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1. Introduction. In this paper we consider the regression model 

1 .$ i .$ n, (1.1 ) 

where (Xl, yd, ... (Xn , Yn), Xi E RP, Yi E R are independent observations and the Ui have a 

common distribution Fo and are independent of the Xi' We assume, for simplicity, that the 
.)carriers Xi are independent random vectors with common distribution Go. Let Ho denote the 

distribution function of the pair (Xi, yd under the model (1.1), that is, 

Ho(x,y) = f:~ ... [z: Fo(y - 8~s)dGo(s). 
J,To allow for a certain fraction l of contamination, Le., a fraction l of data points which do not 

follow the "target" model (1.1), we consider the contamination neighborhood 

where 0 < l < .5 and HO< is an arbitrary distribution on W+I.J 
Let T be an RP valued regression and affine equivariant functional, defined on a subset of 

the space of distribution functions H on RP+!. This subset includes the family 1{( and all the 

empirical distributions functions Hn • 

We define the asymptotic bias of T at H E 1{( as J 

b(T, H) = V(T(H) - 80)'A(Go)(T(H) - 80 ), (1.2) 

where A(Go) is and affine equivariant functional, Le., if X '" Go and x = Bx '" Gfor some 

non-singular pxp matrix B, then A(Go) = BA(Go)B'. Notice that b(T, H) is invariant under 

regression equivariant transformations. 

A natural measure of the degree of robustness of an estimate T is given by the maximum 

bias BT(f) caused by a fraction l of contamination, 

,)BT(l) = sup b(T, H). 
He'H. 

The function BT(f) was introduced in the location model by Huber (1964). It was later com­

puted for M-estimates of scale by Martin and Zamar (1989) and for S- and GM-estimates of 

regression by Martin, Yohai and Zamar (1989). 

In order to measure the bias for "infinitesimal" values of l, Hampel (1974) introduced the 

influence function I FT and the gross error sensitivity GEST which are defined by 

GEST = sup I FT(X, y), (1.3) 
(X.II) 
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where H(x.lI).( = (1 - f)Ho + f6(x,lI) and 6(x.lI) is a point mass distribution at (x,y). 
He and Simpson (1991) introduced the contamination sensitivity "Y- defined by 

"YT = B1o(O). (1.4 ) 

which provides a linear approximation for BT (f) for ( near zero 

A small difference between "Y7o and GES is the order in which the supremum and the limit 
for f -+ 0 are taken. Another small difference is on the sets where the supremum is applied: to 

obtain "Y" one takes the supremum over 'Ht while for the GES only point-mass contaminations 

are considered. However, it may be shown that in sufficiently regular cases GEST = "YT' 

Yohai and Zamar (1992) define the class of residual admissible regression estimates. Roughly 

speaking, residual admissible estimates are those for which the empirical distribution of the 

absolute value of their regression residuals cannot be uniformly improved by using any other 
set of regression coefficients. Yohai and Zamar (1992) show that many robust estimates defined 
as a function of the regression residuals (including M-, S-, 7"-, least median of squares- (LMS), 

least trimmed of squares- (LTS) and some R--estimates) are residual admissible. The formal 

definition of residual admissible estimates is given in Section 3. 

In Section 2 we show that residual admissible estimates have infinite contamination sensitiv­

ity. Based on this finding we define a new robustness measure, the generalized contamination 

sensitivity, and compute this measure for regression M- estimates. In Section 3 we solve the 

Hampel problem of minimizing the asymptotic variance subject to a bound on the generalized 

contamination sensitivity, for the class of M--estimates. We also find the estimate with min­

imum generalized contamination sensitivity in the class of residual admissible estimators. In 
Section 4 we numerically compute the efficiency and the generalized contamination sensitivity 

c of the optimal Hampel estimators. We also compare numerically the maximum bias of two 
estimates with efficiency 0.95: the Hampel optimal estimate and the one based on the bisquare 

,p-function. 
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2. The contamination sensitivity of M-estimates. Given 6 E JlP and (x, y) E JlP+l 

with joint distribution H, let FH ,6(v) be the distribution function of Iy - 6'xl. 

DEFINITION 2.1. The estimating regression functional T is residual admissible on 'H if 
given two possibly substochastic distributions F l and F2 which are continuous on (0,00) and 
satisfy ) 

there are not a sequence Hn E 'H and a vector 6- E JlP such that FHn.T(Hn)(V) and FHn,60(v) 
are continuous on (0,00) and ] 

Y v>O. 

The following theorem shows that IT of residual admissible estimates is equal to infinity. 
This generalizes a similar result for spherical Go in Yohai and Zamar (1992). 

We need the following assumptions. 

) 

A.I. (i) Fo is twice differentiable (ii) fo(Y) = F~(y) is even, (iii) f~(y) < 0 for y > 0 and (iv) 
sup If~(y) I< 00. 

A.2. (i) x and u are independent under Ho, (ii) Go has second order moments and (iii) 
:Eo = EGo (xx') is positive definite. 

) 

Since we only work with regression and affine equivariant estimates, we can assume without 

loss of generality that A(Go) = I and 60 = O. Accordingly, the asymptotic bias b(T, H) (see 
(1.2)) is given by the Euc1idean norm of T, 

J 

b(T, H) = IIT(H)II. 

In view of A.2., we can work with the natural choice 
J 

This choice not only simplifies the notations but also simplifies the statement and the proof of 

Theorem 2.1, 2.2 and 3.1. If A(Go) :f EGo(xx') then we can no longer assume without loss of 

generality that both, A( Go) and EGo (xx'), are equal to I. Therefore., the smallest and largest 

eigenvalues of EGo (xx') would have to be taken into account (as appropriate) in the statement 

and proof of Theorem 2.1, 2.2 and 3.1. On the other hand, to prove Theorem 3.2 for general 

A(Go), we need to assume that Fa is Gaussian. 
The following Theorem shows that residual admissible estimates have I­ = 00. 
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THEOREM 2.1 Suppose that A.1 and A.2 hold. IfT(H) is residual admissible, then 

lim BT(f) = 00. 
(-0 f 

PROOF. By Theorem 4.1 and Lemma A.3 of Yohai and Zamar (1992) there exists V*(f) and 
8*(f) such that 118*(f)1I =5 BT(f) and 

FHo ,8·()(V"(f)) - FHo,O(V*(f)) =-1 ~ f'� (2.1) 

By the Mean Value Theorem (MVT), 

FHo.S·(.)(v·«)) - FHo.o(v·«)) = S'«)'� [:sFHo.S(V·«))]S:iil') ' (2.2) 

where 118(f))1I ~ 118"(f)ll· 
Notice that 

FHo.8(V") - PHo(8/x - v" ~ y ~ 8/x +v*) 

- 1:·. ·1:[Fo(8/x +v*) - Fo(8'x - v*)]dGo(x). 

Using the symmetry of fo, the MVT and the Dominated Convergence Theorem we get 

11 ~FHo.8(V"(f))11 = IIf··· f[Jo(8/x +V"(f)) - fo(8'x - v*(f))]xdGo(x)11 
=21If ... f f~(f3(v*(f),8'x))xx'8dGo(x)11	 (2.3) 

~ 2sup If~(y)IIIEGo{xx'}811 = 2supy IfMy)11I811. 

By (2.1), (2.2) and (2.3) 

1:( = 18 *(f)' [~FHo,8(v*(f))]8=9(())1	 ~ 118*(f)1I11 ~FHo,8(V*(f))18=8(()) 11 

~ 2supy If~(y)11I8*(f)1I2 ~ 2supy If~(y)IBt(f). 

Therefore, 

(2.4) 

and the theorem follows. 

An important subfamily of regression admissible estimates is the class of M-estimates of 
regression with general scale. These estimates are defined as (see Martin et al., 1989) 

( (y-tIX))
T(H) =arg mintEH P 8(H) ,� (2.5) 
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J 
where s(H) is an estimate of the scale of the regression residuals and 

A.3. p has the following properties: (i) even, (ii) continuous at 0, (iii) monotone on [0,00), 
(iv) p(O) = 0, (v) °< limu.....oo p(u) < 00. 

J.The class of M--estimates ofregression with general scale includes Huber (1973) M--estimates, 

Yohai (1987) MM--estimates, Rousseeuw (1984) LMS--estimates and Rousseeuw and Yohai 
(1984) S--estimates. Yohai and Zamar (1992) show that when (i) p is bounded and (ii) s{H) is 
bias-robust, the corresponding M--estimate of regression with general scale is residual admissi­

ble. On the other hand, if either one of these conditions does not hold, then the M--estimate J 
has breakdown point equal to zero, that is, BT(f) =00 for all f > O. M--estimates which satisfy 
(i) and (ii) will be called "robust M--estimates". 

The maximum bias function BT (f) of robust M--estimates is continuous but not differentiable 

at zero. Therefore, we don't have a linear approximation for BT{f) for small f. It shall be ) 
shown in Theorem 2.2, however, that Bf,(f) is differentiable at f = 0 and therefore BT{f) is 
proportional to yIf for f near zero. More precisely, there exists a constant "YT* such that 

The proportionality constant "YT plays a role similar to the contamination sensitivity "YT' That J 

is, "YT* is a "one-figure summary" of the behavior of BT(f) when f is small. Therefore, the 

constant "YT* will be called the generalized contamination sensitivity of T. The notations 

and 

8 i(il(t ) _ g(t,s)
9 ,S - at i ) 

are needed for the statement and the proof of Theorem 2.2. Since we are assuming A.2 and 

Eo = I, 
g(2)(0,S) = >'(Fo,s)I, (2.6) 

where 

If in addition to A.3 p is absolutely continuous, then by A.I 

Wo,s) = H:vEF• (tP (y: V))L= - 1:tP mfo(y)dy, (2.7) 
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where ,p = p'. 

On the other hand, if p~ is the jump function with jumps at -a and a, Le., 

if lul $ a 
(2.8)

if lul > a,� 

then� 

A(Fo,s) = -2f~(sa). (2.9) 

Before proving Theorem 2.2, we need the following lemma. 

LEMMA 2.1 Suppose that A.I-A.3 hold, then g(t,s) > g(O ,s) for allt:/; 0 and all s > O. 
r' 

PROOF. For a E Rand s > 0, define� 

h(a,s) = EFo (p (Y ~ a)) .� 

We will show first that 

h(a,s»h(O,s) Va:/;O (2.10). 

Since by A.I and A.3, h(a,s) = h(-a,s), we will prove (2.10) for a > O. Since 

h(a,s) = i: P (~) fo(u +a)du, 

using A.I and A.3, we get 

a 100 (u) 100 (u - a)aah(a,s)= -oc/ -; f~(u+a)du= -ooP -s- f~(u)du 

(" 

(2.11 ) 

Since (p( u;a) - p( u~n)) )f~( u) ~ 0 for u ~ 0, we get 

a 
aah(a,s)~O 'la. 

Then, to prove (2.10) it is enough to show that it holds for a $ ao for some ao. By A.3, there 

exist ao > 0 such that p( -;) > p( ~ ) for u > ao. Therefore if 0 < a < ao and u > ao - a, by A.3 
we get (p( u:a ) - p( u;a)) < 0, and then by A.I and (2.11) 

~ h(a,s) ~ 1:0 (p (u ~ a) _p (u: a)) f~(u)du > O. 

Using A.2 we get that g(t, s) = EGo (h(t'x, s)). Since by A.2, P(t'x :F 0) > 0 for all t:/;O , 
the Lemma follows from (2.10). c 
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THEOREM 2.2 Suppose that A.I-A.3 hold and 
(i) All the terms of g(2)(t, s) are continuous and bounded. 
(ii) sUPHE'H. Is(H) - s(Ho)l-+ 0 as f -+ O. Then 
(a) 

J 

and 
(b) 

lim Bt(f) = 
(-0 f 

2p(00) 
>'(Fo, s(Ho)) 

PROOF. Let 

By definition of T(H), ) 

Using this 1 together with the monotonicity and boundness of p (see A.3) we follow that 

f
g(T(H),s(H)) ­ g(O,s(H)) =:; 1 _ fP(oo), VH E 'Ho 

and part (a) of the theorem follows from Lemma 2.1 and (i). 

Since 9(1)(0 ,s(H)) = 0, a Taylor expansion of the left hand side of (2.12) gives 

2f 
1 _ /(00) ~ 2[g(T(H),s(H)) ­ g(O,s(H))] 

=T(H)'g(2)(t-(H),s(H))T(H) 

~ IlT(H)112IJL1(g(2)(t- ,s(H)))I, 

(2.12) 
) 

I 

I 

where Ilt-(H)11 =:; BT(f) and JL1(A) denotes the eigenvalue of A with minimum module. 
Therefore 

B}(f) _ sUPHE'H s IIT(H)11 2 < 2p(00) 
f - f - liminf(_oinfHE'Hs IJL1(g(2)(t-(H),s(H)))1' 

Therefore, using (2.6), conditions (i), (ii), and part (a) of the Theorem, we get 

'), 
I 

-. Bi:(f) < 2p(00) 
bm(_o-f­ - >'(Fo, s(Ho)) (2.13) 
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On the other hand, let f n > 0 and kn > 0 be such that 

(1 

I· k A A 2fn P(00 ) 
n~ nL.ln = 00, L.ln = >'(Fo, s(Ho))' 

Let ao be a unit vector and consider the sequences X n = knao, Yn 
- '1 )Anao (for some 0 < '1 < 1) and 

= (1 - '1 )knAn, 8n = 

c 

A Taylor expansion yields 

JHn(8 n,s(Hn)) - (1- fn)g(8n,s(Hn)) 

- (1 - fn) [g(O,S(H~)) + ~8~g(2)(t~,S(Hn))8n] 

= (1 - fn) [g(O,s(Hn)) +~(1- '1)2A~~g(2)(t~,s(Hn))ao], 

where Ilt*(Hn)11 ~ An. Therefore, using conditions (i) and (ii) and (2.6) we get 

lim ~ [JHn(8 n,s(Hn)) ­ (1 - fn)g(O,s(Hn))] = (1 - '1)2 p(00) < p(oo). (2.14)
n-+oo f n 

On the other hand, if 118nll ~ (1 - 8)118 nll (for some 0 < 8 < 1), that is, if 8n is of the form 

8n = 8n (1 - '1)(1 - 8n)~nall' 811 ~ 8, Hm 8n = 8, lIanll = 1,
n-+oo 

then 

and so, 

(2.15) 

( 

If n large enough, by (2.14) and (2.15), 

JHn(8n,s(Hn)) < JHn (8 n,s(Hn)) V 118nll ~ (1 - 8)118nll. 

Therefore, for n large enough, IIT(Hn)l1 ~ (1 - 8)1I8nll, and 

Bt(fn ) ~ IIT(Hn)1I 2 ~ (1 - 8)2118n1l2 = 2(1 - ;1~~,:(2:;)P(00). (2.16) 

9 

( 
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Finally, 
li.rnn-oo Bj;(fn ) > 2(1 - '7)(1 - e5)2p(OO). (2.17) 

f n - ~(Fo, s(Ho)) 

Since (2.17) holds for all e5 > 0 and all '7 > 0, the theorem follows from (2.13). 

REMARK 2.1. Notice that, so far, BT(f) has only been derived for S~stimates of regression, 
when the carriers have an elliptical distribution (see Martin et al. 1989). Therefore, Theorem 
2.2 provides the useful approximation ,..--Vi for the unknown maximum bias function of other 

M~stimates of regression (e.g. MM~stimates) and, in general, for all the M~stimates in the 

case of non~lliptical carriers. 

REMARK 2.2. A sufficient condition for assumption (i) in Theorem 2.2 is that It: be 

continuous and bounded. An alternative sufficient condition is that both, 1/J = p' and I~, be 

continuous and bounded. 

10 

J� 

J 

) 

J' 

J� 
I 



(. 

(� 3. Optimally bounding the generalized contamination sensitivity of M-estimates. 
Krasker and Welch (1982) solved HampeI's problem of optimally bounding the contamination 
sensitivity for regression GM-estimates, that is, they found an efficient, bounded influence 

regression estimate, with near optimal bias-robustness properties when f is small. Unfortu­

nately, the maximum bias behavior of the optimal GM-estimate is disappointingly bad when ( 

the dimension of x is large. 

Martin et aI. (1989) show that a certain least et-quantile estimate, Ta, defined by the prop­

erty of minimizing the et-quantile of the absolute value of the regression residuals, is minimax­

bias in the class of M-estimates of regression with general scale (see (2.5)) when Go is elliptical. 

The quantile et depends on f and Ho, but in general Ta is well approximated by Rousseeuw's 
least median of squared residuals. Unfortunately, Ta is very inefficient at Ho and, unless the 

sample size is exceedingly large, efficiency considerations must also be taken into account. 

Then one wishes to find the M-estimate of regression with general scale that minimizes the 

generalized asymptotic variance at Ho (Le. the trace of the asymptotic variance) subject to 
a bound on the maximum bias. Unfortunately, the ensuing optimality problem is untractable 

except in the case that Go is elliptical and the error's scale (under the central model) is known; 

and even in this case the technical difficulties are considerable. 

On the� other hand, it has been shown by Martin and Zamar (1992) that in the location", 
case the solution of the exact problem is very close to that of the HampeI's problem where the 

maximum bias is approximated in terms of the generalized contamination sensitivity. One then 

expects that the same is true for the regression case. 

We now consider a generalization of the Hampel's optimality problem for the class of ro­
c bust M-estimates of regression with general scale. These estimates have good maximum bias 

behavior independently of the dimension of x. 
To simplify the notations we also assume that s(Ho) = 1. It is well known that (see 

Yohai, 1987), under mild regularity conditions, M-estimates of regression with general scale 

are asymptotically normal with covariance matrix 

where 
V(ol. H� ) = EFo (1/J2(y)) (3.1 )

'f/, 0 >.2(Fo, 1) , 

and where 1/J(y) = p'(y) and >'( Fo, s) is given by (2.7). 

On the other hand, if we denote by "Y•• (p, Ho) = "YT' where T is an 'M-estimate correspond­

c 
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ing to the function p, by Theorem 2.2, 

2p(oo) 
(3.2)A(Fo,l)" 

We find the regression M-estimate with general scale which minimizes V(11', Fo) subject to 
a bound on "I". 

Since 11'- = clP gives the same M-estimate than 11', we can assume without loss of generality 

that A(Fo, 1) = 2. Therefore using (3.1) and (3.2) the Hampel problem is equivalent to search 
the function 11' such that 

subject to 

(i)� p(oo) = Jooo lP(u) du :s ]{2 

(ii)� A(Fo, 1) = 2 

(iii) 11'(0) = 0 and lP(y) ~ 0, Vy ~ O. 

Using the notations� 
f~(y) 1� 

~o(Y)=-fo(Y)' ~1(Y)= fo(Y) , 

(lPl,1P2) = 100 lPl(Y)1P2(y)fo(y)dy, 

the� Hampel problem can be rewritten as 

min (11', lP),
l/J 

subject to 

(i)� (lP'~l) :5 1<2, 
(ii)� (11', ~o) = 1, 
(iii) 11'(0) = 0 and lP(y) ~ 0, Vy ~ O. 

For each f3 > 0 let 

q{3 (y) =~o(Y) - f3~1 (y ). (3.3) 

We will require that Fo satisfy the following assumption: 

A.4.� fo(u) > 0 Vu, f~(tJ.) continuous, and limu_oof~(tJ.) = o. 
Then we have the following Lemma 
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LEMMA 3.1 Assume A.I and AA. Denote by 130 = max lI If'(y) I, and by q+ the positive 
part of the function q. Then for all 13 < 130: 
(a) there exists CQ(f3) > 0 and Cl (13) > 0 such that qj(y) = 0 for all 0:5 Y < CQ(f3) and all 

Y > Cl (13)· 
(b) (qj,6o) > 0 

PROOF. Follows immediately from the assumptions and the fact that 

- f~(y) - 13
()ql3 Y = fo(Y) . 

According to Lemma 3.1 we can define the family of functions 

(3.4) 

The functions in this family satisfy conditions (ii) and (iii) above. The following Theorem 

show that the functions 'I/;~ defined ill (3.4) are solutions to the Hampel problem. 

THEOREM 3.1. Suppose that A.I-AA hold. Then for all 13 < 1301 the function 'I/;~ solves 

de Hampel problem with 

/(2 = /(2(13) = ('I/;~, 6 l) = p~( 00), (3.5) 

where p~(y) = J6'1/;~(t)dt is the corresponding integrated loss function. 

PROOF. Suppose that 'I/; satisfies (ii) and (iii) above and 

where ](2(13) is given by (3.5). 

For some C > Cl (13) let� 
- 'I/;(y)� 
'I/;(y) = ('I/;, 6 }c '� 

0 

where 
c 

('I/;ll'l/;2}C =1'l/;l(Y )'1/;2(y )fo(y)dy, c > O. 

Since by A.I the function 

h( ) _ ('I/;, 6 l }c _ p(c) _ p(C) 
C - ('I/;,6 0 }c - J~ 'I/;(y)6o(y)fo(y)dy J~ 'I/;(y )fo(Y)dy , 

is non-decreasing 'I/; satisfies 

13 
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) 

(a) (,p, ~l)C ~ ]{2({3), 
(b) (,p, ~o)c = 1, 
(c) ,p(0) = 0 and ,p(y) 2: 0, "I Y 2: o.� 

Let� 

d({3) = (qt,~o)c = (qt,~o),	 ) 

where the last equality holds because c > c({3). Since ,p(y) ~ 0 for all y ~ 0, the definition of 
,pp implies that 

2 2 re [OI'(Y) q{3(Y)] f� (y)d > re [Ol.. () q{3(Y)] f ( )d .,ilo 'P - d({3)� JO Y - lo 'P{3 Y - d({3) JO Y y, -./ 

and so 
- -� 2 ­

{,p, ,p)c ~ (,p~, ,piJ)c + d({3) [{,p, q{3)c - (,pp, q{3)c].� (3.6) 

Since C > c({3), (,pp, ~o)c = (,pp, ~o) and so 

(,p, q{3)c - (,pp, q{3)c� - (,p, ~o)c - {3(,p, ~l)C - (,pp, ~o) + {3(,p~, ~l) 

- {3[]{2({3) - (,p, ~l )c] 2: o. 

Therefore, using (3.6) we get 

Finally, by the Dominated Convergence Theorem, 

proving the theorem. 

REMARK 3.1. In the important Gaussian case the assumptions A.I and AA are satisfied. ) 
In this case 

;;;- i.q{3(Y) = Y - v21r{3e 2 

and according to Lemma 3.1 ,pp vanished outside the interval (C<l({3),Cl(,B)). Inside this interval� 

,p~(y) > O. The correspon ding loss function PiJ is of the form pp(y) = 0 for lyl < C<l(,B),)� 
pp(y) = Pp(Cl({3)) for Iyl ~ Cl({3) and pp(Y) is strictly monotone for C<l({3) ~ Iyl < Cl({3).� 

We finish this section by deriving the unconstrained residual admissible estimate with min­
imum , ... 

14 

) 

J� 



THEOREM 3.2. Let T* be the M-estimate corresponding to the jump function piJo given in 
(2.8). Then 

** > **iT - iT-' 

for all residual admissible estimate T. 

PROOF. From (2.4) (in the proof of Theorem 2.1) a.nd (2.9) we have 

iT = lim B~f) ~ [2 sup If~(y)l]-l = [2If~(Po)I]-1 = ii*-. 
(-0 f iteR 

REMARK 3.2. It is easy to see that p~o(Y) may be obtained as a limit of p~/piJ(oo) when 

19 -+ Po. 

REMARK 3.3. One way to define an M-estimate with loss function p~ is using the least 

quantile estimate Qo defined by the estimating functional 

and taking as Q = 1 - Fo(Po). When Fo is a normal distribution Q = .683. 

c 
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4. Some numerical results. When Fo is N(O,I) the family of optimal ,p-function obtained 
) 

I,in Section 3 is given by 
2 I 

tP'fJ(y) =sign(y)[lyl- y'2;,8e'i]+. (3.7) 

In Table 1 we show the asymptotic efficiency (AEFF) giv~n by V(tP, Fot l and "'1•• for 

different values of ,8. We also show the interval [eo, Cl] where the function is different from O. 
The limit case of ,8 = .242 corresponds to a jump rhcr function pt. 

TABLE 1 ABOUT HERE 

In Table 2 we compare the asymptotic maximum bias and "'1" corresponding to two tP-) 
functions, one in the optimal family given in (3.7) and the other in the bisquare family 

)
Both estimates have AEFF=O.95 for normal errors and the the maximum biases are com­

puted assuming that Go = N(O , I) and the error scale is known. 

TABLE 2 ABOUT HERE 

Notice that the improvements in bias for the optimal estimate are aproximately proportional 

to the reduction in the value of "'1... In Figure 1 we plot the corresponding psi-functions. 

J 

) 

) 
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{3 Co Cl AEFF ""I" 

0.014 0.035 2.98 0.95 2.78 
0.028 0.08 2.70 0.90 2.57 
0.060 0.15 2.35 0.80 2.36 
0.094 0.25 2.10 0.70 2.25� ~ 

0.128 0.34 1.89 0.60 2.17 
0.160 0.45 1.71 0.50 2.12 

0.185 0.54 1.56 0.40 2.09 
0.209 0.65 1.41 0.30 2.06� ) 

0.242 1.00 1.00 0.00 2.02 

Table 1. Asymptotic efficieny and generalized 

contamination sensitivity for the optimal t/J's. 
:J.I 

f bisquare optimal 

0.05 0.74 0.66� ) 

0.10 1.13 1.00 

0.15 1.51 1.33 

0.20 1.94 1.71 

0.25 2.49 2.19 ) 
0.30� 3.29 2.91� 

""I" 3.10 2.78� 

Table 2. Maximum biases of bisquare 

and Hampel-optimal M-estimates ) 

) 
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