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Abstract

This paper derives optimal monetary policy rules in setups where certainty
equivalence does not hold because either central bank preferences are not quadratic,
and/or the aggregate supply relation is nonlinear. Analytical results show that
these features lead to sign and size asymmetries, and nonlinearities in the policy
rule. Reduced-form estimates indicate that US monetary policy can be charac-
terized by a nonlinear policy rule after 1983, but not before 1979. This finding is
consistent with the view that the Fed’s inflation preferences during the Volcker-
Greenspan regime differ considerably from the ones during the Burns-Miller
regime.
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1 Introduction

This paper derives and estimates optimal monetary policy rules in a setup
where certainty equivalence does not hold. In particular, our approach com-
bines two different strands of the literature on monetary policy rules that
depart from the standard linear-quadratic framework because either 1) cen-
tral bank preferences are not quadratic, or 2) the aggregate supply relation is
nonlinear.
As it is well known (see, for example, Svensson, 1997, and Clarida et al.,

1999), the combination of a quadratic loss function and a linear aggregate
supply constraint leads to a linear reaction function, or Taylor rule, by the
central bank. The optimal policy rule implies that the nominal short-term
interest rate under the central bank’s control is a linear function of the inflation
and output gap deviations from their respective targets. Depending on the
backward or forward nature of wage and price setting, and on assumptions
regarding the information available to the central bank, both variables appear
in the rule either in current terms or as expectations of their future values.
Because they provide a reasonably good description of policy, linear rules have
become a key element of diagnosis in the toolkit of monetary-policy analysts.
Recently, however, there have been a number of studies that seek to ex-

tend this traditional setup. The generalizations fall in two groups. First,
Nobay and Peel (1998), Cukierman (2000), Gerlach (2000), and Ruge-Murcia
(2002, 2004) relax the assumption of a quadratic central bank loss function and
adopt instead asymmetric preference specifications. Their functional forms
allow different weights for positive and negative inflation and/or output devi-
ations from their target. Asymmetric preferences modify some of the results
previously derived in the linear-quadratic framework. For example, Cukier-
man (2000) shows that when the central bank is more concerned about under-
than over-employment and there is uncertainty regarding future realizations
of inflation and unemployment, an inflation bias can arise even if the unem-
ployment target is the natural rate. Cukierman’s proposition is examined
empirically by Ruge-Murcia (2002, 2004) using cross-section data from OECD
countries and time series data from G-7 countries, respectively.
Second, Schaling (1999) and Dolado et al. (2003) study models where the

aggregate supply curve is not linear, but convex. In particular, the difference
between realized and expected inflation is a convex function of the output
gap. The underlying idea behind this specification goes back to the tra-
ditional Keynesian assumption that nominal wages are flexible upwards but
rigid downwards, implying that inflation is a decreasing and convex function of
the unemployment rate. This implies that an increase in unemployment will
drive inflation down by much less when unemployment is high than when it is
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low (see, for example, Layard et al., 1991, and Álvarez-Lois, 2001). If unem-
ployment and the output gap are related through Okun’s law, then a convex
relationship between inflation and the output gap is a natural generalization
of the linear aggregate supply. Combined with a quadratic loss function,
the optimally-derived Taylor rule has nonlinear features: it implies that the
central bank will increase interest rates by a larger amount when inflation is
above target than it will reduce them when inflation is below target.
The goal of this paper is to construct and estimate a general model that

combines both asymmetric central bank preferences and a nonlinear Phillips
curve. This is important for several reasons. First, it allows the joint anal-
ysis of two departures from the linear-quadratic setup that until now have
been studied separately in the literature. Second, it permits us to trace back
nonlinearities and asymmetries in the nominal interest rate to either central
bank preferences, nonlinearities in the supply curve, or both. Finally, param-
eter estimates will indicate the relative importance of these two elements in
monetary policy making.
The contributions of this paper are twofold. First, from an analytical

viewpoint, we construct a model of inflation targeting where the central bank’s
preferences are asymmetric and the aggregate supply curve is nonlinear. Pref-
erences are asymmetric in the sense that positive deviations from the inflation
target can be weighted more (or less) severely than negative deviations in the
central bank’s loss function. The aggregate supply curve is an increasing and
convex function of the output gap. In this manner, we are able to derive a
Taylor rule in a nonlinear framework that generalizes the usual specification
in the literature where the objective function is quadratic and constraints are
linear.
Second, from an empirical viewpoint, we confront the new Taylor rule with

data on short-term interest rate interventions by the U.S. Federal Reserve.
Reduced-form estimates indicate that U.S. monetary policy can be character-
ized by a nonlinear rule after 1983, but not before 1979. Although we do not
find evidence in favor of a convex aggregate supply curve, we do find evidence
consistent with asymmetric inflation preferences on the part of the U.S. Federal
Reserve after 1983. This suggests that the Fed’s inflation preferences during
the Volcker-Greenspan regime differ considerably from the ones during the
Burns-Miller regime. When we compare our results with those of Clarida et
al. (2000), we do not find evidence that the (linear) response of the short—term
interest rate to inflation was larger than unity once asymmetric preferences are
allowed for. The reason for this result is that under asymmetric preferences,
the targeted interest rate depends on the conditional variance of inflation, that
in turn depends nonlinearly on lagged inflation. The response of the interest
rate to inflation depends on a linear part and a nonlinear part such that the
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overall response is stabilizing, as suggested by Clarida et al. However, the
interpretation of how stabilization was achieved in the Volcker-Greenspan era
is different in both models.
The rest of the paper is structured as follows. Section 2 derives the form

of the nonlinear policy rule under the general case of asymmetric preferences
and a convex aggregate supply curve, and compares it to several subcases.
Section 3 estimates the nonlinear rule for the U.S., distinguishing between the
two relevant subperiods and using a wide array of alternative specification
to check the robustness of the results. Finally, Section 4 concludes. Two
Appendices contain detailed derivations of the nonlinear monetary policy rule
in different setups.

2 A Simple Model

In order to fix ideas, it is helpful to consider a simple model of optimal mone-
tary policy. The model follows closely the one proposed by Svensson (1997),
but generalizes the specification of the central bank preferences and aggregate
supply curve in a manner to be made precise below. Although Section 3
reports estimates of the policy rule obtained using this model, it also shows
that the main finding of this paper is robust to the precise form of the rule
(for example, whether forward or backward looking).
Assume that monetary policy is conducted by a central bank that chooses

the sequence of short-term interest rates that minimizes the present discounted
value of its loss function. The loss function depends on the distance between
realized inflation and its socially optimal rate. Formally, the central bank’s
problem is1

Min Et
∞P
s=0

βsL(πt+s − π∗),

{it+s}∞s=0
(1)

where it is the nominal interest rate, 0 < β < 1 is the discount rate, πt is the
inflation rate, π∗ is socially-optimal inflation rate, and the loss function L(·)
takes the form:

L(πt − π∗) =
exp(γ(πt − π∗))− γ(πt − π∗)− 1

γ2
.

1Subsection 2.3 and Appendix B discuss the more difficult case where the output gap is
also a component of the loss function. Although an exact closed-form solution cannot be
obtained in this case, it is possible to derive an approximate solution. We show that, as in
linear case examined by Svensson (1997, 2003), allowing an output stabilization term does
not change the arguments of the policy function, but it changes the interest-rate response
by the central bank to inflation and the output gap.
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This loss function corresponds to the linex function, originally proposed by
Varian (1974). This function has several important properties. First, it
permits different weights for positive and negative inflation deviations from
π∗. Second, it predicts that both the size and sign of a deviation affect
the central bank’s loss. In contrast, under quadratic preferences, the loss is
completely determined by the size of the deviation. Third, it allows a prudence
motive on the part of the central bank so that moments of higher order than
the mean might play a role in the formulation of monetary policy. Finally, it
nests the quadratic function commonly used in previous literature as a special
case when the preference parameter γ tends to zero. This result suggests that
the hypothesis that the central bank’s preferences are quadratic over inflation
could be evaluated by testing whether γ is statistically different from zero.
The central bank takes as given the behavior of the private sector, that is

summarized by:

yt+1 = δyt − rt + xt+1, (2)

πt+1 = πt + F (yt) + ut+1, (3)

where

F (yt) = αyt/(1− αφyt), (4)

xt+1 = ηxt + ²t+1, (5)

it = rt +Etπt+1, (6)

yt is the output gap, rt is the real interest rate, xt is an exogenous variable
that follows the AR(1) process in (5) with 0 ≤ η < 1, ut and ²t are normally
and independently distributed shocks with zero mean and variances σ2u and σ

2
² ,

respectively, and the remaining parameters satisfy 0 < δ < 1, α > 0, and φ ≥
0. Note that although we assume constant unconditional variances for ut and
²t, we allow the possibility that these shocks are conditionally heteroskedastic.
Equation (2) is an IS relationship where the output gap depends on the lagged
output gap, the real interest rate, and the exogenous variable, xt. Equation
(3) is a backward-looking AS relationship where inflation depends on lagged
inflation and output gap, the latter appearing in a (possibly) nonlinear way.
The nonlinearity of the AS curve is represented using the functional form
(4). This form has been used previously by Schaling (1999) and Dolado et al.
(2003) and includes the cases of a linear AS curve when φ = 0 and a convex
one when φ > 0. It implicitly assumes that the inflation rate next period
increases without bound as the output gap approaches the vertical asymptote
1/αφ. Notice that, in the absence of uncertainty regarding the IS schedule
(that is, σ2² = 0), yt+1 is predetermined at time t and, consequently, forms part
of the agents’ information set at time t. This assumption is fairly restrictive
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but adopted in what follows for analytical convenience. Subsection 2.3 below
discusses in the implications of relaxing this assumption. Finally, Equation
(6) is the Fisher relation. Although this model is a highly stylized description
of the economy, it is representative of the type of models used by the literature
on monetary policy rules (see Svensson, 2003).
Since the interest rate affects inflation with a two-period lag, without any

effects in t and t + 1, the central bank can find the optimal interest rate at
time t as the solution to the simpler period-by-period problem:

Min Et β
2L(πt+2 − π∗).

{it}
(7)

The Appendix A shows that the first-order conditions for minimizing (7) sub-
ject to the constraints (2) and (3), yields the following Taylor rule for the
nominal interest rate:

it = πt + F (yt) + δyt +
(1/α)(πt − π∗ + γσ2π,t/2 + F (yt))

1− φ(πt − π∗ + γσ2π,t/2 + F (yt))
+ ηxt, (8)

where σ2π,t denotes the conditional variance of the inflation rate. The subscript
t indicates that this conditional variance might change over time.
The Taylor rule (8) is general in that it nests the cases where the central

bank’s preferences are quadratic (γ → 0), the AS schedule is linear (φ = 0),
or both. The latter case corresponds to the linear monetary policy rules
examined by previous literature. In order to gain intuition regarding this
policy rule, the following sections examine three special cases contained in (8)
and explore the consequences of relaxing some of the assumptions under which
it was derived.

2.1 Case I: Linear Aggregate Supply Schedule (φ = 0)

When φ = 0, the function F (·) becomes F (yt) = αyt and the AS curve is linear.
In this case the only nonstandard feature of the model is the asymmetry in
central bank preferences, and the nonlinear Taylor rule simplifies to

it = πt + (1 + α+ δ)yt + (1/α)(πt − π∗ + γσ2π,t/2) + ηxt. (9)

Under asymmetric preferences, the conditional variance of inflation, σ2π,t (along
with the inflation rate and the output gap) is one of the determinants of the
interest rate. If σ2π,t depends on lagged inflation and output (for example, as
in ARCH-type models), the Taylor rule will be nonlinear in lagged inflation
and output.
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Consider the situation where γ > 0, meaning that the central bank weights
more severely positive than negative inflation deviations from its optimal rate.
Since α > 0, an increase in inflation volatility (as measured by σ2π,t), leads
to an increase in the nominal interest rate, even if the level of inflation and
the output gap remain unchanged. The increase is directly proportional to γ
because the central bank’s prudence increases with γ. The increase is inversely
proportional to α for the following reason: when α is large, the central bank
needs to increase the nominal and real interest rates by less because a given
decrease in the output gap leads to a proportionally larger decrease in inflation
when the AS curve is steep.

2.2 Case II: Quadratic Loss Function (γ → 0)

When γ → 0, the central bank preferences become quadratic in inflation and
there is no longer a prudence motive in the implementation of monetary policy.
However, if φ > 0, the AS curve is convex and the Taylor rule takes the
nonlinear form

it = πt + F (yt) + δyt +
(1/α)(πt − π∗ + F (yt))

1− φ(πt − π∗ + F (yt))
+ ηxt. (10)

In this case yt, will not appear in a linear way but through the F (·) transfor-
mation. As a result of the second-to-last term in (10), the nominal interest
rate will depend nonlinearly on inflation and the output gap, but this nonlin-
earity is conceptually and functionally different from the one in Case I above.
It is shown below that when the AS curve is convex, interest rate changes in
response to inflation/output deviations from their target are subject to sign
and size asymmetries.

2.3 Case III: Linear Rule

The case where both γ → 0 and φ = 0 corresponds to the usual model with
quadratic preferences and linear constraints. In this case, the optimal reaction
function is linear in inflation and output:

it = πt + (1 + α+ δ)yt + (1/α)(πt − π∗) + ηxt. (11)

We will see below, in this case changes in the short-term nominal interest
rate are symmetric, proportional, and history-independent. Put differently, for
linear models, the impulse-response associated with a shock of size 1 (standard
deviation) would be the mirror image of the response to a shock of size −1,
one-half the response of shock size 2, and independent of the moment the shock
is assumed to take place (see Koop et al., 1996).
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2.4 Implications

As we have seen above, the combination of asymmetric central bank prefer-
ences and a nonlinear AS curve has nontrivial implications for the interest-rate
response to inflation and output gap deviations from their desired values. This
section explores in more detail some of these implications and the interaction
between the two main features of the model.
When the AS curve is linear, a marginal change in the current inflation rate

leads the central bank to change the nominal interest rate by ∂it/∂πt = 1+1/α.
In this case, the change in it is independent of the current output gap and
inflation rate and is symmetric, meaning that if inflation increases (decreases)
by 1 per cent, the nominal interest rate increases (decreases) by 1 + 1/α per
cent.
In contrast, under the general Taylor rule (8) (where the AS curve is non-

linear), the change in it is ∂it/∂πt = 1+(1/α)(1−φ(πt−π∗+γσ2π,t/2+F (yt))
−2.

The nonlinear interest rate rule gives rise to sign and size asymmetries. The
sign asymmetry refers to the fact that under the nonlinear Taylor rule, the re-
sponse to an increase in inflation is larger than the response to a decrease, even
if both are of the same magnitude. As an illustration, assume that inflation
is exactly the optimal rate, the output gap is zero, and α = 2, δ = 0.1,φ = 0.2
and γσ2π,t/2 = 0.4. Then, ∆πt = +1 induces ∆it = +1.76 but ∆πt = −1
induces ∆it = −1.48.
The size asymmetry refers to the fact that the interest rate response does

not change linearly with the change in the inflation rate. For example, taking
the same parameter values above, ∆πt = +1 induces ∆it = +1.76 but ∆πt =
+2 induces ∆it = +4.09. Although ∆πt = +2 is twice ∆πt = +1, the interest
rate response +4.09 is more than twice +1.76. On the other hand, while
∆πt = −1 induces ∆it = −1.48, ∆πt = −2 induces ∆it = −2.82, that is less
than twice −1.48. The sign and size asymmetries that arise when the AS
curve is convex follow directly from the fact that the interest rate response
with respect to inflation (∂it/∂πt) is convex on the rate of inflation.
Note that when γ = 0 and, consequently, γσ2π,t/2 = 0, the corresponding

interest rate responses to ∆πt = +1 and −1 under the nonlinear Taylor rule
would be ∆it = +1.63 and −1.42, respectively, whereas for ∆πt = ±2 they
would be ∆it = +3.67 and −2.71. Hence, asymmetric preferences appear to
reduce the size of both the sign and size asymmetries. The reason is that
the interest rate response to inflation is less convex on inflation as γσ2π,t/2
decreases.
Similar results regarding sign and size asymmetries arise when considering

the interest rate response to a change in the output gap. When the AS
curve is linear, ∂it /∂yt = 1 + α + δ, but under the nonlinear Taylor rule,
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∂it/∂yt = δ + F 0(yt)(1 + (1− φ(πt − π∗ + γσ2π,t/2 + F (yt))
−2) where F

0
(yt) =

∂F (yt)/∂yt = α(1 − αφyt)
−2. The interest rate depends nonlinearly on the

current output gap giving rise to asymmetric responses on the part of the
central bank. For the parameter values above, the interest rate response to
∆yt = ±0.1 is ∆it = 0.35 and −0.31. The response to ∆yt = ±0.2 is 0.74 and
−0.59. Hence, as before, the response depends on the sign of the output gap
deviation from its target and is nonlinearly related to the size of the deviation.
This implication is in line with research by Bec et al. (2002), who find that
the state of the business cycle (measured by the output gap) is important for
U.S. monetary policy.
In summary, a convex AS curve leads an optimizing central bank to re-

spond asymmetrically, in both sign and size, to changes in the output gap and
inflation rate. Asymmetric preferences leads to prudent behavior whereby
the central bank responds to the conditional variance of inflation. When both
features are present, asymmetric preferences appear to reduce the sign and
size asymmetries that arise due to the nonlinearity of the supply curve. Since
asymmetric preferences and a nonlinear AS schedule lead to different types of
nonlinearity in the interest rate response by the central bank, it might be possi-
ble to assess empirically relative importance of these two elements in monetary
policy making.

2.5 Allowing Uncertainty About the Output Gap

We now examine the effects of output-gap uncertainty on the determination
of the short-term interest rate. That is, we relax the assumption that σ2² = 0
in the model above. Schaling (1999) points out that by allowing the random
term ²t+1 in Equation (5), uncertainty about the true value of next period’s
output gap implies that the slope of the Phillips curve becomes random and
gives rise to model uncertainty.
Using the properties of the log-normal distribution, the expected discounted

loss function in period t+ 2 can be expressed as:

β2
Ã
exp(γEt(πt+2 − π∗) + (γ2/2)σ2π,t)− γEt(πt+2 − π∗)− 1

γ2

!
. (12)

Define πt+2 = πt + F (yt) + F (Etyt+1) and write Etπt+2 = πt+2+ Etzt+2,where
Etzt+2 = EtF (yt+1)−F (Etyt+1) is a term that represents the effect of Jensen’s
inequality. Using this decomposition, the right-hand side of Equation (12)
may be rewritten as

β2
Ã
exp(γ(πt+2 +Etzt+2 − π∗) + (γ2/2)σ2π,t)− γ(πt+2 +Etzt+2 − π∗)− 1

γ2

!
.

(13)
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The minimization of (13) with respect to it subject to the constraints (2) to
(6) has first-order condition2

(exp(γ(πt+2+Etzt+2−π∗)+(γ2/2)σ2π,t)−1)(∂πt+2/∂it+∂Etzt+2/∂it) = 0. (14)

Then, following the steps in Appendix A, the Taylor rule for the nominal
interest rate is

it = πt+F (yt)+ δyt+
(1/α)(πt − π∗ + γσ2π,t/2 + F (yt) +Etzt+2)

1− φ(πt − π∗ + γσ2π,t/2 + F (yt) +Etzt+2)
+ ηxt. (15)

Notice that the Taylor rule (15) is very similar to (8), except for the term
Etzt+2 in both the numerator and denominator of former equation. In the case
where σ2² is small, Etzt+2 is also small and the Taylor rule (8) approximates well
(15). However, in general, because F (yt) is convex then Etzt+2 = EtF (yt+1)−
F (Etyt+1) > 0. This means that since it is increasing in the term in brackets
above, the short-term interest rate set according to rule (15) is higher than
under the nonlinear rule (8). That is, uncertainty regarding the output gap
induces an upward bias in the nominal interest rate, in addition to the effect
of the nonlinearity per se that was analyzed before.
Finally, notice that in the case where the Phillips curve is linear (φ = 0),

then Etzt+2 = 0, and the optimal monetary policy rule is (9), regardless of
whether one allows output-gap uncertainty. We will see below that this is the
empirically relevant case for the U.S. and, consequently, our conclusions are
robust to this generalization of the model.

2.6 Introducing the Output Gap in the Loss Function

In the previous discussion, the central bank’s loss function depends on inflation
alone. However, when dealing with the U.S. economy, this specification is
fairly restrictive because the Fed’s objectives explicitly include both output
and inflation. In this section, we study the more general specification where
the output gap is also an argument of the central bank’s objective function, and
show that the form of the Taylor rule in (8) remains qualitatively unchanged
by this extension.
First, note that if there is uncertainty, then the natural output rate under

a convex Phillips curve is always below that predicted by the linear model
(see, for example, Clark et al., 1995, and Schaling, 1999). To see this for-
mally, it suffices to note that in an equilibrium with a constant inflation-rate

2Note that since the conditional variance of inflation depends primarily on the properties
of the exogenous disturbance(s), then ∂σ2π,t/∂it ≈ 0.
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target, Et∆πt+2 = EtF (yt+1) = 0. Then, since EtF (yt+1) ' F (Etyt+1) +
(1/2)F 00(Etyt+1)σ

2
² , this equation (implicitly) defines Etyt+1 to be below zero

when F (·) is convex. This means that, rather than trying to minimize devia-
tions of yt+1 from zero, the central bank would try to minimize deviations of
F (yt+1) from zero. We explore here the more tractable case where the loss
associated with the deviation of F (yt+1) from zero is well approximated by
the usual quadratic form and retain the initial assumption that σ2² = 0. The
central bank’s period-by-period objective is the minimization of

L(πt+2 − π∗) + (λ/2) (F (yt+1))
2 , (16)

where λ ≥ 0 is the weight of output stabilization in the central bank’s objective
function. Appendix B shows that the optimal interest rate that minimizes
(16) subject to constraints (2) to (6) has general form

it = πt + ((1− θ)/α)(πt − π∗ + F (yt)) + (ω/α)σ
2
π,t (17)

+(ωβθ/α)
∞X
s=0

(βθ)sσ2π,t+s+1 + F (yt) + δyt + ηxt,

where 0 < θ < 1 and ω > 0 if and only if γ > 0. Since, α > 0 and 0 < β < 1,
then an increase in the conditional variance of inflation induces a prudent
motive on the part of the central bank and the nominal interest rate is higher
than in the certainty-equivalent case.
In the case where the conditional variance of inflation follows a GARCH(1,1)

process with ς ∈ (0, 1) the coefficient of the lagged squared residual and
κ ∈ (0, 1) the coefficient of the lagged conditional variance, then (17) reduces
to

it = πt + ((1− θ)/α)(πt − π∗ + F (yt)) + F (yt) + δyt (18)

+(ω/α)(1 + βθς/(1− βθς))σ2π,t + ηxt − (κ/(1− βθς))ζt,

where ζt is an innovation. This Taylor rule has the same arguments of (8)
and a positive relation between σ2π,t and it indicates that γ > 0, meaning
that the central bank attaches a larger loss to positive than negative inflation
deviations from the target. The functional form of this rule is different from
(8) because of the linearizations required to obtain a closed-form solution (see
Appendix B). However, the reduced-form that we estimate below for the U.S.
could also be motivated by the approximate rule (18). It is easy to verify
that, as in Svensson (1997, 2003), allowing for an output stabilization term in
the loss function reduces the central bank’s interest-rate response to inflation
and the output gap. Further, if σ2² > 0 and the one-step-ahead IS curve
is not perfectly forecastable, then using similar arguments to the ones above
it is possible to show that uncertainty would imply a stronger interest-rate
response than the certainty-equivalent case.
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3 Empirical Evidence

3.1 Data

The nonlinear Taylor rule is estimated using U.S. data on inflation, the output
gap, and the Federal Funds rate. Previous literature employs both monthly
and quarterly data frequencies to estimate monetary policy rules. We report
results using both data frequencies and show that the main result of the paper
is robust to whether one uses monthly or quarterly data in estimation. At
the monthly frequency, inflation is measured by the annual percentage change
in the Consumer Price Index (CPI). Output is measured by the seasonally-
adjusted Industrial Production Index (IPI). The natural output level is the
Hodrick-Prescott (HP) trend of the logged IPI. The output gap is then com-
puted as the difference between the logged IPI and its HP trend. We also
consider a second measure of the output gap constructed as minus the differ-
ence between the seasonally-adjusted unemployment rate and its HP trend.
The sample period is 1970:01 to 2000:12, but we focus on the subsamples
1970:01 to 1979:06 and 1983:01 to 2000:12. The first subsample corresponds
(roughly) to the chairmanships of Arthur Burns and William Miller. The
second subsample corresponds to the chairmanships of Paul Volcker and Alan
Greenspan, but excludes the period when the Federal Reserve targeted non-
borrowed reserves, rather than short-term interest rates.
At the quarterly frequency, inflation is measured by the annualized quar-

terly percentage change in the Implicit GDP Deflator. Two measures of the
output gap are constructed as explained above, except that the quarterly ob-
servations of the IPI and unemployment rate are the arithmetic average of
the three observations in each month of the quarter. Similarly, the Federal
Funds rate at the quarterly frequency is the arithmetic average of the three
observations in each quarter. Since at the quarterly frequency the number
of observations in the first subsample 1970:I to 1979:II is too small to yield
reliable results, we follow Clarida et al. (2000) in starting the quarterly sample
in 1960:I.
The data source for the Consumer Price Index, Implicit GDP Deflator,

and unemployment rate is the web site of the Bureau of Labor Statistics
(http://www.bls.gov), and for the Federal Funds rate and the Industrial Pro-
duction Index is web site of the Federal Board of Governors.

3.2 Preliminary Analysis

The estimation of the nonlinear Taylor-rule is carried out using a two-step
procedure. First, the conditional variance of inflation is estimated from the
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aggregate supply relation. Then, σ2π,t is replaced in the Taylor rule and the
rule is estimated by the Generalized Method of Moments (GMM). However,
some issues need to be addressed prior to estimation. First, the precise form of
the nonlinear Taylor rule depends on whether the aggregate supply relation is
linear or not. Recall that the AS curve is linear when φ = 0 and convex when
φ > 0. Hence, it is important to test whether φ is statistically different from
zero in our data set. Second, the prediction that the conditional variance of
inflation is a component of the policy rule can be examined in a time series
setup only if inflation is conditionally heteroskedastic. Otherwise, if σ2π,t is
constant, its coefficient might not be identified. Hence, one must also test
whether the conditional variance of inflation is indeed time-varying.
In order to address these two issues, we estimate the aggregate supply

relation (3) by nonlinear least squares treating the disturbance term ut as
conditionally homoskedastic. We then test the null hypothesis φ = 0 using a
t-test, and the null hypothesis of no conditional heteroskedasticity using a LM
test for neglected ARCH. The LM statistics were calculated as the product of
the number of observations and the uncentered R2 of the OLS regression of the
squared unemployment residual on a constant and six of its lags. Under the
null hypothesis of no conditional heteroskedasticity, the statistic is distributed
chi-square with as many degrees of freedom as the number of lagged squared
residuals included in the regression.
Results in Panels A and B of Table 1, support the notion of an upward

sloping AS curve (as predicted by the theory), but results using quarterly data
are somewhat weaker than the ones using monthly data. This result might be
explained by the fact that the econometrician has more data points to estimate
α when using monthly than quarterly data. In all cases the hypothesis φ = 0
cannot be rejected at standard levels. Hence, for these sample periods and
data frequencies, it would appear that the U.S. aggregate supply curve is well
approximated by a linear relation.3 Results of the LM tests for neglected
ARCH are reported in the first row of Table 2. Note that the hypothesis of
no conditional heteroskedasticity is rejected for both frequencies and output
gap measures.
In light of these results, we estimate a linear (in mean) AS curve with

conditionally heteroskedastic errors. The parameter φ is constrained to be zero
and the conditional variance of inflation is parameterized using a GARCH(1,1)
model. These results are reported in Panel C of Table 1. The terms ψ, ς, and
κ denote the constant, the coefficient of the lagged square residual, and the
coefficient of the lagged conditional variance, respectively. Note that in all
cases their estimates are significant and suggest a persistent process for σ2π,t.

3Similar results are reported by Gordon (1997) and Dolado et al. (2003). Blinder (1999,
p.19) points out that for the U.S. a “linear Phillips curve fits the data extremely well.”
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Since the conditional variance is estimated using inflation and output data,
σ2π,t is a generated regressor for the second step of the estimation procedure.
The implications of generated regressors in estimation and inference have been
examined by Pagan (1984) and Pagan and Ullah (1988). Generated regressors
can be problematic because they measure with noise the true, but unobserved,
regressor. In the case of models where a conditional variance is one of the ex-
planatory variables, estimates can be biased and inconsistent if the ARCH-type
model employed is misspecified. Pagan and Ullah suggest specification tests
to assess whether the chosen ARCH model is valid. A standard misspecifica-
tion test for ARCH models is the same LM test for neglected ARCH described
above, but applied to the standardized residuals. If the ARCH model is cor-
rectly specified, then the residuals corrected for heteroskedasticity and squared
should be serially uncorrelated. The second row in Table 2 reports these LM
statistics. Since all statistics are below the 5 per cent critical value of the
appropriate distribution, the null hypothesis of no autocorrelation cannot be
rejected. Hence, it would appear that the parsimonious GARCH(1,1) model
employed here adequately captures the conditional heteroskedasticity present
in the U.S. inflation data.
Based on these empirical results and on the analytical results in Sections

2.5 and 2.6, the econometric analysis that follows focuses on the reduced-form
of the Taylor rule (9).

3.3 Estimation

Following Clarida et al. (2000), the observed smoothing of interest rates is rep-
resented by a partial adjustment model whereby lagged values of the interest
rate are also included as explanatory variables. The optimally determined in-
terest rate is interpreted as the desired rate towards which the current interest
rate sluggishly adjusts. That is,

it = ρ(L)it−1 + (1− ρ)i∗t + ξt, (19)

where ρ(L) = ρ1 + ρ2L + · · · + ρn+1L
n, ρ ≡ ρ(1), and i∗t is given by the right

hand side of Equation (9). Substituting (9) into (19), the estimated model is

it = a+ ρ(L)it−1 + (1− ρ)(byt + cπt + dσ
2
π,t + ηxt) + ξt, (20)

where a is an intercept term, b = 1 + α+ δ, c = 1 + 1/α, and d = γ/2α.
As an additional check on the robustness of the results, we also estimate two

forward-looking versions of (20) where the current values of πt(yt) are replaced
by expectations of future variables k(q) periods ahead, Etπt+k and Etyt+q, and
a backward-looking version where they are replaced by πt−1(yt−1). The partial
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adjustment models were estimated by the Generalized Method of Moments
(GMM), using lagged values of the variables as instruments.4 Denoting by Ωt
a vector of m instruments, GMM exploits the set of orthogonality conditions
E(ξt|Ωt) = 0 to estimate the relevant parameters. The validity of the (m −
p) overidentification restrictions can be assessed through the J test that is
asymptotically distributed as a chi-square with (m− p) degrees of freedom.
The estimated nonlinear rules are reported in Tables 3 and 4, for the periods

1970:01 to 1979:06 and 1983:01 to 2000:12, respectively. The number of
interest rate lags in ρ(L) was chosen using the Bayesian information criteria,
but sensitive analysis indicates that results are robust to the exact number lags
included in the regression. Their estimates are not reported to save space,
but are available from the corresponding author upon request. The basic
difference between both set of results is that the coefficient on the conditional
variance of inflation (d) is not statistically significant in the first subsample,
but it is always positive and significant in the second one. This result is
robust to both forward and backward-looking specifications of the Taylor rule
(see columns (3) to (5)). Notice that in most cases for the second subsample,
the rate of inflation is no longer statistically significant once one introduces
the conditional variance as a regressor. In all cases, the overidentification
restrictions of the model are not rejected by the data at standard significant
levels.
These findings suggest the following. First, monetary policy in the United

States could be well approximated by a linear Taylor rule prior to 1979. Sec-
ond, the Fed’s inflation preferences could be described as symmetric with re-
spect to inflation in the period prior 1979. More precisely, the hypothesis that
preferences are quadratic (γ = 0) would not be rejected by the data against the
alternative of asymmetric preferences (γ 6= 0). Third, after 1983, a nonlinear
Taylor rule seems to provide a more accurate characterization of U.S. mone-
tary policy than a linear rule. In particular, the Federal Funds rate appears
to react more strongly to the volatility than to the level of inflation after 1983.
Fourth, since the coefficient on the conditional variance of inflation is positive
and statistically significant after 1983, this suggest that the Fed’s inflation
preferences during the Volcker-Greenspan might be asymmetric. In particu-

4The model assumes that the current values of inflation and the output gap are prede-
termined and contemporaneously observable. However, we use this Instrumental Variable
procedure because, in practice, uncertainty regarding the natural output rate and data re-
visions mean that there is a discrepancy between the Federal Reserve’s information set at
the time it takes a policy decision and the time series used (or constructed) by the econo-
metrician to estimate the model. This discrepancy is subsumed in the disturbance term
and likely to be correlated with the explanatory variables. For an analysis of Taylor rules
using “real-time” data, see Orphanides (2001).
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lar, positive deviations of inflation from its target appear to be weighted more
severely than negative ones, even if they are of the same magnitude.

3.4 Comparison with Clarida et al. (2000)

The results above parallel somewhat the evidence in Clarida et al. (2000),
where it is reported that the coefficient on inflation in a forward-looking version
of the Taylor rule is substantially different in the pre-Volcker and Volcker-
Greenspan eras. In order to make this comparison more direct, consider
results in Tables 5 and 6 that report the estimated rules using quarterly data
for the periods 1960:I to 1979:II and 1983:I to 2000:IV. As before, the second
sample excludes the period when the Federal Reserve targeted nonborrowed
reserves, rather than short-term interest rates.
Column (1) in both tables illustrates the main results in Clarida et al.

(2000), namely that the reaction with respect to inflation (c), is smaller than
unity prior to 1979 but larger than unity during the tenure of chairmen Volcker
and Greenspan. This result is robust to the measure of the output gap.
However, note in Table 5 that this result does not hold completely once we
allow for asymmetric inflation preferences on the part of the central bank.
Although results are sensitive to the form of the rule, there are specifications
for which the point estimate of c is larger than one prior to 1979, though one
would not be able to reject the null hypothesis that the true value is less than
one. For example, column (3) in Table 5 correspond to the baseline model
reported by Clarida et al. (p. 157) but includes the conditional variance
of inflation as one of the regressors. The point estimates of the inflation
coefficient are 1.14(0.12) and 1.04(0.12) depending on the output gap measure
employed. Also, notice that in certain cases, the coefficient on σ2π is negative
and statistically different from zero. As we will see in the following section,
this reflects the mildly negative relation between the real interest rate and
the conditional variance of inflation in the pre-Volcker data. A negative
coefficient on the conditional variance would indicate that γ < 0, namely that
negative deviation from the inflation rate target were more heavily weighted
than positive ones. However, this coefficient is statistically different from
zero in only a few cases and, given the large variability of inflation during this
period, the real interest rate response is considerably muted.
Regarding the post-1982 data, Table 6 shows that the inflation response

is considerably smaller when we allow asymmetric preferences. For some
specifications, ĉ is smaller than one, though one would not be able to reject
the null hypothesis that the true value is larger than one. The reason for this
result is straightforward: since the conditional variance of inflation depends on
lagged squared inflation, the inflation response consists of a linear part, with
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coefficient c, and a nonlinear part, with coefficient d. The overall response
with respect to inflation is stabilizing, as suggested by Clarida et al. The
contribution of Table 6 is to show that the nonlinear reaction to the conditional
variance of inflation is a quantitative and, in most cases, statistically important
component of Fed’s reaction function after 1982.

3.5 What Drives the Results?

In order to understand the empirical results reported in this paper, it is instruc-
tive to consider the relation between the real interest rate and the conditional
variance of inflation in both subsamples. Although the policy rule is defined
in terms of the nominal interest rate, one can think of the central bank as
implicitly targeting a measure of the real interest rate, that in turn affects
output through the IS curve. Figures 1 and 2 plot the relation between the
two variables at the quarterly frequency, and the fitted values of an OLS re-
gression of the real rate on σ2π,t. The estimated parameters of these regressions
are reported in columns (3) and (4) in Table 7. Results using monthly data
are reported in columns (1) and (2). Notice that in the first subsample, the
real rate is negatively but mildly related to the conditional variance. The
coefficient is statistically different from zero, but given the large variability of
inflation during this period, the real interest rate response is small. In con-
trast, in the second subsample, there is a strong positive relationship between
the two variables. The result is striking in that inflation is much less volatile
in the second than in the first subsample. The positive relation between the
real interest rate and the conditional variance of inflation is consistent with
asymmetric inflation preferences because this specification predicts a prudence
motive in the implementation of monetary policy.

4 Conclusions

This paper contributes to the literature on optimal monetary policy rules by
considering setups where certainty equivalence does not hold because either
central bank preferences are not quadratic and/or the aggregate supply sched-
ule is convex. Under some simplifying assumptions, it is possible to derive
a nonlinear Taylor rule incorporating both features. This rule is general in
that it nests the cases where either feature is present or where none is and,
consequently, the monetary policy rule is linear.
In order to examine how relevant nonlinear monetary policy rules are in

practice, we estimate the rule using U.S. data during the Burns-Miller (pre-
1979) and Volcker-Greenspan (post-1982) regimes at the U.S. Federal Reserve.
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Although, there is no evidence against a linear aggregate supply schedule in
either regime, we find fairly robust evidence in favor of the view that the
central bank preferences are considerably different in both regimes. In par-
ticular, the Fed’s inflation preferences during the Volcker-Greenspan regime
appear to be asymmetric, in the sense that positive inflation deviations from
its target are weighted more heavily than negative ones, even if they are of the
same magnitude. In contrast, it is not possible to reject the null hypothesis of
quadratic inflation preferences during the Burns-Miller regime. Under asym-
metric preferences, the fact that certainty equivalence does not hold, means
that a prudence motive can arise in the conduct of monetary policy and interest
rates respond not only to inflation changes but also to its variability.
A final interesting result of this paper is that, in contrast to Clarida et al.

(2000) who report that interest rate policy in the Volcker-Greenspan period
appears to have been more sensitive to changes in expected inflation than in
the pre-Volcker period, we do not find the response of interest rates to inflation
to be larger than unity in the Volcker-Greenspan period. However, once the
additional effect from the conditional variance of inflation is considered, the
rule in the Volcker-Greenspan era is found to be stabilizing as well.
In future work, we intend to examine empirically this model using data

from several European countries. This is important for two reasons. First,
Dolado et al. (2003) report evidence consistent with a nonlinear Phillips curve
for the main European countries. Hence, in contrast to the U.S., the full
model with nonquadratic central bank preferences and a convex Phillips curve
might be empirically relevant for these countries. Second, the simple and
more tractable case where the central bank loss function depends only on
inflation might be a better description of the institutional arrangements in
some European countries, notably Germany.
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Centre-ville, Montréal (Québec) H3C 3J7; Canada, e-mail: francisco.ruge-
murcia@umontreal.ca

17Dolado et al.: Nonlinear Monetary Policy Rules

Produced by The Berkeley Electronic Press, 2004



Table 1. Estimated Aggregate Supply Schedules

Monthly Data Quarterly Data
IPI (−)Unemp. IPI (−)Unemp.

Coefficients (1) (2) (3) (4)

A. Linear
α̂ 0.06∗ 0.24∗ 0.05† 0.21†

(0.006) (0.03) (0.029) (0.13)

B. Nonlinear with No ARCH
α̂ 0.06∗ 0.24∗ 0.04 0.06

(0.007) (0.03) (0.03) (0.05)bφ 0.31 0.12 −0.79 47.92
(0.47) (0.59) (2.47) (37.87)

C. Linear with GARCH(1,1)
α̂ 0.05∗ 0.22∗ 0.015 0.08

(0.006) (0.03) (0.03) (0.15)bφ 0 0 0 0
− − − −bψ 0.005∗ 0.004∗ 0.07† 0.07†

(0.0025) (0.0019) (0.04) (0.04)bς 0.21∗ 0.17∗ 0.08† 0.08†

(0.05) (0.05) (0.05) (0.05)bκ 0.75∗ 0.80∗ 0.87∗ 0.87∗

(0.06) 0.05 (0.06) (0.06)

Notes: The figures in parenthesis are standard errors. The superscripts ∗ and
† denote the rejection of the hypothesis that the true coefficient is zero at the
5 per cent and 10 per cent significance levels, respectively.
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Table 2. LM Test for Neglected ARCH

Monthly Data Quarterly Data
IPI (−)Unemp. IPI (−)Unemp.

Residuals (1) (2) (3) (4)

Original 34.54∗ 25.96∗ 15.72∗ 24.29∗

Standardized 4.50 3.34 9.83 9.93

Notes: The LM statistics were calculated as the product of the number of
observations and the uncentered R2 of the OLS regression of the squared un-
employment residual on a constant and six of its lags. See notes to Table
1.
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Table 3. Estimated Reaction Functions
Monthly Data
Pre-Volcker

Nonlinear
Forward (q, k)

Linear Baseline (3, 6) (6, 6) Backward
Coefficient (1) (2) (3) (4) (5)

A. Using IPI Gap
â −0.10 0.38∗ 0.39∗ 0.32∗ 0.36∗

(0.33) (0.15) (0.08) (0.09) (0.17)

b̂ 0.57† 0.49∗ 0.08 0.12† 0.43∗

(0.31) (0.13) (0.06) (0.11) (0.10)
ĉ 0.84∗ 0.38† 0.73∗ 0.80∗ 0.40†

(0.31) (0.22) (0.07) (0.09) (0.23)

d̂ 0 4.27 −5.19 −5.94 4.52
− (6.81) (3.57) (4.31) (7.41)

J statistic 4.98 6.76 6.20 7.15 7.14
d.f. 8 13 13 13 13

B. Using (minus) Unemployment Gap
â 0.34 0.71∗ 0.78∗ 0.80∗ 0.27

(0.28) (0.17) (0.16) (0.16) (0.22)

b̂ 1.93∗ 4.33∗ 0.29∗ 0.37∗ 2.04∗

(0.50) (1.30) (0.14) (0.17) (0.33)
ĉ 0.75∗ 0.10 0.70∗ 0.70∗ 0.72∗

(0.13) (0.29) (0.04) (0.04) (0.10)

d̂ − 3.03 −3.35 −3.93† 4.02
(4.92) (2.05) (2.05) (5.09)

J statistic 7.02 6.43 6.63 6.17 7.93
d.f. 8 13 13 13 13

Notes: The instruments are a constant and six lags of the variables in the
estimated rule. d.f. stands for degrees of freedom. See notes to Table 1.
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Table 4. Estimated Reaction Functions
Monthly Data

Volcker-Greenspan

Nonlinear
Forward (q, k)

Linear Baseline (3, 6) (6, 6) Backward
Coefficient (1) (2) (3) (4) (5)

A. Using IPI Gap
â 0.50∗ 0.38∗ 0.28∗ 0.08 0.26∗

(0.23) (0.15) (0.10) (0.05) (0.12)

b̂ 0.40† 0.88∗ 1.98∗ 0.65 0.90∗

(0.23) (0.29) (0.81) (1.02) (0.35)
ĉ 0.89∗ 0.73∗ −0.02 0.46 0.55

(0.19) (0.26) (0.59) (0.66) (0.37)

d̂ 0 10.17∗ 21.05∗ 29.10† 17.87∗

− (3.00) (7.34) (15.07) (6.21)
J statistic 6.00 10.76 10.17 12.67 11.69
d.f. 8 13 13 13 13

B. Using (minus) Unemployment Gap
â 0.52∗ 0.13† 0.15† 0.13 0.15†

(0.23) (0.08) (0.08) (0.08) (0.08)

b̂ 2.75∗ 4.06∗ 4.52∗ 6.74∗ 3.40∗

(1.38) (1.97) (2.16) (3.24) (1.45)
ĉ 0.74∗ 0.43 0.72 0.59 0.57

(0.24) (0.46) (0.46) (0.52) (0.36)

d̂ − 17.38∗ 17.85∗ 22.41∗ 16.86∗

(7.10) (7.10) (9.74) (6.07)
J statistic 7.05 9.87 10.20 9.43 9.90
d.f. 8 13 13 13 13

Notes: The instruments are a constant and six lags of the variables in the
estimated rule. d.f. stands for degrees of freedom. See notes to Tables 1 and
3.
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Table 5. Estimated Reaction Functions
Quarterly Data
Pre-Volcker

Nonlinear
Forward (q, k)

Linear Baseline (1, 1) (1, 2) Backward
Coefficient (1) (2) (3) (4) (5)

A. Using IPI Gap
â 0.58∗ 0.43 0.99∗ 1.00∗ 0.72∗

(0.15) (0.29) (0.24) (0.27) (0.22)

b̂ 1.07 2.97 0.31∗ 0.29† 0.94∗

(0.66) (6.56) (0.11) (0.16) (0.30)
ĉ 0.49† −0.77 1.14∗ 1.21∗ 0.36

(0.28) (4.49) (0.12) (0.20) (0.27)

d̂ − 1.41 −1.46∗ −1.87∗ 0.59
(5.99) (0.43) (0.73) (0.74)

J statistic 6.59 8.31 4.09 5.51 7.22
d.f. 4 7 7 7 7

B. Using (minus) Unemployment Gap
â 0.68∗ 0.73∗ −0.99∗ 1.08∗ 0.87∗

(0.16) (0.21) (0.21) (0.27) (0.26)

b̂ 3.21∗ 3.82∗ 1.55∗ 1.57∗ 3.52∗

(0.91) (1.48) (0.43) (0.77) (0.65)
ĉ 0.71∗ 0.63∗ 1.04∗ 1.14∗ 0.46∗

(0.11) (0.26) (0.12) (0.20) (0.15)

d̂ − 0.05 −1.04∗ −1.59∗ 0.64
(0.57) (0.39) (0.66) (0.48)

J statistic 7.03 6.96 4.60 4.56 6.26
d.f. 4 7 7 7 7

Notes: The instruments are a constant and four lags of the variables in the
estimated rule. See notes to Tables 1 and 3.
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Table 6. Estimated Reaction Functions
Quarterly Data

Volcker-Greenspan

Nonlinear
Forward (q, k)

Linear Baseline (1, 1) (1, 2) Backward
Coefficient (1) (2) (3) (4) (5)

A. Using IPI Gap
â −0.12 −0.99† −0.96∗ −0.78† 0.62†

(0.20) (0.56) (0.44) (0.40) (0.33)

b̂ 0.76† 0.51∗ 0.72∗ 1.03∗ 0.51∗

(0.44) (0.11) (0.19) (0.24) (0.15)
ĉ 2.96∗ 1.18∗ 1.22∗ 0.90∗ 0.73∗

(0.75) (0.23) (0.27) (0.39) (0.23)

d̂ − 5.44∗ 5.43∗ 6.25∗ 1.00
(1.13) (1.53) (2.06) (2.20)

J statistic 5.72 3.89 5.05 8.22 8.91
d.f. 4 7 7 7 7

B. Using (minus) Unemployment Gap
â −0.19∗ −0.44 −0.87 −1.42∗ 0.36

(0.26) (0.39) (0.63 (0.55) (0.33)

b̂ 2.36† 2.91∗ 2.86∗ 2.74∗ 2.17∗

(1.37) (0.76) (0.80) (0.66) (0.58)
ĉ 3.08∗ 1.14∗ 0.89∗ 1.03† 0.37

(0.76) (0.35) (0.22) (0.52) (0.28)

d̂ − 4.81∗ 5.39∗ 6.88∗ 3.18
(1.57) (1.13) (2.05) (2.19)

J statistic 4.35 5.82 4.20 7.78 8.87
d.f. 4 7 7 7 7

Notes: The figures in parenthesis are standard errors. The instruments are
a constant and four lags of the variables in the estimated rule. d.f. stands
for degrees of freedom. The superscripts ∗ and † denote the rejection of the
hypothesis that the true coefficient is zero at the 5 per cent and 10 per cent
significance levels, respectively.
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Table 7. Results OLS Regression

Monthly Data Quarterly Data
Pre-Volcker Volcker-Greenspan Pre-Volcker Volcker-Greenspan

Coefficient on (1) (2) (3) (4)

Constant 0.63∗ 2.62∗ 2.32∗ −0.58
(0.30) (0.19) (0.33) (1.13)

σ2π,t −3.83 7.03∗ −0.94∗ 4.15∗

(2.34) (1.92) (0.17) (1.06)

Notes: See notes to Table 1.
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A Derivation of Taylor Rule in Benchmark

Case

This Appendix derives the optimal monetary policy rule when preferences are
asymmetric and the supply curve is nonlinear but perfectly forecastable one
period ahead (that is, σ2² = 0). The dynamic problem of the central bank
(see eq. (1) in text) can be decomposed into the sequence of period-by-period
problems:

Min Etβ
2L(πt+2 − π∗),

{it}
subject to

yt+1 = δyt − rt + xt+1,
πt+1 = πt + F (yt) + ut+1,

where F (yt) = αyt/(1 − αφyt), xt+1 = ηxt, and it = rt + Etπt+1, with all
notation as defined in the text. In order to derive the first-order condition,
apply the chain rule and note that yt+1 is predetermined at time t:

0 = Et((∂Lt+2/∂πt+2)(∂πt+2/∂yt+1)(∂yt+1/∂rt)(∂rt/∂it)),

= −α(exp(γEt(πt+2 − π∗) + (γ2/2)σ2π,t)− 1)/(γ(1− αφyt+1)
2),

where we have exploited the conditional-moment generating function of the
linex function to writeEt(exp(γ(πt+2−π∗))) as exp(γEt(πt+2−π∗)+(γ2/2)σ2π,t).
The first-order condition is satisfied if and only if:

Etπt+2 = π∗ − γσ2π,t/2. (A1)

Note that this is an equilibrium condition that does not imply causality from
the second to the first inflation moments. That is, (A1) does not say that a
higher conditional variance of inflation will decrease expected inflation. In-
stead, it says that, in the presence of a precautionary motive, the central bank
will attempt to set inflation two-years ahead at a lower level than the targeted
rate. The reason is that, when γ > 0, positive deviations from π∗ yield a
larger loss than negative deviations. Next, from the aggregate supply relation

Etπt+2 = Et(πt+1 + F (yt+1) + ut+2),

= Et(πt + F (yt) + F (yt+1) + ut+2 + ut+1),

= πt + αyt/(1− αφyt) + α(δyt − rt + ηxt)/(1− αφ(δyt − rt + ηxt)).

Hence, it must be the case that

π∗−γσ2π,t/2 = πt+αyt/(1−αφyt)+α(δyt− rt+ ηxt)/(1−αφ(δyt− rt+ ηxt)).
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Solving for rt :

rt = δyt +
(πt − π∗ + γσ2π,t/2 + F (yt))

α(1− φ(πt − π∗ + γσ2π,t/2 + F (yt)))
+ ηxt.

Substituting into the Fisher equation, using Etπt+1 = πt + F (yt), and simpli-
fying yields:

it = πt + F (yt) + δyt +
(1/α)(πt − π∗ + γσ2π,t/2 + F (yt))

1− φ(πt − π∗ + γσ2π,t/2 + F (yt))
+ ηxt,

that corresponds to Equation (8) in the text.

B Derivation of Taylor Rule when the Out-

put Gap is also an Argument of the Loss

Function

This Appendix the derives the optimal Taylor rule in the case where the cen-
tral bank’s loss function depends both on inflation and the output gap. For
tractability, we consider the case the loss associated with the deviation of
F (yt+1) from zero is represented by a quadratic function, and retain the ini-
tial assumption that σ2² = 0. Following Svensson (2003, Appendix A), the
minimization problem is solved in two stages. The first stage is to minimize
the objective function in (16) conditional on πt, Etπt+1 and xt, and subject
only to the constraints (3) and (4). Consider the Lagrangian of the first-stage
problem:

Lt = Et
∞X
s=0

βs
h
L(πt+s − π∗) + (λ/2) (F (yt+s))

2
i
+

+Et
∞X
s=0

βs+1Φt+s+1,t(πt+s+1 − πt+s − F (yt+s)− ut+s+1),

where Φt+s+1,t is the Lagrange multiplier of the constraint. The first-order
conditions are

πt+s+1 : 0 = Et

"Ã
exp(γ(πt+s+1 − π∗))− 1

γ

!
+ Φt+s+1,t − βΦt+s+2,t

#
,(B1)

yt+s : 0 = λEt[F (yt+s)F
0(yt+s)− βΦt+s+1,tF

0(yt+s)]. (B2)
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Since the problem is recursive consider s = 1. Under the assumption that
σ2² = 0, yt+1 is predetermined. From (B2), it follows that the multiplier
Φt+2,t = (λ/β)F (yt+1) and (B1) may be rewritten as

0 =
exp(γEt(πt+2 − π∗) + (γ2/2)σ2π,t)− 1

γ
+(λ/β)(F (yt+1)−βF (yt+2)), (B3)

where, as before, we have used the moment-generating function of the linex
function to write Et(exp(γ(πt+2 − π∗))) as exp(γEt(πt+2 − π∗) + (γ2/2)σ2π,t).
Taking conditional expectations in both sides of Equation (3) delivers

F (yt+1) = Etπt+2 − Etπt+1,
= Et(πt+2 − π∗)− Et(πt+1 − π∗), (B4)

that replaced into (B3) yields a nonlinear second-order difference equation in
Et(πt − π∗) of the form

0 = Et(πt+3 − π∗)−
exp(γEt(πt+2 − π∗) + (γ2/2)σ2π,t)− 1

λγ

−(1 + 1/β)Et(πt+2 − π∗) + (1/β)Et(πt+1 − π∗).

The exact solution to this difference equation is hard to obtain, but it is
possible to obtain an approximate solution by first linearizing the nonlinear
term around the point (Et(πt+2−π∗),σ2π,t) = (0, 0). This approximate second-
order difference equation is

Et(πt+3 − π∗)− 2τEt(πt+2 − π∗) + (1/β)Et(πt+1 − π∗) = (γ/2λ)σ2π,t, (B5)

where 2τ = (1 + 1/λ+ 1/β). Notice that if λ = 0, then this equation reduces
to the first-order condition (A1). (To see this, simply multiply through (B5)
by −λ and take the limit as λ→ 0). The solution to this difference equation
is standard and can be shown to satisfy:

Et(πt+2 − π∗) = θEt(πt+1 − π∗)− ω
∞X
s=0

(βθ)sσ2π,t+s, (B6)

where the coefficient θ satisfies 0 < θ < 1 and is the smallest root of the
characteristic equation µ2−2τµ+(1/β) = 0, and ω = (γ/2λ2)(1−β)(1−βθ).
Substitution of (B6) into (B4),

F (yt+1) = −(1− θ)Et(πt+1 − π∗)− ωσ2π,t − ωβθ
∞X
s=0

(βθ)sσ2π,t+s+1, (21)
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where we have used the recursion
∞X
s=0

(βθ)sσ2π,t+s = σ2π,t + βθ
∞X
s=0

(βθ)sσ2π,t+s+1.

Linearizing F (yt+1) around 0 by means of a first-order Taylor series expansion
yields

Et(yt+1) = (1/α)

Ã
−(1− θ)Et(πt+1 − π∗)− ωσ2π,t − ωβθ

∞X
s=0

(βθ)sσ2π,t+s+1

!
.

(B7)
In the second-stage, substitute (B7) and into

it = Etπt+1 −Etyt+1 + δyt + ηxt. (B8)

and use (3) to obtain the Taylor rule:

it = πt + ((1− θ)/α)(πt − π∗ + F (yt)) + (ω/α)σ
2
π,t

+(ωβθ/α)
∞X
s=0

(βθ)sσ2π,t+s+1 + F (yt) + δyt + ηxt.

In the special case where σ2π,t follows an AR(1) process (that is, an ARCH(1))
with ς ∈ (0, 1) the coefficient of the lagged squared residual, then

∞X
s=0

(βθ)sσ2π,t+s+1 =

Ã
ς

1− βθς

!
σ2π,t.

and the (approximately) optimal Taylor rule is:

it = πt + ((1− θ)/α)(πt − π∗ + F (yt)) + F (yt) + δyt

+(ω/α)(1 + βθς/(1− βθς))σ2π,t + ηxt.

In the more general case where σ2π,t follows a GARCH(1,1) process with pa-
rameters ς and κ, where κ is the coefficient of the lagged conditional variance,
then

∞X
s=0

(βθ)sσ2π,t+s+1 =

Ã
ς

1− βθς

!
σ2π,t −

Ã
κ

1− βθς

!
ζt,

where ζt is an independently and identically distributed innovation and the
same approximate Taylor rule is obtained (up to a random term):

it = πt + ((1− θ)/α)(πt − π∗ + F (yt)) + F (yt) + δyt

+(ω/α)(1 + βθς/(1− βθς))σ2π,t + ηxt − (κ/(1− βθς))ζt.

This is Equation (18) in the text.

28 Studies in Nonlinear Dynamics & Econometrics Vol. 8 [2004], No. 3, Article 2

http://www.bepress.com/snde/vol8/iss3/art2



References

[1] Alvarez-Lois, P. (2001): “Asymmetries in the Capacity-Inflation Trade-
Off ” Universidad Autónoma de Barcelona, Mimeo.

[2] Bec, F., M. B. Salem, and F. Collard (2002): “Asymmetries in Monetary
Policy Reaction Functions: Evidence for the U.S., French and German
Central Banks,” Studies in Nonlinear Dynamics and Econometrics, 6,
No. 2, Article 3.

[3] Blinder, A. S. (1998), Central Banking in Theory and Practice. Cam-
bridge: The MIT Press.

[4] Clarida, R., J. Gali, and M. Gertler (1997): “Monetary Policy Rules in
Practice: Some International Evidence,” European Economic Review, 42,
1033-1067.

[5] – –, – –, and – – (1999): “The Science of Monetary Policy: A New
Keynesian Perspective,” Journal of Economic Literature, 37, 1661-1707.

[6] – –, – –, and – – (2000): “Monetary Policy Rules and Macroe-
conomic Stability: Evidence and Some Theory,” Quarterly Journal of
Economics, 115, 147-180.

[7] Clark, P., D. Laxton, and D. Rose (1995): “Capacity Constraints, Infla-
tion and the Transmission Mechanism: Forward-Looking versus Myopic
Policy Rules”, IMF Working Paper 95-75.

[8] Cukierman, A. (2000): “The Inflation Bias Result Revisited ,” Tel-Aviv
University, Mimeo.
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Fig. 1. Relation between the Real Interest Rate and
the Conditional Variance of Inflation

1960:I to 1979:II
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