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Abstract _ 

In this paper we describe the use of Gibbs sampling methods for making posterior inferences in 

stochastic frontier models with composed error. We show how the Gibbs sampler can greatly 
c 

reduce the computational difficulties involved in analyzing such models. Our fmdings are 

illustrated in an empirical example. 
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Introduction 

Stochastic frontier models have a long history in empirical 

economics. They developed out of the reasoning that production 
functions derived from economic theory should measure the 
greatest amount of output that can be obtained from a given set 
of inputs. In practice, firms rarely, if ever, are perfectly 
efficient, so that actual output produced should lie below the 
production frontier. It is now standard practice to work with 

models where the deviation from the theoretical production 

function is composed of two parts, one of which is negative and 
interpreted as inefficiency; the other of which is symmetric and 
interpreted as measurement error. This composed error framework 
was first introduced in Meeusen and van den Broeck (1977) and 
Aigner, Lovell and Schmidt (1977). The reader is referred to 

Bauer (1990) for a survey of the literature. 
In a previous paper (van den Broeck, Koop, Osiewalski and 

Steel (1993), hereafter BKOS), we used Bayesian methods to 

analyze stochastic frontier models and argued that such methods 

had several advantages over their classical counterparts in the 
treatment of these models. Most importantly, the Bayesian methods 
we outlined enabled us to provide exact finite sample results for 
any feature of interest and to take fully into account parameter 
uncertainty. In addition, they made it easy to treat uncertainty 

about which model to use since they recommended taking weighted 

averages over all models, where the weights were posterior model 
probabilities. We illustrated the Bayesian approach using an 

empirical example described in Greene (1990), and posterior 
properties were evaluated using Monte Carlo integration with 
importance sampling. Unfortunately, the empirical approach was 

computationally very demanding and we were led to conclude that, 

at least for larger problems, Monte Carlo integration was not a 

feasible method. In this paper, we describe how Gibbs sampling 

can be used to substantially reduce the computational demands 

encountered in our Bayesian approach. l 

lA third al ternative to Gibbs sampling or Monte Carlo 
integration with importance sampling would be simple Monte Carlo 
integration. Ley and Steel (1992) use rejection methods to draw 
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The paper is organized as follows. Section 1 introduces the 

Bayesian model we consider in the paper and Section 2 develops 
the Gibbs sampler. Section 3 applies the Gibbs sampler to the 
same illustrative example we used in BKOS. We find that an 
iteratively calibrated Gibbs sampler with restarting performs 
very well in such a numerically complicated problem. 

Section 1: The Kodel 

The basic stochastic frontier model which we use is given 
by: 

(1) 

where Yi is the log of output (or the negative of log cost) for 
firm i (i=l, .. ,N); Xi is a vector of k exogenous variables; Vi is 
a syrrunetric disturbance capturing measurement error in the 
stochastic frontier; Zi is a nonnegative disturbance capturing 

the level of firm inefficiency; and Zi and Vi are independent of 

each other and across firms. We use the notation y, z, and v to 

indicate vectors containing all the YiS, ZiS, and ViS; and X to 
indicate the matrix of observations on the explanatory variables. 
Moreover, we assume that Vi is N(O,02). Four different 

specifications for Zi are then considered, three corresponding to 

different Gamma distributions and one to a truncated Normal. We 

allow for 

parameter 
This impli

Zi 

j=
es 

to 

1,2,3, 

have 

and 

a Gamma 

refer 

distribution 

to these mod

with 

els as 

integer shape 

~ (j=1,2,3). 
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Pj (zj lej) =f G ( Z i Ij , '" -1) = "':.;(j) exp ( - '" -1 Z i) I ( Z i ~ 0), ( 2 ) 

where ej=(~',O-2, )..-1),2; I(.) is the indicator function; r(.) is 

directly from the posterior for a version of our model with no 
measurement error. However, when measurement error is allowed 
for, these rejection methods can no longer be used. 

2We parameterize in terms of 0-2 and )..-1 rather than 0 2 and )... 
This choice has no substantive implications; it merely ensures 
that we can draw from Gamma densities instead of inverted Gamma 
densities. 
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the gamma function; and fG(.lj,~-l) indicates the Gamma density 
with parameters j and ~-l (j=l,2,3). Note that the j=l case 

corresponds to the exponential distribution. The fourth model, 

M4, assumes Zi has a truncated Normal density. That is, 

where 94=(~',(J-2,'V,(O-2),; cJ)(.) is 
Mf N ( .1 .) is the M-variate Normal 

underlying Normal distribution has 

The focus of interest in our 
making posterior inferences about 

the cumulative Normal; and 

density. In our case this 
mean ~ and variance (02.3 

empirical illustration is in 
the parameters and z. The 

derivation of the posterior under ~ (j=1,2,3,4) is given in 

BKOS. For the Gamma models (M1 , M2 and M3), we work with the 

diffuse prior, p(9j)~(J2~ (j=1,2,3), but the techniques described 

are also valid for the more general classes of priors considered 
in BKOS. Although the posteriors for 9 j and z are very difficult 

to work with, conditional posterior densities are much simpler. 
The next section describes how a Gibbs sampler can be set up in 

terms of the following conditional densities: 

Pj (P, 0-2 1A-1, y, Z, X) =Pj (P, 0-2 1y, Z, X) = c (4)
f; (P lP, 0 2 (Xix) -1) f (0-2 1N;k, (y+z-x@)~ (y+z-X13~) ,

G 

where 

(5) 

,. 
\. where 1 is an Nxl vector of ones; and 

c 

3We find this parameterization of the Normal to be useful in 
that the posterior of 'V is better behaved than that of the mean 
of. the Normal.c 
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where IN is the NxN identity matrix. 
A Gibbs sampler for M4 can be derived in a similar way. J 

However, we use an informative prior for M44 which is described 

in more detail in BKOS. It is sufficient merely to note here that 
this prior is a modified version of the usual natural conjugate 
prior, and is given by: ) 

(7) 

and 

(8) 

where a, band \)0 are prior hyperparameters. In this paper we set 

a=l, \)0=10 and b=.1783. A detailed justification of these 
choices, which imply the pr10r median of our measure of 
efficiency to be .875, is given in BKOS. For the remaining 
parameters, we use a standard noninformative prior: p(~,0'-2)oc0'2, 

2independent of 'If and 00- . 
With this prior, conditional densities for M4 can now be 

created in a relatively straightforward fashion. Note first that, 

in equation (4), the posterior for ~ and 0'-2 given z does not 
depend on ",-1, and hence, that it is easy to show that the 

posterior takes exactly the same form for M4 as for Mj (j=1,2,3). 

It can also be shown that: 

(9) 

and 

4The posterior under M4 behaves very badly when a 
noninformative prior is used. For this reason, we do not present 
re.sults for this case either here or in BKOS. 
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In this paper, we are interested in making marginal posterior 

inferences about z and 9 and, for this reason, have no direct 
interest in the conditional densities listed above. Nonetheless, 
the next section describes how such marginal inferences can be 
made on the basis of (4), (5), (6), (9) and (10). 

Section 2: The Gibbs Sampler 

The Gibbs sampler is a technique for obtaining a random 
sample from a joint distribution by taking random draws from only 

conditional distributions. A detailed description of the 
technique can be found in Casella and George (1992) and Gelfand 

and Smith (1990). 
A glance at equations (6), (4) and (5) (and (9), (4) and 

(10) for M4 ) confirms that the stochastic frontier model 

considered in this paper can be analyzed using Gibbs sampling 

'­ methods. That is, even though the posteriors of 9 j and z are 
unwieldy, the conditionals for a suitable partition of the set 
of parameters are easy to work with. By taking successive draws 
from (6), (4) and (5) (or (9), (4) and (10)), each conditional 

on previous draws. from the other conditional densities, we can 

create a sample which can be treated as random from the joint 

posterior. 
Note that, in the application in Section 3, N=123 and k=5, 

so that the dimension of the Gibbs sampler is 130 for M1 , M2 and 
M3 and 131 for M4 • However, the partition we choose implies that 

only three steps are required for each pass through the sampler. 
Any arbitrary function of interest, g(9 j ,z), can be approximated 

c by its sample mean, g*, based on S passes. Moreover, numerical 

standard errors (NSEs) can also be calculated in order to 

quantify the approximation error. Geweke (1992) recommends 

estimating the NSE of g* by [S-lSg(~)]~, where Sg(O) is an estimate 

c 
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of the spectraL_density of the series g(Sjlil,Z(i)) (i=l, .. ,S) at 

frequency zero, and Sj li) and Zlil are the sampled values. Another 

useful diagnostic is relative numerical efficiency (RNE). Geweke 

(1992) shows that RNE can be approximated by the ratio 
var*(g(Sj,z))/Sg(O), where var*(g(Sj'z)) is the Gibbs sampling 

estimate of var (g (Sj' z) ). RNE constitutes a good measure of 

computational efficiency in that the number of drawings necessary 

to achieve a given degree of numerical accuracy is inversely 

related to the RNE. In fact, RNE is the efficiency relative to 
i.i.d. drawings from the posterior. We use a Parzen window with 

truncation point at 2S~ in our calculation of Sg(O) in Section 3. 

To implement the Gibbs sampler for all the models, we must 
take pseudo-random draws from conditional densities (4), (5), 

(6), (9) and (10). It is trivial to take draws from the densities 

given in (4), (10) and (5) since the first two of these are 

Normal-Gamma; and the last, Gamma. Taking random draws from the 

densities given in (6), however, is somewhat more difficult. Due 

to our assumption of independence across firms, it is only 

necessary that we take draws from 

We consider two separate strategies for drawing from (11), one 

of which works only for M1 andM4; the other, for Mj (j=1,2,3,4). 

If j=l then (11) is a univariate Normal density truncated 

to be nonnegative. Simulation from this density is simple using 

the algorithm described in Geweke (1991). Note that (9) is also 

truncated Normal so that Geweke's algorithm can be used for M4 as 

well. Note also, however, that (11) does not take the form of any 

standard density for either M2 or M3 • Nevertheless, we can sample 

from (11) for M2 or M3 using rejection methodsS found in Smith 

and Gelfand (1992). To obtain a random sample from a posterior, 

SIt is, of course, possible to use rejection methods for M1 

and M4 as well as for M2 and M3 • For M1 and M4 , such methods were 
not used for the final runs given in Section 3 since direct 
simulation from the truncated Normal was about four times as 
fast. 
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the authors recommend taking a random sample from the prior and 
including each draw with a certain probability. In our context, 
if 9(1-ll is the drawn value for 9 j from the (1-1)th pass through 

the Gibbs sampler, the Smith-Ge1fand algorithm is as follows: 

Step 1. Take a random draw, Zi (1 ) from p(zt!9 Cl -
11 ), which is 

Gamma (see equation (2)). 

Step 2.� Take a random draw, w, from the uniform on (0,1). 

Step 3. Calculate K=p(yd Zi Cl ) 'Xi,9C1-11) /p(Yil Zi,Xi ,9 Cl -
11 ), where 

~ " (I 9 (1 1)Zi maXl.ml.zes p Yi Zi' Xi' -) . 

Step 4.� If w<K, then accept Zi III i else return to Step 1. 

This simple algorithm can be used to generate random numbers from 
(11) and, thus, (6) as well. The only minor drawback is that K 

must� be evaluated for each firm (i=l, .. ,N) at each pass 

(1=1, .. ,S). However, this is not a major problem, as 

Since Zi is restricted to be nonnegative, Zi is either 0 or 
Xi,~(l-ll_Yi' depending on the sign of Xi,~(l-l)-Yi' Hence K can 

C� easily be calculated and is large enough in practice to ensure 

that the algorithm does not reject too many draws. 6 

In this section, we have argued that random draws can easily 
be taken from the conditional densities given in (4), (5), (6), 

, (9) and (10). It follows that a Gibbs sampler can be set up to 

6zeger and Karim (1991) and Car1in et al. (1992) also use 
rejection methods within the Gibbs sampler. Rather than draw from 
the prior density, however, they match Gaussian kernels to the 
conditionals in question. In our case, sampling with rejection 
from the truncated Normal will not work since K in Step 3 then 
becomes 

c 

which is zero as Zi j
-
1 is unbounded for j =2 or 3. Hence, the 

probability of accepting a draw would be zero. 
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evaluate the posterior properties of z and 9 j in our stochastic 

frontier model. It is worth stressing at this stage that our 

Gibbs sampler, unlike the Monte Carlo approach we outlined in 
BKOS, yields a draw of z at each pass, and that for this reason, 
the inefficiency measures for all N firms are produced as a by­
product of our Gibbs sampling methodology. 

Section 3: The Application 

The application discussed in this section is the same as 
that analyzed in BKOS and in Greene (1990), who provides a 
complete listing of the data. The data set contains observations 
from N=123 electric utility companies in the United States in 

1970. Greene (1990) and BKOS fit a cost function based on the 
Cobb-Douglas cost function, but which is generalized to allow 

returns to scale to vary with output. If Qi' Ci , Pli , Pki , and Pfi 
are output, cost, labor price, capital price, and fuel price of 
firm i, respectively, then the model we work with here is given 

by: 

The version of the Gibbs sampler we adopt is that described 

in Gelfand and Smith (1990). That is, instead of starting the 
Gibbs sampler and then taking one long run of S passes, we take 

several shorter runs each starting at the same initial value (ie. 
at the same 9(0)). We carry out M runs, each containing L passes, 

and keep only the Lth pass out of these runs. Moreover, we use 
this implementation in an iterative fashion, starting from an 
arbitrary initial value and using small Gibbs runs, typically 

with L=10 and M=500 or 1,000, to calibrate the starting value 
9 (0) .7 As soon as convergence is achieved, a final Gibbs run is 

7That is, after each calibration run we take the posterior 
means as the starting value for the next run and convergence is 
achieved if resulting posterior means are close enough (relative 
difference of no more than 20%) to the starting values of that 
run. These runs are computationally cheap since NSEs (which 
require spectral analysis) do not need to be evaluated at this 
stage. 
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carried out. M=10,000 was used and some experimentation revealed 
that L=5 was more than sufficient. 

The issue of whether to use one long run from the Gibbs 
sampler (often called sequential Gibbs sampling) or to restart 
every Lth pass (often called parallel Gibbs sampling) has been 
discussed in the literature (see, for example, Tanner (1991), 
Carlin et al. (1992), CaseI la and George (1992), Gelman and Rubin 
(1992) and Raftery and Lewis (1992)). Although the theoretical 
properties of these two variants of the Gibbs sampler are the 
same, they can, in practice, be quite different. Advocates for 
taking one long run note that the restarting method typically 
wastes a lot of information (eg. our methods produce 50,000 
passes, but we only use 10,000 of them when actually calculating 
posterior moments). Advocates for restarting the Gibbs sampler 
note that this technique can be very effective in breaking serial 
correlation and prevents the path from becoming 11 temporarily 

trapped in a nonoptimal subspace" (Tanner (1991), p. 91; see also 
Zeger and Karim (1991) and Gelman and Rubin (1992)). The question 
of which variant is preferable is no doubt a problem-specific 
one, but in our application, the restarting method was found to 
work best. Using one long run without introducing prior 

C' information in models M:i (j =1,2,3) very often led to a circling 
in the region of full efficiency and very small A.. For M4 , 

undesirable behavior (with the precision blowing up) occurs even 

with the informative prior in (7) and (8). In any case, the 
strong serial correlation induced by a single long Gibbs runs 
produces very small numerical efficiencies: For M4 the RNEs, 

without restarting, range from .027 for 0-2 to .18 for ~1' Tables 
1 and 2 indicate that RNEs with our restarting method are 
typically around 1, suggesting that Gibbs sampling is roughly as 
efficient as is sampling directly from the posterior. 

Results using the Gibbs sampling algorithm described above 

are given in Tables 1, 2 and 3. In Table 1 we present posterior 

SAn alternative way to reduce the serial correlation is to 
use only every Kth pass in a long sequence. However, this would 
not solve the problem of the path possibly getting stuck. 
Furthermore, evidence from Raftery and Lewis (1992) and Geweke 
(1992) supports taking K=l in most cases.

c' 
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means and standard deviations as well as NSEs and RNEs for the 
posterior means for all parameters for Ml , M2 and M3 • Table 2 
presents the same numbers for M4 • In Table 3, we focus on 
measures of efficiency. Since our data is in logs, it makes sense 

to define the firm-specific efficiency of firm i as ri=exp(-zi) . 
Both posterior means and standard deviations of r i for i=l, .. ,5,9 

and of the measure of average efficiency, rf' are presented. 10 

The numbers reported in Tables 1, 2 and 3 are very close to 
those of BRaS, with some exceptions. The most important of these 
occur for M4 (eg. in BRaS we found the posterior means of V and 
ro-2 to be 0.41 and 62.80; here these numbers are 1.98 and 145.78, 
respectively). Even with an informative prior, it was very 

difficult to find a good importance function for M4 in BROS. In 
contrast, results using the restarted Gibbs sampler are very 

stable indeed once the prior information in (7) and (8) is 
introduced. Calibration was fast for all models (2 iterations) 
and results very insensitive to changes in Land M. As further 
evidence of the advantages of Gibbs sampling, consider Figures 

1 and 2. These figures contain plots of the posterior of r f for 

all four models using Gibbs sampling and Monte Carlo integration 
with importance sampling, respectively. Clearly, the plots in 

Figures 1 and 2 indicate that Gibbs sampling has vastly superior 

numerical properties, especially for M4 • Figure 1 is calculated 

using only 10,000 drawings (ie. M=10,OOO and L=5), while Figure 
2 is calculated on the basis of 100,000 drawings from an 

importance function. Furthermore, for both methods we initially 

used maximum likelihood estimates, but for importance sampling 

we needed many more iterations in order to fine-tune the 
importance function. Note that the iterations in our Gibbs 

sampler are only required to fix the location of e(0), whereas 

location, spread and functional form of an importance function 

have to be chosen for the Monte Carlo approach. 
The runs included in this paper involved 50,000 passes 

9We could easily present posterior moments of ri for 
i=6, .. ,123 as well but do not do so for space considerations. 

10Here we define average efficiency as the efficiency of an 
unobserved firm. See BROS for details. 
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through the Gibbs sampler. Execution times for M1, M2, M3 and M4 

were 893 minutes, 2388 minutes, 2283 minutes and 960 minutes, 

repectively, on a 386-33 PC using GAUSS-386 VM version 2.0. Note 
that M1 and M4 were much faster since they did not involve the 
use of rejection methods. 11 By way of comparison with Monte 

Carlo techniques, note that Figure 2 is based on 100,000 

antithetic draws from the importance functions selected for our 
four models. This final run alone took 616 minutes, 866 minutes, 
1166 minutes and 700 minutes for M1, M2, M3 and M4 , respectively, 
where efficiencies for the first five firms only were calculated. 

These execution times do not represent the entire 

computational burden since, for Monte Carlo, the final importance 
functions we used were selected on the basis of numerous runs. 

In particular, we used a strategy where we iteratively updated 

the importance function on the basis of calculated posterior 
means of the parameters. This search for an adequate importance 
function was invariably a long one (for example, a run of 100,000 

draws from the final importance function usually followed five 

or more preliminary runs, each of 50,000 draws) . As the iterative 
calibration of the Gibbs sampler typically converged after 2 

iterations with L=10 and M=l,OOO, the initial costs of the Gibbs 

r sampler were much less. This makes the total computing cost (and, 
in particular, the effort of the researcher) required for Figure 
2, higher than for Figure 1. In addition, and more importantly, 
the Gibbs sampling results are much less erratic12 than are the 

Monte Carlo results. 
So as to really put this comparison into perspective, we 

11For M and M rejection methods were used for the 1232 3 
elements of z. The average number of drawings per pass were 2198 
and 1973 for M2 and M3 , respectively. Accordingly, roughly 16 
draws for each firm were rejected on average before one was 
accepted. Acceptance rates tend to go up as L becomes smaller and 
e(0) moves towards convergence in our i terative calibration. 

c 12The many modes in Figure 2 are caused by the very high 
weights being attributed to a small number of drawings. Even with 
conscientious fine-tuning of the importance function, this 
numerical instability could not be avoided. For this reason, 
the binwidth in BKOS was chosen to be 0.04 whereas here it is 0.01 in all fi­

gures for critical comparison. For a clear exposition of Monte Carlo impor­
tance sampling methods, see Geweke (1989). 
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also computed NSEs for the Monte Carlo runs. For the truncated 

Normal model, M4 , the NSEs obtained with 100,000 drawings from a 
carefully selected importance function are roughly 10 to 20 times 

as large as are those reported in Table 2 (based on only 10,000 

drawings)! This implies that the efficiency of a Gibbs run is at 

least 100 times better, even if the number of drawings is much 

smaller. Indeed, RNEs of the Monte Carlo estimates of posterior 

means range from .0003 for a-2 to .001 for c.o- 2
• In other words, 

whereas Gibbs sampling with restarting is as efficient as drawing 
from the posterior, the Monte Carlo approach using importance 

sampling requires 1,000 or more draws for every draw directly 

from the posterior in order to obtain the same numerical 
accuracy. 

We based the comparison of Gibbs and Monte Carlo results on 

plots of actual drawings. However, based on the Rao-Blackwell 

theorem, direct use of the knowledge of conditional densities can 

lead to substantial improvements in our estimates of posterior 

characteristics (see, eg., Gelfand and Smith (1990), Gelfand, 

Smith and Lee (1992) and Casella and George (1992)). In obtaining 

Table 3 we have averaged the conditional posterior moments of r f 
over drawn values of 6 j to arrive at marginal moments. 13 For 

Figure 3 we have followed the same strategy with the conditional 

posterior densities of r f • The plot given in Figure 3 is based on 

only 1,000 drawings (M=l,OOO, L=5) and is extremely stable to 

changes in M or L. A plot taking a mere hundred drawings (not 

presented here) is indistinguishable from Figure 3, at a 

computational cost which ranges from less than 5 minutes for M1 

to less than 20 minutes for M2 ! 

Conclusion 
In this paper, we have shown how Gibbs sampling methods can 

be used to greatly reduce the computational burdens which 

complicate the Bayesian analysis of stochastic frontier models 

with composed error. We show how the posterior conditional 

13Results on the basis of the drawn values alone coincide in 
the first three decimals, indicating exemplary numerical 
stability. 
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densities can be used to set up a Gibbs sampler, and use the 

rejection method suggested in Smith and Gelfand (1992) to take 

random draws from the conditional of z for M2 and M3 • All other 

conditionals are either truncated Normal, Normal-Gamma or Gamma. 

An application illustrates the enormous computational gains which 

can be achieved with the use of Gibbs sampling methods. 

c 

c 
13 

( 



I 

Bibliography 

Aigner, D., C.A.K. Lovell, and P. Schmidt (1977). IIFormulation 
and estimation of stochastic frontier productions function 
models," Journal of Bconometrics, 6, 21-37. 

Bauer, P.W. (1990). IIRecent developments in the econometric 
estimation of frontiers," Journal of Bconometrics, 46, 39­
56. 

van den Broeck, J., G. Koop, J. Osiewalski, and M. Steel (1993). 
"Stochastic frontier models: A Bayesian perspective, 11 

Journal of Bconometrics, forthcoming. 

Carlin, B., N. PoIson and D. Stoffer (1992). UA Monte Carlo 
approach to nonnormal and nonlinear state-space 
modelling, 11 Journal of the American Statistical 
Association, 87, 493-500. 

Casella, G. and E. George (1992). IIExplaining the Gibbs sampler, " 
The American Statistician, forthcoming. 

Gelfand, A.E. and A.F.M. Smith (1990). IISampling-based 
approaches to calculating marginal densities,lI 
Journal of the American Statistical Association, 85, 398­
409. 

Gelfand, A., A. Smith and T. Lee (1992). "Bayesian analysis of 
constrained parameter and truncated data problems using
Gibbs sampling, 11 Journal of the American Statistical 
Association, 87, 523-532. 

Gelman, A. and D. Rubin (1992). IIA Single series from the 
Gibbs sampler provides a false sense of security, 11 

in Bayesian Statistics 4, J.M. Bernardo, J.O. 
Berger, A.P. Dawid and A.F.M. Smith (eds.), Oxford 
University Press, Oxford. 

Geweke, J. (1989) .. IIBayesian inference in econometric models 
using Monte Carlo integration, " Bconometrica, 57, 1317-1339. 

Geweke, J. (1991). "Efficient simulation from the multivariate 
Normal and Student-t distributions subject to linear 
constraints," in Computing Science and Statistics: 
Proceedings of the 23rd Symposium on the Interface, 
E.M. Keramidas and S.M. Kaufman (eds.), Interface 
Foundation of North America. 

Geweke, J. (1992). uEvaluating the accuracy of sampling-based 
approaches to the calculation of posterior moments, 11 

in Bayesian Statistics 4, J.M. Bernardo, J.O. 
Berger, A.P. Dawid and A.F.M. Smith (eds.), Oxford 
University Press, Oxford. 

Greene, W. H. (1990). "A gamma-distributed stochastic frontier 
model," Journal of Bconometrics, 46, 141-163. 

14 

J' 

J 

J 

) 

J 

J 

) 

J 

J� 



Ley,� E. and M. F. J. Steel (1992). "Bayesian econometrics: 
Conjugate analysis and rejection sampling using 
Mathematica," Chapter 15 in Economic and Financial Hodeling 
Osing Mathematica, H. Varian (ed.), Springer-Verlag, 
forthcoming. 

Meeusen, w. and J. van den Broeck (1977). IIEfficiency estimation 
from Cobb-Douglas production functions with composed error, 11 

International Economic Review, 8, 435-444. 

Raftery, A. and S. Lewis (1992). IIHow many iterations in the 
Gibbs sampler?" in Bayesian Statistics 4, J.M. Bernardo, 
J.O. Berger, A.P. Dawid and A.F.M. Smith (eds.), Oxford 
University Press, Oxford. 

Smith, A.F.M. and A.E. Gelfand (1992). IIBayesian statistics 
without tears: A sampling-resampling perspective,"
The American Statistician, 46, 84-88. 

Tanner, M. (1991). Tools for Statistical Inference, Springer­
Verlag. 

Zeger, S. and M. Karim (1991). "Generalized linear models with 
random effects: A Gibbs sampling approach," Journal of the 
American Statistical Association, 86, 79-86. 

c 

c 
15 



Table 1: Posterior Moments of Parameters for 1111 lIal 113 

). 

0'-2 A. -1~o ~1 ~2 ~3 ~4 
M1� 

Mean -7.48 0.43 0.03 0.25 0.05 78.98 11.55� 

NSE 2.9E-3 4.0E-4 2.7E-5 6.0E-4 6.0E-4 0.18 0.03� 

RNE 1.25 1.02 1.02 1.13 1. 03 0.97 0.87 

S.D. 0.33 0.04 2.7E-3 0.06 0.06 17.97 2.36 

M2 
) 

Mean -7.37 0.40 0.03 0.25 0.07 62.03 22.41� 

NSE 3.2E-3 3.9E-4 2.7E-5 6.4E-4 6.3E-4 0.12 0.04� 

RNE 1. 08 1. 04 1. 05 1. 07 0.92 0.98 1. 04� 

S.D. 0.34 0.04 2.7E-3 0.07 0.06 11.85 4.12 

M3� 

Mean -7.33 0.39 0.03 0.25 0.07 56.03 33.51� 

NSE 3.4E-3 4.1E-4 2.9E-5 6.4E-4 6.0E-4 0.09 0.05� 

RNE 1. 04 0.91 0.91 1.12 1.08 1.12 1.12� 

S.D. 0.34 0.04 2.7E-3 0.07 0.06 9.03 5.23 

Table 2: Posterior Moments of Parameters for M4 

Mean NSE RNE S.D. 

" -7.37 3.3E-3 1. 08 0.34~o
 

~1 0.39 3.9E-4 0.94 0.04� 

0.03 2.7E-5 0.95 2.7E-3~2 

0.24 7.0E-4 0.91 0.07~3 

0.08 6.4E-4 0.94 0.06~4 
0'-2 67.21 0.14 0.89 13.42 

1. 98 1.9E-3 1. 08 0.19'If 
£0-2 145.78 0.29 1.32 33.76 

16 
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Table 3: Posterior Moments of Efficiency Measures for all Models 

r f r 1 r 2 r 3 r 4 r s 

M1 

Mean 0.917 0.730 0.973 0.943 0.926 0.963 

S.D. 0.077 0.111 0.026 0.047 0.058 0.034 

NSE 7.4E-4 --- --- --- --- --­
RNE 1. 076 --- --- --- --- --­

M2 

Mean 0.913 0.836 0.955 0.927 0.921 0.945 

S.D. 0.060 0.088 0.030 0.046 0.049 0.036 

NSE 5.8E-4 --- --- --- --- --­
RNE 1.047 --- --- --- --- --­

M3 

Mean 0.914 0.870 0.944 0.920 0.918 0.936 

S.D. 0.049 0.066 0.031 0.042 0.043 0.034 

NSE 4.4E-4 --- --- --- --- --­
RNE 1.230 --- --- --- --- --­

M4 

Mean 0.843 0.782 0.925 0.859 0.856 0.903 

S.D. 0.070 0.063 0.048 0.060 0.060 0.053 

NSE 6.8E-4 --- --- --- --- --­
RNE 1.048 --- --- --- --- --­

Notes to all Tables 
1) Mean, NSE and RNE indicate the posterior mean, corresponding 
numerical standard error and relative numerical efficiency; while 
S.D. indicates standard deviation.� 
2) Results for Mu M2 and M3 are derived under the noninformative� 
prior described in Section 1; and for M4 , under the informative� 
prior described in Section 1 (ie. with a=l, uo=10 and b=.1783) .� 
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