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Abstract

We propose a new multivariate factor GARCH model, the GICA-GARCH model, where
the data are assumed to be generated by a set of independent components (ICs). This model
applies independent component analysis (ICA) to search the conditionally heteroskedastic
latent factors. We will use two ICA approaches to estimate the ICs. The first one estimates
the components maximizing their non-gaussianity, and the second approach exploits the
temporal structure of the data. After estimating the ICs, we fit an univariate GARCH
model to the volatility of each IC. Thus, the GICA-GARCH reduces the complexity to
estimate a multivariate GARCH model by transforming it into a small number of univariate
volatility models. We report some simulation experiments to show the ability of ICA to
discover leading factors in a multivariate vector of financial data. An empirical application
to the Madrid stock market will be presented, where we compare the forecasting accuracy of
the GICA-GARCH model versus the orthogonal GARCH one.

Keywords: ICA, Multivariate GARCH, Factor Models, Forecasting Volatility.

1 Introduction

Since Engel (1982) introduced the ARCH model and Bollerslev (1986) generalized it, proposing
the GARCH model, many researchers have been interested in modelling volatility in finan-
cial time series. In multivariate time series, financial volatilities tend to move together across
markets, and in order to understand their comovements, a multivariate modelling approach is
required. The first multivariate GARCH model (MGARCH) was proposed by Bollerslev, En-
gle and Wooldridge (1988) as an extension of the univariate GARCH model. Other different
specifications for MGARCH have been proposed in the literature (see, for example, the sur-
vey of Bauwens et al., 2006), but in these developments the number of parameters to estimate
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can be very large, and the restrictions to guarantee the positive definiteness of the conditional
covariance matrix are difficult to implement. A possible solution to these problems is to use
factor models, where the data set are explained by a small number of unobserved components.
Comovements in stock returns reinforce the intuition that financial markets are driven by a few
latent common sources.

Several factor models have been presented in the literature. The most popular one is the
orthogonal GARCH model (O-GARCH) (Alexander, 2001) that estimates the unobserved factors
using a small set of principal components (PCs), and fits an univariate GARCH model for
each component. That is, the O-GARCH estimates a MGARCH model requiring only a small
number of univariate GARCH estimations. Van der Weide (2002) introduces a vectorized version
of the O-GARCH, the generalized orthogonal GARCH model (GO-GARCH), that does not
reduce the dimension of the data and does not allow for idiosyncratic components. In order
to solve these problems, Lanne and Saikkonen (2007) propose the generalized orthogonal factor
GARCH model, that allows some diagonal elements of the conditional covariance matrix to
be constant. All previous models use principal components analysis (PCA) to identify the
set of underlying factors, which are unconditionally uncorrelated. However, to guarantee the
diagonality of the conditional covariance matrix, an additional assumption is needed: the factors
must be conditionally uncorrelated. Fan et al. (2008) show that this assumption could lead
to serious errors in model fitting, and they propose to model multivariate volatilities using
conditionally uncorrelated components (CUC-GARCH).

In this paper we propose a new alternative for modelling multivariate volatilities as linear com-
bination of several univariate GARCH models. We introduce a multivariate generalized inde-
pendent component analysis GARCH model (GICA-GARCH). Independent component analysis
(ICA) can be seen as a factor model (Hyvärinen and Kano, 2003) where the unobserved com-
ponents are non-gaussian, and mutually independent. Previous researchers, Back and Weigend
(1997), Kiviluoto and Oja (1998), Cha and Chan (2000), and Mălăroiu et al. (2000) among oth-
ers, have applied ICA to financial data. Furthermore, ICA can be considered as a generalization
of PCA (Hyvärinen et al., 2001), and seems to be, a priori, more suitable than PCA to explain
the non-gaussian behaviour of financial data (Wu and Yu, 2005).

The key idea of the GICA-GARCH is to assume that financial data are generated by a linear
combination of a small number of conditionally heteroskedastic independent components and
idiosyncratic shocks. Then, GICA-GARCH can be seen as a generalization of the multivariate
GARCH model proposed by Lanne and Saikkonen (2007), but assuming that the unobserved
factors are estimated by ICA rather than by PCA. Therefore, the common components will be
unconditionally independent and not only uncorrelated. Moreover, the GICA-GARCH is related
to the O-GARCH because both models transform the problem of estimating a multivariate
GARCH model into a small number of univariate GARCH models. Finally, note that the
independence assumption of the GICA-GARCH model is stronger than the one corresponding
to the CUC-GARCH model.

The paper is organized as follows. In Section 2 we present the ICA model, describe the
three ICA algorithms that we apply to estimate the unobserved components, and explain a
procedure to sort the ICA components in terms of their explained variability. Furthermore,
the relationship between ICA and dynamic factor model (DFM) is analyzed. In Section 3, we
introduce the GICA-GARCH model and its application to forecast the volatility of a vector of
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stock returns from the volatility of a small number of components. Some simulation experiments
to illustrate the ability of this model to estimate the unobserved components are presented in
Section 4. Section 5 shows the results of the empirical application to a real-time dataset. Finally,
Section 6 gives some concluding remarks.

2 The ICA model

In this section, we introduce the concept of ICA. First, we present the basic ICA model according
to the formal definition given by Common (1994). Then, we briefly describe the three algorithms
we use to estimate the ICA components. As the definition of ICA implies no ordering of the ICs,
a procedure to weight and sort them is next explained. Finally, we formulate the ICA model as
a particular DFM and analyze the relationship between both models.

2.1 Definition of ICA

ICA assumes that the observed multivariate vector is a linear combination of a set of unobserved
components. Let xt = (x1t, x2t, . . . , xmt)

′ be the m−dimensional vector of stationary time series,
with E [xt] = 0 and E [xtx′t] = Γx (0) positive definite. We assume that xt is generated by a
linear combination of r (r ≤ m) latent factors. That is,

xt = Ast, t = 1, 2, ..., T (1)

where A is an unknown m × r full rank matrix, with elements aij that represent the effect
of sjt on xit, for i = 1, 2, ...,m and j = 1, 2, ..., r, and st = (s1t, s2t, . . . , srt)

′ is the vector of
unobserved factors, which are called independent components (ICs). We assume that E [st] = 0,
E [sts′t] = Ir, and the components of st are statistically independent. Let (x1,x2, ...,xT ) be
the observed multivariate time series. The problem is to estimate both A and st only from
(x1,x2, ...,xT ) . That is, ICA looks for an r×m matrix, W, such that the components given by

ŝt = Wxt, t = 1, 2, ..., T, (2)

are as independent as possible. However, previous assumptions are not sufficient to estimate A
and st uniquely, and it is required that no more than one IC is normally distributed. By (1) ,
we have:

Γx (0) = AA′, (3)

Γx (τ) = AΓs (τ) A′, for τ ≥ 1.

Note that, in spite of previous assumptions, ICA cannot determine either the sign or the
order of the ICs. From now, through this paper, we focus on the most basic form of ICA, which
considers that the number of observed variables is equal to the number of unobserved factors,
i.e., m = r.

2.2 Procedures for estimating the ICs

Both ICA and PCA obtain the latent factors as linear combinations of the data. However their
aims are slightly different. PCA tries to get uncorrelated factors and, for this purpose, it requires
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the matrix W such that WW′ = I, and the rows of W are the projection vectors that maximize
the variance of the estimated unobserved factors, ŝt. On the other hand, the most often used
methods for estimating the ICs impose the restriction that the rows of W are the directions
that maximize the independence of ŝt.

Three main ICA algorithms have been proposed: JADE (Cardoso and Souloumiac, 1993) and
FastICA (Hyvärinen, 1999; Hyvärinen and Oja, 1997) are based on the non-gaussianity of the
ICs, while SOBI (Belouchrani et al., 1997) is based on the temporal independence of the data.
Before the application of any of these algorithms, it is useful to standardize the data. Thus, we
search for a linear transformation of xt, zt = Mxt, where M is an m×m matrix such that the
m−dimensional vector zt has identity covariance matrix. This multivariate standardization is
carried out as follows. From

Γx (0) = E{xtx′t} = EDE′, (4)

where Em×m is the orthogonal matrix of eigenvectors, and Dm×m the diagonal matrix of eigen-
values, then M = D−1/2E′. The model (1) in terms of zt, is

zt = Ust, (5)

where U = MA is, by (3) and (4) , an m ×m orthogonal matrix. Therefore, the multivariate
standardization of the original data guarantees the orthogonality of the loading matrix.

2.2.1 Joint Approximate Diagonalization of Eigen-matrices: JADE

JADE (Cardoso and Souloumiac, 1993) estimates the ICs maximizing their non-gaussianity.
After whitening the observed data, JADE looks for a matrix, U′ = (MA)′, such that the
components given by

ŝJt = U′zt, (6)

are maximally non-gaussian distributed. Under the non-gaussianity assumption, the information
provided by the covariance matrix of the data, Γz (0) = E {ztz′t} = I, is not sufficient to compute
(6), and higher-order information is needed. Cardoso and Souloumiac (1993) use the cumulants,
which are the coefficients of the Taylor series expansion of the characteristic function. In practice,
it is enough to take into account fourth-order cumulants, which are defined as:

cum4(zit, zjt, zht, zlt) = E {zitzjtzhtzlt} − E {zitzjt}E {zhtzlt} − (7)

−E {zitzht}E {zjtzlt} − E {zitzlt}E {zjtzht} ,

and the fourth-order cumulant tensor associated to zt is a m×m matrix given by

[Qz (Q)]ij =
r∑

k,l=1

cum4 (zit, zjt, zkt, zlt) qkl,

where Q = (qkl)mk,l=1 is an arbitrary m×m matrix, and cum4 (zi, zj , zk, zl) is like in (7) . It is easy
to see that a set of random vectors is independent if all their cross-cumulants of order higher
than two are equal to zero. Therefore, ŝJt will be maximally independent if its associated fourth
order cumulant tensor, QŝJ

t
(·) , is maximally diagonal. Cardoso and Soloumiac (1993) show that

given a set of m ×m matrices, = = {Q1, · · · ,Qq} , there exists an orthogonal transformation,
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V, such that the matrices {V′Qz (Qi) V}Qi∈= are approximately diagonal. Then V = U′, and
the latent factors are estimated as in (6) . JADE uses an iterative process of Jacobi rotations
to solve the joint diagonalization of several cumulants matrices. It is a very efficient algorithm
in low dimensional problems, but when the dimension increases, it requires high computational
cost.

2.2.2 Fast Fixed-Point Algorithm: FastICA

FastICA is a fixed-point algorithm for non-adaptative environments, which was proposed by
Hyvärinen and Oja (1997). It estimates

ŝFt = U′zt (8)

by maximizing their kurtosis. Thus, FastICA searches the directions of projection that maximize
the absolute value of the kurtosis of the ŝFt . As kurtosis is very sensitive to outliers, FastICA
is not a robust algorithm. Hyvärinen (1999) proposes a more robust version of FastICA using
an approximation of negentropy instead of kurtosis to measure the non-gaussianity of the ICs.
Negentropy is the normalized version of entropy given by:

J
(
ŝFt
)

= H (ŝgt )−H
(
ŝFt
)
,

where ŝgt is a gaussian vector of the same correlation matrix as ŝFt , and H (·) is the entropy of
a random vector defined as H

(
ŝFt
)

= −E
{

log pŝF
t

(ξ)
}
, where pŝF

t
(·) is the density function of

ŝFt . Negentropy is a good index for non-gaussianity because it is always non-negative and it is
zero iff the variable is gaussian distributed. Therefore, the ICs, given by (8), are estimated as
the projections of the data in the directions such that the negentropy of ŝFt is maximum. The
main advantage of FastICA is that it converges in a few number of iterations.

2.2.3 Second-Order Blind Identification: SOBI

Belouchrani et al. (1997) extended the previous work of Tong et al. (1990), and proposed the
SOBI algorithm. SOBI requires that the ICs, given by

ŝSt = U′zt, (9)

will be mutually uncorrelated for a set of time lags. That is, a set of time delayed covariance
matrices of ŝSt ,

Γs (τ) = E
{
ŝSt ŝS′t−τ

}
, for τ ≥ 1, (10)

should be diagonal. SOBI searches for an orthogonal transformation that jointly diagonalizes
(10) . This algorithm also applies whitening as a preprocessing procedure, and the covariance
structure of the whitened data model (5) is given by:

Γz (τ) = UΓs (τ) U′, for τ ≥ 1, (11)

where U is an orthogonal matrix. Therefore,

Γs (τ) = U′Γz (τ) U, for τ ≥ 1. (12)
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Thus, SOBI searches for an orthogonal transformation that will be the joint diagonalizer of the
set of time delayed covariance matrices, {Γs (τq)}τq∈ . The optimization problem is to minimize

F (U) =
∑
τq∈

off
(
U′Γz (τ) U

)
,

where ′off ′ is a measure of the non-diagonality of a matrix, which is defined by the sum of
the squares of their off-diagonal elements. SOBI solves this problem using Jacobi rotation
techniques. Belouchrani et al. (1997) show that this problem has a unique solution: if there
exists two different ICs that have different autocovariances for at least one time-lag, then the
joint diagonalizer, U, exists and it is unique. That is, if for all 1 ≤ i 6= j ≤ r, there is any
q = 1, ...,K such that γsi (τq) 6= γsj (τq) , then the components of ŝSt can be separated, they
are unique, and lagged uncorrelated. Note that SOBI cannot get the ICs if they have identical
autocovariances for the lags considered.

2.2.4 Weighting the ICs

After estimating the components, we should decide which of them are more important to explain
the underlying structure of the observed data. Note that the PCs are sorted in terms of vari-
ability, but the ICs are undeterminated with respect to the order. Following Back and Weigend
(1997), we sort the ICs in terms of their explained variability. According to model (1) , the ith
observed variable is given by xit =

∑m
j=1 aijsjt, and its variance is

var(xit) =
m∑
i=1

a2
ij , ∀ i = 1, ...,m. (13)

For each xit, with i = 1, ...,m, Back and Weigend (1997) define the weighted ICs in terms of
the elements of the ith row of A as sw(i)

t = diag (ai1, ai2, . . . , aim) st. That is, for each xit, the
jth weighted IC is given by sw(i)

jt = aijsjt, for j = 1, ...,m, and its variance is

var
(
s
w(i)
jt

)
= a2

ij , ∀ i, j = 1, ...,m. (14)

Therefore, from (13) and (14) , the variance of xit which is explained by sw(i)
jt is computed as:

νij =
a2
ij∑m

i=1 a
2
ij

. (15)

The total variance of xt explained by the jth IC is given by:

ϑj =

∑m
i=1 ν

i
j∑m

j=1

(∑m
i=1 ν

i
j

) , ∀j = 1, ...,m.

Thus, after getting {ϑ1, ϑ2, ..., ϑm}, we can sort the ICs in terms of variability. The most
important ICs will be those that explain the maximum variance of xt.

2.3 ICA and the Dynamic Factor Model

Suppose that, in the basic ICA model, there are r gaussian components, s(1)
t = (s1t, . . . , srt)

′ with
r < m, representing the common dynamic of the time series, but the other m− r components,



Garćıa-Ferrer, González-Prieto & Peña 7

s(2)
t = (sr+1t, . . . , smt)

′ , are Gaussian. Then we can split the matrix A = [A1A2] accordingly
and write

xt = A1s
(1)
t + A2s

(2)
t . (16)

Calling nt = A2s
(2)
t to the vector of Gaussian noise we have xt = A1s

(1)
t + nt, which is similar

to the DFM studied by Peña and Box (1987). However, there are two main differences between
these models. First, in the factor model, the r common factors, s(1)

t , are assumed Gaussian
and linear, whereas here they are non Gaussian. Second, in the standard factor model the
covariance matrix of the noise is of full rank, whereas here it will have rank equal to m − r.
This last constraint can be relaxed by assuming that the ICA model is contaminated with some
Gaussian error model, as in xt = Ast + u, where u is Gaussian. Note that the latent factors of
the DFM can be estimated by using PCA (see, for example, Stock and Watson, 2002).

3 The GICA-GARCH model

This section presents the GICA-GARCH model as a new multivariate volatility model. From
now on, let xt = (x1t, x2t, . . . , xmt)

′ be the vector of m financial time series. First, we introduce
the GICA-GARCH model, give its mathematical formulation, and describe the structure of the
ICA components. Then, we explain how our model is used to forecast the volatility of a vector
of financial data from the volatility of a set of ICs. Finally, we relate the GICA-GARCH model
to other factor GARCH models. In particular, we show that the GICA-GARCH model can be
seen as a particular dynamic factor GARCH model.

3.1 The model

Empirical evidence reveals that financial assets cannot be predicted at short horizons, but it is
well known that we can forecast their conditional variance using a particular GARCH model
(Engel, 1982; Bollerslev, 1986). Therefore, we focus our analysis on forecasting the volatility
of the observed financial time series. Let us assume that xt is a linear combination of a set
of independent factors given by (1) . Financial time series are characterized by the presence
of clusters of volatility, and this implies that the unobserved factors will follow conditionally
heteroskedastic processes. We suppose that the vector of unobserved components, st, follows an
r-dimensional ARMA(p, q) model with GARCH (p′, q′) disturbances:

st =
p∑
i=1

Φist−i +
q∑
l=0

Θlet−l, (17)

where Φi = diag
(
φ

(1)
i , ..., φ

(r)
i

)
with |φ(j)

i | < 1 ∀j, Θl = diag
(
θ

(1)
l , ..., θ

(r)
l

)
with Θ0 = Ir and

|θ(j)
l | < 1 ∀j, and et is an r-dimensional vector of conditionally heteroskedastic errors given by:

et = H1/2
t εt, (18)

where εt ∼ iid (0, Ir) and H1/2
t = diag(

√
hjt) is an r × r positive definite diagonal matrix such

that

hjt = α
(j)
0 +

p′∑
i=1

α
(j)
i e2

jt−i +
q′∑
l=1

β
(j)
l hjt−l, for j = 1, .., r, (19)
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where hjt is a stationary process, independent of εjt, and it is the conditional variance of the
jth IC: hjt = V (ejt|It−1) = V (sjt|It−1) , where It−1 is the past information available until time
t − 1. In order to ensure a positive hjt > 0, ∀j, it is assumed that α(j)

0 > 0, α(j)
i ≥ 0, β(j)

i ≥ 0,
and

∑max(p′,q′)
i=1

(
α

(j)
i + β

(j)
i

)
< 1 (see Bollerslev, 1986).

From (1) , we have that the conditional covariance matrix of xt is:

Ωt = V (xt|It−1) = AHtA′, (20)

where Ht = diag(h1t, ..., hrt) is the r×r conditional covariance matrix of st at time time t. That
is, we can forecast the volatility of the stock returns from the predicted volatility of the com-
ponents. Note that we have assumed that Ht is diagonal, but the ICs are only unconditionally
independent. In order to guarantee the diagonality of Ht, we should assume that the conditional
correlations of the ICs are zero. This assumption allows us to achieve our purpose: estimating a
multivariate GARCH model from a small number of GARCH univariate models, and therefore,
reducing considerably the number of parameters to be estimated.

3.2 Identification of the factors

In practice, we separate the estimation of the factors from fitting their volatility models. First,
we apply ICA to identify the underlying independent components. Any of the previous ICA
algorithms standardizes the data as a preprocessing step, and solves the basic ICA model for
the normalized data, which is given by equation (5). Thus, JADE, FastICA, and SOBI will
estimate the loading matrix, that is orthogonal, and the m ICs, defined by equation (6) , (8) ,
and (9) , respectively. After estimating the model, we weight the ICs according to the procedure
explained in (2.2.4.): we sort the ICs in terms of their explained total variability and the first
few are the most important ICs. Hence, we split the vector of ICs as st = [s(1)

t s(2)
t ], where s(1)

t =
(s1t, . . . , srt)

′ are the r ICs, with r < m, which we choose to represent the data, and s(2)
t =

(sr+1t, . . . , smt)
′ are the m− r ICs which we consider as noise. From now on, we focus on the r

selected ICs and we fit an univariate ARMA(p, q) −GARCH(p′, q′) for each one of them. We
estimate the univariate volatility of each IC and generate the conditional covariance matrix of
s(1)
t , Ht. Finally, we get the conditional covariance matrix of the observed data from (20) and

its ith diagonal term, γ2
it =

∑r
j=1 hjta

2
ij , is the conditional variance of xit, for i = 1, 2, ...,m.

Note that the performance of the GICA-GARCH model depends on the method we apply to
estimate the ICs. We will investigate the usefulness of the three algorithms presented in section
2. Since we have seen that they use different estimation principles (JADE and FastICA non-
gaussianity, and SOBI dynamic uncorrelation) the performance of the algorithms is expected to
depend on the features of the data.

Financial data usually tend to exhibit fat-tailed distributions. The kurtosis coefficient is a
popular measure for the thickness of the tails and financial data have excess kurtosis. Fur-
thermore, they have small lagged autocorrelation coefficients. Then, it seems that JADE and
FastICA could work better for financial data than SOBI. On the other hand, when the data
have significant correlation structure, SOBI may be the most appropiated algorithm to estimate
the ICs.
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3.3 The GICA-GARCH model as a dynamic factor GARCH model

The GICA-GARCH model can be seen as a particular multivariate factor GARCH model where
the comovements of the data are driven by a small number of ICs. Suppose that in basic ICA
model, the r components of s(1)

t , with r < m, are the key factors describing the common behavior
of the financial markets, and the other m − r components, s(2)

t , are considered as noise in the
error term. That is, we can split the matrix A = [A1A2] accordingly and write

xt = A1s
(1)
t + nt, (21)

where nt = A2s
(2)
t is the error term. We assume that common factors are conditionally

heteroskedastic and evolve according to a univariate ARMA(p, q) − GARCH(p′, q′), that is,
s(1)
t |It−1 ∼ D(µt,Ht), where Ht is a diagonal r × r matrix containing the conditional variance

of the common components. From this formulation, the GICA-GARCH model is related to the
dynamic factor GARCH (Alessi et al., 2006). However, there are two main differences between
these two models. First, in the dynamic factor GARCH model, the heteroskedastic components
s(1)
t are assumed to be conditionally Gaussian and µt = 0, whereas in the GICA-GARCH they

can be non Gaussian, and they are allow to have a non zero conditional mean. Second, in the
dynamic factor GARCH model, the conditional variance of the observed data depends on the
common and idiosyncratic components, whereas in the GICA-GARCH the volatility of the data
is estimated from the volatilities of the common components. Note also that in the dynamic
factor GARCH model the covariance matrix of the noise is of full rank, whereas in the GICA-
GARCH it will have rank equal to m−r, but this assumption can be relaxed easily by assuming
an additional measurement noise so that the covariance matrix is a full rank matrix.

Moreover, the GICA-GARCH model given by (21) can be seen as a conditionally heteroskedas-
tic factor model (Diebold and Nerlove, 1989),

xt = A1s
(1)
t + ut,(

s(1)
t

ut

)
|It−1 ∼ D

{(
µt

0

)
,

(
Ht 0
0 Γ

)}

where ut is a m × 1 vector of idiosyncratic noises, which are conditionally orthogonal to s(1)
t ,

and Γ is an m × m positive definite matrix that represents the constant conditional idiosyn-
cratic variances. According to the conditionally heteroskedastic factor model, the conditional
covariance matrix of the data is Ωt = A1HtA

′
1 + Γ, and, in practice, it can be approximated as

Ωt = A1HtA
′
1, (22)

with an accuracy that depends on the number of common components, r, which are chosen.
Note that the approximation given by (22) is equivalent to the way we estimate the conditional
covariance matrix of xt according to the GICA-GARCH model. The main difference between
these two models is that, in the conditionally heteroskedastic factor model, the noise has a full
rank conditional covariance matrix, whereas in the GICA-GARCH model it will have rank equal
to m− r.

In summary, the GICA-GARCH model can be seen as a factor GARCH model with uncon-
ditionally independent factors, and offers a new approach for estimating multivariate GARCH
models as linear combination of several univariate GARCH models. It is also an extension of
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the (generalized) orthogonal GARCH model ((G)O-GARCH) (Alexander, 2001; van der Weide,
2002), that assumes only unconditionally uncorrelated factors. These models use a small number
of factors compared to the number of observed financial time series, and transform the problem
to estimate a multivariate GARCH model into a small number of univariate volatility models.
Furthermore, the GICA-GARCH model is related to the work proposed by Fan et al. (2008)
that models multivariate volatilities through conditionally uncorrelated components.

4 Simulation experiments

In this section, we present two simulation experiments to show the effectiveness of ICA versus
PCA with non linear data. First, we consider a set of non-linear factors without conditional
heteroskedasticity. Second, we consider factors which are conditionally heteroskedastic. In this
second experiment we allow for both zero conditional mean and dynamic non-linear components.
In order to analyze the performance of ICA and PCA we compute the correlation coefficient
between each original component and its estimation. Moreover, we compute the Euclidean

distance between the original and the estimated components as d(sj , ŝ
(·)
j ) =

√∑T
t=1

(
sjt − ŝ(·)

jt

)2
,

for j = 1, . . . , r, where ŝ(·)
jt is the jth estimated component by the corresponding method.

In the first simulation exercise, we generate 6 artificially time series of 528 observations which
are defined in Table 1.

Table 1: Definition of the original factors

s1t = 2(b t10c −
t

10) + 0.2n1t

s2t = 10I{t>(9+105b t
105
c)} + 6I{t≤(9+105b t

105
c)} + 0.01n2t

s3t = 70 sin(100πt−0.5) + 2 sin(240πt−0.5) + 0.4n3t

s4t = log(n3t)
s5t = − t2

2 exp(3 sin(2t)) + 0.1n5t

s6t = s6,t−12 + 0.2n6t

NOTE: nit ∼ N (0, 1) , ∀i, b·c is the nearest integer function, and I{·} is an indicator function

All these components with zero mean and unit variance are given in Figure 1. We generate a
6 × 6 random matrix, A, and we mix the original components according to (1). The resulting
time series vector, xt, is plotted in Figure 2.
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Figure 1: Original unobserved components
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Figure 2: Observed data

We apply ICA and PCA to compute the estimates Â and ŝ(·)
t . Figures 3 shows ŝ(·)

t obtained
in the four estimation methods and in the same order as the original ones. We conclude that
ICA seems to perform better than PCA to estimate the non-linear factors.
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(a) ŝP
t : Estimated factors obtained by PCA
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(b) ŝF
t : Estimated factors obtained by FastICA
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(c) ŝJ
t : Estimated factors obtained by JADE
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(d) ŝS
t :Estimated factors obtained by SOBI

Figure 3: Estimated factors using different procedures

In order to validate this intuition, Table 2 presents the correlation between the estimated and
generated components and we found that the correlations coefficients are higher for the ICs.
Furthermore, the Euclidean distance between the original components and the ICs is smaller
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than the one corresponding to PCs (see Table 3). Then, we conclude that ICA performs better
than PCA to separate non-linear factors without heteroskedasticity. All ICA algorithms have a
similar performance.

Table 2: Correlation coefficient between
the original and the estimated components

FAST JADE SOBI PCA

1st 0.996 0.998 0.997 0.733
2nd 0.999 0.999 0.989 0.687
3rd 0.994 0.965 0.998 0.576
4th 0.991 0.993 0.991 0.834
5th 0.989 0.995 0.986 0.862
6th 0.994 0.988 0.998 0.653

Average 0.994 0.990 0.994 0.724

Table 3: Euclidean distance between the
original and the estimated components

FAST JADE SOBI PCA

1st 1.991 1.519 1.664 16.782
2nd 0.886 0.628 3.416 18.160
3rd 2.510 6.090 1.345 21.131
4th 3.095 2.640 3.125 13.230
5th 3.454 2.404 3.896 12.072
6th 2.523 3.531 1.589 19.130

Average 2.410 2.802 2.506 16.751

In the first part of the second experiment, we generate components which have constant
conditional mean but they are conditionally heteroskedastic. We generate six components of 1000
observations: three of them are gaussian random noises, and the other three are conditionally
heteroskedastic processes defined in Table 4.

Table 4: Definition of the original factors

s̆1t =
√
h1tε1t; where h1t = 0.2 + 0.7s̆2

1t−1,

s̆2t =
√
h2tε2t; where h2t = 0.021 + 0.073s̆2

2t−1 + 0.906h2t−1,

s̆3t =
√
h3tε3t; where h3t = 1.692 + 0.245s̆2

3t−1 + 0.337h3t−1 + 0.310h3t−2,

NOTE: εjt is a random noise with zero-mean and unit variance, and it is independent of hjt, ∀ j = 1, 2, 3

We standardize the components to satisfy the requirements of ICA, and we plot them in
Figure 4. Next, we generate a 6 × 6 random matrix, A, and we compute xt (see Figure 5)
according to (1) .
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Figure 4: Original unobserved components
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Figure 5: Observed data

We apply ICA and PCA to estimate the components, and compute the correlation coefficient
and the Euclidean distances between s̆jt and ̂̆s(·)

jt , for j = 1, . . . , 6. Looking at the results, which
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are shown in Tables 5 and 6 respectively, we conclude that the fitting of the ICs to the original
components is better than the one corresponding to PCA. However, in this case SOBI performs
worse than FastICA and JADE. This is to be expected as heteroskedastic processes have excess
kurtosis and small autocorrelation coefficients.

Table 5: Correlation coefficient between
the original and the estimated components

FAST JADE SOBI PCA

1st 0.985 0.995 0.907 0.778
2nd 0.993 0.992 0.747 0.750
3rd 0.934 0.928 0.838 0.708
4th 0.821 0.942 0.753 0.707
5th 0.869 0.909 0.637 0.530
6th 0.715 0.847 0.624 0.623

Average 0.886 0.934 0.751 0.683

Table 6: Euclidean distance between the
original and the estimated components

FAST JADE SOBI PCA

1st 5.521 5.505 13.637 21.056
2nd 3.777 4.080 22.476 22.358
3rd 11.484 12.004 18.015 24.175
4th 18.920 10.736 22.210 24.181
5th 16.214 13.500 26.950 30.630
6th 23.872 17.472 27.410 27.450

Average 13.298 10.549 21.783 24.975

In the second part of this experiment we make a mixture of the previous st and s̆t and have
components that are both non-linear and conditionally heteroskedastic. We consider six time
series of 1000 observations. Three of them are zero-mean and unit variance random noises, and
the others are generated as:

s̃1t = s2t + s̆1t s̃2t = s3t + s̆3t s̃3t = s6t + s̆2t

where sjt, for j = 2, 3, 6, is defined in Table 1, and s̆it, for i = 1, 2, 3, is defined in Table 2.
The standardized components and the observed data set given by (1) , where A is randomly
generated, are shown in Figures 6 and 7.
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Figure 6: Original unobserved components
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Figure 7: Observed data

Figure 8 shows the estimated components by ICA and PCA, and again ICA performs better
than PCA, specially for the non-noisy components.

Since the components are now heteroskedastic and also have a non-linear conditional mean,
SOBI performs as well as, or even better than, FastICA and JADE. The correlation coefficients
(Table 7) and the Euclidean distances (Table 8) between the original and the estimated compo-
nents, confirm our visual results. In fact, according to the average results, SOBI has the best
performance for non-linear and conditionally heteroskedastic components.
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t : Estimated factors obtained by JADE
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(d) ŝS
t : Estimated factors obtained by SOBI

Figure 8: Estimated unobserved components using different procedures

Table 7: Correlation coefficient between
the original and the estimated components

FAST JADE SOBI PCA

1st 0.988 0.996 0.998 0.602
2nd 0.991 0.998 0.999 0.536
3rd 0.966 0.983 0.990 0.650
4th 0.931 0.633 0.871 0.447
5th 0.827 0.731 0.965 0.626
6th 0.746 0.755 0.827 0.737

Average 0.908 0.849 0.942 0.600

Table 8: Euclidean distance between the
original and the estimated components

FAST JADE SOBI PCA

1st 4.839 2.812 1.771 28.197
2nd 4.238 2.151 0.995 30.457
3rd 8.222 5.788 4.530 26.446
4th 11.779 27.098 16.035 33.227
5th 18.586 23.210 8.313 27.343
6th 22.543 22.122 18.611 22.937

Average 11.701 13.863 8.376 28.101

From these simulations, we conclude that, under non-gaussian data, ICA recovers the com-
ponents better than PCA. The performance of the three ICA algorithms is as expected: SOBI
is better than JADE or FastICA if the components have dynamics in the mean, both when the
components are heteroskedastic and when they are not. Furthermore, when the components are
conditionally heteroskedastic with constant conditional mean JADE and FastICA perform well,
whereas SOBI is similar to PCA. This is not a surprising result because the SOBI components
are the rotation of the PCs that diagonalize a set of time delayed covariance matrices, and the
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conditionally heteroskedastic components are not time dependent.

5 Empirical application

In this section we apply our procedure to a real dataset of stock returns. First, we describe the
data used; second, we explain the procedure to estimate the components; and third, we present
the results of using ICs and PCs to forecast the volatility of the stock returns.

We use daily closing prices from the Madrid stock market. The data are from the 19 assets
which were always included in the IBEX 35 from 2000 to 20041. The IBEX 35 index is the
main stock market index of the Bolsa de Madrid. Its composition is revised twice a year and
it comprises the 35 companies with the largest trading volume of the Madrid stock exchange.
We apply some preprocessing steps to the data. First of all, we transform daily closing prices
to daily stock returns to achieve stationarity. The daily stock returns of the ith company are
computed as:

rit = log (pit+1)− log (pit) , i = 1, ..., 19, (23)

where pit is the daily closing price of the ith asset at time t. Then, we have a 19 × 1250
multivariate vector of stock returns, which is denoted by rt, whose columns are the value of
these 19 stocks in the 1250 trading days in the period 2000-2004. There are some extreme
observations that correspond to outliers, which are due to well know changes, such as stock
splits or other legal changes. Finally, after the outliers have been removed, we also remove the
mean from the stocks returns, xt = rt − E[rt], and these 19 preprocessed daily stock returns
time series are shown in Figure 9.

0 200 400 600 800 1000 1200
−0.2

−0.1

0

0.1

0.2

Figure 9: Series of daily stock returns from 2000 to 2004 (without outliers)

We compute the kurtosis coefficients of xt and the results are displayed in Table 9. The
distribution of daily stock returns is leptokurtic, that is, they are far away from gaussianity.

1The 19 stocks are listed in the Appendix.
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Table 9: Kurtosis coefficients of the transformed daily stock returns

ACS ACX ALT AMS ANA BBVA BKT ELE

5.3619 4.8558 5.9571 5.3303 5.8949 4.7493 5.9641 5.4053
FCC FER IBE IDR NHH POP REP SAN

5.0625 4.6196 5.3139 4.8257 4.776 4.9358 4.9307 5.0546
SGC TEF TPI
4.8686 4.0998 5.5625

The 19 unobserved factors are estimated using both PCA and ICA and they are sorted in
terms of the explained total variance. The results are displayed in Table 10.

Table 10: Sorted components in terms of their explained variability

PCA %PCA FAST %Fast JADE %JADE SOBI %SOBI

ŝP
1t 35.30 ŝF

1t 17.72 ŝJ
1t 11.75 ŝS

1t 11.13

ŝP
2t 7.00 ŝF

2t 10.22 ŝJ
2t 7.29 ŝS

2t 9.65

ŝP
3t 5.91 ŝF

3t 6.40 ŝJ
3t 6.48 ŝS

3t 9.16

ŝP
4t 4.78 ŝF

4t 5.92 ŝJ
4t 6.36 ŝS

4t 8.15

ŝP
5t 4.73 ŝF

5t 5.76 ŝJ
5t 6.17 ŝS

5t 7.52

ŝP
6t 4.35 ŝF

6t 4.89 ŝJ
6t 5.70 ŝS

6t 5.42

ŝP
7t 4.24 ŝF

7t 4.65 ŝJ
7t 5.61 ŝS

7t 5.23

ŝP
8t 4.04 ŝF

8t 4.62 ŝJ
8t 5.52 ŝS

8t 4.37

ŝP
9t 3.62 ŝF

9t 4.43 ŝJ
9t 5.20 ŝS

9t 4.11

ŝP
10t 3.60 ŝF

10t 4.15 ŝJ
10t 5.16 ŝS

10t 4.00

ŝP
11t 3.31 ŝF

11t 3.86 ŝJ
11t 5.12 ŝS

11t 3.83

ŝP
12t 3.13 ŝF

12t 3.85 ŝJ
12t 4.74 ŝS

12t 3.73

ŝP
13t 3.03 ŝF

13t 3.69 ŝJ
13t 4.01 ŝS

13t 3.57

ŝP
14t 2.86 ŝF

14t 3.67 ŝJ
14t 3.85 ŝS

14t 3.57

ŝP
15t 2.66 ŝF

15t 3.56 ŝJ
15t 3.84 ŝS

15t 3.57

ŝP
16t 2.56 ŝF

16t 3.47 ŝJ
16t 3.76 ŝS

16t 3.42

ŝP
17t 2.21 ŝF

17t 3.26 ŝJ
17t 3.51 ŝS

17t 3.26

ŝP
18t 1.71 ŝF

18t 2.97 ŝJ
18t 3.41 ŝS

18t 3.22

ŝP
19t 0.93 ŝF

19t 2.89 ŝJ
19t 2.51 ŝS

19t 3.10

1.00 1.00 1.00 1.00

We use Figure 10, that shows the explained variability by the components estimated by the
four algorithms, to decide the optimal number of components for each method. The results
are given in Table 11, that also includes the absolute explained variability by the r selected
components.

Table 11: Number of unobserved components and percentage of total explained variability

PCA FAST JADE SOBI

r 1 2 2 5
% variability 35.30 27.95 19.04 45.62

We are interested in investigating which assets are more important to define each component.
From (2) , {ŝit}19

i=1 can be written as a linear combination of the stock returns, ŝit =
∑19

j=1wijxjt,

where wij represents the effect of the jth stock returns on the ith component, and the largest
weights correspond to the most important assets. The ICs and the PCs have different interpre-
tation. For example, if we focus on the first component, we have that, on one hand, the first PC
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Figure 10: Explained total variability by the components.

can be seen as a weighted mean of the 19 daily stock returns time series, it is an index of the
market. Indeed, if we plot the variation of variability of the first PC and the IBEX 35 index,
considering groups of ten observations, it is clear that the first PC reflects the main movements
of the index IBEX 35 (see Figure 11). Then, if we forecast the volatility of xt from the volatility
of the first PC, the 19 stock returns will tend to move together.
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Figure 11: Variation of variability of ŝP
1t and the IBEX 35 index

On the other hand, the first ICs cannot be seen as indexes of the market. They are mainly
associated with electricity, building industries, and banking2, and separate the stock returns in
terms of the individual explained variability, {νi1}19

i=1 (see (15)). As an example, we analyze the
first FastICA, ŝF1t. In Figure 12, that shows the variation of variability of ŝF1t and the largest
weighted assets on ŝF1t, we see that all assets present a cluster of high variability from observation
600 to 750. The assets which are positively weighted only have this period of higher variability,
but the negative ones are also volatile at the beginning of the sample.

The forecasting performance of our model is checked as follows:

1. We estimate A and the unobserved components, by ICA and PCA, using the whole sample.
Then, the components are sorted and r is fixed.

2The sectorial economic classification is detailed in the Appendix.
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Figure 12: Variation of variability of ŝF
1t and the stock returns with the largest weights: a) on the left,

the positive ones; b) on the right, the negative ones.

2. Using the whole sample, we fit an ARMA(p, q) with GARCH(p′, q′) disturbances for each
component ŝjt, with j = 1, ..., r.

3. We estimate the parameters of the ARMA(p, q)-GARCH(p′, q′) model with a sample of
1000 observations. Then, we generate the one-step-ahead forecast for the volatility of each
ŝjt,

ĥj,1001|1000 = V [ŝj1001|I1000] , j = 1, ..., r. (24)

Thus, by rolling prediction for t = 1001, ..., 1250, we have:

Ĥt|1000 = diag(ĥ1,t|1000, ..., ĥr,t|1000), t = 1001, ..., 1250, (25)

which is the conditional covariance matrix of ŝt = (ŝ1t, ..., ŝrt)
′ at time t.

4. According to (20), we compute the conditional variance of xt at time t, Ωt, and the
conditional variance of xi at time t is given by the ith diagonal term of Ωt,

γ̂2
i,t|1000 =

r∑
j=1

ĥj,t|1000a
2
ij , i = 1, 2, ..., 19, t = 1001, ..., 1250. (26)

Then, we forecast the conditional variance of the stock returns from the predicted volatility
of the unobserved components.

5. To evaluate the forecasting performance of GICA-GARCH and O-GARCH models, we
need to compare the predicted volatility with respect to the real one. However, volatility
cannot be observed. Following Franses and van Dijk (1996), we measure the ‘true volatility’
of the ith stock return at time t by:

υit = (xit − xi)2 , i = 1, ..., 19, t = 1001, ..., 1250, (27)

where xi is the average return of xi over the last 1000 observations. Then, the one-step-
ahead forecast error is given by:

εit = υit − γ̂2
i,t|1000, i = 1, 2, ..., 19, t = 1001, ..., 1250. (28)
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6. To evaluate the accuracy of the model we divide the prediction error (28) by some al-
ternative benchmark. This benchmark is obtained using another standard method of
forecasting. Let us assume that the benchmark method predicts the volatility of the stock
returns by their marginal variance. Then, we define the relative ratio as:

REit =
εit
ε∗it
, i = 1, 2, ..., 19, t = 1001, ..., 1250, (29)

where ε∗it is the forecast error of the ith stock return obtained by the benchmark method.
That is,

ε∗it = υit − σ̂2
i , i = 1, 2, ..., 19, t = 1001, ..., 1250. (30)

where σ̂2
i is the marginal variance of the ith stock return at time t. To minimize the impact

of outliers when we analyze the volatility forecasting performance of GICA-GARCH and
O-GARCH models, we use the Median Relative Absolute Error (MdRAE) criteria3:

MdRAE(REit) = median(|REit|)

Instead of using relative errors, we can use the relative measures by computing the ratio
of the corresponding measure for the ICA method to respect the PCA one:

RelMdRAE =
MdRAEICA
MdRAEPCA

(31)

In order to analyze the effect of increasing the number of components, we vary r from 1 to
5 to evaluate the forecasting performance of the model. The results are displayed in Table 12.
For each forecast model, this table shows the mean average of the RelMdRAE measured over
the 19 stock returns.

Table 12: Mean average of the RelMdRAE measured over the 19 stock returns

Number of Components (r) FAST JADE SOBI PCA

1 0.767 0.774 0.741 1
2 0.824 0.800 0.760 1
3 0.743 0.711 0.686 1
4 0.708 0.667 0.678 1
5 0.735 0.708 0.690 1

From Table 12, we conclude that the forecasting performance of GICA-GARCH model is
better than the corresponding to O-GARCH one, independently of the ICA algorithms we use
and of the number of factors we consider. SOBI gives the best forecasting overall results except
when r = 4. However, note that for r = 4 the differences between JADE and SOBI are not
significant. Results are specially surprising when r = 1. Remember that PCA considers only
one component as the optimal number of factors, and its explained variability is higher than the
corresponding to the first ICs. One would expect that, when r = 1, PCA would show the best
forecasting performance, but this is not so: any of the ICA algorithms performs better than
PCA. Note that because we are dealing with relative ratios, we cannot say anything about the
performance of each algorithm when the number of factors increases.

3See Hyndman and Koehler (2006) for a complete revision of measures of forecast accuracy.
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Evaluating the forecasting performance of the model using the Relative Geometric Mean
Relative Absolute Error (RelGMRAE) gives similar results which are available from the authors
upon request.

6 Concluding remarks

We have proposed a new framework for modelling multivariate volatilities. We have introduced
the GICA-GARCH model that can be seen as an extension of the orthogonal factor GARCH
models. The GICA-GARCH model assumes that the comovements of a vector of financial data
are driven a few independent components which are estimated by ICA. The GICA-GARCH
model allows to estimate a multivariate GARCH model using a small number of independent
and conditionally heteroskedastic factors, which evolve according to univariate GARCH models.
Then, our model gives a parsimonious representation of the data, and reduces the number of
parameters to be estimated. Interestingly, the GICA-GARCH model can also be seen as a
particular dynamic factor GARCH model. Note, however, that while in the dynamic factor
GARCH model the covariance matrix of the noise is of full rank, the GICA-GARCH will have
rank equal to m − r. Nevertheless, this assumption can be relaxed easily by assuming an
additional measurement noise so that the covariance matrix is of full rank.

In this paper, we have used three ICA algorithms for estimating the ICs. Their performance
have been tested on some simulation experiments, and we conclude that in all cases ICA methods
performs better than PCA to estimate non-linear and/or heteroskedastic components. However,
the results among the different ICA algorithms are mixed. For non-linear factors (conditionally
heteroskedastic or not), all work well but when the factors are conditionally heteroskedastic and
do not have dynamics in the mean, SOBI performs worse than both JADE and FastICA.

The GICA-GARCH seems to work better for forecasting the volatility of the financial stock
returns than the O-GARCH model.

In the future, we intend to design an alternative procedure to sort the ICs and to choose
the optimal number of factors. Also, comparing the forecasting performance of our model with
other multivariate GARCH and extending the GICA-GARCH model to other applications, may
be challenges for the future.
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Appendix

Components of the IBEX 35 from 2000 to 2004 classified by sectors

Consumption

Other goods of consumption ALT Altadis

Consumption services

Leisure time / Tourism / Hotel industry AMS Amadeus

NHH NH Hoteles

Mass media / Publicity SGC Sogecable

TPI Telefónica Publicidad e Información

Financial Services / Estate Agencies

Banking BBVA Banco Bilbao Vizcaya Argentaria

BKT Bankinter

POP Banco Popular

SAN Banco Santander Central Hispano(∗)

Oil and Energy

Oil REP Repsol

Electricity and Gas ELE Endesa

IBE Iberdrola

Materials / Industry / Building

Minerals / Metals ACX Acerinos

Building ACS Grupo ACS

ANA Acciona

FCC Fomento de Construcciones y Contratas S.A.

FER Grupo Ferrovial

Technology / Telecommunications

Telecommunications and others TEF Telefónica

Electronic and Software TPI Indra
(∗)From 01/01/2000 to 31/10/2001, its name was SCH.
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Univariate GARCH models: Specification chosen for the components in the four estima-
tion methods.

PCA FastICA

sP
1t ∼ GARCH(1, 1) sF

1t ∼ GARCH(1, 1)

sP
2t ∼ AR(1) +GARCH(1, 1) sF

2t ∼ AR(2) +GARCH(1, 1)

sP
3t ∼ AR(1) +GARCH(1, 1) sF

3t ∼ GARCH(1, 1)

sP
4t ∼ AR(2) +ARCH(1) sF

4t ∼ GARCH(2, 2)

sP
5t ∼ GARCH(1, 1) sF

5t ∼ AR(1) +GARCH(1, 1)

JADE SOBI

sJ
1t ∼ GARCH(1, 1) sS

1t ∼MA(1) +GARCH(1, 1)

sJ
2t ∼ ARCH(1, 1) sS

2t ∼ ARMA(1, 1) +GARCH(1, 1)

sJ
3t ∼ ARMA(1, 1) +GARCH(1, 1) sS

3t ∼ GARCH(1, 1)

sJ
4t ∼ GARCH(1, 1) sS

4t ∼MA(1) +GARCH(1, 1)

sJ
5t ∼ GARCH(1, 1) sS

5t ∼ AR(1) +GARCH(1, 1)


