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Abstract 

This paper looks at projections for the Spanish population by sex and age for the 

period of 2005 to 2050. These were carried out using forecasts for birth and 

mortality rates, and migration. These rates are calculated using two main sources of 

information. First, a multivariate time series model was applied for the series of 

variables from the 1970 to 2001 period. Second a model was estimated for life 

expectancy and for a synthetic fertility index. Both sources of information were 

combined to obtain the forecasts for the rates. Immigration rates are predicted by 

assuming three possible scenarios based on the maximum proportion that 

immigrants will represent in the Spanish population. With these variables a 

structure of ages and sex for the Spanish population is estimated using a cohort 

component model. 
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1 Introduction.

Studies on population forecasts are a high priority for national statistical organizations (in

Spain, the National Statistical Institute (NSI)) or international organizations such as the

United Nations or the World Bank. Population projections differ by geographic area, time

horizons and type of use. Thus, for example, in regions, communities or autonomous states,

forecast horizons to the nearest decade are usually used (see, IEA (1995) and IECM (2004))

whereas in projections on a national level the horizons are extended to several decades (see

Garćıa-Ferrer and del Hoyo (1991), USCB (2000), INE (2001, 2004) and Hyndman and

Booth (2008)). On the other hand, the demand for these types of long term projections is

quite diverse: human resource planning; energy resource planning; health and pension system

planning. This last element in particular has been widely studied in the Spain (see Herce et

al (1995, 1996), Diez (2000), Jimeno (2002) and Ahn et al (2005) among others), mainly in

relation to the hypothesis that the decrease in fertility and increase in life expectancy will

lead to a reduction in the active population which must support the cost of Social Security

benefits.

One aspect which has been less studied is that of population forecasting in different ed-

ucational cycles. One study which focused on this area was carried out by the Statistical

Institute of Andalusia (Spain) for the period of 1998 - 2016 (see INE (2000)). Recently,

Alonso-Meseguer and Sosvilla-Rivero (2004) looked at the gross enrolment rate and car-

ried out projections until the year 2050 on registration and educational system expenses

under different scenarios of migration flow and the integration of immigrant populations.

These scenarios are based on different hypotheses of the volume of future migratory flow

which were done by the National Statistical Institute in its revision of Spanish population

forecasts, using the 2001 Census. Alonso et al (2007) provided the demand projections for

Spain’s official educational stages in period 2005 - 2050.

The population forecasts can be obtained using a wide range of procedures and models:

the cohort component method; aggregate time series analysis; micro simulation; structural
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models and functional data modelling (see Booth (2006) for a review on stochastic popu-

lation forecasting). In this work a cohort component method and time series analysis were

combined as proposed by Lee and Tuljapurkar (1994), and shown by Keilman et al (2002)

and Wilson and Bell (2004) for the United States, Norway and Australia respectively. Specif-

ically, we use a dynamic factor model similar to that proposed by Lee and Carter (1992) and

Lee and Tuljapurkar (1994), but with the introduction of restrictions in the common factor

in order to model the mortality and fertility rates by age groups. The component method

requires the establishment of future paths for the three basic components of the population

changes: mortality, fertility and migration. The prediction of these components is based on

the sieve bootstrap procedure proposed by Alonso et al (2002, 2004). A major advantage of

this combined approach is that we obtain distribution functions of the forecasts for mortality

and fertility rates for each single age and sex. Regarding net migration rates, we center our

attention in immigration and we propose an analysis of immigration using different growth

models. Using these models gives us future growth of the immigrant population if we make

assumptions regarding the upper bounds in the percentage of immigrants out of the total

population.

The rest of this paper is divided into four sections. Section 2 presents the projection

methodology of the populations by single-year age and sex. In Section 3 this methodology is

applied to the Spanish data for period 1970 - 2001. Also forecasts for mortality, fertility and

migration rates are generated from 2005 to 2050. Finally, Section 4 describes the results of

the population projections and compares them to those published by the Spanish National

Statistical Institute (INE, 2004).

2 General Forecasting Methodology

2.1 Introduction

The cohort component method is widely used by official organisms for population projec-

tions. This method is based on dividing initial population numbers into cohorts defined by
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age and sex, and on updating each new population period for each age and sex group keeping

in mind the components of the demographic change: fertility, mortality and migration. The

following system of equations defines the cohort component method:

P
(s)
0,t = B

(s)
t −D

(s)
0,t + M

(s)
0,t ,

P
(s)
e,t = P

(s)
e−1,t−1 −D

(s)
e,t + M

(s)
e,t , with e ∈ {1, 2, . . . , emax},

(1)

where P denotes the population at time t, B, D and M denote births, deaths and net

migration in the period (t−1, t), respectively; e denotes age and s denotes sex and takes the

values F, M, i.e. female and male. This system is completed with the following equations

for the components of fertility, mortality and net migration:

B
(s)
t =

∑
e FR

(s)
e,t P

(F )
e,t−1, with e ∈ {< 15, 15, . . . , 49,≥ 50},

D
(s)
e,t = MRe,t(s)P

(s)
e,t−1,

M
(s)
e,t = Ie,t(s)− ERe,t(s)P

(s)
e,t−1,

(2)

where I, FR, MR, and ER denote the immigration and the rates of fertility, mortality and

emigration, respectively.

In order for the system (1) - (2) to provide population forecasts by age and sex it is

necessary to have the future values of fertility, mortality and immigration rates, as well as

the number of immigrants by age and sex. There are two principal sources of information for

these rates. The first is historic information on specific rates, and the second is information

about aggregates obtained from those rates. We will analyze the use of both these sources

below.

It is possible to model and directly project each specific rate individually, but as Gutiérrez

de Mesa (2003) points out, “absurd” results can appear because of the dependence of the

synthetic indices in the specific rates. Nevertheless, direct estimation implies the modelling

of hundreds of time series which, in general, are not independent.

One method for predicting mortality curves is that proposed by Heligman and Pollard
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(1980). These authors use models of mortality curves by ages, such as the following:

MRe = A
(e+Bt)Ct

t + Dt exp
(
−Et(ln e− ln Ft)

2
)

+
GtH

e
t

1 + GtHe
y

, (3)

where At, Bt, Ct, Dt, Et, Ft, Gt and Ht are the parameters to be estimated. The parameters

are adjusted so that life expectancies are similar to those being projected. This method is

used by IECM (2004) for the Madrid Autonomous Community.

An alternative to direct projection of mortality rates by age is to obtain time series models

for the eight parameters of the mortality curve from Heligman and Pollard which were

estimated previously in the available years. We see that this methodology reduces the number

of time series to be analyzed, from 86 series (in our case) per sex to only eight series. Using

ARIMA models, McNown and Rogers (1989) carried out mortality projections in the United

States to the year 2000. Felipe et al (2002) used a similar procedure to model changes in

mortality in Spain between 1973 and 1993, and carried out projections for the period 1994

- 2010.

Finally, a method which considers the dependence between the time series proposed by

Lee and Carter (1992) is to relate mortality rates by age to a single non-observable factor:

ln(MR
(s)
e,t ) = a(s)

e + b(s)
e k

(s)
t + ε

(s)
e,t ,

k
(s)
t = c(s) + k

(s)
t−1 + η

(s)
t ,

(4)

where a(s)
e and b(s)

e are parameters which depend on age, e; k
(s)
t is the non-observable factor

which includes the general characteristics of mortality in year t and is called the mortality

index, and ε
(s)
e,t is the error term and includes the characteristics pertaining to each age e

which are not picked up by the model. The second equation in (4) establishes that the factor

kt follows an ARIMA(0, 1, 0) with a non-null constant. Recently, Hyndman and Booth (2008)

proposes a functional version of Lee-Carter approach and they obtain mortality, fertility and

migration forecasts for Australia.

Both with McNown and Roger’s (1989) procedure as well as with that of Lee and Carter

(1992) it is possible to construct prediction intervals for the mortality rates using the rela-
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tionship between these rates and the forecast distributions of the parameters of Heligman

and Pollard’s curve or of the mortality factor, respectively.

As in the case of mortality rates, a factorial model can be written for fertility rates (see

Lee and Tuljapurkar (1994)):

FR
(s)
e,t = c(s)

e + d(s)
e f

(s)
t + υ

(s)
e,t ,

f
(s)
t = f

(s)
0 + φf

(s)
t−1 + ν

(s)
t + θ(s)ν

(s)
t−1,

(5)

where c(s)
e and d(s)

e are parameters which depend on age, e; f
(s)
t is the non-observable factor

which includes general characteristics of fertility in year t and is called the fertility index,

and υ
(s)
e,t is the error term which, as before, includes the characteristics pertaining to each age

e which are not captured by the model. In this case, the superscript s refers to the fertility

rate of male or female offspring. The second equation in (5) establishes that the factor f
(s)
t

follows the ARMA (1,1) model with a non-null constant. In Lee and Tuljapurkar (1994), in

the second equation the value of the constant is set so that the mean value of the synthetic

fertility index, c + E[ft] is equal to 2.1, where c =
∑

e ce.

The second source of data is that of synthetic indices associated with each type of rate.

In this case the indices are modelled and specific rates are obtained indirectly. With mor-

tality rates, for example, some authors have proposed projecting female life expectancy by

specifying a value for the last year of the forecasting horizon. For the remaining years an

interpolation based on the logistic function was used. This procedure is the one used in the

projections carried out by the Statistical Institute of Andalusia (IEA, 1995) and the Madrid

Autonomous Community (IECM, 2004), where the values 84.0 in 2025 and 86.3 were estab-

lished as the upper “bound” for female life expectancy. In both studies, male life expectancy

was handled using an adjustment which takes into account the higher male mortality rate.

Establishing an upper bound for life expectancy is no simple matter. We take, for example,

the predictions for life expectancy in women for the year 2025 which were carried out by the

National Statistical Institute: 85.44 in “Proyecciones de población calculadas a partir del

Censo de Población de 1991. Evaluación y Revisión” (Population Forecasts taken from the
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1991 Census: Evaluation and Review) published in 2001 and which used available data until

1996; and 86.48 in “Proyecciones de población calculadas a partir del Censo de Población de

2001” (Population Forecasts taken from the 2001 Census: Evaluation and Review) published

in 2004. In these publications it is assumed that life expectancy will remain constant from

2026 and from 2031, respectively. There is no consensus in the demographic literature either

on biological limits which influence the aging process itself. These elements are the principal

reason for the methodology which we propose in Section 3 due to uncertainty about the

value of this limit.

In the case of fertility rates by single-year ages, the forecast of the synthetic fertility

index was used: SFIt =
∑

e FRe which is complemented by the projection of mean age of

the woman at time of children’s birth, MAFt, and its variability, V AFt. Subsequently a

theoretical model was used for the fertility curve. Specifically, in the IEA (1995) and IECM

(2004) a gamma type function was used:

FRe,t =
AtB

Ct
t (e− 15)Ct−1 exp(−Bt(e− 15))

Γ(Ct)
, (6)

where At = SFUt, B = MAFt

V AFt
and C =

MAF 2
t

V AFt
.

Finally, we would like to point out that a weakness in the usual forecasting methods is

that they use a single future path commonly interpreted as the mean or most “likely”.

Frequently, official organisms establish other future scenarios for fertility, mortality and

migration around these mean values. Generally, between three and seven scenarios are re-

ported, with three being the most often used. The terms high, medium and low hypothesis

are commonly used in these cases (see, e.g., Lee and Tuljapurkar (1994)). There are several

inconveniences associated with this method of scenarios (see comments in Keilman et al

(2002)), for example, the “intervals” defined by the low and high hypotheses do not have

an error measurement associated with them. In the following sections we use a methodology

which allows us to resolve these inconveniences by modifying the procedures of Lee and

Carter (1992) and Lee and Tuljapurkar (1994).
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2.2 General Methodology for Forecasting Mortality and Fertility

In this section we develop a procedure for modelling life rates, separated into different

groups, which allows us to obtain the forecast distributions of the future values of these

rates for a pre-established horizon. Here we mention life rates in order to include both

mortality rates and fertility rates in the presentation, since as we will see in the proof, both

model (4) for mortality rates as well as model (5) for fertility rates, are special cases of the

dynamic factor model. This model has been studied by Geweke (1977), Peña and Box (1987),

Tiao and Tsay (1989), Gonzalo and Granger (1995) and Peña and Poncela (2004), among

others. Ortega and Poncela (2005) used this model for the analysis of Southern European

fertility rates. We also refer to rates in certain groups and in such cases we talk of groups

of individuals who share one or more characteristic such as same age and/or same sex. This

allows us to make a general formulation which in the next section will be specified for the

corresponding rates and groups.

2.2.1 Dynamic Factor Model

In this section we follow the presentation of the dynamic factor model carried out by

Peña and Poncela (2004). Let {yyyt}t∈Z be a vector series of dimension m, for example, male

mortality rates of m age groups. The dynamic factor model assumes that the components

of the vector series, yyyt, can be written as a linear combination of r common factors plus an

error term:

yyyt = PPP fff t + εεεt

m× 1 m× r r × 1 m× 1
, (7)

where fff t is the r-dimensional vector of common factors, PPP is the weight matrix of factors,

and εεεt is the specific factors vector or error term. Additionally, it is assumed that the vector

of common factors follows a VARIMA(p, d, q) model defined by:

ΦΦΦ(B) ft = ΘΘΘ(B) υυυt

r × r r × 1 r × r r × 1
, (8)
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where B is the backward shift operator, ΦΦΦ(B) = III−ΦΦΦ1B−· · ·−ΦΦΦpB
p and ΘΘΘ(B) = III−ΘΘΘ1B−

· · ·−ΘΘΘqB
q are polynomial matrices satisfying the roots of |ΦΦΦ(B)| = 0 and of |ΘΘΘ(B)| = 0 are

not found within the unit circle. We assume that the innovations υυυt are uncorrelated for all

lags, i.e., E(υυυtυυυ
′
t+h) = 000 for h 6= 0 and also they are non-correlated with the specific factors,

i.e., E(υυυtεεε
′
t+h) = 000 for all h. In Peña and Poncela (2004) it is supposed that the innovations

and specific factors are distributed as a Nm(000,ΣΣΣε) and Nr(000,ΣΣΣυ), respectively. In this paper

specific factors are allowed to follow stationary univariate models.

The factorial model defined by (7) and (8) is not identified since for any non-singular

matrix of dimension r×r it is possible to express the vector series, yyyt, as a new set of factors

and weights. Many restrictions have been proposed to solve the problem of identification,

e.g., ΣΣΣυ = III or PPP ′PPP = III (see, for example, Peña and Poncela (2004)) and PPP = [pi,j] with

pi,j = 0 for j > i (see Harvey (1989)). In this paper we use the restriction and assume that

the factors are orthogonal, i.e. f·,i ⊥ f·,j for i 6= j, as in Lee and Carter (1992) and Lee and

Tuljapurkar (1994).

2.2.2 Bootstrap Procedure for Forecasting

In this section we present a bootstrap procedure for constructing forecasting intervals

based on a modification of the procedure proposed by Alonso et al (2002, 2004).

(1) The factorial model defined by (7) is estimated using the singular values decomposition

as in Lee and Carter (1992). From this, the estimations for the r common factors

f̂ff t = (f̂t,1, f̂t,2, . . . , f̂t,r)
′ and the weight matrix P̂PP are obtained.

(2) The residuals of the factorial model are calculated:

ε̂εεt = ytytyt − P̂PP f̂ff t. (9)

(3) An AR(pe) model is chosen for ε̂εεe,· with e ∈ {1, 2, . . . , m}, using the BIC criteria. An

ARI (ps, ds) model is chosen for common factors with s ∈ {1, 2, . . . , r}. As a result we

obtain estimations of the autoregressive parameters, the order of differences, and the

residuals of the models AR and ARI.
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(4) The empirical distribution function is obtained for the centered residuals of the AR

and ARI models:

F̂ε̃e
(x) = (n− pe)

−1
n∑

t=pe+1

I (ε̃e,t ≤ x) , (10)

and

F̂υ̃s
(x) = (n− ps − ds)

−1
n∑

t=ps+ds+1

I (υ̃s,t ≤ x) , (11)

where ε̃e,t = ε̂e,t − ε̂ (·)
e and ε̂ (·)

e = (n − pe)
−1 ∑n

t=pe+1 ε̂e,t with e ∈ {1, 2, . . . , m}; υ̃s,t =

υ̂s,t − υ̂ (·)
s ; and υ̂ (·)

s = (n− ps − ds)
−1 ∑n

t=ps+ds+1 υ̂s,t with s ∈ {1, 2, . . . , r}
(5) A resample ε∗t of i.i.d. observation from F̂ε̃ and a resample υ∗t of i.i.d. observation from

F̂υ̃ were selected.

The following are the forecasting steps. The final pe and ds + ps observations are fixed

from the AR and ARI models, respectively.

(6) The future bootstrap observations are calculated for common and specific factors using

the relations:

ε∗e,T+h = −
pe∑

j=1

φ̂e,j(ε
∗
e,T+h−j − ε̄e) + ε∗e,T+h, (12)

and

f ∗s,T+h =
ps+ds∑

j=1

φ̂s,jf
∗
s,T+h−j + υ∗s,T+h, (13)

where h > 0, ε∗e,t = ε̂e,t for t ≤ T and f ∗s,t = f̂s,t for t ≤ T , with T being the last

available year.

(7) The future bootstrap observations are calculated for vector yyy using the relation:

yyy∗T+h = P̂PPfff ∗T+h + εεε∗T+h, (14)

where fff ∗T+h = (f ∗1,T+h, f
∗
2,T+h, . . . , f

∗
r,T+h)

′ and εεε∗T+h = (ε∗1,T+h, ε
∗
2,T+h, . . . , ε

∗
m,T+h)

′.

Finally, F ∗
y∗

s,T+h
, the bootstrap distribution function of y∗s,T+h is used as the estimator of

the conditional distribution of ys,T+h given the sample. As usual, the F̂ ∗
y∗s,T+h

estimation is

obtained by repeating B times the steps 5 to 7. A (1 − α)% forecast interval for ys,T+h is

the following:

[Q∗(α/2), Q∗(1− α/2)] , (15)
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where Q∗(·) = F̂ ∗−1
y∗

s,T+h
(·) are the quantiles of the estimated bootstrap distribution.

In the demographic data that we analyze in the following sections, we see that there is a

high correlation between the first factor of model (7) and a synthetic rate indicator, i.e. with

a function of yyyt. Specifically, in the case of mortality rates this correlation is given with the

life expectancy at birth, and in the case of fertility rates, with the synthetic fertility index.

This allows us to establish a simple model between the first factor, f1,t, and the synthetic

index, it:

f1,t = α0 + α1it + ιt, (16)

where ιt assumes that it follows an AR(pι) model. The previous model together with a

specific modelling of the synthetic index (which is found in sections 3.1.1. and 3.2.1 for life

expectancy at birth and synthetic fertility index, respectively) allow us to make forecasts

for future values of this factor.

3 Application of Spanish Data

3.1 Application of Spanish Data: Mortality

In this section we obtain the forecasts for mortality rates by age and sex for the Spanish

population using a dynamic factor model which utilizes the historical series of these rates in

Spain during the period 1970 to 2001. At first, the unifactorial model used by Lee and Carter

(1992) was considered, and its goodness of fit was analyzed for the Spanish data. Next, the

bifactorial model was considered. With both models we detected an effect of high male

mortality rates which some authors have attributed to deaths in traffic accidents or deaths

associated to AIDS (see, for example, Felipe et al (2002) and IECM (2004)). Both causes

have subsided in the last years of the available data; therefore for a long term projection

it is not desirable to introduce this transitory effect. Thus, we propose a procedure for

eliminating this effect from the forecasts (see detailed study in Alonso et al (2005)).

On the other hand, as with Lee and Carter (1992), we showed that the first factor of the

model for mortality rates is highly correlated with life expectancy at birth. This motivated
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the study of a model for life expectancy at birth in which we impose the existence of an

upper limit. Finally, the existing relationship between the first factor and life expectancy

allowed us to introduce restrictions in the forecasts of mortality rates by single-year ages

and sex.

3.1.1 Life Expectancy Analysis

In this section we propose a method for establishing an upper bound for life expectancy

or, more specifically, for establishing a distribution function for this bound. It is important

to point out the close relationship between life expectancy and the first factor of mortality;

the correlation between both is: -0.9855 in men and -0.9976 in women. This allows us to

establish restrictions on the mortality factor through restrictions on life expectancy. The

procedure is as follows:

• The following transformation is considered for life expectancy at birth, LEBt:

Yt,A = ln
LEBt

A− LEBt

, (17)

where A is the upper bound for life expectancy, which we assume in the interval A =

[76, 100] in men and A = [84, 105] in women. The lower bounds for these intervals take

into account the most recent available data. As opposed to the procedures described in

IEA (1995) and IECM (2004), no single value was set for A, instead, A is considered a

parameter of the model.

• For each value of parameter A, a different series, Yt,A, is obtained and a model ARIMA(p̂A,

1,0) is selected using the BIC criteria. Next, forecasts were carried out with this model

using a modification of the sieve bootstrap procedure proposed by Alonso et al (2004)

which allows for taking into account the uncertainty associated in the selection of p̂A.

• Forecasting the LEB is based on a combination of the forecasts of the Yt,A. Thus, the

distribution of future values for life expectancy are obtained using:

FLEBt+h
(x) =

∫

a∈A
FLEBt+h,a(x)fA|LEBLEBLEB(a) da, (18)
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where FLEBt+h,a(·) is the distribution function of LEBt+h calculated assuming that the

bound for life expectancy is a, and fA|LEBLEBLEB(·) is the density function of A conditional to

the observed sample, LEBLEBLEB.

Expression (18) is no more than a formulation of Bayesian Model Averaging with the

introduction of uncertainty regarding the two unknown elements in the model: A and p̂A.

Similar approach had been used in prediction using polynomial regression of unknown degree

(see Guttman et al. 2005) and using nonparametric regression (see Peña and Redondas,

2006). One advantage of this procedure is that it allows us to calculate the a posteriori

distribution of the upper bound of life expectancy and therefore (in light of available data)

the likelihood of the bounds used in others researches.

The use of the expression (18) with A taking values in an interval, is complex and in this

paper we propose a discretization of 0.5 years, thus, the distribution of future values of life

expectancy are obtained using:

FLEBt+h
(x) =

∑

a∈A
FLEBt+h,a(x) Pr{A = a|LEBLEBLEB}, (19)

where FLEBt+h,a(·) is the distribution function of LEBt+h calculated assuming that the

bound for life expectancy is a, and Pr{A = a|LEBLEBLEB} is the probability of A conditional to

the observed sample. This probability can be approximated using:

Pr{A = a|LEBLEBLEB} =
αa exp(−1/2BIC(a))∑

a∈A αa exp(−1/2BIC(a))
, (20)

where BIC(a) is the value of the BIC criteria in the model with bound a (see, Kass and

Raftery, 1995).

In Figure 1 we present the estimated distribution of the upper bounds of life expectancy

in men and women. We have used a circle to represent the a posteriori means of the bounds:

82.30 and 89.73, respectively. Figure 2 shows the prediction mean of life expectancy in men

and women. For example, for the years 2025 and 2050 the prediction mean are: 78.63 and

80.29 in men and 86.23 and 97.98 in women.
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Figure 1. A posteriori probability of the upper bounds of life expectancy.
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Figure 2. Forecasts using model averaging and the observed values in life expectancy at birth.

Spain 1950 - 2050.

In Figure 3 we present the fan chart (see Wallis, 1999) of the bootstrap distribution

of life expectancy forecasts. This method of representing uncertainty in forecasts is being

employed more and more by institutions which carry out macroeconomic forecasting. A fan

chart represents the forecast intervals of different levels. Specifically, in Figure 3 we represent

the intervals at 20%, 40%, 60%, 80% and 90%, in addition to the median of the forecasts.

First, we observe the asymmetry of these distributions; this element cannot be visualized
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when using intervals which are symmetric with respect to the mean of the predictions, as in

Keilman et al (2002) and Wilson and Bell (2004). Second, we can evaluate the assumptions

or projections carried out in earlier works. Thus, for example, the projections carried out

by the National Institute of Statistics (INE, 2004) fall in the 80% forecast interval for men

and 70% for women.

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
55
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65

70

75

80

85

90
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100

Median of life expectancy (males)
Median of life expectancy (females)

Figure 3. Fan chart using model averaging and the observed values of life expectancy at birth.

Spain 1950 - 2050.

3.1.2 Forecasts of Mortality Rates by Age and Sex

Once we have obtained the predictions for life expectancy at birth we can find the corre-

sponding predictions for mortality factors using model (16) and, using model (4) in which

we allow the errors or specific age factors, εe,t, to follow an AR(pεe) model, we obtain the

forecast densities for mortality rates by age. To illustrate this further, in Figures 4 and 5 we

show a fan chart and the forecast densities of mortality rates during the first year of life. In

both, a clear reduction is observed in mortality in this age group. In Figure 6 we present

the fan chart of the mortality curve for the years 2025 and 2050. The remaining ages and

years can be obtained using the routines developed in this paper and which are available

from the authors upon request.
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Figure 4. Fan chart using model averaging and the observed values of infant mortality rate. Spain

1970 - 2050.
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Figure 5. Forecast densities of infant mortality rates. Spain 2005 - 2050.
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Figure 6. Fan chart using model averaging of the mortality curve. Spain 2025 - 2050. Fan chart

using model averaging and the observed values of life expectancy at birth. Spain 1950 - 2050.

3.2 Application to Spanish Data: Fertility

In this section we obtain the projections for fertility rates by groups of age and sex for

the Spanish population using a dynamic factor model. The first model considered was a

unifactorial one used by Lee and Tuljapurkar (1994) and its goodness of fit was analyzed for

the Spanish data. Later on a bifactorial model was considered where bimodality was clearly

visible in the projections for fertility by ages.

On the other hand, we observed that the first common factor of the fertility rate model is

highly correlated with the synthetic fertility index. This motivated the study of a model for

this index similar to that proposed for life expectancy at birth. We also observed that the

factors f
(M)
t and f

(F )
t , as well as the weights, d(M)

e and d(F )
e have similar values. This suggests

a joint modelling of births for both sexes as in Lee and Tuljapurkar (1994). Nevertheless,

the relationship between the birth rate of males and females must be taken into account.

In most countries this rate is between 105 and 107 males for every 100 females, and later
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this rate is modified owing to differences in patterns of mortality and migration in men and

women. Finally, the existing relationship between the first factor and the synthetic index

allows us to introduce restrictions in the projections of fertility rates by single-year ages.

3.2.1 Model for the Synthetic Fertility Index

In the following we propose a model for the synthetic fertility index which allows the

distribution function of future values to be established. It is important to point out the

close relationship between the synthetic fertility index and the first factor of fertility; the

correlation is: 0.9737. This allows us to establish restrictions in the factor through the future

values of the synthetic fertility index using model (16).

Similar to what was done in the previous section, we propose a transformation of the

synthetic fertility index whose asymptotic behavior leads to an upper bound, B, of the

number of children per women (similar to expression (17)). If, in the case of mortality,

this bound can be explained by medical advances and the natural limits of the human

organism, then in the case of fertility we understand that this bound can be explained by

current socioeconomic conditions, the massive incorporation of women into the workforce

and, therefore the opportunity costs that women considering maternity must face. As in

the case of mortality we do not consider the bound as a single value but rather we assume

an interval where the bound takes values. Specifically, we assume that B takes values in

B ∈ [3, 8]. We have set the lower limit of this interval according to the maximum indices

reached during the years 1960 - 1970 and the upper limit according to the forecast intervals

in an unrestricted model.

Figure 7 shows the estimated distribution of the upper bound of the synthetic fertility

index. As in the above section we have used an interval discretization, specifically B =

[3.0, 3.25, . . . , 7.75, 8]. A circle was used to indicate the mean a posteriori of the bound:

3.430.

Figure 8 shows the forecasts mean of the synthetic fertility index. These forecasts take
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Figure 7. Probability and accumulated probability of the upper bound of the synthetic fertility

index.

into account the uncertainty associated to the upper bound. For example, for the years 2025

and 2050 the mean forecasts are: 1.484 and 1.509, respectively. We also confirm that the

forecasts tend towards an asymptote with a value nearing 1.510, slightly lower than the

forecasts of the INE (2004).

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
1

1.5

2

2.5

3

Synthetic fertility index
Forecasts of SFI

Figure 8. Forecasts using model averaging and the observed values of the synthetic fertility index.

Spain 1960 - 2050.

An alternative to the transformations of type (17) used to establish the bound of these
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indices is to impose restrictions on future trajectories of the index being studied in unre-

stricted models. For example, in Keilman et al (2002) for the SFI in Norway, the restriction

was that it belonged to a prefixed interval, [0.5, 4]. In Figure 9 we show the fan chart of

the bootstrap distribution for the synthetic fertility index forecast, imposing the restriction

that the trajectories during the entire forecast horizon be less than 5.5. Note that the value

5.5 corresponds to the 95% percentile of the distribution of the upper limit for the SFI

(see Figure 7). In the figure a slight recovery can be made out (in the central values of

the projection) in future fertility. Nevertheless, values below one child per women have a

considerable probability. Thus, for example, the probability that the SFI is below one child

per woman is slightly lower than 30% in 2025 and higher than 30% in 2050. On the other

hand, the probability of having fertility rates greater than or equal to the replacement level

(2.1, at the current mortality rate) is around 20% in 2025 and 30% in 2050.

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

4.25
Synthetic fertility index
Median of SFI

Figure 9. Fan chart using model averaging (with upper restricted trajectories) of the synthetic

fertility index. Spain 1960 - 2050.

However, we see that the values used by Keilman et al (2002) for the SFI in Norway have

a low probability in our case since (i) values lower than 0.5 have a probability below 5%

until 2030, 10% to 2040 and only slightly above 10% in 2050, and (ii) values above 4 have

a probability of less than 5% for almost the entire forecast horizon.
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3.2.2 Forecast of Fertility Rates by Age

Once we have obtained the projection distributions of the synthetic fertility index we can

obtain the corresponding distributions for the first factor of fertility using model (16). Then

using the factorial model, in which we permit the errors or age specific factors, εe,t, to follow

an AR(pεe) model, we obtain the forecast densities for fertility rates by age. To further

illustrate this point, in Figures 10 and 11 we depict a fan chart and the forecast densities

of fertility rates for ages 20 and 30. In both we can see a tendency towards recovery in the

central projections. Figure 12 depicts the fan chart of the fertility curve for the years 2025

and 2050 where, again, there is evidence of possible bimodality. The remaining ages and

years can be obtained using the routines developed in this paper and are available from the

authors upon request.
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Figure 10. Fan chart using model averaging and the observed values of fertility rates for ages 20

and 30. Spain 1975 - 2050.
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Figure 11. Forecast densities for ages 20 and 30 using model averaging of fertility rates. Spain 2005

- 2050.
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Figure 12. Fan chart using model averaging of the fertility curve. Spain 2025 - 2050.

3.3 Application to Spanish Data: Migrations

In this section we propose an evolutionary model of immigration in Spain for the next

50 years. This model picks up the sharp increase in the rate of immigrants over the last

decade and allows for the assumption that in the long term the percentage of immigrants

will stabilize, as has been the case in European countries with a longer history of taking in

immigrants. In the case of birth and death rates as well as with immigration, Spain is no
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different and should be studied within the European context. The majority of immigration

in Spain is of an economic nature; the type of immigration received both in Spain and the

European Union. Over the last several years, the flow of immigration to Spain has risen

sharply but it still remains below the European mean of 5.1%.

We propose to model the flow of immigration using the methodology shown in Section

3.1.1, carrying out a transformation in the series, which in this case would be the number

of immigrants INMt obtained in the permanent observatory of immigration maintained by

the Ministry of Labour and Social Services (Ministerio de Trabajo y Asuntos Sociales -

www.extranjeros.mir.es).

• The following transformation of the series of the number of immigrants, INMt is consid-

ered:

Yt,C = ln
INMt

C − INMt

, (21)

where C is the upper bound of number of immigrants.

In this first step, the key is to select the possible values of the parameter C. To do that,

we make three different assumptions having as a reference the percentage of immigrant

population in Europe:

• Assumption 1: C ∈ (4000000, 8000000) corresponds to a percentage of the immigrant

population in 2050 which will be between 8% and 15% of the Spanish population, based

on population projections carried out by the National Statistical Institute (INE, 2004).

• Assumption 2: C ∈ (4000000, 11000000) corresponds to a percentage of the immigrant

population in 2050 which will be between 8% and 20% of the Spanish population, based

on population projections carried out by the National Statistical Institute (INE, 2004).

• Assumption 3: C ∈ (4000000, 15000000) corresponds to a percentage of the immigrant

population in 2050 which will be between 8% and 28% of the Spanish population, based

on population projections carried out by the National Statistical Institute (INE, 2004).

The next two steps are similar to the methodology proposed in Section 3.1.1. Figure 13

shows the growth curves in immigration to the year 2050 under the three above mentioned

assumptions. Also incorporated into the graph is the future evolution of foreign immigration
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suggested by the NSI. A rapid rise is observed in the number of immigrants until 2015 in

assumption 1, until 2020 in assumption 2 and until 2025 in assumption 3. After this period

of rapid increase the number of immigrants will begin to stabilize at around 6, 8, and 10

million in each of the assumptions. This stabilization in the number of immigrants does not

imply that the rate of immigrant entry into the country will be zero but rather that the entry

will be one of replacement. We assume for simplicity’s sake in the model that the number

of new immigrants is similar to the number of deaths occurring among the immigrants the

year before.

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060
0

5000

10000

15000

Scenario 1
Scenario 2
Scenario 3
NSI       

Figure 13. Evolution of immigration for the assumptions and NSI.

4 Projections for the Spanish Population

In the previous section we obtained, using bootstrap methods, the future distributions

of the three demographic components which are basic for population forecasting using the

cohort component method defined by the equations (1) and (2). In this section we apply

this procedure in order to obtain projections of the Spanish population for the years 2005 to

2050. First we focus on the dynamic of certain aspects of the population, for example, total

number of inhabitants, percentage of certain age groups (0 - 15, 16 - 64 and over 65) and
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the dependency ratios. Second we focus on the dynamic of the structure by single-year ages

of the population. Tables 1 and 2, in the Appendix, contain the forecasts mean for female

and male population by single-year ages in the period 2005 - 2050.

4.1 Evolution of the Population

In this subsection we analyze the evolution of basic elements of the population such as the

total number of inhabitants, the percentage of the population of age groups 0 - 15, 16 - 64

and over 65 and the dependency ratios in those groups. We present our results for the three

immigration scenarios obtained in the previous section.

In Figure 14 we present the projections of total inhabitants for the three immigration

scenarios as well as the projections carried out by the NSI based on the 2001 census. We

can observe that the three scenarios show a sustained increase in population during the

first decade of the forecast, 2005 to 2014, with values similar among the three and to the

forecasts from the NSI. Later, stagnation can be seen in population growth under the low

and medium scenarios in the years 2023 - 2024 and 2029 - 2030, respectively, and finally

a reduction in the population. In the high scenario the population growth does not stop

during the entire forecast period, although around the year 2025 the growth rate decreases.

These projections differ from those carried out by the NSI where stable growth is shown for

almost the entire period.

Figure 15 shows the projected population percentages of broad age groups: (i) infant and

school age, 0 - 15 years of age; (ii) economically active, 16 - 64; (iii) retirement age, 65

and over. First, we observe that under the three assumptions the projected percentages are

similar. Only in the proportion of the population 0 - 15 years of age, and in the decade 2025

to 2035 can notable differences be seen between the low scenario and the other two. As far as

the projections from the NSI, we observe similarities during the first decade for all groups,

but in the following years a large difference can be seen with respect to the proportion of

the 0 - 15 population. This difference may be due to the different immigrant entry dynamic
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Figure 14. Forecasts and the observed values of total population using the cohort component model.

Spain 1960 - 2050.

assumed by the NSI and the proposed scenarios. For the 16 - 64 age group the projections

are quite similar until the year 2040; in the following decade the NSI forecasted a proportion

1% - 2% above that of the projections for the scenarios suggested in this paper. Finally, for

the retirement age group very similar values were obtained by the NSI and by the scenarios,

showing a clear increase in this projection which leads to the possibility that migratory flows

are not a solution to the problem of an aging population.
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Figure 15. Forecasts and the observed values of population proportions of age groups 0 - 15, 16 -

64 and over 65 using the cohort component model. Spain 1990 - 2050.
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4.2 Structure of the Population

In this section we analyze the evolution of the structure by single-year ages and sex during

the period 2005 - 2050. To do this, we study the behavior of population pyramids in the

years of the forecast. Figure 16 shows the forecast of the population pyramids by sex and

age for the three proposed scenarios. We observe several elements which we would like to

point out:

• The three scenarios lead to similar population pyramids, where the number of individuals

is the only element which clearly differentiates them.

• In the year 2005 the majority of individuals of both sexes (salient in the pyramids) are

found in the age group of 20 - 50, in 2025 they are between 30 - 70 years of age, and in

2050 they are between 50 and 80. This progressive aging of the population is observed as

an upward movement in the most prominent age groups.

• In the final years of the forecast a slight widening of the base of the pyramids is observed.

5 Conclusions

In this paper, projections of the Spanish population are obtained by age and sex for the

period 2005-2050. This analysis is carried out by combining two various sources of infor-

mation, that is historical evolution of the birth, mortality and immigration rates for the

different ages and sexes and the evolution of life expectancy and the synthetic fertility in-

dex. The predictions are based on a factorial model which extents to the model proposed

by Lee Carter. In the analysis of mortality we observe a strong linear relation between the

first factor and the life expectancy. In the second step of the analysis we incorporate the

information of this index into the factorial model predictions. Based on biological considera-

tions, we assume that life expectancy must have an upper (but unknown) bound. We obtain
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Figure 16. Forecasts of population pyramids using the cohort component model. Spain 2005 - 2050.

a predictive distribution of the life expectancy that incorporates this non linear restriction

in its evolution. The predictive distribution of this index is used to obtain predictions of

the mortality with a horizon of 45 years. These ideas are extended to the analysis of fe-

cundity and immigration. Combining these three sources of information and using a cohort

component model, we obtain prediction for the Spanish population by sex and age. Some

remarkable conclusions can be derived from these projections:

• The female and male life expectancies seem to tend to 98 and 90 years, respectively.

• The synthetic fertility index tends to a value of 1.5 children.

• None of the three scenarios of immigration, which suppose immigrant proportions of 12%,

17% and 22% in average, seem to be enough to correct the aging of the Spanish population.
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modifications in MATLAB/TRAMO. Also, the financial support from projects MTM2005-

08897, SEJ2005-06454 and SEJ2007-64500 (Ministerio de Educación y Ciencia, Spain) is

gratefully acknowledged.

References
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Appendix

Table 1

Forecasts mean for female population by single-year ages. Spain 2005 - 2050.
Age 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

0 222348 245084 242408 228404 221834 228727 246754 268912 290118 313769

1 218073 242420 244178 230348 221605 225584 242125 263898 285802 306514

2 217240 240089 246757 233548 222817 223716 238181 259670 281608 301915

3 209543 237119 248982 237436 224562 222667 234939 255546 277770 297673

4 211255 233521 250277 241464 226751 222136 231735 251322 273461 294400

5 204774 229161 250765 245206 229467 222299 229091 247207 269568 291079

6 199200 226954 250212 248532 232481 222919 226744 243400 265435 287722

7 193862 226750 248521 251524 235909 224283 225009 239597 261367 283714

8 192720 219326 245800 253900 239882 226087 224015 236414 257310 279954

9 193129 221247 242405 255319 243977 228321 223525 233256 253138 275705

10 194380 214926 238202 255903 247769 231069 223717 230643 249059 271854

11 197494 209458 236100 255413 251124 234099 224350 228310 245270 267745

12 201085 204186 235957 253762 254135 237539 225725 226589 241483 263694

13 205169 203093 228577 251063 256517 241513 227531 225598 238306 259646

14 209500 203569 230550 247694 257944 245609 229767 225112 235154 255483

15 213000 204909 224305 243531 258544 249407 232521 225314 232555 251423

16 215686 208123 218924 241466 258063 252761 235549 225949 230229 247645

17 220137 211823 213750 241362 256416 255760 238977 227317 228507 243861

18 226072 216253 212927 234118 253770 258166 242973 229153 227561 240747

19 233832 221381 214011 236394 250546 259679 247148 231487 227203 237761

20 244263 226130 216337 230668 246634 260434 251089 234409 227617 235432

21 258443 230527 220968 226071 244966 260214 254678 237701 228572 233504

22 274302 237098 226519 221952 245393 258908 257978 241459 230337 232274

23 291142 245265 232963 222295 238749 256638 260710 245807 232595 231851

24 308103 255091 239984 224485 241586 253776 262536 250318 235328 231984

25 326150 267414 246484 227837 236395 250201 263583 254570 238617 232848

26 341520 283318 252478 233403 232284 248842 263633 258446 242246 234217

27 355250 300734 260470 239777 228595 249538 262567 262000 246305 236352

28 364485 318878 269847 246925 229299 243128 260499 264945 250903 238921

29 370758 336786 280610 254503 231768 246132 257783 266922 255589 241872

30 371648 355412 293561 261389 235304 241048 254292 268050 259937 245285

31 370967 370998 309746 267564 240939 236968 252943 268107 263824 248940

32 367412 384641 327114 275534 247286 233258 253607 267009 267339 252960

33 363568 393562 344977 284744 254331 233893 247141 264873 270200 257463

34 359441 399348 362466 295263 261763 236259 250043 262056 272055 262007

35 356510 399612 380543 307898 268474 239674 244859 258452 273043 266186

36 354649 398125 395407 323650 274410 245136 240636 256942 272912 269847

37 352918 393638 408186 340491 282098 251289 236771 257427 271611 273113

38 351473 388741 416129 357740 290975 258105 237214 250770 269243 275688

39 351581 383478 420874 374568 301129 265287 239367 253441 266175 277233

40 348931 379304 420013 391906 313343 271709 242531 248012 262284 277871

41 343956 376168 417386 406037 328672 277375 247753 243563 260500 277409

42 338777 373069 411670 418006 345029 284745 253627 239439 260671 275740

43 333874 370252 405537 425145 361784 293303 260166 239617 253733 273018

44 326247 369014 399059 429090 378100 303115 267055 241490 256083 269595

45 320894 365092 393724 427490 394937 314993 273202 244387 250386 265377

46 316030 358898 389458 424149 408577 329965 278594 249335 245672 263267

47 308218 352542 385273 417759 420064 345953 285683 254932 241291 263110

48 298652 346492 381384 410945 426707 362297 293922 261167 241176 255864

49 288511 337840 379150 403852 430218 378229 303439 267781 242784 257905

50 279416 331530 374317 397935 428234 394682 315014 273666 245426 251963

51 271360 325764 367278 393098 424512 407928 329642 278790 250099 247003

52 264244 317127 360131 388360 417753 419003 345249 285580 255407 242371

53 257625 306836 353374 383978 410624 425298 361227 293538 261374 242015

54 255499 296010 344043 381213 403181 428427 376737 302723 267684 243347

55 255820 286303 337109 375924 396951 426144 392781 313969 273296 245736

56 251821 277645 330715 368420 391740 422069 405559 328176 278103 250099

57 249369 269986 321558 360871 386673 415032 416208 343367 284587 255119

58 250375 262834 310772 353684 381913 407574 422045 358850 292176 260749

59 246499 260156 299502 343983 378769 399832 424760 373864 300984 266729

60 239540 259874 289323 336605 373063 393216 422033 389299 311753 271958

61 231268 255359 280218 329781 365184 387617 417544 401484 325431 276391

62 221660 252338 272074 320179 357181 382058 410020 411420 339950 282388

63 218441 252725 264472 309032 349587 376855 402147 416645 354767 289498

64 202733 248214 261161 297318 339409 373105 393859 418622 368940 297672

65 191988 240622 260118 286629 331454 366763 386607 415153 383394 307675

66 191664 231724 254891 276982 324021 358270 380329 409921 394565 320455

67 199051 221484 251050 268230 313827 349605 374028 401653 403409 333941

68 195839 217399 250433 259945 302064 341253 367970 392943 407478 347543

69 207096 201207 244994 255772 289715 330328 363240 383754 408248 360352

70 215070 189756 236442 253622 278225 321380 355769 375353 403445 373105

71 217930 188293 226623 247384 267737 312909 346181 367855 396876 382513

72 213705 194041 215464 242363 258024 301664 336293 360177 387208 389391

73 211760 189584 210135 240320 248716 288880 326639 352640 377039 391479

74 207145 198561 193260 233495 243144 275385 314317 346097 366154 390031

75 200699 204195 180925 223688 239388 262700 303828 336850 355948 383125

76 191814 204666 177738 212479 231467 250688 293417 325180 346135 374018

77 184756 198317 180924 199914 224450 239224 280182 312961 335831 361658

78 174863 193649 174342 192394 219695 227734 265063 300369 324967 348119

79 166077 186269 179454 174330 210287 219417 249135 285062 314620 333572

80 155595 176899 180828 160227 197811 212192 233544 270855 301075 318906

81 146987 165086 176957 153836 183776 200747 218154 256128 284678 303821

82 135281 154641 166842 152369 168436 189682 202939 238498 267247 287597

83 123971 141881 157956 142479 157390 180355 187770 219386 249477 270756

84 109954 129878 146490 141371 137676 166683 174748 199261 228861 253443

85 104456 123384 139166 134302 130792 158348 166010 189298 217418 240771

86 89783 106053 119617 115437 112420 136105 142691 162707 186877 206950

87 76092 89880 101376 97834 95277 115350 120932 137896 158380 175392

88 63274 74739 84299 81353 79227 95919 100560 114666 131700 145845

89 51546 60887 68674 66274 64542 78141 81922 93413 107290 118814

90 41073 48516 54722 52809 51429 62264 65277 74434 85491 94674

91 32128 37950 42803 41308 40228 48704 51060 58223 66872 74054

92 24655 29123 32847 31700 30871 37375 39184 44680 51318 56829

93 18491 21842 24636 23775 23153 28031 29388 33510 38488 42622

94 13527 15979 18022 17393 16938 20507 21499 24515 28157 31181

95 9655 11404 12863 12413 12089 14636 15344 17496 20096 22254

96 6655 7861 8866 8556 8332 10088 10576 12060 13851 15339

97 4473 5283 5959 5751 5601 6780 7109 8106 9310 10310

98 2891 3415 3852 3717 3620 4382 4595 5239 6017 6664

99 1800 2126 2398 2314 2254 2729 2861 3262 3747 4149

100+ 1286 1519 1713 1653 1610 1949 2043 2330 2676 2964

Year
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Table 2

Forecasts mean for male population by single-year ages. Spain 2005 - 2050.
Age 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

0 236757 260966 258116 243205 236209 243548 262744 286338 308917 334101

1 231843 257982 259902 245222 235940 240195 257819 281013 304344 326402

2 230915 255433 262624 248654 237286 238275 253700 276601 299973 321595

3 222513 252181 264948 252815 239202 237237 250341 272313 295995 317184

4 221116 248255 266267 257112 241587 236749 247022 267918 291517 313808

5 217395 243514 266714 261092 244527 236998 244298 263641 287484 310384

6 209727 240872 266045 264621 247782 237734 241893 259695 283201 306928

7 204889 240578 264149 267773 251463 239255 240134 255747 278982 302777

8 202496 232458 261155 270259 255720 241244 239167 252465 274779 298896

9 203289 231278 257442 271713 260094 243686 238733 249206 270453 294494

10 204713 227724 252870 272268 264137 246671 239024 246528 266228 290521

11 208255 220173 250342 271672 267705 249953 239785 244151 262314 286275

12 212550 215404 250113 269820 270880 253649 241322 242410 258387 282079

13 216735 213066 242045 266856 273380 257914 243320 241454 255119 277894

14 221262 213921 240915 263166 274838 262287 245761 241023 251866 273576

15 224912 215416 237418 258615 275388 266316 248736 241309 249188 269354

16 227789 219035 229935 256104 274779 269860 251996 242056 246802 265435

17 232166 223386 225217 255859 272874 272967 255630 243538 245015 261465

18 238381 227829 223073 247846 269872 275396 259829 245491 244033 258183

19 246301 233067 224470 246954 266257 276865 264215 247980 243689 255054

20 256086 237887 226895 243929 261914 277521 268346 251099 244177 252638

21 269520 242392 231875 237209 259766 277135 272094 254612 245251 250662

22 285620 248811 238030 233541 260035 275560 275491 258585 247163 249409

23 303193 257233 244502 232621 252704 273009 278318 263224 249645 249069

24 320987 267209 251660 235185 252458 269854 280194 268046 252652 249347

25 340671 278888 258274 238707 250062 265962 281250 272597 256263 250424

26 358157 294025 264407 244669 243928 264211 281227 276723 260216 252026

27 373270 311668 272287 251706 240789 264848 280008 280486 264608 254435

28 384355 330502 281925 258908 240293 257841 277740 283599 269572 257311

29 391657 349168 292808 266616 243150 257790 274769 285651 274592 260569

30 393107 369299 305030 273556 246816 255475 270939 286749 279192 264265

31 392447 386899 320365 279824 252804 249375 269180 286705 283287 268206

32 388337 401833 337864 287624 259757 246198 269750 285422 286959 272507

33 383207 412467 356257 296977 266751 245560 262629 283000 289877 277258

34 378092 419172 374350 307499 274208 248230 262404 279856 291708 282026

35 373834 419896 393746 319263 280855 251671 259900 275828 292551 286327

36 370152 418337 410437 333999 286760 257364 253588 273805 292199 290057

37 366279 413153 424253 350720 294084 263936 250115 274022 290536 293273

38 362433 406907 433742 368297 302952 270560 249184 266630 287767 295759

39 360300 400540 439195 385464 312897 277575 251475 266020 284213 297089

40 356126 394968 438671 403893 324068 283789 254538 263162 279798 297449

41 349495 389835 435744 419511 338090 289195 259769 256472 277308 296553

42 342467 384493 429208 432263 354076 296018 265881 252618 277056 294376

43 336499 379157 421592 440692 370875 304354 272036 251282 269272 291108

44 327675 375532 413858 445087 387214 313715 278542 253110 268179 287037

45 320937 369930 406947 443578 404775 324272 284245 255699 264868 282126

46 315006 361931 400492 439689 419515 337614 289131 260416 257768 279115

47 306559 353550 393839 432224 431371 352842 295385 265979 253465 278305

48 295964 346235 387191 423662 438874 368782 303068 271529 251612 270027

49 284660 336212 382313 415055 442435 384276 311784 277456 252926 268409

50 274933 328238 375449 407178 440055 400816 321562 282500 254916 264542

51 266585 321172 366355 399851 435416 414609 334107 286785 259050 257027

52 258757 311684 356926 392330 427231 425472 348420 292361 263971 252245

53 251615 300150 348588 384828 417970 432011 363364 299306 268856 249874

54 248533 287927 337563 378971 408564 434533 377703 307143 274013 250535

55 247698 277369 328660 371276 399979 431329 393084 316055 278354 251919

56 242244 268136 320587 361310 391794 425747 405549 327483 281814 255276

57 238247 259452 310206 351046 383423 416706 415077 340554 286499 259376

58 237586 251443 297850 341804 375002 406541 420239 354070 292404 263348

59 232634 247441 284957 330082 368283 396369 421586 367016 299219 267637

60 224937 245524 273622 320311 359648 386841 417193 380714 306888 270990

61 216004 239132 263547 311286 348755 377611 410388 391388 316822 273384

62 206525 234140 254031 300054 337563 368159 400198 399060 328172 276861

63 202363 232360 245261 287080 327489 358809 389108 402623 339967 281567

64 185877 226268 240050 273357 314745 350697 377607 402016 350688 286734

65 173797 217531 236715 261099 303815 340697 366656 395817 361870 292539

66 171402 207693 229197 250127 293688 328681 356104 387427 370118 300442

67 174604 197332 222926 239662 281472 316363 345301 375798 375328 309479

68 169256 191729 219380 229677 267389 304768 334209 362906 376084 318354

69 177185 174964 211942 223107 252839 290917 324466 349880 373067 326206

70 181502 162316 202060 218174 239652 278711 312904 337294 364704 334163

71 181067 158371 191131 209312 227583 267131 299369 324925 354114 339007

72 175723 159281 179741 201504 215946 253605 285492 312213 340429 340697

73 170404 152541 172623 196104 204809 238513 272346 299304 325685 338206

74 163292 157124 155645 187029 196483 222845 256931 287238 310458 331735

75 154437 158246 142407 175794 189468 208401 242928 273445 295517 320257

76 143884 155062 136625 163666 178945 194906 229369 257796 280584 306539

77 134620 147664 134804 151273 169339 181882 214233 241947 265403 290168

78 123600 139996 126331 142194 161332 168956 197410 226194 249406 272185

79 113701 131056 126988 125506 150559 158670 180647 209070 234568 254353

80 103329 120696 124428 111986 137981 149227 164857 192964 218048 236482

81 93988 109061 118170 104233 124704 136857 149785 177057 199843 218337

82 83906 98481 108582 99194 111278 125043 135005 159770 181246 199614

83 73786 87054 99052 89487 100702 114723 120833 141906 163367 180902

84 62730 76572 88587 85802 84913 102227 108364 124039 144251 162546

85 59593 72743 84157 81512 80668 97115 102946 117837 137038 154419

86 47394 57852 66929 64825 64154 77235 81871 93715 108985 122807

87 37301 45531 52676 51020 50492 60787 64436 73757 85775 96654

88 28941 35327 40870 39585 39175 47163 49995 57227 66551 74992

89 22095 26971 31203 30222 29909 36007 38169 43690 50809 57253

90 16632 20302 23487 22749 22513 27104 28731 32887 38246 43096

91 12375 15106 17476 16927 16751 20167 21378 24470 28457 32066

92 9062 11061 12797 12395 12266 14768 15654 17919 20838 23481

93 6517 7955 9203 8913 8821 10620 11257 12886 14985 16886

94 4564 5571 6445 6242 6178 7437 7884 9024 10495 11826

95 3116 3803 4400 4262 4218 5077 5382 6161 7165 8073

96 2063 2518 2913 2821 2792 3361 3563 4078 4743 5344

97 1338 1634 1890 1831 1812 2181 2312 2647 3078 3468

98 812 991 1146 1110 1099 1323 1402 1605 1867 2104

99 483 589 682 660 653 787 834 955 1110 1251

100+ 345 421 487 472 467 562 596 682 793 893

Year
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