hinkley (1988) some general ideas about bootstrap testing are briefly discussed. 

Romano (1988) uses the bootstrap to aproximate critical values of nonparametric tests 

based on measures defined on the empiri(.a~ distribution. Hall and Wilson (1991) and 

Hed) n():'l2) insist in two guidelines that we analyze in Section 2: usage of pivotal func­

tIOns and resampling reflecting thl" null hypothesis. In Manllul"n (1992) the convergence 

of bootstrapped F-test in linear models is proved. 

This paper is concerned with the use of bootstrap idea in hypothesis testing. Sec­

tion ;3 is dedicated to presl"nt our work for testing a general linear hypothesis in a linear 

model. Following the second guideline cited above, we propose a natural modification 

of thl" classical F-statistics that permits resampling under the null hypothesis, though 

the tl~,ta fail to comply with it. In Section 4, this proposal -and the basic idea of re­

sampling taking into account tlw modl"l in consideration- is analyzed with some detail 

in the framework of thl" one-way analy'sis of variance. In Section .5, the corresponding 

behaviour is illustrated by rt~porting tllf' results of a simulation study. 

2 Two general guidelines. 

Naturally, the duality between hypothl"sis testing and confidence regions is maintained 

umier buotstrap methodology. That leads to consider the first guideline cited: use of 

(asymptotically) pivotal quantities, that could be extended to the use of methods with 

good behaviour in the problem of confidence interval construction. In general, acting 

in this way will imply an improveml"nt in the test level. 
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However, there is an important conceptual difference when both problems are con­

sidered under the bootstrap approach. In hypothesis testing accurate estimates of the 

critical values are needed, even if the data had their origin in the alternative hypoth­

esis. This demand could invalidate some direct approximations to the distribution of 

interest. Consider, as in Hall and Wilson (1991), a one-dimensional parameter situ­

ation and the simple testing problem Ho : 0 = 00 against HI : 0 =I 00 , Given that 

T = T(XI , . •. ,XH ) is a good estimator of the unknown 0, a reasonable test could be 

based on the difference T - 00 , If our goal is in relation to its level or p-value, our 

interest lies in the distribution of T - 00 under Ho. A direct -and na'ive- application 

of the bootstrap method would lead to estimate this distribution using the statistic 

T* - 00 , where T* is the value of T in the resampling, that is, under the empirical 

distribution of (Xl,"" X n ). In Hall (1992, Sec.:3.12) it is shown the bad behaviour of 

the power function of the corresponding test. The trouble here is that T* - 00 does not 

approximate the null hypothesis when the sample comes from a parameter far away 

from 00 • 

Hall and Wilson (1991) propose to estimate the T - 00 distribution by means of the 

statistic T* - T . Note that this corresponds to resampling the quantity To = T - 0 

instead of T - 00 . In the next section we extend this idea to testing a general linear 

hypothesis in a linear model. 

Bootstrap hypothesis testing in the linear model. 

It will be convenient to consider the coordinate-free version of the linear model. Let 

y = 11 + f, where Y denotes the n-dimensionaJ vector of observations, It is the vector 

of means belonging to tlw subspace V C Rn with dimension P < 71" and e is the vector 

of independent errors ei '" F such that E(e) = O. We want to test Ho: It E Vo versus 

11 rf. \/0 . being Vu C V a subspace with dimension Po < p. The usual F-statistic can be 

written as 
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where Vi., VIVo, and P w denote, respectively, the subspace orthogonal to V, the 

orthogonal complement of Vo in V, and the orthogonal projection onto W. 

Here is an schematic outline of the bootstrap procedure for this version of the 

linear model. We start from the model (/1, F); after observing the response vector Y, 

we adjust (jL, F,,), being jL = P vY and F" the empirical distribution of the residual 

vector e= Y - /1 = PV.l. Y, that we suppose centered at O. The bootstrap estimation of 

an arbitrary function R = R(Y, F) is the (conditional) distribution of R* = R(Y*, F,,) 

where Y* = jL + e*, and the vector e* has independent components ei "-' F". 

The bootstrap methodology proposes to consider as the critical region of nominal 

a-level T > ten where to: is the 1 ­ a quantile of the bootstrap distribution of T under 

samples coming from Ho , i.e., P(T(Y*) ~ ta lYE Ho) = 1 ­ a. 

Hence, we need to know -or, in the practice, to approximate by Monte Carlo 

trials- this null bootstrap distribution. For this, we propose to consider 

(:3.2) 

Comments: 

i) Since it is based on Y - 11, To does not relies on the hypothesis under which the 

data. are obtained; in other words, it is invariant against the hypothesis generating the 

data. Besides, To agrees with T under Ho. 

ii) A direct reasoning leading to To is the following. Since we attempt to approx­

imate the null distribution of T, let us take an arbitrary 1"0 E V and transform Y to 

Yo = Y - Il +1"0· The vector Yo verifies Ho and, we are naturally conducted to 

Note that the above expression is independent of the initial vector 110 E V . 

..._._------------------_. 
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Therefore, the bootstrap distribution of TO(Y,ll) is the null bootstrap distribution 

of T; consequently, the critical va.lue to' should be taken verifying 

P(T; = To(Y\ Il) ~ to' IY) = 1 ­ a. (3.:3) 

We see that the modification of the F-statistics arises in a natural and direct way. 

In some sense, this presentation completes the one given in Mammen (1992). Moreover, 

his results assure the convergence of our proposal. 

) 

J 

4 Bootstrapping the one-way ANOVA model. 

We now considt-T th(~ previous proposa.l 

means in the one-way model. 

111 the particular case of testing equality of 

4.1 Raising the problem. 

We assume a set of nj observations, Y;j, j = 1, ... , nj, coming from a population 

Pi with mean /li and variance (j'2, i = 1, ... , p. We want to test Ho: /ll = 

. .. = /lp' This problem fits into the framework of last section by defining Y 

(Yll""'YlnJl"',Y~)nl')" 11. = Lf=lni, Il = (lll, ... ,llp)'; Vo and V are now the 

spaces spanned, respectively, by the vector In = (1, .':).,1)' and by the p vectors in 

Rn: ((l,O)',(O'(2'O)', ... ,(O,(,y. It is well know that 
) 

(4.1 ) 
) 

The statistic To in (:3.2) is now 

Li11'i(Xj-X)'2/(p-l) 
To(Y,ll) = Li L.i(Xi,i - ){;)2/(n - p) 

Li n j(ej-e)'2/(p-l) 
- Li Lj(eij ­ ejF/(n ­ p)' (4.2) ) 
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4.2 Resampling schemes. 

To obtain a good approximation through the bootstrap approach in a general arbitrary 

sttuation, the resampling distribution must reflect the model distribution in an ade­

quate way. In our concrete situation this means that the bootstrap distribution of To 

must be obtained "mimicking" the considered model. The one-way model will allow 

us to illustrate this comment by considering two slightly different sets of assumptions 

on the underlying populations. 

Resampling RI: Identical populations. 

This is the standard case where the distributions associated to the populations differ 

only in the means, thati,. C'.i ~ Fi = F, i = 1, ... ,p. Since errors are interchangeable 

through the populations, we should take Fu as the empirical distribution of the n 

residuals eij = Yij - Y i, i = l, ... ,p, j = 1, ... ,1ti. Recalling the schematic outline 

presented after (:3.1), we have 

T.* _ Li n/X; - X*)2/(p - 1) Li 1ti(ei -F)2/(p-1) 
(4.3) 

o - Li Lj(X;i - X;)2/(n - p) Li Lj(eij - en'). /(n - p)' 
_ _ A 

V* }/* .*. \' )., * FAw }ere I /l ij = ij - flj = eij -;i,: - . i = ei.i ~ u· 

In practice, tlw simulation of the To distribution will be done generating B indepen­

dent samples from the empirical distribution of the n residuals eij, that is, considering 

B sets with n elements chosen with replacement from R = {eij,i = 1, ... ,p,j = 

1, ... , ni}' 

Resampling H2 : Different populations. 

Assume now the distributions a.ssociated with every population are different not 

only in the means but in other a.spects; that is, eij are independent and eij ~ Fi, j = 

1, ... , ni, where Fi are different with mean 0 and variance (7\ i = 1, ... ,po To reflect 

the new joint distribution of the vector of errors, we will take now Fu as the joint 

distribution of the p empirical independent distributions, F corresponding to theiui , 

sets Ri = {fij, j = 1, ... , ni}, l. = 1, ... , p. The statistic To still has the eX1)resion 

5 

-r-'-"� 



) 

In practice, To will be simulated from B sets of 71, elements, ni of them will be 

selected with replacement from Ri, i = 1, ... , p. Note that resampling from Ri is 

equivalent to resampling from Oi = {Yij, j = 1, ... , nil, then obtaining 0: = {~;, j = 
) 

1, ... ,ni}, and, finally, defining Xi'j = r:; - Y i , j = 1, ... ,ni. 

4.3 Normalizing the residuals. 

The idea of reflecting the model hypothesis in the bootstrap scheme, leads us to con­

sider the resampling in a population of residuals where the empirical variances in each 

subpopulation are equal; without loss of generality we take this common value equal 

to 1. This leads us to replace (4.:3) by 

(4.4) 

where eNij ,...., FNn , and FNn is the empirical (joint) distribution of the standardized 

residuals: eNij = (Yi.i - Y;)/ai, at = Lj(Yij - Y i)'2/ni . 

Note that the statistic TN can be also obtained in the following way. Assume 

initially heteroscedasticity and consider, as alternative to (4.2), 

Li ni (Wi - W) '2 / (]I - 1) 
TON (Y,Jl,al, ... ,a,,) = LiLj(Wi. -lV )'2/(n -p)'i i 

where Wij = (Yij - J1i)/ai, and at is the populational variance of Pi' If there exists 

homoscedasticity, TON becomes To and its distribution is the same as the distribution 
) 

of T under Ho. It follows inmediately that the bootstrap distribution of TON coincides 

with the distribution of TN. Heuristically, we should expect that this statistic will 

improve the approximation to the null distribution. 
) 

The simulation of TN will be done similarly as in Subsection 4.2., but starting with 

the normalized residuals eNij. Both schemes above cited are still valid using now the 

normalized residuals. In the next section, we will denote them resampling R:l and R4 • 

) 

) 
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5 A simulation study.c 

In this section we illustrate the behaviour of our proposal by means of a simulation 

study. The results, obtained using only 199 bootstrap resamples, generally indicate a 

( satisfactory performance. 

Through our simulation study, we have maintained three populations, i.e., p = 3. 

We considered combinations of two nomiNal levels, 0:' = .05, .1, two total sample sizes, 

( n = 30, 60, and three groups of error distributions associated to the populations, 

Gk , k = 1,2,:3. The composition of these groups is the following. In Cl the errors 

have lJormal distributions; in (;2 they haVf~ shifted exponential distributions; and, in 

(;3 the errors have different distributions: N (0,1), shifted exponential and normalized 

t 3 • 

The computati~ns were performed using Fortran routines running on a DECstation 

5000/200 under U1trix-:32. The routines GGUBS, GGNML and GGAMR of the IMSL 

library are used to generate the pseudo-random variables and to make the resamplings. 

5.1 Results under the null hypothesis. 

Without loss of generality, we took PI = P2 = P:3 = O. The specific distributions for 

the above groups wen~: N(O, 1), shifted exponential with>. = 1, and ta normalized to 

have variance uni ty. 

We conduded 1000 trials uIHler each of the 28 combinations of 4 particular popula­

tion sizes and 7 types of resampling listed in Table 1. In each trial, B = 199 resamples 

were drawn from the empirical distribution associated to the resampling. By means of 

(:3.:3). these resamples provided the approximate in; values and, in each trial, Ho was 

rejected if T(Y) > ini , 0' = .05, .1, i = 1, ... ,1000. (Specifically, in; was the 9th largest 

of the 199 values of TJ when 0' =:= .05, and the 19th largest when 0' = .1 .) 

The entries of Table 1 are the bootstrap levels, 0"", that is, the proportion of trials 

rejecting Ho. The symbol # denotes cases with 0'* levels differing significantly of 0'. 
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Error distri bu tions (,\ : N(O, 1) (;2:£(1) (;3 : N(O, 1), E(1), t3� 

Resamplings RI R3 RI R3 RI R2 R4� 

Population sizes� 
) 

(10,10,10) a = .05 0.05:30 0.0550 0.0510 0.0480 0.0490 0.0320# 0.0420� 

a=.1 0.0990 0.0990 0.0950 0.0960 0.0980 0.0800# 0.0960� 

(5,10,15) a = .05 0.0380 0.0420 0.0440 0.0410 0.0600 0.0430 0.0520� 

)a=.1 0.0910 0.0900 0.1090 0.1110 0.1150 0.0900 0.1100� 

(20,20,20) 0' = .05 0.04:30 0.0470 0.0460 0.0470 0.0500 0.0430 0.0500� 

0' = .1 0.0960 0.09:30 0.0970 0.0970 0.1120 0.0940 0.1050� 

(10,20,30) 0' = .05 0.0460 0.0430 0.0570 0.0560 0.0630 0.0430 0.0520� 

0' = .1 0.1010 0.0970 0.1100 0.1070 0.1060 0.0900 0.0970� 

Table 1: Bootstrap levels for 28 combinations of error distributions, resamplings, and 

population sizes. 

Figure 1 depicts the values of 0'* for the last row of Table 1 as a function of the 

number of trials. The 40 points in the trajectories correspond to the values computed 

from each consecutive 25 trials. 

Some comments are in order. Most of the bootstrap levels are very close to the 

nominal levels, specia.lly when the appropriate resamplings are used, and even when 

the inadequatf' resamplig RI is used in (;:3. The performances under normal or ex­

ponential distri bu ted errors are very sirnilar, pointing 011 t that asymmetric errors are 

not troublesome. The stability of the trajectories is reached soon. For the group (;3 

(different populations), the results with resampling R2 are lightly better than with RI 

and both are dominated by the results using R4 . 

(Insert Figure 1 about here) ) 

) 
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5.2 Results under heteroscedasticity. 

c 

( 

Although our development does not deal with heteroscedastic situations, we planned 

to check how our proposal would perform under unequal variances. With this aim, 

we considered the groups (;1 and 0 3 • In (;1 the normal distributions had standard 

deviations (J"i = £, i = 1,2, :3; in 0 3 we included standard normal, shifted exponential 

with (J" = 2, and t 3 ((J" = 3) distributions. The total sizes (n = :30,60) were a<;signed to 

the populations in three ways: balanced, higher sizes to higher variances, and viceversa. 

For each assignation, resamplings RI and R2 were considered. 

Both groups and sizes provided similar results. Figure 2 shows the 6 bootstrap level 

trajectories for C\ and 1/. = :30. As a summary of empirical conclusions we have: the 

resampling RI was very unappropriated with unbalanced sizes, the resampling RI was 

beaten by R2 in all the situations; therefore, if we suspect of possible heteroscedasticity, 

the resampling starting from different populations will provide more accurate levels. 

The best results occur when there is correspondence between sizes and variability in 

populations. 

(Insert Figure 2 about here) 

5.3 Results under the alternative hypothesis. 

We have also verified the good approximation to the true critical values and the high 

power provided by the bootstrap test when the data come from populations with 

unequal means. Our illustration will use some of the combinations considered in Section 

5.1, being now IL] = -1, !i2 = 0, !L:3 = 1. 

(Insert Figure :3 about here) 

Figure :3 depicts box-plots (with whiskers ending at the extreme values) of 1000 

bootstrap estimated critical values, [cri, obtained from (:3.:3). The errors belong to 

group 0] with N(O, 1) and (;2 with shifted exponential, }. = 1. (The true values are 

F2;27,.U;, = :3.:15 in (,'I and W(,I'(, obt.ained by simulation using 5000 t.rials in G2 .) 
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Error distri bu tions 

Resamplings 

Population sizes 

(10,10,10) a = .05 

a=.1 

GI :N(O,l) 

RI R3 

0.9720 0.9700 

0.9870 0.9860 

G2 :E(I) 

RI R3 

0.9550 0.9530 

0.9790 0.9760 

G3 : N(O,I),E(1),t3 

RI R2 R4 

0.9680 0.9220 0.9520 

0.9770 0.9560 0.9750 

) 

(5,10,15) a = .05 

a=.1 

0.9:370 

0.9680 

0.9320 

0.9680 

0.9250 

0.9670 

tl.9230 

0.9640 

0.9160 

0.9510 

0.8660 

0.9230 

0.8920 

0.93:30 ) 

(20,20,20) 

(l0, 20, :30) 

a = .05 

a=.1 

(\' = .05 

a=.1 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.9~):30 

0.9970 

1.0000 

1.0000 

0.9950 

0.9~)70 

0.9980 

0.9980 

0.9980 

0.9980 

0.99:30 

0.9950 

0.9910 

0.9940 

0.9980 

0.9980 

0.9950 

0.9970 

) 

Table 2: Power in HA: III = -1, J.L2 = 0, 1£3 = 1, for the 28 combinations of Table 1. 

Note the concentration around the true critical values, and the similar results given 

by R1 and Rl. 

Table 2 gives the proportion of trials rejecting the equa.lity of means, that is, the 

power, under the al)ove alternative for the combinations considered in Section 5.1. It 

is worthwhile noting tlw high values attained. 

5.4 Bootstrapping the F-statistic directly 
Finally, we will show the inaccura.cy of tlw na'ive bootstrap directly based on the F­

) 

statistic of (4.1), that is, when tilt-' resampling uses 

T* _ Li lIi(V; ­ }7*)2j(p ­ 1) 
[) - '\' '\' ()/* }/*)2j( )'L....i L....j ij - i n - ]J 

wllere }/.* = f'*. + f· and f'* follow one of the empirical distributions presellted in 
'J "J " 'iJ 

Sections 4.2 and 4.:3. We will rder this procedure as di1'cct bootstrap, 

) 

We began conducting 1000 trials for the situation and combinations considered in 

Sf~ction 5.1. The dirt-·ct bootstrav l<>vels, dry, turned out to be much lower than the 
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(� nominal levels -111 fact, only 5 of 56 cases considered were different of zero with 

a maximum value of .004. We also studied the distribution of the direct critical 

. 'Dvalues, tai , i = 1, ... ,1000, Q = .05,.1, corresponding to 4 combinations: groups 

0 1 and O2 with resampling RI, and 0 3 with RI and R3 . The population sizes c 
were ni = 10. This study was done with data from Ho and from the alternative 

HA: III = -1,1l2 = 0,1l3 = 1. 

The distributions of the direct critical values were very similar in the four combi­
c 

nations. Figure 4 shows box-plots summarizing the distributions under Ho and HA, 

a = .05, n = 30, in the combination 0 1 and RI. For comparison, we have also included 

box-plots for the distributions of the critical values, i~i' derived from our proposal. 

c 
(Insert Figure 4 about here) 

Two points� clearly stand out. Whether the data came from Ho or from HA, the 

c� distribution of critical values i~i is useless to approximate the true critical value 

(FU8,.05 = :3.:35). On the contrary, both from Ho and HA, the distributions of proposed 

critical values i(>i are extremely similar and very concentrated around the true critical 

value. 
( 
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Fig. 1: Bootstrap levels as function of the number of trials (N=1000). The 40 points 
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Fig. 2: Bootstrap levels with heteroscedastic data. 

Error distributions: N(O,O'i = i), i = 1,2,3. - a = .05, --- a =.1 
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Fig. 3: Box-plots of bootstrap critical values (N=1000) with data from 

HA: III = -1, 112 = 0, IL3 = 1. 

* Mean of bootstrap critica.l values. 0 True critical value. 
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Data from Ho� 

Modified F~statistic
 

c, 

Direct F-statistic 

Data from HA 

Modified F-statistic IJ_J 

C. IW' 
98.1 

Direct F-statistic o .. ~ 

o 10 20 30 40 

( 
Fig. 4: Box-plots of bootstrap_ critical values (N=1000) using� 

modified and direct F-statistics.� 

* Mean of bootstrap critical values. 0 True critical value� 
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