

UNIVERSIDAD CARLOS III DE MADRID

working papers

Working Paper 09-08 Statistics and Econometrics Series 04 February 2009

Departamento de Estadística Universidad Carlos III de Madrid Calle Madrid, 126 28903 Getafe (Spain) Fax (34) 91 624-98-49

#### THE INTERNATIONAL STOCK POLLUTANT CONTROL: A STOCHASTIC FORMULATION

**Omar J. Casas<sup>1</sup> and Rosario Romera<sup>2</sup>** 

#### Abstract

In this paper we provide a stochastic dynamic game formulation of the economics of international environmental agreements on the transnational pollution control when the environmental damage arises from stock pollutant that accumulates, for accumulating pollutants such as  $CO_2$  in the atmosphere. To improve the cooperative and the non-cooperative equilibrium among countries, we propose the criteria of the minimization of the expected discounted total cost. Moreover, we consider Stochastic Dynamic Games formulated as Stochastic Dynamic Programming and Cooperative versus Non-cooperative Stochastic Dynamic Games. The performance of the proposed schemes is illustrated by a real data based example.

**Keywords:** Stochastic Optimal Control, Markov Decision Processes, Stochastic Dynamic Programming, Stochastic Dynamic Games, International Pollutant Control, Environmental Economics, Sustainability

JEL Classification: C610, C630, C730, C44, D70, Q20

<sup>&</sup>lt;sup>1</sup> O. Casas, Statistics Department, Universidad Carlos III Madrid, Calle Madrid 126, 28903 Getafe, Spain, e-mail: <u>omar.casas@uc3m.es</u>. Corresponding author.

<sup>&</sup>lt;sup>2</sup> R. Romera, Statistics Department, Universidad Carlos III Madrid, Calle Madrid 126, 28903 Getafe, Spain, e-mail: <u>rosario.romera@uc3m.es</u>.

The authors acknowledge financial support from the Spanish Ministry of Education and Science, research projects SEJ2004-03303 and SEJ2007-64500.

We are grateful to Aurea Granet and Belén Martín for their help with the software.

# The International Stock Pollutant Control: A Stochastic Formulation

Omar J. Casas and Rosario Romera \*

February 2, 2009

#### Abstract

In this paper we provide a stochastic dynamic game formulation of the economics of international environmental agreements on the transnational pollution control when the environmental damage arises from stock pollutant that accumulates, for accumulating pollutants such as  $CO_2$  in the atmosphere. To improve the cooperative and the non-cooperative equilibrium among countries, we propose the criteria of the minimization of the expected discounted total cost. Moreover, we consider Stochastic Dynamic Games formulated as Stochastic Dynamic Programming and Cooperative versus Non-cooperative Stochastic Dynamic Games. The performance of the proposed schemes is illustrated by a real data based example.

*Keywords:* Stochastic Optimal Control, Markov Decision Processes, Stochastic Dynamic Programming, Stochastic Dynamic Games, International Pollutant Control, Environmental Economics, Sustainability

JEL Classification: C610, C630, C730, C44, D70, Q20

<sup>\*</sup>The authors acknowledge financial support from the Spanish Ministry of Education and Science, research projects SEJ2004-03303 and SEJ2007-64500. Address: Department of Statistics, Universidad Carlos III Madrid, Calle Madrid 126, 28903 Getafe, Spain. Email: omar.casas@uc3m.es and rosario.romera@uc3m.es

# 1 Introduction

In the last years, the theory on international environmental agreements (IEA) and the prospect of climate change has motivated many game theoretic studies, often focused on cooperation and core solutions.

The necessity of cooperation amongst the countries involved, if a social optimum is to be achieved, has already been addressed in the literature in terms of Game Theory concepts; see e.g. Barrett (2003), Finus (2001), Flam (2006) and references therein for a review on these topics. With a few exceptions this literature works with simple static models of pollution despite the fact that many of the important environmental problems, as climate change, the depletion of the ozone layer or the acid rain problem, are caused by a stock pollutant. However, the stock of pollution may change in the course of the game, as a result of a positive rate of natural decay and emissions of the countries. Thus, the presence of a stock pollutant leads to a dynamic game that is not strictly repeated.

In the framework of a deterministic cooperative game with a dynamic, multi-regional integrated assessment model, Eyckmans and Tulkens (2003) calculated the optimal path of abatement and aggregated discounted welfare for each region. They apply the transfer scheme advocated by Chander and Tulkens (1997) for the Climate Negotiation (CLIMNEG) World Simulation Model (abbreviated as CWSM) with six regions or countries. The idea of surplus sharing is used for determining the transfer scheme, and they compute all possible partial agreement Nash equilibria. They found that allocation in the full cooperation lies in the core of the emission abatement game under this specific transfer scheme. Their CWSM derived from the seminal multiregion economy-climate RICE (Regional Integrated model of Climate and the Economy)model of Nordhaus and Yang (1996).

Germain, Toint, Tulkens, and de Zeeuw (2003) have addressed the issue of how many countries will be interested in signing an IEA with stock pollutant, adopting a cooperative game-theory approach. They extend the result established by Chander and Tulkens (1995) and (1997) for flow pollutants to the larger context of closed-loop (feedback) dynamic games with a stock pollutant. In this context, cooperation is negotiated at each period but financial transfers provide incentives to the countries that ensures the implementation of the grand coalition at each period. Their model, thus yields a sequence of full cooperative international agreements, so that full cooperation is also achieved in a dynamic setting with a stock pollutant.

Another paper related with this issue using a cooperative game-theory

approach is Petrosjan and Zaccour (2003). However, in this paper the authors assume that all the countries decide to cooperate at the initial time-consistent decomposition of each player's total cost, as given by Shapley value, so that the countries stick at each moment to the full cooperative solution agreed at initial time, supposing that the global allocation problem has been solved. Nevertheless, there are only a few attempts in the stock pollutant control literature modelling that issue in a stochastic control framework.

Stochastic Programming is considered by Dechert and O'Donnell (2006) in a particular application that explore some fundamental issues of the optimal level of pollution in a lake with competing uses, they show how the model can be interpreted as an open loop dynamic game, where the control variables are the levels of phosphorus discharged into the watershed of the lake, the state of the system is the accumulated level of phosphorus in the lake and the random shock (a multiplicative noise factor on the control variables of the players) is the rainfall that washes the phosphorus in the lake.

The use of stochastic control models to develop climate-economy models has been advocated by Haurie and Viguier (2003) to represent the possible competition between Russia and China on the international market of carbon emissions permits, their model includes a representation of the uncertainty concerning the date of entry of developing countries on this market in the form of an event tree. Also by Bahn, Haurie, and Malhamé (2008), they show how a piecewise deterministic stochastic control model, over an infinite time horizon, can be used as a paradigm for the design of efficient climate policy, their model recognizes the existing uncertainty concerning the true sensitivity of climate, and the fact that the solution to the climate change issue may reside in the introduction of new carbon-free technologies. Keller, Bolker, and Bradford (2004) have already explored the combined effects of uncertainty and learning about a climate threshold (an uncertain ocean thermohaline circulation collapse) in an economic optimal growth model.

The stability of an International Environmental Agreement among n countries that emit pollutant are studied using differential games, defined in continuous time, by Jorgensen, Martín-Herrán, and Zaccour (2003) and (2004), Rubio and Casino (2005), among others.

As far as we know, none stochastic formulation for the finite horizon dynamic analysis of international agreements on transnational pollution control has been introduce as an extension of the issues presented in Germain, Toint, Tulkens, and de Zeeuw (2003). We adopt this point of view because to consider randomness on the factors in the model is closer to reality (see Casas

#### and Romera (2005)).

The main purpose of this work is to suggest a stochastic dynamic game formulation for the Stock Pollutant Control, for both cooperative and non cooperative models. These models proposed are directly linked with the Kyoto or post-Kyoto agreement mechanisms.

The stochastic formulation for this Stock Pollutant Control Model involves the use of Stochastic Dynamic Programming with discrete and finite planing horizon, for searching both cooperatives and non cooperatives equilibria. Stochastic optimization problems should be solved by Stochastic Dynamic Programming Techniques (see Bertsekas (2000)).

The paper is organized as follows: In Section 2 we present the international stock pollutant model with its components, the cost functional components and their elements, the underlaying Markov Decision Process (MDP), and the description of the modes of countries behaviour. In Section 3, we describe the international stock pollutant control cooperative model and we solve the problem of minimize the expected discounted total cost for each period of time and for all the countries jointly. An analysis of particular expected damages functions is included. In Section 4, we describe what happen if the countries do not sign a voluntary international agreement and we solve the non cooperative model. In Section 5, we present a numerical example based on real scenarios borrowed from the work by Eyckmans and Tulkens (2003). In Section 6, we present some conclusions and extensions of our work.

## 2 Stock Pollutant Control Model

We adopt the point of view of the issues presented in Germain, Toint, Tulkens, and de Zeeuw (2003).

In our model, we introduce a stochastic dynamic game formulation, with finite and discrete planing horizon analysis of IEA on transnational pollution control, as an extension of these issues.

#### Model Components

We consider a Markovian Game described by a tuple

$$G = \{J, S, (E_i, r_i)_{i \in J}, p, \mathcal{T}\}$$

with the following elements

- There are n players and  $J = \{1, 2, ..., n\}$  denotes the set of countries or regions which we simplify refer to as countries in the sequel.
- S is a Borel subset of some Polish (i.e., complete, separable, metric) countable and non empty space; is the state space of the game, with typical element s. The state transition dynamics is a function of the current state of the system and an additive noise factor on each period of time. The state of the system is the accumulated level of pollution in the atmosphere, given by  $s_t$  as stock of pollutant at each period t,  $s_t \in S$ , according to the state equation

$$s_t = (1 - \delta)s_{t-1} + \sum_{i=1}^n e_{it} + \xi_t \quad , \qquad 1 \le t \le T$$
 (1)

Where

- $-s_0$  is the initial stock of pollutant or preindustrial level, given.
- $\delta$  is the pollutant's natural rate of atmospheric absorption of  $CO_2$  between two periods of time, such that  $0 < \delta < 1$ .
- p specifies the law of motion (or transition probabilities) for the game by associating with each  $(s, a) \in S \times E$  a probability  $p(\cdot|s, e)$  over the Borel sets of S.

• A finite planing horizon with discrete-time periods t, such that

$$t \in \mathcal{T} = \{1, 2, \dots, T\} \subset \mathbb{Z}^+.$$

• The control variables are  $e_t = (e_{1t}; e_{2t}; ...; e_{nt})'$  vector of the different countries emissions of pollutant at each period t, entailed by economic activity, where  $e_{it} \in E$  and E is the countable and non empty overall action space, and

$$E = \bigcup_{s \in S} E(s),$$

where E(s) is the set of *admissible actions* (emissions), when the system is in each state (pollutant level) s. For each  $s \in S$  the set E(s) is finite.

• The random disturbance  $\xi_t$  is a noise process: a sequence of i.i.d. random variables and independent of the initial state  $s_0$ , with

$$\mathbb{E}\left[\xi_t\right] = 0, \qquad \sigma^2 = \mathbb{E}\left[\xi_t^2\right] < \infty, \qquad \forall t = 1, 2, ..., T - 1.$$
(2)

We consider stock of pollutant in a wide sense, not restricted to the carbon dioxide  $(CO_2)$  stock level. Inclusion of manifold pollutants is important. To wit, the 1997 Kyoto Protocol to the Framework Convention on Climate Change limits aggregate emissions of six direct greenhouse gases, such as: carbon dioxide  $(CO_2)$ , methane  $(CH_4)$ , nitrous oxide  $(N_2O)$ , hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride  $(SF_6)$ ), as well for the indirect greenhouse gases such as  $SO_2$ , NOx, CO and/or micro particles of industrial pollution (between 0.1 y 2.5  $\mu$ -meters). The emissions are aggregated and considered as  $CO_2$  equivalents.

#### **Functional Cost Components**

Following Jorgensen and Zaccour (2001) among many others, we assume that the emissions are proportional to production. Additionally we consider

- Future costs are discounted by the constant and positive discount factor  $\beta$  with  $0 < \beta \le 1$ .
- $c_i(e_{it})$ : function that measures in monetary terms the total cost incurred by country  $i \in J$  at period  $t \in \mathcal{T}$  from limiting its own industrial emissions to  $e_{it}$ ; is a differentiable, decreasing  $(c'_i < 0)$  and strictly convex function  $(c''_i > 0)$ .

- $d_i(s_t)$ : function that measures in monetary terms the damages caused by the stock of pollutant  $s_t$  during the time period t for the *i*-th country; is a differentiable, increasing  $(d'_i > 0)$  and convex function  $(d''_i \ge 0)$ .
- $r_i(e_{it}, s_t) = c_i(e_{it}) + d_i(s_t)$ : function that measures in monetary terms the total cost incurred by country  $i \in J$  from limiting its emissions to  $e_{it}$ , and the damages caused by the stock of pollutant  $s_t$  during the time period t for the *i*-th country;  $r_{it} \in R$ , where R is the cost set and R is a subset of  $\mathbb{R}$ .

We consider that the only way to control the stock of pollution is through the control of emissions, that is reducing pollution is done through the reduction of emissions, and not through the cleaning of the environment. The marginal cost  $c_i$  of reducing emissions is higher for lower levels of emissions.

The decreasing character of the cost functions  $c_i$  show the evident phenomenon of the increasing costs related to the emissions reduction, i.e. The increasing cost to decrease the emissions could be associated with filter installations or the use of other techniques.

#### The underlaying Markov Decision Process

We considere by MDP a Markov Decision Process together with an optimality criteria. The problems considered in this work are discrete-time, finitehorizon and stationary MDP with expected total reward. Then, we can express the elements of our random scenarios through the following MDP

$$\Gamma = (S, E, R, P, \beta),$$

where the state space S and the overall action space  $E = \bigcup_{s \in S} E(s)$  are both countable and nonempty, E(s) is the set of admissible actions (emissions), when the system is in each state (pollutant level) s. For each  $s \in S$  the set E(s) is finite. The cost set R is a bounded countable subset of  $\mathbb{R}$ . For each  $t \geq 1$ , let  $s_t$ ,  $e_t$  and  $r_t$  denote the state (pollutant level) of the system, the action (emissions) taken by the decision maker (pays), and the cost incurred at period of time t, respectively.

The stationary, single-stage, conditional *transition probabilities* are defined by

$$p_{i,j,r}^{e} := Prob(s_{t+1} = j, r_t = r/s_t = i, e_t = e),$$

$$\begin{aligned} \forall i, j \in S \quad , \quad e \in E(i) \quad , \quad r \in R \quad , \quad t \geq 1 \\ \sum_{j \in S, r \in R} p^e_{i,j,r} = 1 \quad , i \in S \quad , \quad e \in E(i). \end{aligned}$$

#### Modes of countries behavior

The damages in each country's environment depend on the emissions of pollutant of all different countries at each time-period t that contribute to a stock  $s_t$ .

In cooperative form the countries jointly choose at each period its emissions levels in order to minimize the expected total discount costs, then the resulting trajectories of emissions and stock constitute the international optimum.

In non-cooperative form, each country considers only the damages of the stock of pollutant over itself. In the sense of a Nash equilibrium, the countries minimize, at each period, only its own expected discounted costs, with knowledge of the emissions vector  $e_{jt}$ , with  $j \neq i$ , of the other countries.

## 3 Cooperative Model

In this case, one assumes that the countries behave in an internationally optimal way, i.e. that each of them takes account of the impact of its own industrial pollution not only on itself but on all other countries as well. It is clear that the damages to the environment of country i will depend on the emissions of all countries. We solve the problem of minimize the expected discounted total cost for each period  $t \in \mathcal{T}$ , where  $\mathcal{T}$  is a discrete and finite set, and for all the countries jointly (P1)

$$(P1) \qquad \min_{\{e_{it}\}} \qquad \mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{n}\beta^{t}\left[c_{i}(e_{it})+d_{i}(s_{t})\right]\right]$$
  
s.t. 
$$s_{t} = (1-\delta)s_{t-1} + \sum_{i=1}^{n}e_{it} + \xi_{t}$$
$$e_{it} \ge 0, \qquad \forall i = 1, \cdots, n; \quad \forall t = 1, \cdots, T$$
$$s_{0} > 0$$

**Remark** The resulting family of trajectories of emissions (policies)  $e_{it}^*$  for all players  $i \in J$  determined together with the resulting stock  $s_t^*$ , constitute the international optimum for all periods  $t \in \mathcal{T}$  or a cooperative equilibrium (see Dutta and Sundaram (1998)).

Note that the objective function in the model (P1) is equivalent to

$$\min_{\{e_{it}\}} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{n} \beta^{t} \left[c_{i}(e_{it}) + d_{i}(s_{t})\right]\right] \Leftrightarrow \min_{\{e_{it}\}} \sum_{t=1}^{T} \sum_{i=1}^{n} \beta^{t} \left(c_{i}(e_{it}) + \mathbb{E}\left[d_{i}(s_{t})\right]\right)$$
(3)

**Proposition 1.** Problem (P1) has an equilibrium  $\{e_{it}^*\}$ .

*Proof.* The convexity of the functions  $c_i(e_{it})$  and  $d_i(s_t)$ , for all  $i \in J$  and for all periods  $t \in \mathcal{T}$ , suffices to guarantee that the minimum exists and is unique (see for instance, Puterman (2005) or Hernández-Lerma (1999)).

This problem (P1) can be solved by using Stochastic Dynamic Programming tools. The *expected value function* W, according to Bellman's principle of optimality, satisfies the Dynamic Programming equations for (P1)

$$(P1.1) \quad W(T, s_{T-1}) = \min_{e_{iT}} \mathbb{E} \left[ \sum_{i=1}^{n} \left( c_i(e_{iT}) + d_i(s_T) \right) \right],$$
  
(P1.2) 
$$W(t, s_{t-1}) = \min_{e_{it}} \mathbb{E} \left[ \sum_{i=1}^{n} \left[ c_i(e_{it}) + d_i(s_t) \right] + \beta W(t+1, s_t) \right]$$

$$\forall t = 1, 2, \dots, T - 1$$
  
s.t.  $s_t = (1 - \delta)s_{t-1} + \sum_{i=1}^n e_{it} + \xi_t$   
 $e_{it} \ge 0 \quad \forall t \in \mathcal{T} \quad , \quad \forall i \in J$   
 $s_0 > 0$ 

The stochastic Dynamic Programming equations (P1.1) and (P1.2) are equivalent, respectively, to

$$(P1.1) \Leftrightarrow W(T, s_{T-1}) = \min_{e_{iT}} \left\{ \sum_{i=1}^{n} \left( c_i(e_{iT}) + \mathbb{E} \left[ d_i(s_T) \right] \right) \right\}$$
$$(P1.2) \Leftrightarrow W(t, s_{t-1}) = \min_{e_{it}} \left\{ \sum_{i=1}^{n} \left( c_i(e_{it}) + \mathbb{E} \left[ d_i(s_t) \right] \right) + \beta W(t+1, s_t) \right\}$$

If countries cooperate, they jointly solve (P1.1) at final period of time T, the country *i*'s expected total cost is

$$W_i(T,s) = c_i(e_{iT}^*) + d_i(s_T^*),$$

where  $e_{iT}^* = \{e_{1T}^*, e_{2T}^*, \dots, e_{nT}^*\}$  is the vector of optimal emission levels or policy, and  $s_T^*$  denotes the resulting stock of pollutant at final period T, given

$$s_T^* = [1 - \delta]s + \sum_{i=1}^n e_{iT}^*$$

where s is the inherited stock of pollutant at the begin of period T.

In earlier periods, if countries cooperate they solve the problem (P1.2) for  $1 \leq t \leq T - 1$ . Optimal levels of emissions and resulting stock of pollutant are denoted by  $e_{it}^*$  and  $s_t^*$  respectively.

Then let denotes the country i's expected discounted equilibrium cost by

$$W_i(t,s) = c_i(e_{it}^*) + d_i(s_t^*) + \beta W_i(t+1,s_t^*), \qquad \forall t = 1, \cdots, T-1$$

with

$$s_t^* = [1 - \delta]s + \sum_{i=1}^n e_{it}^*$$

where s is the inherited stock of pollutant at the begin of period t.

Let define as  $\tau$ -expected discounted total cost by

$$W_i^{\tau} \equiv \sum_{t=1}^{\tau} W_i(t, s_{t-1}^*), \quad 1 \le \tau \le T - 1$$
  
and total cost  $W_i \equiv \sum_{t=1}^{T} W_i(t, s_{t-1}^*).$ 

#### 3.1 Cooperative Alternative Problem

We present an equivalent cooperative problem which can be solved by using Linear Programming tools.

The recurrence equation (1), of the contamination stock  $s_t$ , gives a dynamic character to the cooperative model also to the non cooperative model, but, using the recurrence expression, considering the state variables  $s_t$  and the control variables  $e_{it}$  as decision variables, and the state equations as equality restrictions, besides having as an objective function a differentiable convex function, we may write an associated model, writing  $s_t$  as a function of the known initial stock  $s_0$ , of the emissions  $e_{it}$  from each country  $i \in J$ , and of the random disturbance vector  $\xi_t$  in each period of time  $t \in \mathcal{T}$ .

From the recurrence equation (1) we obtain

$$s_1 = (1 - \delta)s_0 + \sum_{i=1}^n e_{i1} + \xi_1.$$

$$s_{2} = (1-\delta)^{2}s_{0} + (1-\delta)\sum_{i=1}^{n} e_{i1} + (1-\delta)\xi_{1} + \sum_{i=1}^{n} e_{i2} + \xi_{2}.$$
  

$$s_{3} = (1-\delta)^{3}s_{0} + (1-\delta)^{2}\sum_{i=1}^{n} e_{i1} + (1-\delta)^{2}\xi_{1} + (1-\delta)\sum_{i=1}^{n} e_{i2} + (1-\delta)\xi_{2} + \sum_{i=1}^{n} e_{i3} + \xi_{3}.$$

By induction we get

$$s_t = (1-\delta)^t s_0 + (1-\delta)^{t-1} \sum_{i=1}^n e_{i1} + (1-\delta)^{t-1} \xi_1 + \dots + \dots + (1-\delta)^{t-\tau} \sum_{i=1}^n e_{i\tau} + (1-\delta)^{t-\tau} \xi_\tau + \dots + \sum_{i=1}^n e_{it} + \xi_t.$$

Recursively we obtain the general form

$$s_t = (1-\delta)^t s_0 + \sum_{\tau=1}^t (1-\delta)^{t-\tau} \sum_{i=1}^n e_{i\tau} + \sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_{\tau}.$$

Explicitly developing the previous recurrence equation, we obtain the

following system of restrictions

$$s_{1} = (1-\delta)s_{0} + e_{11} + e_{21} + \dots + e_{n1} + \xi_{1}.$$

$$s_{2} = (1-\delta)^{2}s_{0} + (1-\delta)e_{11} + (1-\delta)e_{21} + \dots + (1-\delta)e_{n1} + (1-\delta)e_{11} + e_{12} + \dots + e_{n2} + \xi_{2}.$$

$$s_{3} = (1-\delta)^{3}s_{0} + (1-\delta)^{2}e_{11} + \dots + (1-\delta)^{2}e_{n1} + (1-\delta)^{2}\xi_{1} + (1-\delta)e_{12} + \dots + (1-\delta)e_{n2} + (1-\delta)\xi_{2} + e_{13} + \dots + e_{n3} + \xi_{3}.$$

$$\vdots$$

$$s_{t} = (1-\delta)^{t}s_{0} + (1-\delta)^{t-1}e_{11} + \dots + (1-\delta)^{t-1}e_{n1} + (1-\delta)^{t-1}\xi_{1} + \dots + (1-\delta)^{t-2}e_{12} + \dots + (1-\delta)^{t-2}e_{n2} + (1-\delta)^{t-2}\xi_{2} + \dots + (1-\delta)e_{1t-1} + \dots + (1-\delta)e_{1t-1} + \dots + (1-\delta)e_{1t-1} + \dots + (1-\delta)e_{1t-1} + (1-\delta)e_{1t-1} + (1-\delta)e_{1t-1} + (1-\delta)e_{1t-1} + (1-\delta)e_{1t-1} + \dots + (1-\delta)e_{1t-1} + \dots + e_{nt} + \xi_{t}.$$

By using the **Markov's condition or the Property of causality**,  $\forall j, r \in \{0, 1, ..., N - 1\}$  with j < r, it is shown that the state  $x_r$  only depends on the state  $x_j$  and the intermediate controls  $\{u_j, u_{j+1}, ..., u_{r-1}\}$ . Then, we conclude that the actual contamination stock depends on the initial stock  $s_0$  and the set of controls or emission vector  $e_1, e_2, ..., e_T$  for each period of time  $t \in \mathcal{T}$ .

Note that, by definition  $e_{it} \geq 0$  for all  $t \in \mathcal{T}$ , and  $s_t \geq 0$  for all  $t \in \mathcal{T}$  provided that  $0 < \delta < 1$ .

Then, we can consider equivalently the following problem with convex objective function and T + 1 linear constraints

$$\min_{\substack{\{e_{it}\}_{t\in\mathcal{T}}\\ s.t. \\ e \geq 0\\ s_0 > 0}} \mathbb{E}\left[\sum_{t=1}^T \sum_{i=1}^n \beta^t \left[c_i(e_{it}) + \tilde{d}_i(s_0, e_{it}, \xi_t)\right]\right]$$

where

$$e' = (e_{11}; e_{21}; \cdots; e_{n1}; e_{12}; e_{22}; \cdots; e_{n2}; \cdots; e_{1T}; e_{2T}; \cdots; e_{nT})$$
  

$$b' = (-(1-\delta)s_0; -(1-\delta)^2 s_0; \cdots; -(1-\delta)^T s_0)$$
  

$$\xi' = (\xi_1; (1-\delta)\xi_1 + \xi_2; \ldots; \ldots; (1-\delta)^{T-1}\xi_1 + (1-\delta)^{T-2}\xi_2 + \cdots + \xi_T)$$

The independent vector b and random disturbance vector  $\xi$  are of order T.

The matrix A is a  $T \times Tn$ , lower triangular matrix, with the following structure

By using the development presented in this section one can find the solutions  $e_{it}^*$  of optimal emissions for each country  $i \in J$ , and one obtains the stock levels of contamination  $s_t^*$  in each period of time t = 1, 2, ..., T.

#### 3.2 Analysis of particular Damage Functions

Note that although the cost function  $c_i$ , depends only on the emissions  $e_{it}$  of each country  $i \in J$  at each period of time  $t \in \mathcal{T}$ , the damages function  $d_i$ depends on the initial stock  $s_0$ , the emissions of the each one others countries  $e_{it}$  with  $i \neq j$ , the emissions  $e_{it}$  and the random disturbance  $\xi_t$ , for each period of time t. This fact determines the stochastic structure of the objective function to be considered in the optimization problem (P1), as it is shown in (3).

We analyze useful cases of damage functions that appear in the economic literature, and we present the particular programming problems to be solved in each case. This analysis remains valid for both models, cooperative and non cooperative with some slight modification.

#### 3.2.1 Linear Case

One assume

$$d_i(s_t) = as_t + b, \qquad a, b \in \mathbb{R}$$

Following (3) the objective function of the cooperative model (P1) has the following form

$$\min_{\{e_{it}\}} \left\{ \sum_{t=1}^{T} \sum_{i=1}^{n} \beta^{t} \left( c_{i}(e_{it}) + a\mathbb{E}\left[d_{i}(s_{t})\right] \right) \right\}$$

because

$$\mathbb{E} [d_i(s_t)] = \mathbb{E} [as_t + b],$$

$$= a\mathbb{E} [s_t] + b,$$

$$= a\mathbb{E} \left[ (1 - \delta)^t s_0 + \sum_{\tau=1}^t (1 - \delta)^{t-\tau} \sum_{i=1}^n e_{i\tau} + \sum_{\tau=1}^t (1 - \delta)^{t-\tau} \xi_{\tau} \right] + b,$$

$$= a \left[ (1 - \delta)^t s_0 + \sum_{\tau=1}^t (1 - \delta)^{t-\tau} \sum_{i=1}^n e_{i\tau} + \mathbb{E} [\sum_{\tau=1}^t (1 - \delta)^{t-\tau} \xi_{\tau}] \right] + b,$$

$$= a \left[ (1 - \delta)^t s_0 + \sum_{\tau=1}^t (1 - \delta)^{t-\tau} \sum_{i=1}^n e_{i\tau} \right] + b.$$

Then the objective function of model (P1) is equal to the objective function of the following linear programming

$$\min_{\{e_{it}\}} \left\{ \sum_{t=1}^{T} \sum_{i=1}^{n} \beta^{t} \left( c_{i}(e_{it}) + a(1-\delta)^{t} s_{0} + a \sum_{\tau=1}^{t} (1-\delta)^{t-\tau} \sum_{i=1}^{n} e_{i\tau} + b \right) \right\}.$$

#### 3.2.2 Quadratic Case

One assume that

$$d_i(s_t) = \left(s_t\right)^2.$$

The objective function of the cooperative model has the following form

$$\min_{\{e_{it}\}} \left\{ \sum_{t=1}^{T} \sum_{i=1}^{n} \beta^{t} \left( c_{i}(e_{it}) + \mathbb{E}\left[ (s_{t})^{2} \right] \right) \right\}.$$

then

$$\mathbb{E}\left[(s_t)^2\right] = \mathbb{E}\left[\left((1-\delta)^t s_0 + \sum_{\tau=1}^t (1-\delta)^{t-\tau} \sum_{i=1}^n e_{i\tau} + \sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_{\tau}\right)^2\right],$$
$$= \mathbb{E}\left[\varphi^2 + \left(\sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_{\tau}\right)^2 + 2\varphi\left(\sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_{\tau}\right)\right],$$
$$= \varphi^2 + \mathbb{E}\left[\left(\sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_{\tau}\right)^2\right] + 2\varphi\mathbb{E}\left[\sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_{\tau}\right].$$

where

$$\varphi = (1 - \delta)^t s_0 + \sum_{\tau=1}^t (1 - \delta)^{t-\tau} \sum_{i=1}^n e_{i\tau}.$$

Provided that  $\{\xi_t\}$  are iid and condition (2), we have

$$\mathbb{E}\left[\left(\sum_{\tau=1}^{t} (1-\delta)^{t-\tau} \xi_{\tau}\right)^{2}\right] = \mathbb{E}\left[\sum_{\tau=1}^{t} (1-\delta)^{2(t-\tau)} \xi_{\tau}^{2} + 2\sum_{\tau=1}^{t} (1-\delta)^{t-\tau} \xi_{\tau} \sum_{j=1}^{t} (1-\delta)^{t-j} \xi_{j}\right],$$

$$= \sum_{\tau=1}^{t} (1-\delta)^{2(t-\tau)} \mathbb{E}\left[\xi_{\tau}^{2}\right] + 2\sum_{\tau=1}^{t} \sum_{j=1}^{t} (1-\delta)^{t-\tau} (1-\delta)^{t-j} \mathbb{E}\left[\xi_{\tau} \xi_{j}\right],$$

$$= \sum_{\tau=1}^{t} (1-\delta)^{2(t-\tau)} \sigma_{t}^{2},$$
then  $\mathbb{E}\left[(s_{t})^{2}\right] = \varphi^{2} + \sum_{\tau=1}^{t} (1-\delta)^{2(t-\tau)} \sigma_{t}^{2}.$ 

Then in this case, our problem is transformed in an quadratic programming problem.

#### 3.2.3 Exponential Case

Finally, one assume

$$d_i(s_t) = \exp(s_t).$$

The objective function of the cooperative model has the following form

$$\min_{\{e_{it}\}} \left\{ \sum_{t=1}^{T} \sum_{i=1}^{n} \beta^{t} \left( c_{i}(e_{it}) + \mathbb{E}\left[ \exp(s_{t}) \right] \right) \right\}$$

Now

$$\mathbb{E}\left[\exp(s_t)\right] = \mathbb{E}\left[\exp\left((1-\delta)^t s_0\right) \exp\left(\sum_{\tau=1}^t (1-\delta)^{t-\tau} \sum_{i=1}^n e_{i\tau}\right) \exp\left(\sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_\tau\right)\right]$$
$$= \exp\left((1-\delta)^t s_0\right) \exp\left(\sum_{\tau=1}^t (1-\delta)^{t-\tau} \sum_{i=1}^n e_{i\tau}\right) \mathbb{E}\left[\exp\left(\sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_\tau\right)\right]$$

where

$$\mathbb{E}\left[\exp\left(\sum_{\tau=1}^{t}(1-\delta)^{t-\tau}\xi_{\tau}\right)\right] = \prod_{\tau=1}^{t}\mathbb{E}\left[\exp(1-\delta)^{t-\tau}\xi_{\tau}\right]$$
$$= \prod_{\tau=1}^{t}\varphi_{\xi}\left[(1-\delta)^{t-\tau}\right].$$

We recognize  $\varphi_{\xi}$  as the z-transformed function if  $\xi$  follows a discrete random variable.

Depending on the expression of this  $\varphi_{\xi}$  function, we get different types of objective functions, and therefore different types of mathematic programming problems, usually they will be non-linear optimization problems.

# 4 Non-Cooperative Model

In an alternative mode of behaviour, we describe what would happen if the countries do not sign a voluntary international environmental agreement. One may assume that countries behave non cooperatively in the sense of Nash equilibrium, where each of them minimizes at each period only its own discounted costs, taking given the emissions of the other countries. A Nash equilibrium is a family of strategies, one for each player, that minimize every country i's cost, given the strategies of all other players  $j \neq i$ . In such an equilibrium, no individual country has an incentive to deviate as long as the other countries stick to their equilibrium strategies.

The considered problem is a dynamic game in discrete time and finite horizon with only one player or country. We can adopt the perspective of an Optimal Control Problem (OCP), where the dynamic model is a system in discrete time  $s_{t+1} = \phi(s_t, e_t, \xi_t)$  for all  $t \in \mathcal{T}$  with initial condition  $s_0$  and finite horizon  $T < \infty$ . Formally, there are n problems to solve. Actually, at each period of time  $t \in \mathcal{T}$ , each country  $i \in J$  solves the following problem (P2)

$$(P2) \qquad \min_{\{e_{i\tau}\}_{\tau \in \{t,\dots,T\}}} \qquad \mathbb{E}\left[\sum_{\tau=t}^{T} \beta^{\tau} \left[c_{i}(e_{i\tau}) + d_{i}(s_{\tau})\right]\right]$$
  
s.t. 
$$s_{t} = (1-\delta)s_{t-1} + \sum_{i=1}^{n} e_{it} + \xi_{t}$$
$$e_{it} \ge 0 \quad \forall t \in \mathcal{T}; \quad \forall i \in J$$
$$s_{0} > 0$$

Note that the objective function in the model (P2) is equivalent to

$$\min_{\{e_{i\tau}\}_{\tau\in\{t,\ldots,T\}}} \mathbb{E}\left[\sum_{\tau=t}^{T} \beta^{\tau} \left[c_i(e_{i\tau}) + d_i(s_{\tau})\right]\right] \Leftrightarrow \min_{\{e_{i\tau}\}_{\tau\in\{t,\ldots,T\}}} \sum_{\tau=t}^{T} \beta^{\tau} \left(c_i(e_{i\tau}) + \mathbb{E}\left[d_i(s_{\tau})\right]\right)$$

**Proposition 2.** Problem (P2) has an equilibrium  $\{e_{it}^N\}$ .

Proof. A particular case the convexity of the functions  $c_i(e_{it})$  and  $d_i(st)$ , for all  $i \in J$  and for all periods  $t \in \mathcal{T}$ , suffices to guarantee that the Nash equilibrium exists and is unique (see for instance, Puterman (2005) and Hernández-Lerma (1999)).

The expected value functions  $N_i$ , according to Bellman's principle of optimality, can be found by solving the Stochastic Dynamic Programming equations for (P2)

$$(P2.1) N_i(T, s_{T-1}) = \min_{e_{iT}} \mathbb{E} \left[ c_i(e_{iT}) + d_i(s_T) \right] (P2.2) N_i(t, s_{t-1}) = \min_{e_{it}} \mathbb{E} \left[ c_i(e_{it}) + d_i(s_t) + \beta N_i(t+1, s_t) \right]$$

$$\forall t = 1, 2, ..., T - 1$$
  
s.t.  $s_t = (1 - \delta)s_{t-1} + \sum_{i=1}^n e_{it} + \xi_t$   
 $e_{it} \ge 0 \quad \forall t \in \mathcal{T} \quad , \quad \forall i \in J$   
 $s_0 > 0$ 

**Remark** The resulting family of trajectories of emissions (policies)  $e_{it}^N$  determined for each country  $i \in J$ , together with the resulting stock  $s_t^N$ , constitute a

non-cooperative Nash equilibrium for all periods  $t \in \mathcal{T}$  (see Dutta and Sundaram (1998)).

The Stochastic Dynamic Programming equations (P2.1) and (P2.2) are equivalent, respectively, to

$$(P2.1) \Leftrightarrow N_i(T, s_{T-1}) = \min_{e_{iT}} c_i(e_{iT}) + \mathbb{E} \left[ d_i(s_T) \right],$$
  

$$(P2.2) \Leftrightarrow N_i(t, s_{t-1}) = \min_{e_{it}} c_i(e_{it}) + \mathbb{E} \left[ d_i(s_t) \right] + \beta N_i(t+1, s_t).$$

In the non cooperative equilibrium the country i's expected total cost at period final T is

$$N_i(T,s) = c_i(e_{iT}^N) + d_i(s_T^N)$$
;  $s_T^N = [1-\delta]s + \sum_{i=1}^n e_{iT}^N$ .

where  $e_{iT}^N = \{e_{1T}^N, e_{2T}^N, \dots, e_{nT}^N\}$  is the vector that denotes the emissions equilibrium level and  $s_T^N$  denotes the resulting stock of pollutant at final period of time T, where s is the inherited stock of pollutant at the begin of period T.

Let define as  $\tau$ -expected discounted total cost by

$$N_i^{\tau} \equiv \sum_{t=1}^{\tau} N_i(t, s_{t-1}^N), \qquad 1 \le \tau \le T - 1$$
  
and total cost 
$$N_i \equiv \sum_{t=1}^T N_i(t, s_{t-1}^N).$$

#### 4.1 Non-Cooperative Alternative Problem

By the recurrence equation (1) and considering that each country minimizes its own costs, given the emissions vector  $e_{jt}$ , with  $j \neq i$ , of the all others countries and considering the random disturbance vector  $\xi_t$  in each period of time  $t \in \mathcal{T}$ , for each country  $i \in J$  we obtain that

$$s_{1} = (1-\delta)s_{0} + e_{i1} + \sum_{j \neq i}^{n} e_{j1} + \xi_{1}.$$

$$s_{2} = (1-\delta)^{2}s_{0} + (1-\delta)e_{i1} + (1-\delta)\sum_{j \neq i}^{n} e_{j1} + (1-\delta)\xi_{1} + e_{i2} + \sum_{j \neq i}^{n} e_{j2} + \xi_{2}.$$

$$s_{3} = (1-\delta)^{3}s_{0} + (1-\delta)^{2}e_{i1} + (1-\delta)^{2}\sum_{j \neq i}^{n} e_{j1} + (1-\delta)^{2}\xi_{1} + (1-\delta)e_{i2} + (1-\delta)\sum_{j \neq i}^{n} e_{j2} + (1-\delta)\xi_{2} + e_{i3} + \sum_{j \neq i}^{n} e_{j3} + \xi_{3}.$$

Proceeding in a similar way by induction till the moment t, we get to the following expression

$$s_t = (1-\delta)^t s_0 + (1-\delta)^{t-1} e_{i1} + (1-\delta)^{t-1} \sum_{j\neq i}^n e_{j1} + (1-\delta)^{t-1} \xi_1 + \dots + (1-\delta)^{t-\tau} e_{it} + (1-\delta)^{t-\tau} \sum_{j\neq i}^n e_{j\tau} + (1-\delta)^{t-\tau} \xi_\tau + \dots + e_{it} + \sum_{j\neq i}^n e_{jt} + \xi_t,$$

in general form

$$s_t = (1-\delta)^t s_0 + \sum_{\tau=1}^t \sum_{j\neq i}^n (1-\delta)^{t-\tau} e_{j\tau} + \sum_{\tau=1}^t e_{i\tau} + \sum_{i=1}^t (1-\delta)^{t-\tau} \xi_i.$$

Explicitly developing the previous recurrence equation (1), the constraints system is transformed obtaining

$$s_{1} = (1-\delta)s_{0} + e_{11} + e_{21} + \dots + e_{n1} + \xi_{1},$$

$$s_{2} = (1-\delta)^{2}s_{0} + (1-\delta)e_{11} + (1-\delta)e_{21} + \dots + (1-\delta)e_{n1} + (1-\delta)e_{11} + e_{12} + \dots + e_{n2} + \xi_{2},$$

$$s_{3} = (1-\delta)^{3}s_{0} + (1-\delta)^{2}e_{11} + \dots + (1-\delta)^{2}e_{n1} + (1-\delta)^{2}\xi_{1} + (1-\delta)e_{12} + \dots + (1-\delta)e_{n2} + (1-\delta)\xi_{2} + e_{13} + \dots + e_{n3} + \xi_{3},$$

$$\vdots$$

$$s_{t} = (1-\delta)^{t}s_{0} + (1-\delta)^{t-1}e_{11} + \dots + (1-\delta)^{t-1}e_{n1} + (1-\delta)^{t-1}\xi_{1} + \dots + (1-\delta)^{t-2}e_{12} + \dots + (1-\delta)^{t-2}e_{12} + \dots + (1-\delta)^{t-2}\xi_{2} + \dots + (1-\delta)e_{1t-1} + \dots + (1-\delta)e_{nt-1} + (1-\delta)\xi_{t-1} + e_{1t} + \dots + e_{nt} + \xi_{t}.$$

In the non cooperative case we have n problems to solve, one for each country  $i \in \{1, 2, ..., n\}$ . Let i fixed, then

$$\min_{\substack{\{e_t\}_{t \in \{1,\dots,T\}}\\ \text{s.a.} }} \mathbb{E} \left[ \sum_{t=1}^T \beta^t \left[ c_i(e_t) + \tilde{d}_i(s_0, e_t, \xi_t) \right] \right]$$
$$= b_i + \xi$$
$$e \geq 0 \quad \forall t \in \mathcal{T}$$
$$s_0 > 0$$

where

$$\begin{aligned} e'_{i} &= (e_{i1}; e_{i2}; \cdots; e_{iT}) \\ b'_{i} &= (b_{i1}; b_{i2}; \cdots; b_{iT}) \\ b_{it} &= -(1-\delta)^{t} s_{0} - \sum_{\tau=1}^{t} \sum_{j \neq i}^{n} (1-\delta)^{t-\tau} e_{j\tau} \\ \xi' &= \left(\xi_{1}; (1-\delta)\xi_{1} + \xi_{2}; \ldots; \ldots; (1-\delta)^{T-1}\xi_{1} + (1-\delta)^{T-2}\xi_{2} + \cdots + \xi_{T}\right) \end{aligned}$$

The matrix  $B_i$  is a square matrix, lower triangular, of order T, with ones in the principal diagonal. The vector b and the random disturbance  $\xi$  have order T.

The structure of the matrix  $B_i$  is as follows

$$B_i = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ (1-\delta) & 1 & 0 & 0 & 0 & \cdots & 0 \\ (1-\delta)^2 & (1-\delta) & 1 & 0 & 0 & \cdots & 0 \\ (1-\delta)^3 & (1-\delta)^2 & (1-\delta) & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ (1-\delta)^{T-1} & (1-\delta)^{T-2} & (1-\delta)^{T-3} & \cdots & \cdots & (1-\delta) & 1 \end{pmatrix}$$

then we can may obtain the inverse matrix of the matrix  $B_i$ , which is quasi diagonal

$$B_i^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ -(1-\delta) & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & -(1-\delta) & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & -(1-\delta) & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & \cdots & -(1-\delta) & 1 \end{pmatrix}$$

As in the cooperative model solution, by using the development presented in this section one can find the parameters  $e_{it}^N$  of optimal emissions for each country  $i \in J$ , and one obtains the stock levels of contamination  $s_t^N$  in each period of time t = 1, 2, ..., T.

Note that the particular analysis for linear, quadratic and exponential damage functions developed in section 3.2.1, holds for the non cooperative case with little change in the objective function.

# 5 A Numerical Example

In the following, we show some numerical results obtained by application of the algorithms developed in the preceding sections of cooperative (P1) and non cooperative (P2) problems to a real scenario considering six regions or countries. The six regions or countries considered are USA, Japan, European Union (EU), China, Former Soviet Union (FSU) and Rest of the World (ROW). Periods of time are years, the initial period 0 refers to year 1990, following the Kyoto Protocol.

The model and the values of the parameters used are based on the paper by Eyckmans and Tulkens (2003). In that paper the model named the Climate Negotiation (CLIMNEG) World Simulation Model, is considered as well as a deterministic dynamic analysis about how many countries will be interesting in signing an international environmental agreement (IEA) with accumulating pollutant in discrete time. All computations were made by use of the software Matlab 7.3.0 (R2006b).

#### 5.1 Model and parameters

The temperature change equation is taken from the climate economy model RICE (Regional Integrated model of Climate and the Economy) by Nordhaus and Yang (1996) and Nordhaus and Boyer (2000), as well as most of the parameter values and all basic data on GDP, population, capital stock, carbon emissions and concentration and global mean temperature. A complete overview of the equations and parameter values of the Climate Negotiation (CLIMNEG) World Simulation Model (abbreviated as CWSM) can be found in Eyckmans and Tulkens (2003).

The division of the world is the same as in the RICE model. There are 6 countries or regions: USA, Japan, European Union (EU), China, Former Soviet Union (FSU) and Rest of the World (ROW). The time is divided in years, the initial period (period t = 0) refers to year 1990. To take account on the long term impacts of stock pollutant, we take a long planning horizon of 100 years, but we will only consider results until 2030 in order to avoid boundary problems.

The  $CO_2$  emissions in each region or country  $i \in J$  at period of time  $t \in \mathcal{T}$  are denoted by  $e_{it}$ , with  $e_{it} \geq 0$  for all  $i \in J$  and for all  $t \in \mathcal{T}$ , and  $e_t = (e_{1t}; e_{2t}; ...; e_{nt})$ is the corresponding vector of emissions of  $CO_2$  in each of n regions or countries iat period of time t. Emissions of region i at time t are considered due to economic activity and proportional to the potential GDP named  $Y_{it}$ , according to expression

$$e_{it} = \sigma_{it} (1 - \eta_{it}) Y_{it} \tag{4}$$

The optimal abatement rate of control of emissions, in each country or region i and in every period of time t, is the endogenous vector  $\eta_t = (\eta_{1t}; \eta_{2t}; ...; \eta_{nt})$  with  $0 \le \eta_{it} \le 1$ , for all  $i \in J$  and for all  $t \in \mathcal{T}$ . Note that  $\eta_t = 0$  for all t determines

the "business-as-usual" (BAU) scenario in this model, i.e. a trajectory in which the emissions are not reduced with respect to their maximum values.

The emissions of  $CO_2$  to output ratio  $\sigma_{it}$ , of each country or region *i* at each period of time *t*, declines exogenously over time *t* due to an assumed autonomous energy efficiency increase. Given  $e_{it}$  and  $Y_{it}$ , and the BAU scenario, one may obtains

$$\sigma_{i,t} = \frac{e_{it}}{Y_{it}}.$$

The potential GDP denoted by  $Y_{it}$  is the output(exogenous) of country or region *i* at period of time *t*, in billion 1990 USA dollars, and  $g_{it}$  is the annual growth rates of each country or region *i* at each period of time *t*.

$$Y_{i,t+1} = (1+g_{it})Y_{it}.$$
(5)

The next equation modelizes the stock pollutant part of the model.

The emissions contribute to the stock of  $CO_2$  in the atmosphere, in billion tons of carbon  $CO_2$ , according to equation (1)

$$s_t = (1 - \delta)s_{t-1} + \sum_{i=1}^n e_{it} + \xi_t, \quad \forall t = 1, ...T.$$

or equivalently

$$s_t = (1-\delta)^t s_0 + \sum_{\tau=1}^t (1-\delta)^{t-\tau} \sum_{i=1}^n e_{i\tau} + \sum_{\tau=1}^t (1-\delta)^{t-\tau} \xi_{\tau}.$$

where the initial stock or preindustrial level of the  $CO_2$  atmospheric stock, is taken as 590 billion tons of carbon equivalent.

The parameter  $\delta$ , such that  $0 < \delta < 1$ , the rate of decay or absorption of  $CO_2$  in the atmosphere between two periods of time t and t - 1, is assumed as  $\delta = 0.0833$  per decade or  $\delta = 0.0909512$  per year.

The random disturbance  $\xi_t$  is a noise process as in (2), i.e. sequence of i.i.d. random variables and independent of the initial state  $s_0$ , with normal distribution and

$$\mathbb{E}[\xi_t] = 0, \qquad \sigma^2 = \mathbb{E}[\xi_t^2] = 1, \qquad \forall t = 1, 2, ..., T - 1.$$

In our simulations we have estimate the expectation of the damages functions over 100 runs carried out after the corresponding 100 values of the standard normal disturbance  $\xi_t$ .

The stock s influences in turn the variation of atmospheric temperature w.r.t. its preindustrial or initial level  $s_0$ , according to the following equations

$$\Delta T_t = \gamma \ln \left(\frac{s_t}{s_0}\right),\,$$

where the annual discount rate  $\gamma$  is an exogenous positive parameter. This parameter is calibrated such that a doubling of  $CO_2$  atmospheric concentration results in an increase of temperature of 2.5 degrees with respect to its preindustrial level, and we take its value as

$$\gamma = \frac{2.5}{\ln(2)}.$$

The next two equations describe the economic part of the model, i.e. the costs  $c_{it}$  of reducing the emissions of  $CO_2$  on the one hand, and the costs of the damages  $d_{it}$  due to stock pollutant and climate change on the other.

The abatement cost function  $c_{it}$  of country *i* at each period of time *t*, measured in billion 1990 USA dollars, is given by

$$c_{it}(e_{it}) = a_{i1}\eta_{it}^{a_{i2}}Y_{it} = a_{i1}\left[1 - \frac{e_{it}}{\sigma_{it}Y_{it}}\right]^{a_{i2}}Y_{it},$$

where the functions  $c_{it}$  are decreasing  $(c'_{it} < 0)$  and strictly convex  $(c''_{it} > 0)$ , as is assumed in Section 2.

Damages due to stock pollutant and climate change are assumed to follow from the increase of the atmospheric temperature, in billion 1990 USA dollars, according to

$$d_{it}(s_t) = b_{i1}\Delta T_t^{b_{i2}}Y_{it} = b_{i1}\left[\gamma \ln\left(\frac{s_t}{s_0}\right)\right]^{b_{i2}}Y_{it},\tag{6}$$

where the functions  $d_{it}$  are increasing  $(d'_{it} > 0)$  and convex  $(d''_{it} > 0)$ , according to the hypotheses of the model in Section 2.

The regional parameter values  $a_{i1}$ ,  $a_{i2}$ ,  $b_{i1}$  and  $b_{i2}$  for all countries  $i \in J$  are exogenous and positive. These regional parameter values, characterizing damage functions  $d_{it}$  and abatement cost functions  $c_{it}$ , are derived from Eyckmans and Tulkens (2003), and are given in Table 1.

We now describe the exogenous parameters appearing in the problems (P1) and (P2). The initial output  $Y_{it}$ , i.e. 1990 potential GDP, of the different region or countries are given by the vector

$$Y_{1990} = [5464.796, 2932.055, 6828.042, 370.024, 855.207, 4628.621],$$

expressed in billion 1990 USA dollars and the total of the world, at this year, is 21078.750 billions USA dollars.

| i        | USA     | JAP     | EU      | CHI      | FSU     | ROW     |
|----------|---------|---------|---------|----------|---------|---------|
| $a_{i1}$ | 0.07    | 0.05    | 0.05    | 0.15     | 0.15    | 0.1     |
| $a_{i2}$ | 2.887   | 2.887   | 2.887   | 2.887    | 2.887   | 2.887   |
| $b_{i1}$ | 0.01102 | 0.01174 | 0.01174 | 0.015523 | 0.00857 | 0.02093 |
| $b_{i2}$ | 2.0     | 2.0     | 2.0     | 2.0      | 2.0     | 2.0     |

Table 1: Regional parameter values per country

The average annual output growth rates  $g_{it}$  in per cent for each country at each period of time t, given in Table 2, are calculated from Kverndokk (1994). After (5) it is possible to evaluate  $Y_{it}$  for all  $i \in J$  and for all  $t \in \mathcal{T}$ , the cumulative output of region or country i during the period of time t.

Table 2: Average annual output growth rates  $g_{it}$  in %, per country for each period of time t (per decade)

| period $t$ | USA  | JAP  | EU   | CHI  | FSU  | ROW  |
|------------|------|------|------|------|------|------|
| 1990-2000  | 2.60 | 2.20 | 2.20 | 4.60 | 2.60 | 3.70 |
| 2000-2020  | 2.20 | 1.70 | 1.70 | 4.40 | 2.10 | 3.40 |
| 2020-2050  | 1.60 | 1.30 | 1.30 | 3.40 | 1.60 | 2.70 |
| 2050-2080  | 1.00 | 1.00 | 1.00 | 2.50 | 1.00 | 1.50 |
| 2080-2110  | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 |

We face now the calculation of the initial value  $\sigma_{1990}$  for the optimization problem.

The initial  $CO_2$  vector of emissions  $e_{1990}$ , in absence of any control are taken from the RICE model and these emissions are measured in billion tons of carbon.

 $e_{1990} = \begin{bmatrix} 1.37, & 0.29, & 0.872, & 0.805, & 1.066, & 3.43 \end{bmatrix}$ 

Given  $e_{1990}$  and the annual GDP  $Y_{1990}$  value, following (4) we obtain the initial emissions of  $CO_2$  to output ratio  $\sigma_{1990}$ 

 $\sigma_{1990} = [0.0002506, 0.0000989, 0.0001277, 0.0021755, 0.0012464, 0.000741]$ 

Given  $e_{1990}$  and the annual emissions growth rates  $g_{it}$ , following (5) it is easy to calculate the output ratio  $\sigma_{it}$  for all country  $i \in J$  and for all period of time  $t \in \mathcal{T}$ , that is the  $CO_2$  emission/output ratio of region or country i during the period of time t. In this example we borrow the output  $Y_{it}$  and  $CO_2$  emission/output ratio time series from different versions of the RICE model, developed by Nordhaus and Yang (1996) and Nordhaus and Boyer (2000).

Finally the discount factor per year, that appears in the objective functions of problems (P1) and (P2) is taken as

$$\beta = \frac{1}{(1+\rho)^1} = 0.98$$

where the annual discount rate is chosen as  $\rho = 0.02$ .

#### 5.2 The Numerical Results

In this subsection we present the reference scenario which corresponds to the values of the parameters given in the last subsection. The simulations are made for a time horizon of 100 years, but we give the results only up to 2030, i.e. for the first 40 years, in order to avoid boundary problems.

Figure 1: Optimal cooperative emissions  $e_{it}^*$  for each country at each period of time t in billion tons of carbon equivalent.



We have implemented the equivalent formulation of problems (P1) and (P2) given in Subsections 3.1 and 4.1, respectively. The damages function (6) considered in our example, is more complex than the particular cases analyzed in Section 3.2.

Thus, we have developed specific code for our example. All the tables are included in the Appendix.

Note that the optimal abatement rates for each country can be directly obtained after the optimal emissions by applying (4). This is in fact one of the outputs more frequently analyzed by the economic literature concerning stock pollutant control.

Table 3 gives the optimal cooperative emissions  $e_{it}^*$  in billion tons of  $CO_2$  equivalent for each country during each period of time t. These results are related with problem (P1). The last row gives the cumulated emissions per country until the end of the horizon T in billion tons of carbon. Figure 1 shows the optimal cooperative emissions  $e_{it}^*$  for each country i and per each period of time t.

Figure 2: Optimal Cooperative Value Function  $W_{it}$  per country *i* for each period of time *t* in billions of 1990 USA dollars.



Table 4 gives the optimal cooperative value function  $W_{it}$  for each country during each period of time t in billions of 1990 USA dollars. These results are related with problem (P1). The last row gives the cumulated value function per country and the total of the world at the end of the final period T, measured in billions of 1990 USA dollars. Figure 2 shows the optimal cooperative value

function  $W_{it}$  for each country *i* and per each period of time *t* in billions of 1990 USA dollars.

Figure 3: Optimal non cooperative emissions  $e_{it}^N$  per each country for each period of time t in billion tons of carbon equivalent.



Table 5 gives the optimal non cooperative emissions  $e_{it}^N$  per country *i* during the period of time *t*. These results are related with problem (*P*2). The last row gives the cumulated emissions per country *i* until the end of the period of time *T* in billion tons of carbon. Figure 3 shows the optimal non cooperative emissions  $e_{it}^N$  for each country *i* and for each period of time *t*.

Table 6 gives the optimal non cooperative value function  $N_{it}$  for each country during each period of time t in billions of 1990 USA dollars. These results are related with problem (P2). The last row gives the cumulated value function for each country and the total of the world until the end of the horizon T, measured in billions of 1990 USA dollars. Note that the Figure 4 shows the optimal non cooperative value function  $N_{it}$  for each country *i* and per each period of time *t* in billions of 1990 USA dollars.

Although optimal emissions increase with time for both cases, in the cooperative case, see Figure 1, it is not a remarkable issue. Nevertheless, we discover an increasing trend of the optimal emissions in the non cooperative case, as is shown Figure 4: Optimal Non Cooperative Value Function  $N_{it}$  per country *i* for each period of time *t* in billions of 1990 USA dollars.



in Figure 3. As it is expected, the total of the optimal non cooperative emissions for each country are bigger that the total of the optimal cooperative emissions as is shown in Tables 3 and 5.

The total Optimal Cooperative Value Function is smaller than the total Optimal Non Cooperative Value Function, as it is shown in Tables 4 and 6, and Figures 2 and 4. We observe that this result is consistent with what is obtained in the seminal paper for the deterministic model provided by Germain, Toint, Tulkens, and de Zeeuw (2003). In fact this result was expected after the definition of the optimum.

We are now to compare the optimal stocks of pollutant. Table 7 gives the cooperative optimal stock of pollutant,  $s_t^*$ , the non cooperative optimal stock of pollutant  $s_t^N$  and the differences between them at each period of time t in billion tons of carbon. We observe a great improvement of the cooperative behavior with respect to the non cooperative one over the time.

Figure 5 depicts the optimal cooperative and non-cooperative stocks of pollutant,  $s_t^*$  and  $s_t^N$  respectively for each period of time t in billion tons of carbon equivalent.

Figure 5: Optimal cooperative and non-cooperative stocks



We observe in Figure 5 that the optimal stock cooperative  $s_t^*$  decreases faster than the non-cooperative stocks  $s_t^N$ . This result is consistent with the expected behavior of the solutions of problems (P1) and (P2).

We have checked our model in different scenarios by changing the values of the noise process parameters including the deterministic case, (i.e.  $E[\xi_t] = 0$ ,  $Var[\xi_t] = 0$ ). All the results we have found were consistent, and for the deterministic case we have obtained optimal stationary strategies for both problems P1 and P2, as we expected.

# 6 Conclusions and Extensions

We have developed a useful stochastic formulation which extends the stock pollutant control model developed by Germain, Toint, Tulkens, and de Zeeuw (2003). Our model lets to include through the random disturbance term, random elements not considered in the deterministic model. Moreover, our proposal lets to evaluate the magnitud of this effects by estimating, for example, the variance of the additive noise process. In principle we have assume independence for this process but we can also extend our work by considering some time series structures for the noise process.

Additionally, our example shows that the stochastic formulation produce consistent results in comparison to the deterministic model of reference, but simultaneously provides more flexibility than the former one. Note that the example proposed to illustrate our formulation is very close to the CLIMNEG model, which has been in fact analyzed from the deterministic point of view. So, in somehow we also extend this model to a stochastic setting. On the other hand, we want to remark that our real data based example is strongly driven by the original values taken at 1990 according to Kyoto Protocol.

Summarizing our results, for each country  $i \in J$  and each period  $t \in \mathcal{T}$  we obtain the following stocks pollution, emissions and values functions for each model

Cooperative Model (P1): Pareto equilibrium

 $\{s_t^*\}, \{e_{it}^*\}, \{W_i(t, s_{t-1}^*)\}.$ 

Non-Cooperative Model (P2): Nash equilibrium

$$\{s_t^N\}, \{e_{it}^N\}, \{N_i(t, s_{t-1}^N)\}.$$

One might think an extension of our stochastic model by considering monetary transfers to induce cooperation, having in mind the significative differences between the optimal cooperative and non cooperative stock pollutant pointed out in our example, see for instance Figure 5.

Stochastic performance criteria based on bounds of probability could be also considered, as an extension of this work.

Finally, further research could be done if we consider uncertainty about the random perturbation, say the variance of the i.i.d. sequence. We propose to estimate the parameter recursively and to include the estimation in the stochastic control problem.

# References

- Bahn, O., A. Haurie, and R. Malhamé (2008). A stochastic control model for optimal timing of climate policies. Automatica 44, 1545–1558.
- Barrett, S. (2003). Environment and Statecraft: The Strategy of Environmental Treaty-Making. Oxford: Oxford University Press.
- Bertsekas, D. (2000). *Dynamic Programming and Optimal Control* (Second ed.), Volume I. Belmont, Massachusetts: Athena Scientific.
- Casas, O. and R. Romera (2005, November). The international stock pollutant control: A stochastic formulation. Seminarios Internacionales Complutenses.
- Chander, P. and H. Tulkens (1995). A core-theoretic solution for design of cooperative agreements on transfrontier pollution. *International Tax and Public Finance 2*, 279–294.
- Chander, P. and H. Tulkens (1997). The core of an economy with multilateral environmental externalities. *International Journal of Game Theory* 26, 379– 401.
- Dechert, W. and S. O'Donnell (2006). The stochastic lake game: A numerical solution. Journal of Economic Dynamics and Control 30, 1569–1587.
- Dutta, P. and R. K. Sundaram (1998). The Equilibrium Existence Problem in General Markovian Games. In: Organizations with Incomplete Information: Essays in Economic Analysis. A tribute to Roy Radner, Chapter 5, pp. 159– 207. Cambridge and New York: Cambridge University Press.
- Eyckmans, J. and H. Tulkens (2003). Simulating coalitionally stable burden sharing agreements for the climate change problem. *Resource and Energy Economics* 25, 299–327.
- Finus, M. (2001). *Game Theroy and International Environmental Cooperation*. Edwar Elgar, Cheltenham, UK and Northampton, USA.
- Flam, S. D. (2006). Balanced environmental games. Computer and Operations Research 33, 401–408.
- Germain, M., P. Toint, H. Tulkens, and A. de Zeeuw (2003). Transfers to sustain dynamic core-theoretic cooperation in international stock pollutant control. *Journal of Economic Dynamics and Control 28*, 79–99.
- Haurie, A. and L. Viguier (2003). A stochastic dynamic game of carbon emission trading. *Environmental Modelling and Assessment 8*, 239–248.
- Hernández-Lerma, O. (1999). Further topics on discrete-time Markov control processes.
- Jorgensen, S., G. Martín-Herrán, and G. Zaccour (2003). Agreeability and timeconsistency in linear-state differential games. *Journal of Optimization Theory* and Applications 119, 49–63.
- Jorgensen, S. and G. Zaccour (2001). Incentive equilibrium strategies and welfare allocation in a dynamic game of pollution control. *Automatica* 37, 29–36.

- Keller, K., B. M. Bolker, and D. F. Bradford (2004). Uncertain climate thresholds and optimal economic growth. Journal of Environmental Economics and Management 48, 723–741.
- Kverndokk, S. (1994). Coalitions and side payments in international co2 treaties. In V. Ierland (Ed.), International Environmental Economics, Theories, Models and Application to Climate Change, International Trade and Acidification, Volume 4 of Developments in Environmental Economics. Amsterdam: Elsevier.
- Nordhaus, W. and J. Boyer (2000). Warming the World: Economic Models of Global Warming. MIT Press, Cambridge, MA.
- Nordhaus, W. and Z. Yang (1996). A regional dynamic general-equilibrium model of alternative climate change strategies. American Economic Review 86, 741– 765.
- Petrosjan, L. and G. Zaccour (2003). Time-consistent shapley-value allocation of pollution cost control. Journal of Economic Dynamics and Control 27, 381– 398.
- Puterman, M. (2005). Markov Decision Processes:Discrete Stochastic Dynamic Programming. John Wiley and Sons, New Jersey.
- Rubio, S. and B. Casino (2005). Self-enforcing international environmental agreements with a stock pollutant. *Spanish Economic Review* 7, 89–109.

# A Appendix-Tables

| t     | USA     | Japan   | EU      | China   | FSU     | ROW      | Total    |
|-------|---------|---------|---------|---------|---------|----------|----------|
| 0     | 1.3700  | 0.2920  | 0.8720  | 0.8050  | 1.0660  | 3.4300   | 7.8350   |
| 1     | 1.4573  | 0.3661  | 0.9403  | 0.8369  | 1.1023  | 3.5168   | 8.2197   |
| 2     | 1.4059  | 0.3216  | 0.9617  | 0.8730  | 1.1256  | 3.5182   | 8.2061   |
| 3     | 1.4072  | 0.3623  | 0.8965  | 0.9046  | 1.1240  | 3.4727   | 8.1673   |
| 4     | 1.4006  | 0.3836  | 0.9480  | 0.8734  | 1.1582  | 3.5268   | 8.2906   |
| 5     | 1.4143  | 0.3664  | 0.9715  | 0.8160  | 1.0721  | 3.5000   | 8.1402   |
| 6     | 1.3814  | 0.2980  | 0.8910  | 0.8709  | 1.0808  | 3.4965   | 8.0187   |
| 7     | 1.4415  | 0.3677  | 0.9579  | 0.8782  | 1.0752  | 3.4648   | 8.1851   |
| 8     | 1.4019  | 0.3702  | 0.9398  | 0.8229  | 1.1360  | 3.4410   | 8.1117   |
| 9     | 1.4435  | 0.3138  | 0.9263  | 0.8455  | 1.1521  | 3.5200   | 8.2012   |
| 10    | 1.4069  | 0.3841  | 0.8962  | 0.8128  | 1.1143  | 3.5015   | 8.1157   |
| 11    | 1.3907  | 0.3505  | 0.8837  | 0.8911  | 1.1608  | 3.4809   | 8.1577   |
| 12    | 1.4373  | 0.3208  | 0.9604  | 0.9003  | 1.1176  | 3.4383   | 8.1748   |
| 13    | 1.3754  | 0.3321  | 0.8722  | 0.8874  | 1.1500  | 3.4314   | 8.0485   |
| 14    | 1.4040  | 0.3510  | 0.9323  | 0.8341  | 1.1012  | 3.5088   | 8.1315   |
| 15    | 1.4534  | 0.3642  | 0.8962  | 0.8516  | 1.1240  | 3.4941   | 8.1835   |
| 16    | 1.4266  | 0.3078  | 0.9349  | 0.9028  | 1.0691  | 3.4667   | 8.1079   |
| 17    | 1.4019  | 0.3747  | 0.8767  | 0.8520  | 1.0897  | 3.5128   | 8.1077   |
| 18    | 1.3850  | 0.3839  | 0.9637  | 0.8201  | 1.0878  | 3.4709   | 8.1114   |
| 19    | 1.3748  | 0.3430  | 0.8802  | 0.8494  | 1.0983  | 3.4988   | 8.0446   |
| 20    | 1.4651  | 0.3080  | 0.9586  | 0.8524  | 1.1605  | 3.4766   | 8.2213   |
| 21    | 1.4096  | 0.3621  | 0.9591  | 0.8101  | 1.1035  | 3.5196   | 8.1640   |
| 22    | 1.4058  | 0.2926  | 0.8770  | 0.8111  | 1.0901  | 3.4636   | 7.9401   |
| 23    | 1.4165  | 0.3153  | 0.9127  | 0.8053  | 1.1259  | 3.5227   | 8.0984   |
| 24    | 1.3790  | 0.3626  | 0.8883  | 0.8259  | 1.0720  | 3.4557   | 7.9836   |
| 25    | 1.3729  | 0.3153  | 0.8741  | 0.8596  | 1.0896  | 3.4996   | 8.0111   |
| 26    | 1.3705  | 0.3150  | 0.9062  | 0.8864  | 1.0667  | 3.4784   | 8.0233   |
| 27    | 1.4606  | 0.3087  | 0.9377  | 0.8184  | 1.1468  | 3.4630   | 8.1353   |
| 28    | 1.3706  | 0.3667  | 0.9465  | 0.8606  | 1.0907  | 3.4478   | 8.0829   |
| 29    | 1.4518  | 0.3075  | 0.8794  | 0.8262  | 1.1036  | 3.4711   | 8.0396   |
| 30    | 1.4024  | 0.3371  | 0.9284  | 0.8578  | 1.1453  | 3.4994   | 8.1706   |
| 31    | 1.3755  | 0.3113  | 0.9312  | 0.8280  | 1.1051  | 3.4988   | 8.0499   |
| 32    | 1.4095  | 0.3581  | 0.9278  | 0.8626  | 1.1300  | 3.4822   | 8.1702   |
| 33    | 1.4138  | 0.3585  | 0.9186  | 0.8529  | 1.0737  | 3.5033   | 8.1209   |
| 34    | 1.3879  | 0.3144  | 0.8818  | 0.8241  | 1.1575  | 3.5139   | 8.0797   |
| 35    | 1.4239  | 0.3040  | 0.9488  | 0.8358  | 1.1447  | 3.4466   | 8.1038   |
| 36    | 1.4388  | 0.3716  | 0.9129  | 0.8765  | 1.1241  | 3.4689   | 8.1928   |
| 37    | 1.3743  | 0.3092  | 0.9545  | 0.8749  | 1.1468  | 3.4918   | 8.1516   |
| 38    | 1.4264  | 0.3758  | 0.8998  | 0.9008  | 1.1369  | 3.4564   | 8.1960   |
| 39    | 1.4501  | 0.3712  | 0.9478  | 0.8423  | 1.1314  | 3.5167   | 8.2595   |
| 40    | 1.3826  | 0.3748  | 0.9176  | 0.8873  | 1.1243  | 3.4344   | 8.1210   |
| Total | 56.3971 | 13.7018 | 36.8385 | 34.1218 | 44.6082 | 139.3719 | 325.0393 |

Table 3: Optimal cooperative emissions  $e_{it}^*$  for each country *i* at each period of time *t* in billion tons of carbon equivalent.

| t     | USA       | Japan    | EU        | China    | FSU      | ROW       | Total     |
|-------|-----------|----------|-----------|----------|----------|-----------|-----------|
| 1     | 10.369    | 3.045    | 11.474    | 0.791    | 0.822    | 40.105    | 66.607    |
| 2     | 23.705    | 9.996    | 26.217    | 2.116    | 2.566    | 80.578    | 145.178   |
| 3     | 46.273    | 22.435   | 56.221    | 4.111    | 5.107    | 114.704   | 248.851   |
| 4     | 74.977    | 38.791   | 93.267    | 7.221    | 8.481    | 155.732   | 378.469   |
| 5     | 110.474   | 56.526   | 136.585   | 11.066   | 12.790   | 215.051   | 542.492   |
| 6     | 150.045   | 77.489   | 185.374   | 15.534   | 17.407   | 281.586   | 727.435   |
| 7     | 193.445   | 101.335  | 241.070   | 20.622   | 22.536   | 392.502   | 971.510   |
| 8     | 242.665   | 125.296  | 302.217   | 26.312   | 28.053   | 433.630   | 1158.172  |
| 9     | 289.747   | 151.391  | 358.967   | 32.281   | 33.853   | 575.998   | 1442.238  |
| 10    | 337.331   | 175.750  | 419.299   | 38.329   | 39.610   | 709.607   | 1719.925  |
| 11    | 385.025   | 199.606  | 476.437   | 44.817   | 44.978   | 785.260   | 1936.124  |
| 12    | 432.906   | 222.136  | 530.729   | 50.773   | 50.390   | 892.969   | 2179.902  |
| 13    | 474.958   | 242.581  | 580.072   | 57.794   | 55.083   | 1015.229  | 2425.717  |
| 14    | 512.754   | 260.732  | 623.311   | 63.756   | 59.215   | 1126.005  | 2645.772  |
| 15    | 545.188   | 277.428  | 658.670   | 69.500   | 62.971   | 1208.345  | 2822.102  |
| 16    | 573.908   | 289.570  | 691.630   | 74.551   | 65.994   | 1275.034  | 2970.687  |
| 17    | 601.616   | 299.142  | 718.567   | 78.833   | 69.498   | 1386.343  | 3153.998  |
| 18    | 623.185   | 307.191  | 738.315   | 83.789   | 70.964   | 1379.837  | 3203.282  |
| 19    | 636.706   | 311.093  | 748.382   | 87.706   | 72.697   | 1507.285  | 3363.869  |
| 20    | 646.949   | 316.818  | 757.791   | 90.567   | 74.612   | 1414.530  | 3301.268  |
| 21    | 656.947   | 315.800  | 761.817   | 93.821   | 74.647   | 1462.772  | 3365.805  |
| 22    | 660.043   | 313.585  | 759.360   | 96.347   | 75.480   | 1496.716  | 3401.530  |
| 23    | 654.250   | 310.591  | 751.377   | 98.160   | 73.763   | 1518.743  | 3406.884  |
| 24    | 645.977   | 305.770  | 739.954   | 98.828   | 72.478   | 1537.814  | 3400.821  |
| 25    | 633.975   | 297.621  | 721.166   | 99.575   | 71.054   | 1557.018  | 3380.409  |
| 26    | 623.530   | 288.232  | 700.424   | 101.497  | 69.405   | 1540.371  | 3323.459  |
| 27    | 605.082   | 277.149  | 677.445   | 99.436   | 67.152   | 1515.212  | 3241.477  |
| 28    | 581.221   | 263.688  | 638.926   | 96.741   | 64.914   | 1480.543  | 3126.033  |
| 29    | 560.102   | 250.809  | 618.510   | 95.807   | 61.931   | 1421.172  | 3008.332  |
| 30    | 540.727   | 241.449  | 596.758   | 95.131   | 59.797   | 1356.449  | 2890.311  |
| 31    | 514.518   | 227.031  | 564.016   | 93.019   | 56.418   | 1352.034  | 2807.036  |
| 32    | 482.633   | 217.063  | 528.249   | 88.252   | 53.187   | 1322.749  | 2692.133  |
| 33    | 462.261   | 201.736  | 492.236   | 85.544   | 51.605   | 1216.818  | 2510.199  |
| 34    | 439.454   | 188.740  | 473.924   | 83.498   | 48.224   | 1152.185  | 2386.026  |
| 35    | 404.442   | 178.001  | 440.403   | 77.556   | 46.016   | 1092.967  | 2239.386  |
| 36    | 389.319   | 171.133  | 415.472   | 76.438   | 42.149   | 1010.633  | 2105.144  |
| 37    | 363.086   | 171.140  | 392.953   | 75.772   | 41.336   | 880.546   | 1924.833  |
| 38    | 356.628   | 162.549  | 386.854   | 74.481   | 40.175   | 831.407   | 1852.094  |
| 39    | 329.668   | 150.447  | 356.566   | 68.723   | 37.583   | 965.291   | 1908.279  |
| 40    | 315.541   | 147.684  | 345.070   | 69.529   | 37.492   | 804.884   | 1720.200  |
| Total | 17131.631 | 8168.569 | 19716.072 | 2628.625 | 1942.436 | 40506.656 | 90093.990 |

Table 4: Optimal Cooperative Value Function  $W_{it}$  per country *i* for each period of time *t* in billions of 1990 USA dollars.

Table 5: Optimal non cooperative emissions  $e_{it}^N$  for each country at each period of time t in billion tons of carbon equivalent.

| t     | USA      | Japan   | EU      | China    | FSU     | ROW      | Total    |
|-------|----------|---------|---------|----------|---------|----------|----------|
| 0     | 1.3700   | 0.2920  | 0.8720  | 0.8050   | 1.0660  | 3.4300   | 7.8350   |
| 1     | 1.6936   | 0.3297  | 1.0815  | 0.9466   | 1.1932  | 4.8111   | 10.0556  |
| 2     | 1.7369   | 0.3093  | 1.0601  | 0.9934   | 1.2411  | 5.2140   | 10.5549  |
| 3     | 1.8079   | 0.3495  | 1.1240  | 1.0208   | 1.2706  | 5.3799   | 10.9526  |
| 4     | 1.8647   | 0.3708  | 1.1569  | 1.0952   | 1.3004  | 5.4845   | 11.2725  |
| 5     | 1.9336   | 0.3616  | 1.1757  | 1.1651   | 1.3533  | 5.6815   | 11.6707  |
| 6     | 1.9872   | 0.3573  | 1.1840  | 1.2277   | 1.3755  | 5.8461   | 11.9778  |
| 7     | 2.0505   | 0.3855  | 1.2348  | 1.3000   | 1.4118  | 6.4445   | 12.8270  |
| 8     | 2.1349   | 0.3713  | 1.2890  | 1.3697   | 1.4400  | 6.1295   | 12.7344  |
| 9     | 2.1930   | 0.4059  | 1.3035  | 1.4440   | 1.4940  | 6.9994   | 13.8398  |
| 10    | 2.2653   | 0.4169  | 1.3646  | 1.5154   | 1.5496  | 7.6107   | 14.7225  |
| 11    | 2.3415   | 0.4262  | 1.4038  | 1.6046   | 1.5801  | 7.7593   | 15.1154  |
| 12    | 2.4388   | 0.4363  | 1.4455  | 1.6626   | 1.6325  | 8.1749   | 15.7907  |
| 13    | 2.5168   | 0.4483  | 1.4887  | 1.8007   | 1.6683  | 8.7246   | 16.6475  |
| 14    | 2.5943   | 0.4613  | 1.5284  | 1.8951   | 1.7009  | 9.2275   | 17.4075  |
| 15    | 2.6619   | 0.4818  | 1.5525  | 1.9965   | 1.7420  | 9.6005   | 18.0353  |
| 16    | 2.7330   | 0.4817  | 1.5957  | 2.0837   | 1.7663  | 9.9276   | 18.5880  |
| 17    | 2.8491   | 0.4917  | 1.6536  | 2.1720   | 1.8722  | 10.5902  | 19.6287  |
| 18    | 2.9394   | 0.5020  | 1.6906  | 2.3074   | 1.8779  | 10.6086  | 19.9261  |
| 19    | 3.0297   | 0.5131  | 1.7288  | 2.4412   | 1.9538  | 11.5005  | 21.1672  |
| 20    | 3.0989   | 0.5397  | 1.7645  | 2.5294   | 2.0352  | 11.0784  | 21.0461  |
| 21    | 3.2049   | 0.5342  | 1.8076  | 2.6697   | 2.0574  | 11.6166  | 21.8905  |
| 22    | 3.3017   | 0.5416  | 1.8511  | 2.8143   | 2.1482  | 12.1397  | 22.7966  |
| 23    | 3.3693   | 0.5614  | 1.8921  | 2.9590   | 2.1435  | 12.6529  | 23.5781  |
| 24    | 3.4505   | 0.5830  | 1.9419  | 3.0895   | 2.1831  | 13.2212  | 24.4691  |
| 25    | 3.5378   | 0.5954  | 1.9804  | 3.2576   | 2.2443  | 13.8653  | 25.4807  |
| 26    | 3.6605   | 0.6113  | 2.0297  | 3.4956   | 2.3156  | 14.3480  | 26.4608  |
| 27    | 3.7451   | 0.6215  | 2.0785  | 3.6108   | 2.3686  | 14.8227  | 27.2472  |
| 28    | 3.7994   | 0.6142  | 2.0474  | 3.7109   | 2.4270  | 15.2640  | 27.8629  |
| 29    | 3.8773   | 0.6104  | 2.1191  | 3.8951   | 2.4512  | 15.5554  | 28.5083  |
| 30    | 3.9754   | 0.6441  | 2.1863  | 4.1071   | 2.5262  | 15.8186  | 29.2578  |
| 31    | 4.0398   | 0.6378  | 2.2058  | 4.2885   | 2.5466  | 16.6141  | 30.3326  |
| 32    | 4.0601   | 0.6735  | 2.2061  | 4.3691   | 2.5741  | 17.2457  | 31.1286  |
| 33    | 4.1586   | 0.6465  | 2.1817  | 4.5336   | 2.6893  | 17.2203  | 31.4300  |
| 34    | 4.2358   | 0.6312  | 2.2762  | 4.7429   | 2.6952  | 17.5216  | 32.1029  |
| 35    | 4.1714   | 0.6324  | 2.2456  | 4.7126   | 2.7592  | 17.8291  | 32.3502  |
| 36    | 4.2945   | 0.6870  | 2.2613  | 4.9778   | 2.6721  | 17.7925  | 32.6852  |
| 37    | 4.2009   | 0.7584  | 2.2238  | 5.1995   | 2.7869  | 16.2654  | 31.4349  |
| 38    | 4.1874   | 0.6889  | 2.2102  | 5.1854   | 2.7111  | 13.3914  | 28.3744  |
| 39    | 4.0943   | 0.6202  | 2.1070  | 4.8804   | 2.6863  | 19.5576  | 33.9458  |
| 40    | 3.8903   | 0.6632  | 2.0420  | 5.2317   | 2.8560  | 16.0003  | 30.6835  |
| Total | 124.1258 | 20.9963 | 69.7200 | 114.3020 | 81.3007 | 465.5356 | 875.9806 |

| t     | USA       | Japan    | EU        | China    | FSU      | ROW        | Total      |
|-------|-----------|----------|-----------|----------|----------|------------|------------|
| 1     | 5.060     | 5.840    | 6.771     | 0.475    | 0.607    | 7.933      | 26.685     |
| 2     | 19.428    | 11.189   | 26.000    | 1.898    | 2.370    | 31.620     | 92.504     |
| 3     | 43.100    | 25.930   | 56.806    | 4.292    | 5.235    | 71.063     | 206.425    |
| 4     | 75.349    | 45.255   | 98.798    | 7.665    | 9.140    | 125.683    | 361.891    |
| 5     | 115.923   | 65.951   | 151.237   | 12.265   | 14.113   | 196.021    | 555.510    |
| 6     | 164.689   | 91.649   | 213.453   | 17.588   | 20.000   | 281.700    | 789.078    |
| 7     | 219.679   | 122.344  | 283.644   | 24.085   | 26.765   | 381.763    | 1058.279   |
| 8     | 282.161   | 155.795  | 361.848   | 32.230   | 34.084   | 496.270    | 1362.387   |
| 9     | 349.473   | 191.702  | 446.515   | 40.716   | 42.213   | 621.860    | 1692.479   |
| 10    | 423.470   | 231.095  | 537.756   | 51.094   | 51.246   | 762.281    | 2056.942   |
| 11    | 501.907   | 271.616  | 633.719   | 60.638   | 60.394   | 914.520    | 2442.794   |
| 12    | 582.701   | 314.348  | 732.073   | 72.192   | 70.568   | 1078.521   | 2850.404   |
| 13    | 670.695   | 358.674  | 837.529   | 85.196   | 80.669   | 1253.131   | 3285.894   |
| 14    | 758.073   | 403.696  | 941.222   | 100.204  | 91.882   | 1432.802   | 3727.879   |
| 15    | 846.312   | 449.146  | 1048.522  | 114.325  | 102.467  | 1623.335   | 4184.106   |
| 16    | 939.339   | 496.081  | 1154.979  | 128.342  | 114.587  | 1822.981   | 4656.309   |
| 17    | 1033.522  | 541.159  | 1264.911  | 146.118  | 125.492  | 2025.461   | 5136.663   |
| 18    | 1127.862  | 586.757  | 1368.316  | 164.338  | 136.879  | 2237.544   | 5621.696   |
| 19    | 1222.511  | 632.460  | 1478.109  | 181.050  | 148.047  | 2451.760   | 6113.936   |
| 20    | 1308.225  | 677.369  | 1576.073  | 199.063  | 157.745  | 2667.923   | 6586.399   |
| 21    | 1401.983  | 718.263  | 1675.835  | 219.710  | 169.977  | 2883.851   | 7069.619   |
| 22    | 1494.404  | 764.775  | 1781.170  | 239.493  | 181.545  | 3114.149   | 7575.536   |
| 23    | 1581.518  | 803.590  | 1873.400  | 259.723  | 191.216  | 3332.866   | 8042.313   |
| 24    | 1672.016  | 841.284  | 1968.219  | 279.329  | 203.507  | 3564.322   | 8528.677   |
| 25    | 1757.224  | 881.467  | 2058.035  | 298.552  | 213.239  | 3786.392   | 8994.909   |
| 26    | 1839.201  | 917.556  | 2139.636  | 318.380  | 224.032  | 4011.689   | 9450.494   |
| 27    | 1907.954  | 951.243  | 2214.529  | 342.946  | 230.629  | 4230.270   | 9877.570   |
| 28    | 1990.590  | 979.139  | 2287.867  | 362.215  | 241.658  | 4449.010   | 10310.478  |
| 29    | 2055.345  | 1013.474 | 2364.149  | 385.946  | 250.034  | 4664.065   | 10733.013  |
| 30    | 2126.256  | 1037.725 | 2422.633  | 405.758  | 256.618  | 4869.331   | 11118.321  |
| 31    | 2195.015  | 1066.505 | 2484.037  | 429.626  | 266.211  | 5080.226   | 11521.619  |
| 32    | 2251.363  | 1085.618 | 2538.383  | 449.499  | 272.596  | 5282.732   | 11880.192  |
| 33    | 2308.942  | 1107.414 | 2590.563  | 472.219  | 282.141  | 5481.463   | 12242.741  |
| 34    | 2367.816  | 1132.143 | 2642.893  | 496.390  | 285.541  | 5680.213   | 12604.995  |
| 35    | 2416.267  | 1152.267 | 2679.950  | 518.215  | 292.525  | 5881.186   | 12940.409  |
| 36    | 2461.812  | 1161.568 | 2720.958  | 538.015  | 299.275  | 6065.006   | 13246.633  |
| 37    | 2514.893  | 1182.822 | 2752.021  | 560.599  | 303.991  | 6248.382   | 13562.708  |
| 38    | 2550.685  | 1189.119 | 2788.440  | 581.490  | 309.679  | 6431.110   | 13850.523  |
| 39    | 2585.639  | 1200.261 | 2808.867  | 607.007  | 314.701  | 6597.569   | 14114.044  |
| 40    | 2633.175  | 1211.492 | 2839.462  | 627.551  | 320.025  | 6785.054   | 14416.758  |
| Total | 52801 575 | 26075778 | 60849.327 | 9836 434 | 6403 642 | 118923.057 | 274889 812 |

Table 6: Optimal Non Cooperative Value Function  $N_{it}$  for each country i for each period of time t in billions of 1990 USA dollars.

| t  | $s_t^*$  | $s_t^N$  | Difference |
|----|----------|----------|------------|
| 0  | 590.0000 | 590.0000 | 0.0000     |
| 1  | 544.5887 | 546.4247 | 1.83592    |
| 2  | 503.2917 | 507.3095 | 4.01784    |
| 3  | 465.7098 | 472.1477 | 6.43787    |
| 4  | 431.6674 | 440.5019 | 8.83448    |
| 5  | 400.5691 | 412.1310 | 11.56194   |
| 6  | 372.1760 | 386.6461 | 14.47010   |
| 7  | 346.5303 | 364.3270 | 17.79666   |
| 8  | 323.1425 | 343.9441 | 20.80159   |
| 9  | 301.9700 | 326.5193 | 24.54933   |
| 10 | 282.6366 | 311.5612 | 28.92458   |
| 11 | 265.1027 | 298.3557 | 33.25308   |
| 12 | 249.1796 | 287.0259 | 37.84635   |
| 13 | 234.5776 | 277.5828 | 43.00516   |
| 14 | 221.3860 | 269.7580 | 48.37202   |
| 15 | 209.4455 | 263.2723 | 53.82673   |
| 16 | 198.5148 | 257.9288 | 59.41401   |
| 17 | 188.5776 | 254.1118 | 65.53429   |
| 18 | 179.5473 | 250.9391 | 71.39189   |
| 19 | 171.2710 | 249.2960 | 78.02505   |
| 20 | 163.9237 | 247.6811 | 83.75741   |
| 21 | 157.1870 | 247.0574 | 89.87035   |
| 22 | 150.8389 | 247.3965 | 96.55765   |
| 23 | 145.2260 | 248.4863 | 103.26028  |
| 24 | 140.0085 | 250.3680 | 110.35947  |
| 25 | 135.2929 | 253.0903 | 117.79739  |
| 26 | 131.0180 | 256.5451 | 125.52711  |
| 27 | 127.2437 | 260.4724 | 133.22862  |
| 28 | 123.7602 | 264.6583 | 140.89812  |
| 29 | 120.5500 | 269.1092 | 148.55920  |
| 30 | 117.7626 | 273.9050 | 156.14239  |
| 31 | 115.1078 | 279.3397 | 164.23183  |
| 32 | 112.8148 | 285.0763 | 172.26153  |
| 33 | 110.6808 | 290.5929 | 179.91211  |
| 34 | 108.6996 | 296.2809 | 187.58129  |
| 35 | 106.9226 | 301.6991 | 194.77650  |
| 36 | 105.3961 | 306.9598 | 201.56373  |
| 37 | 103.9672 | 310.4921 | 206.52493  |
| 38 | 102.7126 | 310.6428 | 207.93016  |
| 39 | 101.6355 | 316.3512 | 214.71562  |
| 40 | 100.5178 | 318.2784 | 217.76052  |

Table 7: Optimal stocks of pollutant cooperative  $s_t^*$  and non cooperative  $s_t^N$  and their differences for each period t in billion tons of carbon equivalent.