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Abstract 

 

The construction of asymptotically distribution free time series model specification tests using 

as statistics the estimated residual autocorrelations is considered from a general view point. We 

focus our attention on Box-Pierce type tests based on the sum of squares of a few estimated 

residual autocorrelations. This type of tests belong to the class defined by quadratic forms of 

weighted residual autocorrelations, where weights are suitably transformed resulting in 

asymptotically distribution free tests. The weights can be optimally chosen to maximize the 

power function when testing in the direction of local alternatives. The optimal test in this class 

against MA, AR or Bloomfield alternatives is a Box-Pierce type test based on the sum of 

squares of a few transformed residual autocorrelations. Such transformations are, in fact, the 

recursive residuals in the projection of the residual autocorrelations on a certain score function. 
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1. INTRODUCTION

Let fXtg1t=�1 be a covariance stationary time series with zero mean such that

the �ltered series

"t = ' (B)Xt; t = 0;�1;�2; : : : ;

is a White Noise process, i.e. an uncorrelated process with zero mean and variance

�2, where ' is a prescribed function of the backshift operator B. We adopt the

normalization ' (0) = 1: The series Xt might not be observable, as it happens when

Xt are errors of a general regression model. The discussion of this case is postponed

to Section 4.

Given a data set fXtgnt=1 ; statistical inferences usually rely on a parametric spec-

i�cation of '; which is described by means of a class of functions indexed by para-

meters taking values in a suitable parameter space � � Rq; say J = f'� : � 2 �g ;

so that '� (0) = 1 for all �. The resulting statistical inferences are invalid when the

putative speci�cation is incorrect and, hence, testing the null hypothesis

H0 : ' 2 J

is sorely needed before performing any statistical inference.

The null hypothesis of correct speci�cation can be written as

H0 : ��0 (j) = 0 for all j � 1 and some �0 2 �;

where �� (j) =
R �
�� f (�) f

�1
� (�) cos (�j) d� is the autocorrelation function of the

residuals "�t = '� (B)Xt; t = 0;�1; : : : ; f (�) =
��' �ei�����2 and f� (�) = ��'� �ei�����2

are the underlying normalized spectral density of fXtg1t=�1 and its parametric spec-

i�cation counterpart, respectively: It is assumed that
R �
�
log f(�)d� = 0 and the

parameter space, �; is such that
R �
�� log f�(�)d� = 0 for all � 2 �:

A vast majority of test statistics for time series model speci�cation are func-

tions of some estimated residual autocorrelation (ERA) function, i.e. suitable es-
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timates of ��0. Portmanteau test statistics are quadratic forms of an ERA vector,

e.g. Quenoville (1947), Box and Pierce (1970), Ljung and Box (1978) or Hosking

(1978). Lagrange Multiplier (LM) test statistics, obtained after imposing paramet-

ric restrictions to a time series model, are quadratic forms of weighted sums of

ERA vectors, e.g. Durbin (1970), Hosking (1978, 1980), or Robinson (1994) more

recently.

Sometimes it is possible to compute the residuals f"�tgnt=1, and �� (j) can be esti-

mated by the ERA, �̂n� (j) = ̂n� (j) =̂n� (0), where ̂n� (j) = n�1
Pn

t=j+1 "�t"�t�j;

j = 0; 1; : : : ; is the sample autocovariance function of f"�tgnt=1 : The residuals are

often hard to compute, if not impossible, and it may be advisable to apply the

computationally friendly autocorrelation estimates ~�n� (j) = ~n� (j) =~n� (0) ; where

~n� (j) =
2�

~n

~nX
k=1

IX (�k)

f� (�k)
cos (j�k) ; j = 0; 1; : : : ; (1)

~n = [n=2] ; [a] being the integer part of a; and for generic sequences fVtgnt=1
and fUtgnt=1 ; IV;U (�j) = (2�n)

�1Pn
t=1

Pn
`=1 VtU

0
` exp fi�j (t� `)g ; j = 1; : : : ; ~n; so

IX (�j) = IX;X (�j) denotes the periodogram of fXtgnt=1 evaluated at the Fourier

frequency �j = 2�j=n for positive integers j:

Henceforth, for the sake of motivation and notational economy, we shall not

distinguish between the alternative autocorrelation estimates, and we shall denote

by �n� either �̂n� or ~�n�: However, the di¤erent results presented in the paper will

be formally justi�ed in the Appendix for both estimators.

Let us assume �rst that the hypothesis to be tested is simple, i.e. the value of �0

is known underH0: The most popular test for testingH0 is the popular Box-Pierce�s

portmanteau test, which uses as test statistic BP�0 (m) with

BP� (m) = n

mX
j=1

�n� (j)
2 ;

wherem must be chosen by the practitioner. This test is a compromise between the
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classical omnibus test based on Bartlett�s Tp and Up processes and the parametric

Lagrange Multiplier (LM) tests based on some restrictions on the parameters of a

more or less �exible speci�cation. Among them, the ARFIMA (p; d; q) speci�cation

is the most popular, with

'� (z) = (1� z)d
�� (z)

�� (z)
; � = (�0; d; �0)

0
;

such that �� (z) = 1 � �1z � � � � � � � � �pz
p and �� (z) = 1 � �1z � � � � � �qz

q are

the autoregressive and moving average polynomials, respectively. In fact, BP�0 (m)

is the LM test statistic when testing that m parameters of the autoregressive part

(�01; : : : ; �0m) or the moving average part (�01; : : : ; �0m) equal zero. This is also the

LM statistic for testing that �10 = 0 in the Bloom�eld�s (1973) exponential spectral

density speci�cation

f� (�) = g�2 (�) exp

 
mX
k=1

�1k cos�k

!
; � =

�
�01;�

0
2

�0
; (2)

for some �0 =
�
�010;�

0
20

�0
and

R �
�� log g�2 (�) d� = 0 for all �2:

The Box-Pierce�s test belongs to the class of test statistics de�ned by quadratic

forms of weighted sums of residual autocorrelations of the form,

	n� (!) =  n� (!)
0  n� (!)

with

 n� (!) = n1=2

 
n�1X
j=1

! (j)! (j)0
!�1=2 n�1X

j=1

! (j) �n� (j) ;

where ! is a m � 1 weight function such that
P1

j=1 ! (j)! (j)
0 is positive de�nite

and for some generic K > 0

k! (j)k � Kj�1; j = 1; 2; : : : : (3)

Thus, BPn� (m) = 	n� (!) with ! (j) =
�
1fj=1g; : : : ; 1fj=mg

�0
:
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When ! is scalar, Theorem 1 below provides a large sample justi�cation for

the class of tests described by means of the Bernoulli random variable ��n�0 (!) =

1f n�0 (!)>z�g, when testing at the � signi�cance level, where 1f�g is the indicator

function and z� is the (1� �)-th quantile of the standard normal distribution.

When ! is multivariate, tests are described by ��n�0 (!) = 1f	n�0 (!)>�2m�g, where

�2m� is the (1� �)-th quantile of the chi-squared with m degrees of freedom. The

theorem refers to Class A of processes, de�ned in the Appendix. Class A allows for

a wide range of autocorrelation patterns in fXtg1t=�1 ; including long memory, and

imposes a martingale di¤erence assumption on the white noise process f"tg1t=�1 :

This assumption is weaker than Gaussianity, or independence, which are usually

assumed in the time series goodness-of-�t testing literature. See Robinson (1994)

and Delgado, Hidalgo and Velasco (2005) for discussion. Theorem 1 also allows

to compute the e¢ ciency of the tests in this class under the sequence of local

alternatives of the form

H1n : ��0 (j) =
r (j)p
n
+
an (j)

n
for some �0 2 �; (4)

where r and an can depend on �0, and are subject to conditions speci�ed in Class L

de�ned in the Appendix. Let Nm and Im be the m-dimensional normal distribution

and identity matrix respectively.

Theorem 1 Assume that fXtg1t=�1 2 A. Under H1n 2 L,

 n (!)!d Nm

0@ 1X
j=1

! (j)! (j)0
!�1=2 1X

j=1

r (j)! (j) ; Im

1A :

Thus, the corollary below justi�es inferences based on ��n�0 (!) :

Corollary 1 Under conditions in Theorem 2 and H1n;

	n�n (!)!d �
2
m (W (!)) ;

where W (!) =
P1

j=1 r (j)! (j)
0
�P1

j=1 ! (j)! (j)
0
��1P1

j=1 ! (j)
0 r (j) :
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Thus the Pitman-Noether asymptotic relative e¢ ciency of ��n�0 (!) is given by

W (!) =W (r) ; which is in [0; 1] since W (r) =
P1

j=1 r (j)
2 and W (!) is the sum of

squares of the projection of r on !: Thus, ��n�0 (r) is the most e¢ cient test in its

class. When ! is scalar, the asymptotic relative e¢ ciency of ��n�0 (!) reduces to the

squared correlation coe¢ cient between ! and r when
P1

j=1 ! (j) r (j) > 0; showing

that ��n�0 (r) is the most e¢ cient test in its class. When
P1

j=1 ! (j) r (j) < 0;

limn!1 Pr
�
��n�0 (!) = 1

�
< �:

Parametric tests consist of assuming that ' = '�0 and testing the hypothesis,

_H0 : �10 = 0;

where �10 is a q1-valued subvector of �0, q1 � q; in the direction of the parametric

local alternative,

_H1n : �10 = /
p
n:

Testing such hypothesis is equivalent to test H0 versus H1n with r (j) = 0d1�0 (j) ;

where

d1� (j) =
1

2�

Z �

��
cos (�j)

@

@�1
log f� (�) d�;

assuming suitable smoothness restrictions on f� to be speci�ed later. Henceforth,

we always assume that it is possible to interchange the integration and di¤eren-

tiation operators. Then, if �10 and  are scalars, the one-sided test is �
�
n�0
(r) =

1f n�0(sign()�d1�0)>z�g: However, in parametric testing, two sided tests are required

when testing that a vector of parameters is equal to zero.

Parameters are unknown in practical situations and they must be estimated.

The corresponding ERA�s with estimated parameters are neither asymptotically

independent or distribution-free. This is why the asymptotic distribution of clas-

sical Portmanteau test statistics is not well approximated by the distribution of a

chi-squared random variable, except when a suitably large number of sample auto-
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correlations is considered. In next sections we develop asymptotically pivotal tests

under these circumstances.

In Section 2 we propose a transformation of the weights which result in test

statistics converging to a standard normal under the null. We show that a new

Box-Pierce-type test based on a linear transformation of the ERA�s, belongs to this

class and is asymptotically distributed as a chi-squared using a �xed number of

transformed ERA�s. Section 3 discusses the implementation of the test with regres-

sion residuals. In Section 4, we illustrate the �nite sample properties of our test by

means of a Monte Carlo experiment. Mathematical proofs are in an Appendix at

the end of the article.

2. ASYMPTOTICALLY DISTRIBUTION FREE TESTS WITH

ESTIMATED PARAMETERS

In order to implement the test when �0 is unknown under the null, we need a
p
n-consistent estimator, �n say. Theorem 2 provides an asymptotic expansion of

the test statistics, which depends on the �score�function

d� (j) =
1

2�

Z �

��
cos (�j)

@

@�
log f� (�) d�:

Notice that d�0 (�) = �@�� (�)/ @�c�=�0 under H0. The statement of Theorem 2

refers to Class B; which imposes some further mild restrictions on J in order to

avoid some pathological behaviour of d�; but allowing fairly �exible speci�cations,

including those exhibiting long-memory. Similar assumptions were also used by

Delgado, Hidalgo and Velasco (2005). Henceforth, it is assumed that the parameter

estimator �n is
p
n-consistent under the sequence of local alternatives H1n.

Theorem 2 Assume that fXtg1t=�1 2 A and J 2 B: Under H1n 2 L,
n�1X
j=1

! (j) �n�n (j) =

n�1X
j=1

! (j) �n�0 (j)� (�n � �0)
0
n�1X
j=1

! (j) d�n (j) + op
�
n�1=2

�
:
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Thus, asymptotically distribution-free tests can be obtained for any vector of

weight functions ! using a sample dependent transformation !̂n;�n such that

n�1X
j=1

!̂n;�n (j) d�n (j) = 0: (5)

Assuming that ! and d�n are not perfectly collinear, the least squares residuals

!̂n;�n satisfy (5) non trivially, where for any generic function g : Z! R,

ĝn;� (j) = g (j)� d� (j)
0

 
n�1X
k=1

d� (k) d� (k)
0

!�1 n�1X
k=1

d� (k) g (k) ; j = 1; 2; : : : : (6)

Theorem 3 Under the conditions in Theorem 2 and H1n 2 L,

 n (!̂n;�n)!d Nm

0@ 1X
j=1

!̂1;�0 (j) !̂1;�0 (j)
0

!�1=2 1X
j=1

!̂1;�0 (j) r (j) ; Im

1A :

We can justify inferences based on ��n�n (!̂n;�n) with the next corollary.

Corollary 2 Under conditions in Theorem 2 and _H1n;

	n�n (!̂n;�n)!d �
2
m (W (!̂1;�0)) :

Let r̂n;� be the residual function where g in (6) is replaced by r: Now, the rela-

tive e¢ ciency of ��n�0 (!̂n;�n) is given by W (!̂1;�0) =W (r̂1;�0) ; where W (r̂1;�0) =P1
j=1 r̂1;�0 (j)

2 =
P1

j=1 r (j) r̂1;�0 (j). Taking into account that
P1

j=1 r (j) !̂1;�0 (j) =P1
j=1 r̂1;�0 (j) !̂1;�0 (j) ; it is immediate that 	n�n (r̂n;�n) is also locally e¢ cient rel-

atively to its class.

Testing the hypothesis _H0 in the direction _H1n is equivalent to test H0 versus

H1n with r (j) = 0d1�0 (j) ; where d� (j) =
�
d1� (j)

0 ; d2� (j)
0�0 is conformable with

respect to � = (�01; �
0
2)
0
: Then, using a restricted

p
n-consistent estimate �̂n of �0, so

that
�
�̂n � �0

�0
d� (�) =

�
�̂2;n � �2;0

�0
d2� (�)� n�1=20d1� (�) under _H1n; the optimal

weights are estimated by r̂n;�̂n (j) = 0d̂n;1�̂n (j) ; where

d̂n;1� (j) = d1� (j)�
n�1X
k=1

d1� (k) d2� (k)
0

 
n�1X
k=1

d2� (k) d2� (k)
0

!�1
d2� (j) ; (7)
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i.e. d̂n;1� are the least squares residuals when projecting fd1� (j)gn�1j=1 on fd2� (j)g
n�1
j=1 :

Interestingly, ��
n�̂n

�
d̂n;1�̂n

�
is asymptotically equivalent to generalized LM tests

based on di¤erent objective functions considered in the literature, cf. Robinson

(1994), such as LMn = n � S1;n
�
~�n

�0
H11
n

�
~�n

�
S1;n

�
~�n

�
; where ~�n =

�
00; ~�

0
2;n

�0
is

the associated restricted (pseudo) maximum likelihood estimate (MLE) under _H0,

S1;n

�
~�n

�
= �

Pn�1
j=1 �n~�n (j) d1~�n (j) and H

11
n (�)

�1 =
Pn�1

j=1 d̂n;1� (j) d̂n;1� (j)
0 : For

example, when �n� (j) = ~�n� (j) ; LMn corresponds approximately to the LM test

based on the Whittle�s log-likelihood objective function, which is ~n� (0) in (1),

whereas with �n� (j) = �̂n� (j) ; it corresponds to its time domain Gaussian likeli-

hood counterpart. Applying arguments in Robinson (1994), LMn !d �
2
q1

�
0H11

1 (�0)
�1 

�
:

The statistics 	n�̂n are asymptotically equivalent to LMn under H1n when using

optimal weights, as stated in the following Corollary, which is a straightforward

consequence of Theorem 2.

Corollary 3 Under conditions in Theorem 2 and _H1n;

	n�̂n

�
!̂n;�̂n

�
!d �

2
q1
(0
�0 (!̂1;�0) ) ;

where 
� (!) =
P1

j=1 d1� (j)! (j)
0
�P1

j=1 ! (j)! (j)
0
��1P1

j=1 ! (j) d1� (j)
0 ; and

	n�̂n

�
d̂n;1�̂n

�
= LMn + op (1) :

The tests��
n�̂n

�
!̂n;�̂n

�
are computed using any preliminary restricted

p
n-consistent

estimator �̂n under the sequence of alternatives fH1ngn�1. Thus, 	n�̂n
�
d̂n;1�̂n

�
is as-

ymptotically locally e¢ cient in its class for testing _H0 in the direction of _H1n; as well

as asymptotically equivalent to the LM test, noticing that
�0
�
d̂1;1�0

�
= H11

1 (�0)
�1

because
P1

j=1 d1�0 (j) d̂1;1�0 (j)
0 =
P1

j=1 d̂1;1�0 (j) d̂1;1�0 (j)
0 :

When testing in the direction of innovations autocorrelated according to aMA (m) ;

AR (m) or the autocorrelation structure described in (2),

d1� (j) =
�
1fj=1g; : : : ; 1fj=mg

�0
(8)
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in (7), so that S1;n (�) = �
�
�n;� (1) ; : : : ; �n;� (m)

�0
; and H11

n (�)
�1 equals

Im � (d2� (1) ; : : : ; d2� (m))0
 
n�1X
j=1

d2� (j) d2� (j)
0

!�1
(d2� (1) ; : : : ; d2� (m)) :

The corresponding LM statistic has the form

LMn = n
�
�n;~�n (1) ; : : : ; �n;~�n (m)

�
H11
n

�
~�n

� �
�n;~�n (1) ; : : : ; �n;~�n (m)

�0
and, by Corollary 3, is asymptotically equivalent to 	n;�̂n

�
d̂n;1�̂n

�
for any

p
n-

consistent estimator �̂n restricted under the null.

However, in the presence of estimated parameters, tests based on the sum of the

squares of the �rst m ERAs are not equivalent to LM tests, even asymptotically.

3. TESTS BASED ON REGRESSION RESIDUALS

When fXtg1t=�1 are the unobserved errors of a multiple regression model, new

di¢ culties arise because nonparametric nuisance functions appear when computing

the optimal weights. Suppose that

Yt = Z 0t�0 +Xt; t = �1;�2; : : : ;

where we assume �rst that fYt; Ztg1t=�1 is a 1+p-valued vector covariance stationary

time series, and �0 2 Rp is a vector of unknown parameters. We shall discuss the

case when Zt admits non-stochastic regressors later.

Let �n be a
p
n-consistent estimator of �0; e.g. the GaussianMLE. In order to test

the speci�cation of Xt in these circumstances, consider residuals Xt (�) = Yt��0Zt;

t = 0;�1; : : : ; i.e., Xt = Xt (�0) and

"t (�; �) = '� (B)Xt (�) =
'� (B)

' (B)
f"t + ' (B)Z 0t (�0 � �)g ; t = 0;�1; : : : ;

i.e., "t = "t (�0; �0) : As before, the autocorrelation function of f"t (�; �)g
1
t=�1 can be

estimated either by the sample autocorrelation function �̂n�� (j) = ̂n�� (j)
�
̂n�� (0),
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with ̂n�� (j) = n�1
Pn

t=j+1 "t (�n; �n) "t�j (�n; �n) ; j = 0; 1; : : : ; or by, ~�n�� (j) =

~n�� (j)
�
~n�� (0) ; where ~n�� (j) is de�ned as ~n� (j) with IX replaced by IX(�):

Also in this Section, �n�� refers to either ~�n�� or �̂n��:

In order to identify the parameters, assume that '� (B)Zt, are predetermined,

i.e. E ("0 (�; �)Zj) = 0; j � 0; but not necessarily strictly exogenous. Then,

de�ning the cross-spectral density function between Xt (�) and Zt, fX(�);Z say, by

E (X0 (�)Zj) = (2�)
�1 R �

�� exp (i�j) fX(�);Z (�) d�; we note that

��� (j) =
E ("0 (�; �) � '� (B)Zj)

�2
=

1

2��2

Z �

��
exp (i�j)

fX(�);Z (�)

f� (�)
d�,

is then zero for j � 0; but allowed to be nonzero for j > 0. We also extend Class B

to Class C to incorporate equivalent conditions on ��� as on d�: Assuming that

J 2 C; the next theorem is a straightforward extension of Theorem 3. Hence, its

proof is omitted.

Theorem 4 Assume that fXtg1t=�1 2 A, J 2 C and H1n 2 L,
n�1X
j=1

! (j) �n�n�n (j) =
n�1X
j=1

! (j) �n�0�0 (j)�
�
�0 � �n
�n � �0

�0 n�1X
j=1

! (j)

�
��0�0 (j)

d�0 (j)

�
+op (1) :

Thus, asymptotically distribution free test statistics are based on weights or-

thogonal to both ��0�0 and d�0 : To this end, we can consider the semiparametric

estimator

�n�� (j) =
1

n�� (0)
Re

(
2�

~n

~nX
k=1

exp (i�kj)
IX(�);Z (�k)

0

f� (�k)

)
;

or time domain versions. This avoids to parameterize fX(�);Z .

For any weight function ! and a smoothing number m; de�ne

!̂mn;�� (j) = ! (j)�
mX
k=1

! (k)

�
�n�� (k)

d� (k)

�0

�

264 mX
k=1

0B@ �n�� (k) �n�� (k)
0 �n�� (k) d� (k)

0

d� (k) �n�� (k)
0 d� (k) d� (k)

0

1CA
375
�1�

�n�� (j)

d� (j)

�
:
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Thus, reasoning as before, 	mn;�n�n
�
!̂mn;�n�n

�
; with	mn;�� (!) =  mn;�� (!)

0  mn;�� (!)

and

 mn;�� (!) = n1=2

 
mX
j=1

! (j)! (j)0
!�1=2 mX

j=1

! (j) �n�� (j) ;

is expected to be asymptotically pivotal under the null and suitable regularity

conditions.

The convergence in distribution of  mn;��
�
!̂mn;�n�n

�
is proved assuming that

(Xt; Z
0
t)
0 belong to Class D; a multivariate extension of Class A; but allowing fX;Z

to be nonparametric. It is also assumed that

1

m
+

m

n1=2
! 0 as n!1 (9)

to control the estimation e¤ect of ��0�0 (j) by �n�0�0 (j) ; j = 1; : : : ;m: The trimming

is needed because, unlike d�0 ; �n�0�0 depends on a sample average. Notice that the

trimming can be avoided by assuming a parametric function for fX;Z = fX(�0);Z ;

which is weaker than assuming that Zt is strictly exogenous, i.e. �n�0�0 (j) = 0 all

j � 1: Unlike Delgado, Hidalgo and Velasco (2005), these distribution free tests can

be computed without resorting to smooth estimation of the cross-spectrum.

Next theorem provides the limiting distribution of  mn;��
�
!̂mn;�n�n

�
under local

alternatives

H1n : ��0�0 (j) =
r (j)p
n
+
an (j)

n
; j > 0 for some (�00; �

0
0)
0 2 �;

and shows that the test ��mn�n�n
�
r̂mn;�n�n

�
is locally e¢ cient in its class. We also

omit the proof given the similarities with that of Theorem 4.

Theorem 5 Assume that
�
(Xt; Z

0
t)
0	1
t=�1 2 D, J 2 C; and (9), under H1n 2 L;

 m;n
�
!̂mn;�n�n

�
!d Nm

0@ 1X
j=1

!̂1;�0�0 (j) !̂1;�0�0 (j)
0

!�1=2 1X
j=1

!̂1;�0�0 (j) r (j) ; Im

1A :

11



If the elements of Zt, t = 1; 2; : : : ; are nonstochastic, such as a polynomial trends

in t; and under the identi�ability conditions stated in the Appendix as Class E,

estimation of � does not a¤ect the asymptotic properties of ERA�s and weights

need not be orthogonalized. The reason is that the Zt are strictly exogenous in

this case, and the corresponding function ��0�0 (j) is zero for all leads and lags.

This fact, together with the assumption that �n is (at least)
p
n-consistent, renders

Theorems 3 and 4 valid in this set up.

4. A MONTE CARLO EXPERIMENT

This simulation study is based on 50,000 replications of ARFIMA (p; d; q) mod-

els under alternative designs. The innovations are independent standard normals.

Parameters are estimated using the restricted Whittle estimator under the null

hypothesis and we use time domain ERA�s.

We have computed the percentage of rejections using �ve distribution free tests:

1. Delgado, Hidalgo and Velasco (2005) omnibus test based on the transformed

Tp � process using the Cramer-von Mises criteria, CvM.

2. The e¢ cient LM test against di¤erent residual autocorrelation alternatives.

3. Our e¢ cient test 	̂n = 	n�n

�
d̂n;1�n

�
with d̂n;1�n corresponding to di¤erent

residual autocorrelation alternatives.

4. Our trasformed portmanteau test (TPT) 	̂n, with d̂n;1�n corresponding to the

alternative of residuals autocorrelated according to an AR (m), cf. (8).

5. Box Pierce test, computed as proposed by Ljung and Box (1978), BPn (m).

Table 1 reports the percentage of rejections under the null of AR(1), MA(1) and

integrated of order d process (I (d)); with sample sizes of 200 and 500. We have

12



computed BP test for m = 10; 20 and 30: Choices of m around
p
n are expected to

yield test statistics with good size accuracy. We also provide results for m = 5 in

order to check size accuracy and power for small m:We report results for our TPT

using small values of m = 1; 2; 3; 5:

TABLES 1 & 2 ABOUT HERE

As it happens with the standard LMn test statistic considering AR (m) (or

MA (m) ; or Bloom�eld(m)) departures from the innovations white noise hypothe-

sis, the weighting matrix of the test statistic	n�n
�
d̂n;1�n

�
becomes near idempotent

as m increases. This fact prevents from using our TPT or the LM test with large

values of m in this situation. The size accuracy of the TPT is excellent for the

small values reported in the three designs considered. The CvM and BP tests also

perform very well for a sample size of 500, but LMn and 	̂n su¤er very serious size

distortions for some designs.

The proportion of rejections under alternative hypotheses are reported in Table

2 for n = 200 and di¤erent designs. All the tests detect departures from the

AR(1) speci�cation in the direction of MA(1) innovations, as well as departures

from the MA(1) speci�cation in the direction of AR(1) innovations. However, I(d)

departures from the white noise hypothesis are better detected by the TPT than any

other test. The classical BP test rejects less than the others in this situation. It is

worth mentioning that departures form the AR(1) speci�cation with parameter 0.5

in the direction of I(d) correlated innovations are not detected by any test for the

sample sizes considered. Departures from the I(d) hypothesis are better detected.

However, the TPT works much better than the others in this case.

Acknowledgements
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APPENDIX A: TESTS USING FREQUENCY DOMAIN

AUTOCORRELATION ESTIMATES

Class A: The process fXtg1t=�1 de�ned by ' (B)Xt = "t belongs to Class A if:

(i) The process f"tg1t=�1 satis�es that E ("rt j Ft�1) = �r with �r constant (�1 = 0

and �2 = �2) for r = 1; : : : ; 4 and all t = 0;�1; : : : ; where Ft is the sigma algebra

generated by f"s; s � tg.

(ii) f (�) = j'
�
ei�
�
j�2 is positive and continuously di¤erentiable on (0; �], and

j (d=d�) log f (�) j = O (j�j�1) as j�j ! 0:

Class B. The parametric model J belongs to Class B if:

(i) f� (�) is continuously di¤erentiable in � 2 �, � 2 (0; �]; with derivative �� (�) :=

(@=@�) log f� (�) ; so that ��0 (�) is continuously di¤erentiable on (0; �]:

(ii)
@��0 (�) =@� = O (j�j�1) as j�j ! 0:

(iii) sup�2� k�� (�)k = O (log j�j) as j�j ! 0:

(iv) For all � 2 (0; �] and 0 < � < 1 there exists some K <1 such that

sup
f�:k���0k��=2g

1

k� � �0k2

����f�0 (�)f� (�)
� 1 + (� � �0)

0 ��0 (�)

���� � K

j�j� log
2 j�j:

(v) For d� (j) = (2�)
�1 R �

�� �� (�) cos (j�) d� and
_d� (j) = @d� (j) =@�; j = 1; 2; : : : ;

1X
j=1

d�0 (j) d�0 (j)
0 is �nite and positive de�nite; (10)

sup
�2�

kd� (j)k+ sup
�2�

 _d� (j) � Cj�1; j = 1; 2; : : : : (11)

Class C: The parametric model J described in Section 5 belongs to Class C if:

(i) All conditions of Class B hold.

(ii) Conditions (ii) � (iii) of Class B hold replacing �� (�) by fX(�)Z (�) =f� (�) ;

14



(�0; �0)
0 2 �:

(iii) Condition (v) of Class B holds with d� replaced by
�
�0��; d

0
�

�0
; (�0; �0)

0 2 �:

Class D: The (1 + p)-process fVtg1t=�1 ; 	(B)Vt = Ut, belongs to Class D if:

(i) The process fUtg1t=�1 satis�es that E (Utj Ft�1) = 0; E (UtU 0tj Ft�1) = �;

E (Ut;aUt;bUt;cj Ft�1) = �abc; E (Ut;aUt;bUt;cUt;dj Ft�1) = �abcd with �abc and �abcd

bounded, all a; b; c; d = 1; : : : ; 1 + p and all t = 0;�1; : : : ; where Ft is the sigma

algebra generated by fUs; s � tg.

(ii) fV (�) = j	
�
ei�
�
j�2 is continuously di¤erentiable on [��; 0) [ (0; �], and

k(d=d�) log fV (�)k = O (j�j�1) as j�j ! 0:

(iii) The elements of fV (�) =f (�) are bounded on [��; �] ; where f = ffV g[1;1] 2

A:

Class E: The nonstochastic regressors fZtg1t=�1 belongs to Class E if Dn =Pn
t=1WtW

0
t is positive de�nite for large enough n, Wt = ' (B)Zt; Zt = 0; t � 0:

Class L. The sequence of local alternatives fH1ngn�1 in (4) satis�es that

1X
j=1

r (j)2 <1 and
nX
j=1

an (j)
2 = O (1) as n!1: (12)

(i) The function l de�ned as l (�) = (2�)�1
P1

j=1 r (j) cos (�j) ; satis�es that jl (�)j �

K jlog �j and is di¤erentiable in (0; �] so that j(@=@�) l (�)j � K j�j�1 ; all � > 0:

(ii) The absolute value of gn (�) = (2�)
�1P1

j=1 an (j) cos (�j) is dominated by an

integrable function not depending on n for all n > n0:

We consider now the frequency domain case, where �n� (j) = ~�n� (j), and ! scalar,

to simplify exposition.

Proof of Theorem 1. De�ne  n;k (!) = n1=2
�Pk

j=1 ! (j)
2
��1=2Pk

j=1 �n�0 (j)! (j) :

By Lemma 1,  n;k (!)!d N

��Pk
j=1 ! (j)

2
��1=2Pk

j=1 r (j)! (j) ; 1

�
as n!1 for
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k �xed. Then, using Theorem 3.2 in Billingsley (1999) we only need to show that

lim
k!1

lim sup
n!1

Pr
��� n (!)�  n;k (!)

�� > �
�
= 0 (13)

for any � > 0: We �rst note that the innovation variance estimate is the same in

both  n;k (!) and  n (!) so we concentrate on the autocovariance estimates ~n�0 (j) ;

j = 0; 1; : : :. Then we show that, underH1n; En1=2 j�n (j)j = O
�
n��
�
for some � > 0

and for each j = 1; : : : ; k; where �n (j) = ~n�0 (j)�n�1=2�2r (j)� ~n" (j) and ~n" (j)

is de�ned as ~n�0 (j) but replacing IX (�) f
�1
�0
(�) by I" (�) : Proceeding as in the proof

of Lemma 1,

~n�0 (j) =
2�

~n

~nX
k=1

IX (�k)

f (�k)
cos (j�k)

�
1 + n�1=2l (�k)

	
+ n�1Vn (j) ;

where E jVn (j)j = O (1) because gn is uniformly integrable: Then, using Lemma 4

in DHV, for both s = 1 and s = l;

E

�����n1=22�~n
~nX

k=1

�
IX (�k)

f (�k)
� I" (�k)

�
s (�k) cos (j�k)

����� = O
�
n��
�

for some � > 0, uniformly in j; while E
���(2�=~n)P~n

k=1 I" (�k) l (�k) cos (j�k)� �2r (j)
��� =

O (n�1 log n) using Lemma 2 and Lemma 1 in DHV with r and l satisfying condi-

tions of H1n 2 L. Next, this shows that

sup
k

�����n1=2
n�1X
j=k+1

�n (j)! (j)

����� � n1=2
n�1X
j=1

j�n (j)j j! (j)j

is op (1) as n!1; uniformly in k; using (3). Finally, using again (3) and Lemma 2,

E

�����n1=2
n�1X
j=k+1

~n" (j)! (j)

�����
2

= O

 
n�1X
j=k+1

!2 (j) + n�1
n�1X
j=k+1

n�1X
j0=k+1

j! (j)j j! (j0)j
!

and
���Pn�1

j=k+1 r (j)! (j)
��� are both o (1) as k ! 1; so (13) holds by Markov�s in-

equality. �

Proof of Theorem 2. Write
n�1X
j=1

! (j) �n;�n (j) =
n�1X
j=1

! (j) �n�0 (j)� (�n � �0)
0
n�1X
j=1

! (j) d�n (j) +
5X
j=1

Rnj;
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where Rn1 = (�n � �0)
0Pn�1

j=1 ! (j) fd�n (j)� d�0 (j)g ; Rn2 = (�n � �0)
0Pn�1

j=1 ! (j)

�fd�0 (j)� dn�0 (j)g ; Rn3 =
Pn�1

j=1 ! (j)
_dn�n (j) ; and

Rn4 =

�
1

�2
� 1

~n�0 (0)

� n�1X
j=1

! (j) ~n�0 (j) ;

Rn5 =

�
1

~n�n (0)
� 1

�2

� n�1X
j=1

! (j) ~n�n (j) ;

with dn� (j) = (2�=~n)��2
P~n

i=1 IX (�i) f
�1
� (�i)�� (�i) cos (�ij) ; and

_dn� (j) =
2�

~n�2

~nX
i=1

IX (�i)

f�0 (�i)

�
f�0 (�i)

f� (�i)
� 1 + (�n � �0)

0 ��0 (�i)

�
cos (�ij) :

Thus, it su¢ ces to prove that Rnj = op
�
n�1=2

�
; j = 1; : : : ; 5: Applying (12), (3),

and taking into account that �n is
p
n-consistent, Rn1 = op

�
n�1=2

�
: Write

Rn2 = (�n � �0)
0
n�1X
j=1

! (j)

(
d�0 (j)�

2�

~n

~nX
i=1

��0 (�i) cos (j�i)

)

+(�n � �0)
0
n�1X
j=1

! (j)

(
2�

~n�2

~nX
i=1

�
�2

2�
� IX (�i)

f�0 (�i)

�
��0 (�i) cos (j�i)

)
:

The �rst term on the left hand side is O (n�1 log n2) applying Lemma 1 in DHV

and (2), and the second term can be written as

(�n � �0)
0 2�

~n�2

~nX
i=1

�
�2

2�
� I" (�i)

�
��0 (�i)

n�1X
j=1

! (j) cos (j�i) (14)

+(�n � �0)
0 2�

~n�2

~nX
i=1

�
I" (�i)�

IX (�i)

f�0 (�i)

�
��0 (�i) cos (j�i) (15)

Applying (3),
���Pn�1

j=1 ! (j) cos (j�i)
��� = O (log n) uniformly in i. Thus, after applying

Markov�s inequality, �n��0 = Op

�
n�1=2

�
and (iii) of Class B, (14) is an op

�
n�1=2

�
;

whereas (15) = op (n
�1) by DHV�s Lemma 4. Hence, Rn2 = op

�
n�1=2

�
: Applying

condition (iv) in Class B,

 _dn�n (j) � k� � �0k2
C

~n

~nX
i=1

jlog �ij2
IX (�i)

f�0 (�i)

17



because �n is
p
n-consistent, and we can take � = Kn�1=2 in , so that j�ij � K

when i � 1; reasoning as in the proof of Lemma 8 of DHV. Therefore,

kRn3k � k�n � �0k2
n�1X
j=1

j! (j)j C
~n

~nX
i=1

jlog �ij2
IX (�i)

f�0 (�i)
= op

�
n�1=2

�
on taking expectations and using k�n � �0k = Op

�
n�1=2

�
: Finally note that replac-

ing ~n�n (0) by ~n�0 (0) ; and this by �
2; makes no di¤erence by (50) in DHV, which

proves that Rn4 = op
�
n�1=2

�
and Rn5 = op

�
n�1=2

�
. �

Proof of Theorem 3. We note that by Theorem 2 and because of the exact

orthogonality of !̂n;�n and d�n ;  n (!̂n;�n) = � n (!̂n;�n) + op (1) ; with � n (!̂n;�n) =

n1=2
�Pn�1

j=1 !̂n;�n (j)
2
��1=2Pn�1

j=1 �n�0 (j) !̂n;�n (j) : So, we can apply Theorem 2, with

! substituted by !̂n;�n ; after noticing that
P1

j=1 !̂n;�n (j)
2 < 1; because of (3),

(v) in the de�nition of Class B, and using !̂n;�n (j) = ! (j) � d�n (j)
0 �n�n ; with

�n� =
�Pn�1

j=1 d� (j) d� (j)
0
��1Pn�1

j=1 d� (j)!� (j) ; and where �n;�n = Op (1) ; cf.

Lemma 3.

By Lemma 1, � n (!1;�0)!d N

��P1
j=1 !1;�0 (j)

2
��1=2P1

j=1 !1;�0 (j) r (j) ; 1

�
;

because 0 <
P1

j=1 !1;�0 (j)
2 <1 since ! and d�0 are not perfectly collinear, (3) and

(v) of Class B: Then the theorem follows if we show that � n (!̂n;�n)� � n (!1;�0) =

� n (!̂n;�n)� � n (!̂n;�0) + � n (!̂n;�0)� � n (!1;�0) is op (1). First,

� n (!̂n;�n)� � n (!̂n;�0) = n1=2
Pn�1

j=1 �n�0 (j) f!̂n;�n � !̂n;�0 (j)g�Pn�1
j=1 !̂n;�n (j)

2
�1=2

+n1=2
n�1X
j=1

�n�0 (j) !̂n;�0 (j)

8<:
 
n�1X
j=1

!̂n;�n (j)
2

!�1=2
�
 
n�1X
j=1

!̂n;�0 (j)
2

!�1=29=; ;

where !̂n;�n (j)�!̂n;�0 (j) = d�0 (j)
0 ��n�0 � �n�n

	
+fd�0 (j)� d�n (j)g

0 �n�n : Using a

MVT argument and (11), kd�0 (j)� d�n (j)k � C k�n � �0k j�1, and
�n�0 � �n�n

 =
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Op (k�n � �0k) using the rates of decay of !; d and _d: Then

n1=2
n�1X
j=1

�n�0 (j) f!̂n;�n � !̂n;�0 (j)g = n1=2
n�1X
j=1

�n�0 (j) d�0 (j)
0 ��n�0 � �n�n

	
+n1=2

n�1X
j=1

�n�0 (j) fd�0 (j)� d�n (j)g
0 �n�n

is op (1) ; using the MVT, that n1=2
Pn�1

j=1 �n�0 (j) d�0 (j) = Op (1) ;
�n�0 � �n�n

 =
Op (k�n � �0k), andn1=2

n�1X
j=1

�n�0 (j) fd�0 (j)� d�n (j)g
 � C k�n � �0kn1=2

n�1X
j=1

j�n�0 (j) jj
�1;

which is Op

�
n�1=2 log n

�
= op (1), proceeding as in the proof of Theorem 1.

Next, � n (!̂n;�0)� � n (!1;�0) is

n1=2
Pn�1

j=1 �n�0 (j) f!̂n;�0 (j)� !1;�0 (j)g�Pn�1
j=1 !̂n;�0 (j)

2
�1=2 (16)

+

8<:
 
n�1X
j=1

!̂n;�0 (j)
2

!�1=2
�
 
n�1X
j=1

!1;�0 (j)
2

!�1=29=;n1=2
n�1X
j=1

�n�0 (j)!1;�0 (j) (17)

and we �nd that, cf. Lemma 3,

E

 
n1=2

n�1X
j=1

~n�0 (j) f!̂n;�0 (j)� !1;�0 (j)g
!2
�

n�1X
j=1

f!̂n;�0 (j)� !1;�0 (j)g
2

+
C

n

n�1X
j=1

n�1X
j0=1

j!̂n;�0 (j)� !1;�0 (j)j j!̂n;�0 (j0)� !1;�0 (j
0)j

which is o
�Pn�1

j=1 kd�0 (j)k
2
�
+ n�1o

�Pn�1
j=1 kd�0 (j)k

�2
= o (1) as n ! 1; so that

(16) is op (1) :

On the other hand, using Lemma 3, the term in braces in (17) is o (1) as n!1;

so (17) is also op (1) and the theorem follows. �

Proof of Corollary 3. The �rst part follows as Theorem 3 whereas the second one,

follows noticing that n1=2
Pn�1

j=1 �n�̂n (j) d̂n;1�̂n (j) = n1=2
Pn�1

j=1 �n�0 (j) d̂n;1�̂n (j) +

op (1) using Theorem 2 and that d̂n;1�̂n (j) and dn;2�̂n (j) are orthogonal. �
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APPENDIX B: TESTS USING TIME DOMAIN

AUTOCORRELATION ESTIMATES

For time domain analysis we only describe the main di¤erences. We use the

simplifying assumption that Xt = "t = 0 for t � 0; cf. (2) in Robinson (1994), so

that Lemmas 1 and 2 follow at once for ̂n� under H0 using the martingale property

of "t. Then assuming that the sequence of alternatives fH1ngn�1 belongs to Class

L�; we can show Lemma 1 and then Theorem 1 under H1n:

Class L�. H1n 2 L and � (z) =
P1

j=0 �jz
j := '�0 (z)'

�1 (z) satis�es � (0) = 1 and

�j = n�1=2r (j) + n�1an (j) ; j = 1; 2; : : : ; where jr (j)j � Kj�1; j = 1; 2; : : : ; and

for all n su¢ ciently large jan (j)j � Kj��1; j = 1; 2; : : : ; for all � > 0:

Regularity conditions on J for the analysis of tests based on time domain au-

tocorrelations �̂n�n are similar to those for frequency domain, since, assuming that

'�
�
ei�
�
is di¤erentiable so that �� (z) = (@=@�) log'� (z), �� (0) = 0 all �; and

expanding �� (z) =
P1

j=1 ��;jz
j; we �nd that

d� (j) = �
1

�

Z �

��
Re
�
��
�
ei�
�	
cos (j�) d� = ���;j:

Theorems 2 and 3 for �̂n�n follow replacing condition (iv) in Class B by (iv�):

(iv�) For all 0 < � < 1 there exists some K <1 such that  � (z) =
P1

j=0  �;jz
j :=

'� (z) ='�0 (z) � 1 � (� � �0)
0 ��0 (z) satis�es that supf�:k���0k��=2g k� � �0k�2

��'�;j��
� Kj��1 log2 j; j = 1; 2; : : : :

APPENDIX C: LEMMATA

Lemma 1 n1=2
�
~�n;�0 (1) ; : : : ; ~�n;�0 (k)

�0 !d N
�
(r (1) ; : : : ; r (k))0 ; Ik

�
; underH1n 2

L, for k �xed and fXtg1t=�1 2 A.

Proof. We only consider the asymptotic distribution of n1=2
�
~n�0 (1) ; : : : ; ~n�0 (k)

�0
,

since ~n�0 (0) !p �2 under H1n; see e.g. (51) in the proof of Theorem 2 in
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DHV. First, we write f�0 (�)
�1 = f (�)�1

�
1 + n�1=2hn (�)

	
; where hn (�) = l (�) +

n�1=2gn (�) satis�es that
R �
0
hn (�) cos (�j) d� = r (j) + n�1=2an (j) : Then, under

H1n,

~n�0 (j) =
2�

~n

~nX
k=1

IX (�k)

f (�k)
cos (�kj)

�
1 +

l (�k)

n1=2
+
gn (�k)

n

�
Now, reasoning as in the proof of Theorem 5 of DHV and using that gn is integrable,

~n�0 (j) = ~n" (j) + n
�1=2�2r (j) + op

�
n�1=2

�
; cf. also the proof of Theorem 1. The

convergence then follows as in Lemma 7(b) of DHV, using Lemma 2. �

Lemma 2 Assume that f"tg1t=�1 is as in Class A. Then nE
�
~2n" (j)

�
= �4 +

O (n�1) ; j = 1; 2; : : : ; and nE [~n" (j) ~n" (j0)] = O (n�1) ; j 6= j0; as n!1:

Proof. It follows by direct calculation of the moments of I" (�j), cf. Brillinger

(1980, Theorem 4.3.1) and approximation of sums by integrals. �

Lemma 3 Under (3), (10) and (11), uniformly in j = 1; 2; : : : ; j!̂n;�0 (j)� !1;�0 (j)j

= o (kd�0 (j)k) and
��!̂n;�0 (j)2 � !1;�0 (j)

2
�� = o

�
kd�0 (j)k

2 + kd�0 (j)k j! (j)j
�
; as

n!1:

Proof. Follows using standard ordinary least squares algebra. �
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Table 1. Empirical size of LM and Portmanteau tests at 5% of signi�cance.

CvM LM 	̂n 	̂n; "�t� AR (m) BP n�n (m)

m 1 2 3 5 5 10 20 30

n = 200

H0: AR(1)
�10 "�t �I(d)
-0.8 4.7 3.4 3.4 4.9 4.8 4.6 4.3 5.5 5.5 6.0 6.6
-0.5 4.4 3.2 3.3 4.8 4.7 4.5 4.2 5.1 5.2 5.7 6.3
0.0 4.1 2.5 2.5 5.0 4.6 4.4 4.2 4.9 5.0 5.7 6.3
0.5 3.6 1.1 0.7 4.9 4.7 4.5 4.2 4.8 5.1 5.6 6.3
0.8 3.1 4.9 3.0 4.8 4.6 4.6 4.4 5.0 5.2 5.8 6.3

H0: MA(1)
�10 "�t �I(d)
-0.8 4.2 3.5 3.3 4.5 4.4 4.2 4.1 6.7 6.3 6.4 7.0
-0.5 4.2 3.0 3.1 4.5 4.5 4.4 4.1 5.1 5.1 5.7 6.3
0.0 4.1 2.3 2.3 4.7 4.4 4.4 4.1 4.8 5.0 5.6 6.2
0.5 3.6 3.3 0.6 4.6 4.4 4.2 4.1 4.8 5.0 5.5 6.2
0.8 3.1 24.5 3.6 4.6 4.4 4.3 4.3 6.3 5.9 6.1 6.6

H0: I(d)
d0 "�t �AR(1)
0.0 3.5 4.9 4.3 4.3 3.8 3.5 3.4 5.0 5.2 5.7 6.4
0.2 3.5 4.9 4.3 4.3 3.8 3.4 3.3 5.0 5.2 5.7 6.3
0.4 3.6 5.1 4.2 4.2 3.7 3.4 3.2 5.0 5.1 5.6 6.2

n = 500

H0: AR(1)
�10 "�t �I(d)
-0.8 5.1 4.3 4.3 5.1 5.0 5.0 4.8 5.4 5.3 5.5 5.8
-0.5 5.0 4.1 4.1 5.0 5.0 4.9 4.7 5.1 4.9 5.4 5.7
0.0 4.6 3.6 3.6 5.0 5.1 4.8 4.8 5.1 4.9 5.4 5.6
0.5 4.5 2.0 2.1 5.0 5.0 4.9 4.8 5.1 5.0 5.3 5.7
0.8 4.3 4.2 3.8 5.1 4.8 5.0 4.9 5.3 5.1 5.4 5.7

H0: MA(1)
�10 "�t �I(d)
-0.8 4.9 4.3 4.2 5.0 4.8 4.8 4.6 6.1 5.6 5.7 6.0
-0.5 4.9 4.0 4.1 4.9 5.0 4.8 4.7 5.2 5.0 5.4 5.7
0.0 4.6 3.5 3.5 4.8 5.0 4.8 4.6 5.0 4.9 5.3 5.7
0.5 4.5 3.2 1.8 4.9 4.8 4.8 4.7 5.0 5.0 5.3 5.6
0.8 4.3 17.4 3.8 4.9 4.7 4.8 4.7 5.8 5.4 5.5 5.8

H0: I(d)
d0 "�t �AR(1)
0.0 4.5 5.0 4.7 4.7 4.4 4.3 4.1 5.3 5.1 5.4 5.7
0.2 4.5 4.9 4.6 4.6 4.4 4.3 4.1 5.2 5.1 5.4 5.7
0.4 4.6 5.3 4.5 4.5 4.3 4.2 4.0 5.3 5.1 5.4 5.7
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Table 2. Empirical power of LM and Portmanteau tests at 5% of signi�cance.

CvM LM 	̂n 	̂n; "�t �AR(m) BP n�n (m)

m 1 2 3 5 5 10 20 30

H0 : AR(1); �10 = 0: H1 : "�t �MA(1). n = 200
�10 "�t �MA(1)
-0.8 100. 99.8 99.8 99.8 100. 100. 100. 100. 99.6 94.9 89.1
-0.5 80.8 83.6 80.6 80.6 78.9 71.4 59.9 66.7 49.9 38.3 33.8
0.2 7.1 12.9 9.7 9.7 8.0 7.1 6.1 7.3 6.7 6.9 7.5
0.5 70.8 75.9 80.8 80.8 79.2 73.0 61.8 68.7 51.7 39.2 34.7
0.8 99.6 99.5 99.8 99.8 100. 100. 100. 100. 99.6 95.2 89.3

H0 : MA(1); �10 = 0: H1 : "�t �AR(1). n = 200
�10 "�t �AR(1)
-0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.
-0.5 84.4 78.1 81.2 81.2 82.3 77.3 69.7 74.2 61.9 50.4 44.9
0.2 7.2 25.0 6.9 6.9 6.1 5.6 4.9 5.9 5.6 6.1 6.7
0.5 77.1 86.9 81.5 81.5 80.4 75.1 66.9 72.1 59.3 48.2 43.0
0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.

H0 : I(d): H1 : "�t � AR(1): n = 200

�10 "�t �AR(1)
d0= 0:0

0.2 11.3 37.2 34.3 34.3 23.2 6.1 13.0 17.5 14.3 12.5 12.4
0.5 26.8 79.8 77.7 77.7 68.3 56.8 43.7 47.4 41.2 31.7 28.6
0.8 9.8 55.4 51.4 51.4 46.4 36.7 24.4 24.4 26.4 21.4 20.2

d0= 0:2

0.2 11.1 36.7 34.2 34.2 23.1 17.1 13.0 17.4 14.3 12.5 12.4
0.5 26.7 79.1 77.7 77.7 68.2 56.8 43.6 47.3 41.2 31.6 28.4
0.8 9.6 61.1 53.7 53.7 49.4 40.6 28.3 24.8 26.6 21.5 19.9

H0 : AR(1): H1 : "�t � I(d): n = 200

d0 "�t � I (d)
�10= 0:0

0.1 8.2 10.2 8.7 8.4 8.1 7.8 7.1 8.0 7.5 7.5 7.8
0.2 19.9 29.9 26.5 22.4 21.8 21.1 19.3 20.4 18.4 15.8 15.0
0.3 36.0 47.5 42.5 42.5 42.3 40.6 37.8 37.2 35.0 30.0 26.8
0.4 48.8 46.1 38.8 60.5 60.0 57.6 53.7 49.1 48.4 41.8 37.3

�10= 0:5

0.1 3.6 2.7 1.0 5.0 4.8 4.6 4.3 5.0 5.1 5.8 6.4
0.2 3.3 4.7 1.5 5.5 5.3 5.2 5.3 5.5 5.7 6.2 6.7
0.3 3.6 8.3 2.6 7.8 6.9 6.8 6.5 7.0 6.8 7.1 7.5
0.4 5.7 16.2 7.1 14.8 11.6 10.9 9.9 11.7 9.6 8.9 9.1
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