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1. Introduction. Consider a zero mean stationary process {X } which follows 
t 

a causal and invertible ARMA(p,q) model of the form 

~(B)X =9(8)£ , (1) 
t t 

where: a) {£} is a zero mean white noise sequence with variance .,.2; b) ~(B) 
t 

and 9(8) are polynomials given by 

~(B)=l-t B- ...-~ BP,
1 P 

9(B)=1+9 B- ... +9 Bq
; 

1 q 

and, c) B is the backward shift operator BX =X . Given a finite observable 
t t-l 

series (X, ... ,X) we can obtain the maximum likelihood estimators ~, @, {f2
1 n 

2of the parameters ... ,~ )', 9=(9 , ... ,9 )' and .,. and form the 
P 1 q 

residual process 

~ =@-I(B)~(8)X , 
t t 

where X 50, for t:sO, and ~(B)=l-~ B- ...-~ BP, ~(B)=l+@ B+ 
t� 1 P 1 

1\ 1\The residuals (£ , ",,£) are a� natural building block for checking
1 n 

the adecuacy of the fitted model by means of its autocorrelation function ~ k 

defined, for Ik I:sn-1, 

(2) 
n-k 

where e =e = I ~ ~ , O:sk:Sn-l. For example, a well-known statistic for 
k -k t t+k� 

t=1� 

testing the goodness-of-fit of an� ARMA model is the Box-Pierce (Box and 

Pierce (1970» statistic 
m 

1\2
Q=n I r ,� (3)

k 
k =1 

where m is a function of the sample size m=m . The "asymptotic" distribution 
n 

of Q is chi squared with m-(p+q) degrees of freedom. In order to improve the 

chi-square approximation, Ljung and� Box (1978) recommended the modification 
m 

-11\2Q =n(n+2) I (n-k) r.� (4)
1� k 

k=1 

Both (3) and (4) use a 'time domain approach. The aim of this paper is 

1\ 1\
to consider (£ , ",,£) in the frecuency domain to propose a new 

1 n 

goodness-of-fit test procedure. This new method is based on a stochastic 

2 



process which depends on the standardized sample spectral density of the 

residuals. We show that this process converges weakly. under appropriate 

regularity conditions. to the brownian bridge in [O.lt All suggested test 

statistics are functionals of this stochastic process and therefore. unlike 

the statistics Q and Q above. the asymptotic distribution of every test
1 

statistic is properly a limiting distribution and does not depend on the 

sample size. 

The organization of this paper is as follows. Section 2 introduces the 

new criterion and establishes notation and basic assumptions. Section 3 

contains the derivation of the relevant asymptotic results which are 

obtained by using repeatedly a convergence lemma established in section 2. 

Section 4 studies the issues involved in the practical application of the 

theory developed in section 3. Section 5 is devoted to comparisons with 

previous criteria and section 6 presents a short numerical illustration. 

2. Background and motivation. Given the errors (£. . ..•£). we define the 
1 n 

standardized sample spectral density 
n k=n-1 

In(i\l=(2nCof11 L£texP(ji\t)12=(2nf1 L rkcos(i\t). -nsi\sn. (5) 
t=l . k=-(n-1) 

n 
2

where r
k 

is the autocorrelation function of (£1' ···.£n) and C = L£t" Wheno 
t=l 

(£. . ..•£) are observable. a common building block for testing for white 
1 n 

noise of {£ } is the process
t 

Z (i\)=n1/2[F (i\)-F (i\)]. Osi\sn, (6) 
n n 0 

where F (i\)=2Ji\I (uldu, F (i\)=i\/n=2Ji\f (u)du, and f (i\)=(2n)
-1 is the 

n n 0 0 o 
o 0 

standardized spectral density of a white noise. See, for example, Bartlett 

(1955) or, more recently, Durlauf (1990) and Anderson (1991). By introducing 

the change of variable i\=nt, Osts1, and dividing (6) by '1/2, we can write the 

process (6) in the form 

3 
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n -1 ( )
U (t)=(V2ln)n 1

/2 L r sin ~nt , O~t~l. (7)
n k 

k=l 

Durlauf (1990) shows that, under appropriate regularity conditions, the 

process {U (t), O~t~l} converges weakly to the brownian bridge in O~t~l, 
n 

co 
sin(knt)

U(t)=(V2ln) Eu (8)
k k • 

k=1 

where {u } < is a sequence of i. i. d. N(O.O random variables. The
k I-k 

goodness-of-fit statistics are nonnegative continuous functionals h(e.
1 

.... e ;t)=h[U (t)]
n n 

whose limiting distribution is that of the random 

variable h[U(t)]. 

For the case of model (0. the (c , ....e ) are not observable. 
I n 

However. if the fitted model is appropriate. the residuals (c
A

• ....
A 
e )

I n 

should behave in a manner consistent with the model and. therefore, in the 

light of (7), we could consider the process 

() (t)=(V2ln)n llZ r~ sin(~nt). O~t~l, (9) 
n k 

k=1 

where m is a function of the sample size m=m • as a suitable building block 
n 

for goodness-of-fit purposes and consider statistics of the form h[() (t)]. 
n 

Observe that the process (9) is a reexpression of the process 

~ (;\.)=nllZ[~ (A)-F (A)], O~A~n, where ~ (A)=2JA1 (u)du and 
n nOn n o 

m
1 (A)=(2nrl L ~kcoS(Ak), -n~A~n, 

n 
k=-m 

A
is a truncated version of the standardized sample spectral density of (c.

I 

... ,~). However, as shown below (see theorem 3.4), the process {() (t),
n n 

O~t~l} converges weakly. under some regularity conditions. to a zero mean 

gaussian process with covariance function depending on (</>,9). Therefore. the 

asymptotic distribution of h[() (t)] depends on unknown parameters and is of 
n 

limited practical use. To eliminate this dependence we propose, in the 

following, a modification to () (t).
n 

One of the key elements for the weak conv~rgence of the process (7) to 

1/2-. IIZ(the brownian bridge (8), is that, for every fixed integer k, n K k=n rI' 
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) • D ( • 1/2A 1/2 " " • .... r k ----7 N 0.1). when n~. However. If n K =n (r. .. .• r) by an 
k k k I k 

argument in Box and Pierce (1970). nl/2~ =nl/2(~. . .. } )'~ N <0.1 -H ),
k I k k k k 

where Hk is the kxk orthogonal projection matrix H =X (X·X fIx· and X is 
k k k k k' k 

the kx(p+q) matrix 

)
0 o 

a 
I 

a a o2 I
X= 

k )
1 

a a ak-I k-2 k-(p+q) 

which depends on the coefficients (a ) which satisfy ) 
k 

ClO 
- -I ka(B)=[</>(B)] = LaB, (10)

k 
k=O 

- - - p+qwhere 4>(B) is the polynomial </>(B)=</>(B)6(B)=1-</> B- ... -</> B . We have 
I p+q . ) 

I -H =C C' where C =C (</>.8) is a kx[k-(p+q)] suborthogonal matrix whose
k k k k' k k 

coIumns span. I'n IRk. the orthogonal complement of the linear manifold 

spanned by the columns of X. Le.· such that C'C =1 and C'X =0. 
k k k k-(p+q) k k 

Therefore. N <0.1 ). where e=C (~.~). For the 
k-(p+q) k-(p+q) k k 

integer sequence m=m • define 
n 

~ =e·~ =(~ .....~ )'. 
m m m p+q+l.m m.m ) 

and modify () (t) to 
n� 

m-(p+q)�
A _r,:; 1/2 1\ sine knt)
v (t)=(v2/n)n L s 00 

n k+p+q.m k 
k=l ) 

This modification turns out to be effective because as established in 

section 3 below the weak limit of {V (t), O~t~I} is. under the model (1). 
n 

the brownian bridge {Vet). O~t~I}. The asymptotic distribution of every 

continuous functional h[~ (t)] is then free of unknown parameters. 
n 
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3. Asymptotic theory. 

3.1 Regularity conditions and auxiliary lemmas. The following lemmas are 

needed for our theoretical development. 

LEMMA 3.1. (Box and Pierce). Let m=m and consider the m vectors ~ =(~, 
n m 

... ,r" )' and R =(r, ... ,r )'. If we assume: 
m m 1 m� 

I I -1/2�
C.1) sup a =O(n ); and 

k 
k~m -(p+q) 

n 

bC.2) m =0(n1
/ ), b)2, 

n 

we have, 

max I" r -~ I=0 (n-1 ), 
< < k km p

l-k-m 
n 

as n~, where ~ =(~ , ... ,~ )'=0 -H )R . 
m lm mm m m m 

LEMMA 3.2. Let {A (0, O~t~I} > be a sequence of stochastic processes and 
n n-l 

let (A(t), O~t~I} be a process such that, for every integer d, we can write 

such that 

(iL) For every c)O, 

R (t) I)cl=lim P[--lim lim P[ sup I d - sup IRd(t) I)c]=O. 
d n O~t~l n d O~t~l 

Then 

A (t) ~ A(t) as n~. 
n w 

Proof. The proof follows easily from the necessary and sufficient conditions 

for the weak convergence of A (t) to A(t) given in Billingsley (968) 
n 

theorems 8.1 and 8.2. 

• 
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Besides the regularity conditions C.l) and C.2), we will assume:� 

C.3) The error process {£} in model (I) is LLd with E[£8]<eo.� 
t� 1 

C.4) 11 (t: -C )~ 11 =0 (l/n). where IIAll denotes the maximum absolutem m m eo p eo 

value of the elements of the matrix A. 

) 

3.2. Weak convergence of the� process ~ (t). We establish in this section the 
n 

main result of this paper. 

), 
I 

THEOREM 3.3. Under conditions� c.l)--C.4). we have 

~ (t)-----7U(t). 
n w 

Proof. Consider the three processes 

m- Cp+ql 
sin(knt)~ (t)=(V2ln)n1l2 L ~	 O::st::S1;

n� k+p+q,m kk=1 ) 

m- Cp+ql
V2 1/2� sin(knt)V (t)=( 2/n)n L s� O::st::S1;

n� k+p+q,m kk=1 

m-Cp+ql
I/2� sine knt)W (t)=(V2ln)n L t O::st::S1;� 

) 

n� k+p+q.m kk=1 

where 

(s •...• s )·=C'~. (t ..... t )·=C·R.
p+q+l.m m.m m m p+q+l.m m,m m m 

The claim of the theorem will follow if we prove: 

a) V (t) ~ U(t) and 
n w 

)
b) sup I~ (t)-V (t) 1=0 m. 

OStSl n n p 

Step a). It can be seen that� for ~ suborthogonal C matrix such that 
m 

C C'=! -Q • we have IIC'(~ -R� )11 = Ilc'~ -C'C C'R )1/ smll2ll~ -C C'R )11 = mmmm mmmeo mmmmmmeo mmmmeo 
1l2mll2ll~ -~ 11 = m 0 (l/n)=o (n-3/4) by lemma 3.1 above. By Cauchy- Schwartz. m meo p p 
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1/2 1/2 -3/4SUp IV ()t -W (t)::5n m 0 (n )=0 (l) and. therefore. the weak limit ofI0::5t::51 n n p p 

V (t) and W (t). if they exist. are the same. 
n n 

Fix now an integer d)p+q. We can take 

(2) 

where Cd is a suborthogonal matrix of dx[d-(p+q)]. 0 is of (m-d)xId-(p+q)]. 

A is of dx(m-d) and B is of (m-d)x(m-d). We then write 

W (t)=Wd(t)+Rd(t). 
n n n 

where 

d-(p+q) 
sin(knt)= (Ylln)n

1
/2 E t 

k=1 k+p+q.m k 

and 

m- (p+q) 
sine knt)Rd(t) = (Ylln)n1

/2 E t 
n k+p+q.m kk=d +1- (p+q) 

If {u} is a sequence of LLd. NW,}) random variables. we proof thatk l::5k d-(p+q)
d d J;:; sin(knt)

W (t)---7U (t)=(v2In) E u k and that. for every £)0. lim lim 
n W k+p+q

k=1 d n 

P[ sup IRd(t) I)£]=0. Since. by construction of the brownian bridge (8). for 
0::5t::51 n 

every £)0. lim PI sup IRd(t)I)£]=O. where weak 
d 0::5t::51 

convergence for W (t) follows from the convergence lemma 3.2. 
n 

1/2... 1/2( DUnder regularity condition C.3). n K =n r • . ..•r )'~N (0.1 ). 
dId d d 

1
and. since C'C =1 • n / 

2(t • ....d d d-(p+q) p+q+l.m 
1t )'=n /2C'R ---7N (0.1 ). Routine application of the

d.m d d d-(p+q) d-(p+q) 

conditions for weak convergence in theorem 8.2 of Billingsley (968) yields 

We now write (A' .B·)=(a. ) for (d+l)-(p+q)::5k::5m-(p+q) and l:sj::5m so
k+p+q.J 

m 
that t =E« r and Rd(t) = (Y2InHC InflQ (t). where

k+p+q.m k+p+q.J j nOn 
J= 1 
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m-(p+q) 
sin(knt)Qd(t)=n-1/2 L (3 

n k+p+q kk=d+l-(p+q)� 

m n-j� 

{3 =LQ: C and C = L (: (: . Since C In ~ E[(:2), it suffices tok+p+q k+p+q,j J' j t t+j 0 1j= 1 t=1 

prove that, given £>0, 

- - d
lim lim P[ sup IQ (t) I>c]=O. ) 
d n O~t~1 n 

m- (d+ 1 ) 

sup IQd(t) 12~Qd=2 L Iy I, 
O~t~1 n n r=O r 

m-r-(p+q) {3 (3
-1 k+p+q k+r+p+q

where Y =n L We have 
r k(k+r )

k=d+l-(p+q) 

m-r-(p+q) m-r-(p+q) {3 {3 {3 {3� 
E[y2r)~n-2 't" 't" IE[ k+p+q k+r+p+q l+p+q 1+r+p+q ]1.� 

t... t... k(k+r)l(l+r)�
k=d+l-(p+q) J=d+l-(p+q) 

By lemma 1 in Grenander and Rosenblatt 0957, p. 186), and exploiting the 
) 

fact that the rows of (A' ,B') are orthonormal, we get: 

(.L) E[(l ]~n;
k+p+q 

(iL) E[{32 {32 ]~An2, r~l; 
k+p+q k+r+p+q 

(ill) IE[(3 {3 {3 (3 ] I~Bnm, k<l, r~l.
k+p+q J+p+q k+r+p+q J+r+p+q 

By Cauchy-Schwartz it is easily seen that 
m-(p+q) m-(d+l) m-r-(p+q)

E[Qd]~ L k-2+[A+2B(m2/n))I/2 L [ L 1 ]112. 
n 2 2

k=d+l-(p+q) r=O k=d+l-(p+q)k (k+r) 
1/b

By observing that m=0(n ) and by recalling an argument given in Grenander 

and Rosenblatt 0957, p. 189), we get lim lim E[Qd]=O. This completes the 
n 

d n ) 

proof of step a). 

m- (p+q) 
Step .b). By CA), sup I~ (t)-V (t) I~(Y2ln)nl/2 s -s /le 

n n L I"k+p+q,m k+p+q,m I 
O~t~1 k=1� 

1/2 1/2 0 (11) (1)�~n m n =0 •• 
p p 

)
9 
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3.3. Weak convergence of the process () (t). For completeness. we study the 
n 

convergence of the process {U (t). O,St,Sl}. We will need the additional 
n 

regularity condition: 

C.S) In matrix Cm in (2) above. 11 AII =O(d-1/2) and ~B-Im_dIIE=O(d-l/2).
E�

where 11·11 E denotes the euclidean norm of a matrix.� 

We also define the array H={h} • 
Jk I::5J.k 

p+q p+q 
h=r ~a a rrs.

Jk L j-r k-s p+q
r=1 s=1� 

where the coefficients {a} are as defined in 00. a =0 for k<O. and rrs� 
k k p+q 

are the elements of the inverse of the (p+q)x(p+q) matrix 
CIO 

rp+q=( r a a I)'k k+ Ir-s
k=O 

THEOREM 3.4. Under conditions C.O, C.2). C.3) and C.S). we have 

The process {G(t). O,St::5l} is defined by 

CIO 

G(t)=(lZln) r u. p [t].
k k

k=1 

where a) is sequence of LLd.{u } a N(O,O randomk l::5k 
CIO 

sin(jnt)variables; b) p [t]= r [cS -h ] (cS j=k. and=l. cS =0 j*k).k Jk Jk j Jk Jk ' J=1 

Proof. (Sketch). By lemma 3.1. sup It) (t)-Y (t)l=o 0). where 
O::5t'sl n n p 

Y (t)=(lZln)n1
/2 [~ Sin(~nt). 0::5t::51; 

n km
k=1 

and ~ 
m 
=(~

Im
• ...•~ )'=C C' R =[ CdC~Rd ]+[~] (A' B')R . If 

mm mmm 0 B m 

d 1/2 d sin(knt)
Y (t)=(IZ/n}n r a: 

n k k
k=1 

where (a:, ...• a: )'=C C'R and we now take
1 d d d d 
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d
G (t)=(v'Z/1l) i u I i (cS -h ) sin(~1lt)] Osts1. 

k JkJk J'
k=1 J=I 

)it can be shown that yd(t)-----7C;d(t). By considering the representations 
n w . 

y (t)=yd(t)+Rd(t). 
n n n 

we need to prove: a) limlim P[ sup IRd(t) I >c]=O and b) )
lim 

d n OStSI n d� 

PI sup IRd(t) I >c]=O.� 
OStSI� 

m ijrrtI12
Step a) sup !R:(t) I s(v'Z/1l)n- (c/nrl I LTO Is� 

OStSI J=I J� 

or;:; -I d d
(vZ/1l)(C /n) [A +B ].

o n n 

m-(p+q) ) 
say. where 0 = L a (3 . We haveJ k+p+q.J k+p+q

k=d+ 1 -(p+q) 

and 

) 

m-(p+q) m-(p+q}
2

E[O ]= L . L a a E[(3 (3 ]s
J k+p+q.J l+p+q.J k+p+q I+p+q

k=d+ I-(p+q) l=d+I-(p+q}� 

m-(p+q) m-(p+q)�
2 2 2(n-I) L a + m La, ),k+p+q.J k+p+q.Jk=d+ 1 -(p+q) k=d+ 1 -(p+q) 

so that 

d 

LEI0
2
]sl(n-O+m

2
] IIAII~, ) 

J=I J 

and from here and regularity condition C.S), lim EI(Ad)2]=0. 
n 

•• d .. 
d IJ1lt m IJ1lt� 

We now observe that Bdsn-
1/2 

1 L_e-.- (0 -(3 ) I+n-112 1 L _e_._� 
n J =1 J J J J= d + 1 J� 

Od By an argument used in the proof of theorem 3.3 lim E[(Od)2]=0. It can 
n d n 

) 
11 

) 

---------- ---~-------------------._----_. 



d 

be shown that� L E[(D -/3 )2 j::s[(n-l)+m2jIIB-I 11 
2 so that, again by

J=1 J J m-d E 

regularity condition C.S), Hm E[(Cd)2 j=O. 
d n 

IIil d 
sin(jrt)RAd[t]=-(.,t2/n) L u [L h j ],k Jk

k=d+l J=1� 

and� 

m m m 
RBdlt]=-(.,t2/n) L u sin(knt) + (0/2/n) L u [ L h sinqnt)].

k k k Jk Jk=d+l� k=1 J=d+l 

d-l d-r/3 /3 
We have RAd= sup IRAd[t] 12::sC4/n2) L IY I, where Y = L J j+r and 

O::St::Sl 1'=0 I' I' J=1 j (j+r)co 
1

co 
/3= ~hu It can be seen that IE[/3 /3 /3 /3 ] I::SO(d- ) L Ia I, andJ L. Jk k' J J+r 1 1+1'� kk=d+l k=d+ld-I' 
therefore E[y

I'
2]::SO(I) L lakl L 1 By Cauchy-$chwartz, 

k=d+l J=1 lU+r)2 

co d-l d-I' 
lim E[RAd]::SO(I)[ L Ia 1]112 L I L 1 ]112=0. 

k� . 2( . )2d� k=d+l 1'=0 J=1 J J+r 

By Brownian bridge construction, lim 
d 

12B = sup� 2On the other hand, didB [t] ::s(2/n) 
O::StSl 

co 
2 2 - d

Since EI/3]= L h we have lim EIB ]=0.� 
J k=1 Jk d� 

Remark 3.5. Since the matrix H is symmetric and idempotent for every m, it 
m 

is easy to proof that h = L h h and, therefore, the process G(t) is a 
Jk s=1 JS sk 

zero mean gaussian process with covariance function given by 

e(t, u)=C(t, u)-D(t, u), 

co co sin(jrt) sin(knu) 
where C(t,u)=minCt,u)-tu, D(t,u)=(2/n

2
) L L h j k

Jk� •J=lk=1 

4. Testing the goodness-of-fit of an ARMA(p.q) model 

..--, 
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4.1.� Testing criteria 

The test statistics to be considered will be of the form D =D[~ (t)], 
n� n 

where D[.] is a continuous nonnegative functional defined on C[O,I]' the 

space of continous functions in [O,Il endowed with the sup norm. Extreme 

values of these functionals should indicate the inadecuacy of model 0). The 

asymptotic distribution of the random variable D =D[~ (t)] is, by a 
n� n 

straightforward application of the continuous mapping theorem, the 

distribution of the random variable D=D[U(t)])]. Approximate significance 

levels are then computed with reference to the distribution of the 

functional D=D[U(t)])]. Standard choices for D[.] and its associated tests 

statistics are: 
) 

a) Kolmogorov-Smirnov criterion: 

DKs[f(t)]= sup \nt) I; D = sup I~ (t) I; 
n,KS O::St::Sl nO::St::Sl 

b) Cramer-von Mises criterion: 
) 

cl Anderson-Darling criterion: 

with� u(t)=1/[tO-t)]. 

For the functionals a), b) and c) above, tables can be seen in Shorack 

and Wellner (987). It is interesting to observe that, for the Cramer-von 

Mises criterion, we get 

m- (p+ql
2D� =(nI1l ) L (~2 /k2) )

n,CvM� k+p+q,m
k=l 

which is a statistic of similar structure as the Box-Pierce statistic Q in 

(3). 

4.2.� Computational issues. For computing the process (It) and the test 
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statistics above we need: 

(l) The MLE's ~, ~; 

(2) The estimated residuals and the associated correlation 

function ~k' k=1, ... ,m; 

(3) The matrix e =c (~,~) which we compute as follows: 
m m 

(i) We obtain the coefficients {a =a (;,9)} by setting a =1 and using
k k� 0 

the recursive relation 

a -~ a - ...-~ a =0, (6)
k 1� k-l p+q k-(p+q) 

where ak=O for k<O. For example, for the AR(l) model, X -;X =c, we have 
t t-l t 

k 
a =; while for the AR(2) model, X -'" X -'" X =c we get a =1, a =; ,

k� t "'1 t-l"Z t-Z t' o 1 1 
Z 3 a =~	 +~ , a3=~1+2;I~Z' and so on.Z 1� Z 

(iL)� We compute ~ =a (~,~) and form the matrix ~ =X (~,~). 
k k� m m 

(UL)� Because rank[~ ]=p+q, only p+q eigenvalues of ~ ~' are different 
m m m 

from zero. By the singular value decomposition of ~ , we can chose for e 
m m 

the mx[m-(p+q)] matrix formed by the m-(p+q) eigenvectors of ~ ~' 
m m 

corresponding to the m-(p+q) null eigenvalues of ~ . 
m 

5.� Comparisons with previous criteria. 

We compare briefly,' in this section, the goodness-of-fit tests based on 

the process ~ (t) 
n 

with the classical goodness-of-fit tests based in the 

statistics Q of Box and Pierce (970) and Q
1 

of Ljung and Box (978). We 

compare also ~ (t) with other spectral goodness-of-fit criteria proposed in 
n 

the literature. 

With respect to Q and Q, it seems that the "averaging" used in (4)
1 

provides a proper limiting distribution for every D =D[~ (t)] as n~. This 
n n 

is in contrast with Q and Q whose "asymptotic" distribution depends on the 
1 

sample size through m=m. On the other hand, on the light of section 4.2, 
n 

criteria based on ~ (t) are computationally more expensive but, however, not 
n 

14 
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by a great amount. 

Several other spectral based goodness-of-fit criteria have been 

proposed in the literature. See. e.g.. Priestley. 0981, chap. 6). 

Dzhaparidze (1986, chap. V) or the recent review contained in Anderson 

0990. These previous methods are not based in the residuals and 

) 
use directly the observations (X. •...X ). With some exceptions,

1 n 

for example the Quenouille's goodness of fit test for autoregressive models 

described in Priestley 0981. p. 488). these methods are fully manageable 

)
only in the case when we assume a complete.tl.; specified model (both the 

2orders (P.q) and the parameters (</>.9.0") are known). This is a very 

restrictive framework for goodness-of-fit purposes because to check the 

appropriateness of an ARMA(p.q) model for the data. we should assume only 

that the data X, ....X are generated by an ARMA(p,q) process with unknown 
1 n 

parameters (</>,9.0"
2

). It is important to remark that the process ~ (t) 
n 

) 
converges weakly to the brownian bridge for ~ model in the class of 

causal and invertible ARMA(p.q) models 0), Therefore, ~ (t) provides a 
n 

sensible building block for goodness-of~fit under a more flexible framework. 

)
Recall also that the convergence of ~ (t) does not require normality of the 

errors (c .... ,c ).
1 n 

6. Example. We illustrate. in 

procedure with reference to the 

AR(2) model X -.4X +.7X =c. 
t t-l t-2 t 

Priestley 0980. Given the data, 

n 

this section. the proposed goodness-of-fit 

first n=100 simulated observations from the 

)
{c }-N(O.O which appear in the appendix of 

t 

we try to find out about the merits of the 

models AR(l) 

m=lO. 

(i) For the 

and AR(2) in providing a satisfactory fit for the data. 

AR(l) model X -</>X =c. we get ~=.18. Table 1. a)
t t-l t 

We take 

displays 

) 

15 
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1\� 1\the autocorrelation function r k' k=l. ...• 10. the sequence k=O,I, ... ,9.ak • 

and the elements� ~ , k=2, ... ,10.
k,IO 

k 0 1 2 3 4 5 6 7 8 9 10 

1\ 
r .131 -.687 -.368 .359 .494 -.080 -.438 -.095 .299 .128

k 

1\ 
a 1. .180 .030 .005 .001 .000 .000 .000 .000 .000

k 

1\ 
s� .007 -.500 -.851 -.155 -.008 -.438 -.095 .299 .128

k,IO 

Table I.a) 

Table I.b) displays the values of the statistics presented in section 

4.1� which are all highly significant. 

D =1.83; D =1.5335; D =11.24.
n,KS� n,CvM n.AD 

Table I.b) 

(iL) For the AR(2) model X -cl> X -cl> X =c. we get ~ =.326 and ~ =-.762. 
t I t-l 2 t-2 t I 2 

Table 2.a) displays the autocorrelation function k=l. ....10, the 

1\ 
sequence a 

k 
, k=O.I. . ..•9. and the elements 

1\ 
s • k=3. 

k.IO 
. ... 10. 

k 0 1 2 3 4 5 6 7 8 9 10 

1\ r -.095 -.007 .009 -.093 .151 .054 -.101 -.109 .176 -.045 
k 

1\ 
a 1. .326 -.656 -.462 .349 .466 -.114 -.392 -.041 .286 

k 

1\ 
s� .054 -.017 -.13 .162 .064 .030 .230 .023 

k,IO 

Table 2.a) 

Table 2. b) displays the values of the statistics presented in section 

4.1.� which confirm the adecuacy of a model AR(2). 

D =0.62; D =0.0786; D =0.4352. 
n.KS� n.CvM n.AD 

16 
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