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CREDIT RISK WITH SEMIMARTINGALES AND RISK-NEUTRALITY

JESÚS PÉREZ COLINO AND WINFRIED STUTE

(WORKING PAPER)

Abstract. A no-arbitrage framework to model interest rates with credit risk, based on the LIBOR
additive process, and an approach to price corporate bonds in incomplete markets, is presented in this
paper. We derive the no-arbitrage conditions under di¤erent conditions of recovery, and we obtain new
expressions in order to estimate the probabilities of default under risk-neutral measure.

1. Preliminaries

1.1. Introduction. Notoriously, works in mathematical �nance should re�ect the market reality, and
they have to be comprehensible for practitioners. Unfortunately, the ones which are realistic are not
necessarily comprehensible and those comprehensible are not necessarily realistic.

But both are needed. Usually the trade-o¤ between reality and simplicity in modelling is not easy
to break, and unfortunately, the mathematics of �nance are not e¤ortless, and much market practice
is based on soft or partial use of these tools, working and pricing with models that do not re�ect in a
complete manner what is actually going on.

Basically the main goal of this paper is to develop a su¢ ciently wide model for corporate bonds with
credit risk, and develop a set of mathematical tools and results that would allow the practitioner to
simplify this framework and conditions in order to implement these models according to the speci�c
needs of the market (with or without continuity and with or without jumps, with or without credit
migration or under di¤erent types of default).

This paper is organized as follows:

- In Section 1 we introduce the basics such as de�nitions and technical notation that will be
used during the whole paper. Additionally, we expose here the di¤erent assumptions about the
dynamics of forward rate models under a semimartingale framework.

- Section 2 is devoted to develop the basic expressions for corporate bonds under di¤erent recovery
frameworks, basically extending the results of Heath, Jarrow and Morton (1992) to our framework.

- In Section 3 we obtain the no-arbitrage expressions for each model and we derive a risk-neutral
form for the probability of default.

1.2. Basic Assumptions for the risk-free Interest Rates model. We will consider processes on a
complete stochastic basis (
;G;P) : Let G = fGt; t � 0g be the LIBOR additive process (piecewise
stationary process) with a given tenor structure 0 = T0 < T1 < ::: < Tn = T ? with T ? �xed. The
LIBOR additive process G is introduced here as a source of uncertainty in our model. Notice that
the trajectories of this process belong to the Skorohod space D. We can associate with Gt a random
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measure of its jumps, denoted by ��(t) for any t 2 [0; T ?] ; A 2 B
�
Rd
�
and t 2

�
T�(t); T�(t)+1

�
. Actually,

set

��(t) ([0; t] ; A) =
X
0<s�t

1A (4G (s))

and let us introduce the measure ��(t) as

��(t) (A) = E
�
��(t) ([0; t] ; A)

�
is called the Lévy measure of the process G.

The Lévy-Khintchine formula, have shown that the characteristic function has the form:

�̂t (z) = E (exp [i hz;G(t)i])
=

Y
j��(t)

E
�
exp

�
i


z;
�
Gt^Tj+1 �GTj

����

= exp

24 X
j��(t)

(t ^ Tj+1 � Tj) j (z)

35
with z 2 Rd and

 j (z) = i


j ; z

�
� 1
2
hz;Ajzi+

Z
Rd

�
eihz;gi � 1� i hz; gi 1fjgj�1g

�
�j (dg) ; j = 0; 1; :::; n

and where Aj is a symmetric nonnegative-de�nite d�d matrix, j 2 Rd; �j is the mentioned Lévy
measure on Rdn f0g and g 2 Rd satisfying

�j (f0g) = 0 and
R
Rd

�
jgj2 ^ 1

�
�j (dg) <1

for any j = 1; :::; n:

Under these two conditions, and using Jacod and Shiryaev (2003; II:2:29), G is a special semi-
martingale and G has a well known Lévy-Itô decomposition or canonical representation:

G (t) =

Z t

0

��(s)ds+

Z t

0

��(s)W (ds) +

Z t

0

Z
jgj�1

g
�
��(s) (ds; dy)� ds��(s) (dy)

�
where ��(s) 2 Rd; W is a standard d-dimensionalWiener process with values in Rd and with covari-
ance operator A�(t) =

�
��(t) (i; j)

�
i;j�d :

Let r (t), t � 0 be the short rate process. If at moment 0 one puts into the bank account 1 unit,
then at moment t one has

Bt = exp

�Z t

0

r(s)ds

�
Let B(t; T ) be the market price at moment t of a bond paying 1 unit at maturity time T . The forward
rate f(t; T ) curve is a function de�ned for t � T < T ? and such that

B (t; Ti) = exp

"
�
Z Ti

t

f(t; s)ds

#

We postulate here the following dynamic for the forward rates

df (t; T ) = ��(t) (t; T ) dt+ ��(t) (t; T ) dWt +

Z
E

h (t; T; x)1fjxj�1g
�
�� ��(t)

�
(dt; dx)

Notice that the usual short rate is de�ned as r (t) = f (t; t) :



CREDIT RISK WITH SEMIMARTINGALES 3

1.3. Basic Assumptions for the Credit Risk Model. In this section, we mainly focus on corporate
(defaultable) bond featuring two di¤erent issues,

- �rst, the dynamic of defaultable instantaneous forward rates in incomplete markets,
which are speci�ed through theHeath, Jarrow and Morton (1992) model, driven by a LIBOR
additive processes,

- and second, we additionally assume that the credit migration is modelled by a SDE driven by
a multivariate marked point process.

In order to achieve this aim, we have to establish some assumptions that will be applied during the
whole work.

1.3.1. Assumptions related with the Credit Risk dynamic.

(1) Given a �xed horizon date T ? 2 R+, let us assume that our continuous-time �nancial economy
�lives�on a "su¢ ciently rich" stochastic basis (
;F;P) endowed with the �ltration F =(Ft)t2[0;T?] :
Notice that in our case, a "su¢ ciently rich" stochastic basis is one such that the �ltration is gen-
erated by two stochastic processes G and C

Ft = � fGs; Cs; 0 � s � tg (1.1)

which satis�es the "usual conditions". Notice that we can de�ne the embedded �ltration Gt � Ft
such that

Gt = �
�
Gs; � ([0; s]� E) ;Ws; 0 � s � t; E 2 B

�
Rd
�	

and additionally, we can de�ne as well a second embedded �ltration Ct � Ft such that
Ct = � fCs; 0 � s � tg

Henceforth, we can de�ne Ft as the original full �ltration such that
Ft = Gt _ Ct = � fGs; Cs; 0 � s � tg

with respect to which all processes are adapted. In following subsections, assumptions about the
nature of G and C are detailed.
Additionally to these three �ltrations, we also have three smaller �ltrations F0, G0 and C0 that

will be called observed �ltrations such that F 0t = G0t _ C0t and F 0t � Ft: They are originated
directly from the observed time series of market prices and notice that implicitly, we are assuming
di¤erent notions of equivalent martingale measures, according to which �ltration we are interested
in.

(2) We assume that the process G is a LIBOR additive process. This process is basically a
piecewise stationary Lévy process, and according to the results obtained in Colino and Stute
(2008), this process has an in�nitely divisible and self-decomposable distribution and it
admits the Lévy-Khintchine formula and the Lévy-Itô decomposition.

(3) On the other hand, we are assuming also that the credit quality of corporate debt is represented
by the random variable C categorized into a �nite number of (mutually disjoint) credit rating
classes (credit classes, for short). Each credit class is represented by one ofm+1 2 N+ elements
of a �nite state space, say K =

�
0; 1m ;

2
m ; :::;

m�1
m ; 1

	
(state space). By convention, the state 1 is

always assumed to correspond to the default event. In addition, the states are ordered so that
the state 0 represents the highest ranking, whereas the state m�1

m represents the lowest ranking.
Let us de�ne the credit migration process by Ct for any 0 � t � T ? as a random variable

on (
; C;P) adapted to the �ltration C=(Ct)t2[0;T?]. Let us assume that the dynamic of this
process can be de�ned by the following stochastic di¤erential equation with values in [0; T ?]�K

dCt =
X
a;b2K

(b� a) 1fCt�=agdNab (t) ; C0 2 Knf1g (1.2)

where both the m+ 1-vector point process Nt = (Na;0 (t) ; :::; Na;m�1
m
(t) ; Na;1 (t)) , such that

Nab (t) has (P; C) -intensity �ab (t) for a; b 2 K
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where �ab : [0; T ?]� Rd ! [0;1] are bounded functions with bounded gradients.
(4) The double sequence (�k; C�k)k�1 is called a C-adapted multivariate marked point process1.

Notice that the �k�s form a sequence of stopping times that de�ne the moments of time that
the credit rate C changes. More explicitly, for any k 2 N+ the random variable (random stopping
time) �k will be de�ned as8<: �0 := 0

�k := inf
�
t > �k�1/Ct 6= C�k�1

	
^ T ?

�?k := inf f t > �k�1/Ct = 1g ^ T ?
(1.3)

and it represents the time of the kth jump or transition for C: Therefore, �k : 
! R+ is a non-
negative random variable de�ned in the probability space (
;F ;P) : For convenience, we assume
for any k 2 N+ that P f�k = 0g = 0 and hence P f�k > 0g = 1:
Notice that the default time �?k is the �rst moment when the rating process hits the state 1

or reaches the state of default. Default is, by de�nition, an absorbing state and sometimes, for
the sake of simplicity, it will appear as �?.

(5) The usual approach to continuous-time Markov chains is based on transition semigroups,
and the principal mathematical object is then the in�nitesimal generator. The transition
semigroup is the continuous-time analogue of the iterates of the transition matrix in discrete
time.
Given an initial rating C0 of a defaultable bond, as in the discrete case, the future changes in

its ratings are described by a Kvalued stochastic process Ct referred to as themigration process
under the real-world probability P that follows a continuous-time homogeneous C-Markov chain,
with the transition semigroup P of the following form:

P (t) = [pab (t)]a;b2K ; with 0 < t � T ? (1.4)

where
pab (t) := P (Ct+s = b jCs = a ) for every s; t 2 [0; T ?] (1.5)

In a credit risk framework, we shall postulate that the default state C(t) = 1 is absorbing,
i.e. p1;1(t) = 1 or equivalently p1;b(t) = 0 for any b 2 Knf1g :
On the other hand, it is also very well-known that the right-hand side continuity at time t = 0

of P (�) implies the right-hand side di¤erentiability at t = 0: More speci�cally, the following �nite
limit exists for every a; b 2 K and equals

�ab := lim
t#0

pab (t)� pab (0)
t

= lim
t#0

pab (t)� �ab
t

: (1.6)

Observe that for every a 6= b we have �ab � 0; and �aa = �
P1

a=0;a6=b �ab: The matrix
� := [�ab]0�a;b�1 is called the in�nitesimal generator matrix for a Markov chain associated
with P (�): Since each entry of �ab of the matrix � can be shown to represent the intensity of
transition from the state a to the state b; the in�nitesimal generator matrix � is also commonly
known as the intensity matrix.

1.3.2. Assumptions related with the stochastic process.

(1) Let us de�ne the LIBOR additive process with the credit rating GCt as a Ft-adapted
LIBOR additive process that is also a function of the credit state such that

GCt = G (t; C (t))

Notice that (Gt)t�0 is a Gt-adapted LIBOR additive process2 on Rd; and (Ct)t�0 is a Ct-
adaptedmultivariate point process on K. We have in mind a map from Dd�D into Dd; where
Dd=D

�
Rd; I

�
; with I = [0; T ?] � R+; is a d-dimensional Skorohod space and D=D (K; I) is

also a Skorohod space, with K =
�
0; 1m ;

2
m ; :::;

m�1
m ; 1

	
as a �nite space in [0; 1] ; and t 2 [0; T ?].

For the sake of clarity, in the future the �nal d-dimensional Skorohod space will be denoted

1See Liptser and Shiryaev (1989) 3.4 p.168 or Brémaud (1981) 2.1 p.19
2Piecewise stationary Lévy process (process with independet increments, stochastic continuity and piecewise stationary)

See Colino (2008) for complete de�nitions and properties.
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as D[0;T?]

�
Rd;K

�
: Several proofs and developments in this context will be provided in sections

(2:4) and (2:5) in this paper.
(2) We will take for granted the structure of in�nitely divisible distributions on Rd; and in

particular the Lévy-Khintchine formula. We have seen that (Gct)t�0 is a LIBOR additive
process on Rd, and for every c 2 Kn f1g given, and for every t, Gct has an in�nitely divisible
distribution, and the driving process Gct has a triplet characteristic

�
cj(t); A

c
j ; �

c
j

�
j�0, that is

connected with the mentioned canonical (Lévy-Itô) decomposition of Gc for any c 2 Knf1g
in the following manner:

G (t; c) = Gct

= Gc0 +
X
j��(t)

Z t^Tj+1

Tj

�j(u; c)du+
X
j��(t)

Z t^Tj+1

Tj

�j(u; c)dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
� (u; x)

�
�cj � �cj

�
(du; dx) (1.7)

where ��(t)(u; c)dWt is the continuous martingale part of Gct and, on the other hand, �
c
�(t) is

the random measure associated with the jumps of Gct , and �
c
�(t) (du; dx) = du F c�(t) (dx) is its

(non-random) compensator.
Notice that Wt is the usual standard d-dimensional Brownian motion and ��(t)(u; c) is

a d-dimensional vector that is the diagonal of the square-root of the symmetric nonnegative-
de�nite matrix Ac�(t);
Also we had assumed that the process Gc has jumps bounded by a constant h = 1, however

this truncation function can be any h 2 R+ by replacing Gc by Gc=h (which has jumps
bounded by 1) and c�(t)(t) by h

c
�(t)(t); so the (Gt)

c and the rates are unchanged. It is clear that
any martingale solution will depend on the choice of the truncation function. In the sequel we
�x one truncation function and sometimes do not mention the dependence of the characteristics
on this truncation function.

1.3.3. Assumptions related with the forward rates with credit risk.

(1) Let us de�ne f (t; T; c) as the instantaneous defaultable forward rates at time t 2 [0; T ] for
any T < T ? and for every c 2 Knf1g : It corresponds to the rate that one can contract for a time
t; on a loan with credit risk c that begins at date T and is returned an instant later. It is usually
de�ned by

f (t; T; c) = �@ logB(t; T; c)
@T

(1.8)

where B(t; T; c) is the value in t of a zero-coupon bond conditional to the credit rate c
until maturity T; or in other words

B(t; T; c) := B(t; T; Ct)jCt=c for every c 2 Knf1g

and therefore, the conditional zero-coupon bond with maturity T and the credit rate c follows

B(t; T; c) = exp

(
�
Z T

t

f (t; s; c) ds

)
(1.9)

(2) We assume that the evolution of this forward rate is driven by a d-dimensional LIBOR additive
process for a given credit rate c 2 Knf1g that admits the Lévy-Itô decomposition, such that
the dynamics of the instantaneous forward rate f (t; T; c) given the credit rating c 2 Kn f1g
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in t � T 2 I; under the real-world probability P, which we assume as follows3:

df (t; T; c) = ��(t) (t; T; c) dt+ ��(t) (t; T; c) dWt +

Z
E

� (t; T; x)
�
�c�(t) � �c�(t)

�
(dt; dx)

(1.10)

when t � T 2 I where � (t) = sup fj � 0 : Tj � tg with j = 0; 1; :::; n (for the sake of clarity,
we will denote this by the generic index j), Wt is a d-dimensional standardWiener process in
Rd and it is identical for any c 2 Kn f1g ; �c�(t) is a random measure for a given credit rating
c 2 Knf1g such that m 2 N+ with the compensator �c�(t) (dt; dx).
Notice that a forward rate is not a �nancial asset issued by a company that has the probabilities

of default, therefore c := Ctj Ft 2 Knf1g for every t 2 [0; T ] ; T 2 I. This means that modelling
these forward rates, we are not considering the probabilities of credit migration that usually
appear in a speci�c corporate bond valuation.
On the other hand, we are implicitly assuming that (f (t; T; c))c2Knf1g is a sequence of semi-

martingales, because Gc is a semimartingale, and also the risk-free forward rate f (t; T; 0) :=
f (t; T ) is another semimartingale.

(3) Let us make some assumptions on the coe¢ cients. Basically the functions �j : 
 � [0; T ?] �
[0; T ?]! R and �j : 
� [0; T ?]� [0; T ?]! R+ for any j = 0; 1; :::; n and both are R+ �B ([0; T ?])-
measurable. The coe¢ cient � : 
�Rr � [0; T ?]� [0; T ?] is R+ � B ([Rr]) � B ([0; T ?]) measurable
as well, and all the coe¢ cients cited previously are �nite for all times t; and �xed T � t; or in
other words

X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j��(T )

Z Tj+1^T

t_Tj
j�j (u; s; c)j ds

1A du <1 (1.11)

X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j��(T )

Z Tj+1^T

t_Tj
j�j (u; s; c)j2 ds

1A du <1 (1.12)

and

X
j��(t)

Z t^Tj+1

Tj

Z
E

0@ X
�(u)�j��(T )

Z Tj+1^T

t_Tj
j� (u; s; x)j2 ds

1A �cj (du; dx) <1 (1.13)

Notice that all coe¢ cients are equal to zero for T < t; and we are assuming that E = Rd: Also
to abbreviate the formulae we will use ~�cj := �cj ��cj where c 2 Knf1g, at this moment, is a �xed
credit rate.

(4) Additionally, for every s; t; T 2 [0; T ?] and s; t � T; and c 2 Kn f1g such that there is a constant
~C <1 and

j�j (s; T; c)� �j (t; T; c)j � ~C js� tj
j�j (s; T; c)� �j (t; T; c)j � ~C js� tj
j� (u; s; x)� � (u; t; x)j � ~C js� tj

then the Equation (2:10) will admit a unique (strong) solution (see Fujiwara and Kunita
(1989), Tang and Li (1994) or Theorem V.38 in Protter (2004)).

(5) By de�nition rct = f (t; t; c) is the instantaneous spot rate or simply the spot rate given
a credit rating (called in the literature also as short-rate). Also let us de�ne the concept of
instantaneous spread rate, as

s (t; Tj ; c) := f (t; Tj ; c)� f (t; Tj ; 0) (1.14)

3Notice that if c = 0 we are considering the risk-free or default-free case.
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1.3.4. Assumptions related with the Corporate Bond dynamic.

(1) We consider a continuous-time trade economy for every t inside the trading interval [0; T ?]
with a �xed T ? > 0: Assume the existence of a (frictionless) continuous-time bond market
where a set of assets B (t; T; Ct�) stand for the price at time t � T � T ? of a zero-coupon
bond with rating Ct� 2 Kn f1g ; maturity at time T � T ? and recovery-rate q in case of
default.

(2) For the sake of simplicity, let us select a subset of n-corporate bonds with maturity Ti with
i = 0; 1; :::; n and Tj � T ? for every i = 0; 1; :::; n. Notice that a (frictionless) market for
Ti-corporate bonds with rating Ct� 2 Knf1g generate a family of bond prices for i =
0; 1; :::; n with the same rating Ct�. It basically means a �nite family of strictly positive real-
valued adapted processes B (t; Tj ; Ct�) ; with t 2 [0; Ti] ; and the terminal (par) value at maturity
B (Ti; Ti; Ct�) = 1 for every Ti 2 [0; T ?] given a Ct� 2 Kn f1g : Let us assume that the price
process of a defaultable bond with credit migrations and fractional recovery should
satisfy

B (t; Ti; Ct) = EQTi
�
B (t; Ti; 0) 1f�?>Tig + qB

?1f�?�Tig
��Gt� (1.15)

where QTi is the forward martingale measure for the date Ti; for every i = 0; 1; :::; n; with 0 �
t � Ti; and q can be de�ned as the recovery rate or the fractional part of B? that the investor
will recover in case of default, such that q 2 [0; 1]. Notice that this structure of bond maturities
is the time structure that mark the tenor structure in the LIBOR additive process.

(3) Additionally, the value of the bond in case of default can be de�ned as

B? :=

8<: = B
�
�?; Ti; C�k�1

�
! market value

= B (�?; Ti; 0) ! treasury value
= 1 ! par value

(1.16)

(4) On the other hand notice that if Ct� 2 Knf1g ; we shall interpret B(t; Ti; Ct�) as the pre-default
value of a Ti-maturity zero-coupon corporate bond, or more formally

B(t; Ti; Ct�) = B(t; Ti; 0) � exp
 
�
Z Tj

t

s(t; u; Ct�)du

!
(1.17)

= B(t; Ti) � S(t; Ti; Ct�)
where s(t; u; Ct�) is the instantaneous spread rate (see expression 2:14).
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2. The building-blocks for Interest-Rate modelling

Given the mentioned conditions in the previous section, here we characterize the functional forms of
the dynamic of corporate bonds, when the LIBOR additive process is driving the forward rates dynamic,
and more speci�cally, when we consider di¤erent frameworks in credit risk. Basically the term structure
model is based on an exogenous speci�cation of the dynamics of instantaneous, continuously compounded
forward rates f (t; T; c). Our aim in this section is to recover the functional form of corporate bonds from
(2:10) for di¤erent frameworks of credit risk.

This section is organized as follows:

- Subsection 1 is devoted to develop the simplest case, the risk-free case, following closely Bjork et
al. (1997) and Eberlein et al. (2006) for the Heath, Jarrow and Morton approach (1992),
but now, introducing the LIBOR additive process.

- Basically the next subsections are extensions of the �rst one, in the sense that we include di¤erent
credit risk frameworks for the corporate bond. Therefore, subsection 2 includes the credit risk
but without the possibility to have credit migration between di¤erent rates.

- And it is in subsection 3 where we introduce the credit migration and we obtain speci�c
functional forms for corporate bonds with these characteristics.

2.1. Risk-free Bond Market Structure. In this subsection, we introduce some well-known results
due to Bjork, Di Masi, Kabanov and Runggaldier (1997) for risk-free bonds, that will be extended
later for di¤erent credit-risk frameworks. Basically, here, we present the functional expression for the
discounted default-free bond when the forward rates are driven by a LIBOR additive process.

According to the assumptions shown in section 2:1:4, it is easy to conclude that we have to consider a
model of the dynamics of the risk-free forward curve with the following SDE:

df (t; T; 0) = df (t; T )

= ��(t) (t; T ) dt+ ��(t) (t; T ) dWt +

Z
Rr
��(t) (t; x; T )

�
��(t) � ��(t)

�
(dt; dx)

Basically, this model for instantaneous forward rates with credit risk, is an extension of the discretized
Heath, Jarrow and Morton (1992) model as in Bjork, Kabanov and Runggaldier (1997) and
Bjork, Di Masi, Kabanov and Runggaldier (1997).

Henceforth, we can de�ne the price of a discounted default-free zero-coupon bond as

Z (t; Ti) =
B (t; Ti)

Bt

= exp

(
�
Z t

0

r (s) ds�
Z Ti

t

f (t; s) ds

)
(2.1)

for any 0 � t � Ti; with Ti 2 [0; T ?] ; and i = 0; 1; :::; n:

Proposition 1. The discounted bond price process Z (t; Ti) has the form

Z (t; Ti) = Z (0; Ti) exp

8<: X
j��(t)

Z t^Tj+1

Tj

~aj(u; Ti)du+
X
j��(t)

Z t^Tj+1

Tj

bj(u; Ti)dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
h (u; x; Ti) ~�j (du; dx)

9=; (2.2)
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and satis�es the linear stochastic di¤erential equation

dZ (t; Ti)

Z (t�; Ti)
= ~a�(t)(t; Ti)dt+ b�(t)(t; Ti)dWt +

Z
Rd
h (t; x; Ti) ~��(t) (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
��(t) (dt; dx) (2.3)

with

~a�(t)(t; Ti) = a�(t)(t; Ti) +
1

2

��b�(t)(t; Ti)��2

and

a�(t)(t; Ti) = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j (t; s) ds (2.4)

b�(t)(t; Ti) = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j (t; s) ds (2.5)

h (t; x; Ti) = �
Z Tj

t

� (t; x; s) ds (2.6)

Proof. This proof follows the same ideas as in Heath, Jarrow and Morton (1992), Brace, Gatarek
and Musiela (1997), Bjork et al. (1997), Glasserman and Kou (1997) orMusiela and Rutkowski
(2004).

Notice that according to the assumptions mentioned in Section 1:2 we have

B(t; Ti) = exp

(
�
Z Ti

t

f (t; s) ds

)

= exp

(
�
Z Ti

t

f (0; s) ds

�
X

�(u)�j�i�1

Z Tj+1

Tj_t

0@ X
j��(t)

Z t^Tj+1

Tj

�j (u; s) du

1A ds

�
X

�(u)�j�i�1

Z Tj+1

Tj_t

0@ X
j��(t)

Z t^Tj+1

Tj

�j (u; s) dWu

1A ds

�
X

�(u)�j�i�1

Z Tj+1

Tj_t

0@ X
j��(t)

Z t^Tj+1

Tj

Z
Rd
�j (u; x; s) 1fjxj�1g~�j (du; dx)

1A ds

9=;
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whence using the stochastic version of Fubini�s theorem (see Protter (1995) Theorem IV:4:45) we have

lnB(t; Ti) = �
Z Ti

t

f (t; s) ds

= �
Z Ti

t

f (0; s) ds

�
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_t
�j (u; s) ds

1A du

�
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_t
�j (u; s) ds

1A dWu

�
X
j��(t)

Z t^Tj+1

Tj

Z
Rd

0@ X
�(u)�j�i�1

Z Tj+1

Tj_t
�j (u; x; s) 1fjxj�1gds

1A ~�j (du; dx)

Splitting the integrals, we obtain

=

Z t

0

f (0; s) ds�
Z Ti

0

f (0; s) ds

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j��(t)

Z Tj+1^t

Tj_u
�j (u; s) ds�

X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; s) ds

1A du

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j��(t)

Z Tj+1^t

Tj_u
�j (u; s) ds�

X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; s) ds

1A dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd

0@ X
�(u)�j��(t)

Z Tj+1^t

Tj_u
�j (u; x; s) 1fjxj�1gds�

X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; x; s) 1fjxj�1gds

1A ~�j (du; dx)

For the sake of simplicity, let us rename

aj(t; Ti) : = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j (t; s) ds

bj(t; Ti) : = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j (t; s) ds

h (t; x; Ti) : = �
Z Tj

t

� (t; x; s) ds
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and notice that the sum of the four integrals in the left-hand side of the last equality coincides with the
expression for the integrated short rateR t

0
rsds =

Z t

0

f(0; s)ds

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; s) du

1A ds

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_u
�j (u; s) dWu

1A ds

+
X
j��(t)

Z t^Tj+1

Tj

0@ X
�(u)�j�i�1

Z Tj+1

Tj_u

Z
X

� (u; x; s) 1fjxj�1g ~�j (du; dx)

1A ds

Hence we obtain

lnB(t; Ti) = lnB (0; Ti)

+
X
j��(t)

Z t^Tj+1

Tj

aj(u; Ti)du

+
X
j��(t)

Z t^Tj+1

Tj

bj(t; Ti)dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
h (u; x; Ti) ~�j (du; dx)

+

Z t

0

rsds

and this proves (2:2). By the Itô formula for semimartingales4, we have that

dZ(t; Ti) = Z(t�; Ti)
�
a
�(t)
(u; Ti)dt+

1

2

��b�(t)(t; Ti)��2 dt+ b�(t)(t; Ti)dWt

+

Z
Rd
h (u; x; Ti) 1fjxj�1g ~��(t) (dt; dx) +

Z
Rd

�
eh(u;x;Ti) � 1� h (u; x; Ti)

�
��(t) (dt; dx)

�
whence if we de�ne ~a�(t)(u; Ti) = a�(t)(u; Ti) +

1
2

��b�(t)(t; Ti)��2 ; (2:3) follows. �

2.2. Conditional Corporate-Bond market structure. In this subsection we introduce the credit
risk for corporate bonds. Let us go one step further, including the credit rating c 2 Kn f1g in the
model of the dynamics of the instantaneous forward rate f (t; T; c) in t � T 2 I; using the form (1:10)
under P,

df (t; T; c) = ��(t) (t; T; c) dt+ ��(t) (t; T; c) dWt +

Z
Rr
� (t; T; x)

�
�c�(t) � �c�(t)

�
(dt; dx)

Additionally, assume that the price of a defaultable bond zero coupon bond with credit rate
Ct� 2 Knf1g with c = Ct� ; can be expressed as

B (t; Ti; c) = exp

(
�
Z Ti

t

f (t; s; c) ds

)
for any 0 � t � Ti; with Ti 2 [t; T ?] ; and i = 0; 1; :::; n: Notice that this value is the price of a corporate
bond conditional that between t and Ti there is no possibility of credit migration. This is theoretically

4See Jacod and Shiryaev (1987) Ch.1 (4.57), or Cont and Tankov (2004) Ch. 8
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possible to de�ne but impossible to �nd in the real world. However, it is worthy to develop this de�nition
as a basic tool for the next section.

Theorem 1. For any Ct� 2 Kn f1g ; the discounted defaultable zero coupon bond price process
Z
�
t; Ti; Ct�

�
with 0 � t � Ti � T ?; has the form

Z
�
t; Ti; Ct�

�
= Z

�
0; Ti; Ct�

�
exp

8<: X
j��(t)

Z t^Tj+1

Tj

~aj
�
u; Ti; Ct�

�
du+

X
j��(t)

Z t^Tj+1

Tj

bj
�
u; Ti; Ct�

�
dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
h (u; x; Ti) ~�

Ct�
j (du; dx)

9=; (2.7)

and satis�es the following linear stochastic di¤erential equation

d
�
Z(t; Ti; Ct�)

�
= Z(t�; Ti; Ct�)

�
~a�(t)

�
t; Ti; Ct�

�
dt+ b�(t)(t; Ti; Ct�)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

Ct�
�(t) (dt; dx) (2.8)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
�(t) (dt; dx)

�
with

~a�(t)(t; Ti; Ct�) := a�(t)(t; Ti; Ct�) +
1

2

��b�(t)(t; Ti; Ct�)��2 + s(t; Ti; Ct�)
and

a�(t)(t; Ti; Ct�) : = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j
�
t; s; Ct�

�
ds

b�(t)(t; Ti; Ct�) : = �
X

�(t)�j�i�1

Z Tj+1

Tj_t
�j
�
t; s; Ct�

�
ds

h (t; x; Ti) : = �
Z Ti

u

� (t; x; s) ds

Proof. Following the similar procedure as in the proof of Proposition 1 we obtain

lnB
�
t; Ti; Ct�

�
= �

Z Ti

0

f
�
0; s; Ct�

�
ds

+
X
j��(t)

Z t^Tj+1

Tj

aj(u; Ti; Ct�)du

+
X
j��(t)

Z t^Tj+1

Tj

bj(u; Ti; Ct�)dWu

+
X
j��(t)

Z t^Tj+1

Tj

Z
Rd
h (u; x; Ti) ~�

Ct�
j (du; dx)

+
X
j��(t)

Z t^Tj+1

Tj

r
Ct�
s ds

Additionally if we decompose the defaultable short rate into the risk-free short-rate and short term credit
spread such that Z t

0

r
Ct�
t dt =

Z t

0

r0t dt+

Z t

0

s
�
t; t; Ct�

�
dt
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then this proves (2:7). By the Itô formula for semimartingales5, we get from that

dZ(t; Ti; Ct�) = Z(t; Ti; Ct�)

��
a�(t)

�
t; Ti; Ct�

�
+ s

�
t; t; Ct�

�
+
1

2

��b�(t)(t; Ti; Ct�)��2� dt
+b�(t)(t; Ti; Ct�)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

Ct�
�(t) (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
�(t) (dt; dx)

�
If we de�ne ~a�(t)

�
t; Ti; Ct�

�
:= a�(t)

�
t; Ti; Ct�

�
+ s

�
t; t; Ct�

�
+ 1

2

��b�(t)(t; Ti; Ct�)��2 then (2:8) holds.
�

2.3. Corporate-Bond Market Structure with Credit Migration and Default. This subsection
is devoted to expose the dynamics of the corporate-bond prices with credit migration, and di¤erent
structures of recovery in case of default (see assumptions for the credit risk model). Basically here
we consider that the price process of a defaultable bond with credit migrations and fractional
recovery should satisfy

B (t; Ti; Ct) = EQTi
�
B (t; Ti; 0) 1f�?>Tig + qB

?1f�?�Tig
��Gt� (2.9)

where QTj is the forward martingale measure for the date Ti for every i = 0; 1; :::; n; with 0 � t � Ti;
where q 2 [0; 1] represents the fractional part of B? that the investor will recover in case of default
(recovery rate). More speci�cally, here we will consider three possible cases

B? =

8<: = B
�
�?; Ti; C�k�1

�
! market value

= B (�?; Ti; 0) ! treasury value
= 1 ! par value

In the �rst case, the investor only can recover a fraction of the market value of the bond just quoted
in the moment prior to default. In the second case, we consider the recovery in case of a default, of a
fractional part of a di¤erent bond, usual a risk-free or treasury bond, and �nally, a fractional recovery
of the par value of the bond.

2.3.1. Corporate-bond dynamics with fractional recovery of market value. Consider the price of a de-
faultable zero-coupon bond with a given recovery rate6, i.e.,

B (t; Ti; Ct) = EQTi
�
B (t; Ti; 0) 1f�?>Tig + qB

�
�?; Ti; C�k�1

�
1f�?�Tig

��Gt� (2.10)

where QTi is the forward martingale measure for the date Ti for every i = 0; 1; :::; n; with 0 � t � Ti; k 2
N+, and Ct 2 Knf1g with

Ct = C0 +
X
a;b2K

Z t

0

(b� a) 1fCs�=agdNab (s)

where Ct� 2 Knf1g is the credit rate in the prior to the moment of jump in t (see assumptions in section
2.1.3).

We de�ne the price of a discounted defaultable zero coupon bond as

Z (t; Ti; Ct) =
B (t; Ti; Ct)

Bt

= EQTi
�
Z (t; Ti; 0) 1f�?>Tig + qZ

�
�?; Ti; C�k�1

�
1f�?�Tig

��Gt�
5See Jacod and Shiryaev (1987) Ch.1 (4.57), Goll and Kallsen (2000) Lemma A.5, or Cont and Tankov (2004)

Ch. 8
6See details in Schönbucher (2003)
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Proposition 2. For any Ct� 2 Knf1g ; the discounted defaultable zero coupon bond price process
Z (t; Ti; Ct) with fractional recovery q of market value on [0; Ti] satis�es the following linear sto-
chastic di¤erential equation

dZ(t; Ti; Ct) = dZ(t; Ti; Ct�)� l � Z(t; Ti; Ct�) � d
�
1fCt=1g

�
(2.11)

where l is the loss rate l = 1� q:

Proof. Under the fractional-recovery of market value hypothesis7, since 1fCt=hg is a process of �nite
variation, for any h = 0; ::; 1� 1

m ; 1; with m 2 N+; therefore, an application of Itô�s rule yields

dZ(t; Ti; Ct) =

1� 1
mX

h=0

�
dZ(t; Ti; Ct�)1fCt�=hg + Z(t; Ti; Ct�)d

�
1fCt=hg

��
+ Z(t; Ti; Ct�) � q � d

�
1fCt=1g

�

For the sake of clarity, let us de�ne c = Ct� 2 Knf1g : Notice that Ct is a Ct-adapted process. Therefore

1� 1
mX

h=0

dZ(t; Ti; Ct�)1fCt�=hg = dZ(t; Ti; c)

and

1� 1
mX

h=0

Z(t; Ti; Ct�)d
�
1fCt=hg

�
= Z(t; Ti; c)

1� 1
mX

h=0

d
�
1fCt=hg

�
= �Z(t; Ti; c)d

�
1fCt=1g

�
using the fact that

P1� 1
m

i=0 1fCt=ig = 1� 1fCt=1g whence
P1� 1

m
i=0 d

�
1fCt=ig

�
= �d

�
1fCt=1g

�
:

As a direct result, we have the expression

dZ(t; Ti; Ct) = dZ(t; Ti; c) + (q � 1)Z(t; Ti; c)d
�
1fCt=1g

�
and taking into account that l = 1� q; we proved (2:11). �

Theorem 2. For any Ct� 2 Kn f1g ; the discounted defaultable zero coupon bond price process
Z (t; Ti; c) on [0; Ti] follows

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
aj (t; Ti; c) + s (t; t; c) +

1

2
jbj(t; Ti; c)j2

�
dt

+bj(t; Ti; c)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�l � d
�
1fC�k=1g

�

Proof. Directly, using Theorem 1 and Proposition 2. �

7See Du¢ e and Singleton (1999) for an extensive mathematical work of valuation under a "recovery of market value"
framework.
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2.3.2. Corporate-bond dynamics with fractional recovery of treasury. In this second case, we are assuming
that under this model, the issuer of the corporate bond, in the default case, will pay a fractional part of
a risk-free bond with identical maturity, such that

B (t; Ti; Ct) = EQTi
�
B (t; Ti; 0) 1f�?>Tig + qB (�

?; Ti; 0) 1f�?�Tig
��Gt� (2.12)

Proposition 3. For any c = Ct� 2 Kn f1g ; the discounted defaultable zero coupon bond price
process Z (t; Ti; Ct) with fractional recovery q of treasury-bond value on [0; Ti] satis�es the fol-
lowing linear stochastic di¤erential equation

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
aj (t; Ti; c) + s (t; t; c) +

1

2
jbj(t; Ti; c)j2

�
dt

+bj(t; Ti; c)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�
�
1� q

S (t; Ti; c)

�
� d
�
1fC�k=1g

�
where S (t; Ti; c) = exp

n
�
R Tj
t
s (t; s; c) ds

o
and j = � (t) :

Proof. In this case, under the fractional recovery of treasury hypothesis, we have

dZ(t; Ti; Ct) =

1� 1
mX

h=0

�
dZ(t; Ti; Ct�)1fCt�=hg + Z(t; Ti; Ct�)d

�
1fCt=hg

��
+B(t; Ti; 0) � q � d

�
1fCt=1g

�
where if we set c = Ct� 2 Knf1g ; and using the following expressions (see Proposition 2)

1� 1
mX

h=0

dZ(t; Ti; Ct�)1fCt�=hg = dZ(t; Ti; c)

and
1� 1

mX
h=0

Z(t; Ti; Ct�)d
�
1fCt=hg

�
= Z(t; Ti; c)

1� 1
mX

h=0

d
�
1fCt=hg

�
= �Z(t; Ti; c)d

�
1fCt=1g

�
We obtain the assertion upon using the fact that

P1� 1
m

i=0 1fCt=ig = 1� 1fCt=1g:
P1� 1

m
i=0 d

�
1fCt=ig

�
=

�d
�
1fCt=1g

�
:

Therefore we obtain the following expression

dZ(t; Ti; Ct) = dZ(t; Ti; c)� Z(t; Ti; c)d
�
1fCt=1g

�
+
Z(t; Ti; c)

S(t; Ti; c)
� q � d

�
1fCt=1g

�
= Z(t; Ti; c)

��
aj (t; Ti; c) + s (t; t; c) +

1

2
jbj(t; Ti; c)j2

�
dt

+bj(t; Ti; c)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�
�Z(t; Ti; c)

�
1� q

S(t; Ti; c)

�
d
�
1fCt=1g

�



16 JESÚS PÉREZ COLINO AND WINFRIED STUTE

�

2.3.3. Corporate-bond dynamics with fractional recovery of par value. Finally, we assume that the issuer
of the corporate bond, in the default case, will pay a fractional part of the par value, such that

B (t; Tj ; Ct) = EQTj
�
B (t; Tj ; 0) 1f�?>Tjg + q1f�?�Tjg

��Gt� (2.13)

Proposition 4. For any c = Ct� 2 Kn f1g ; the discounted defaultable zero coupon bond price
process Z (t; Ti; Ct) with fractional recovery q of par value on [0; Ti] satis�es the following linear
stochastic di¤erential equation

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
aj (t; Ti; c) + s (t; t; c) +

1

2
jbj(t; Ti; c)j2

�
dt

+bj(t; Ti; c)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�
�
1� q

Z (t; Ti; c)

�
� d
�
1fC�k=1g

�
Proof. Similar to the previous Proposition 3. �
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3. Absence of arbitrage and dynamics under a martingale measure

Let us recall that we are given a stochastic basis (
;F;P) where P can be interpreted as the real-
world probability measure and the original �ltration F =(Ft) with respect to which all processes
are adapted; it is the �ltration generated by G and C.

Let us de�ne QF as the set of all probability measures ~P with ~PFt v PFt for all �nite t such
that all the discounted zero-coupon bond prices process, Z (t; T; Ct) ; are local ~P�martingales for every
Ti 2 J and relative to (Gt) ; or in other words

QF : =
n
~P 2M1 (
;G) : ~PGt v PGt and (Z (t; T; Ct))0�t�T

for Ct 2 K =
�
0;
1

m
;
2

m
; :::;

m� 1
m

; 1

�
is a local ~P-martingale for any 0 � t � T 2 [0; T ?]

�
whereM1 (
;G) denotes the set of all probability measures on the measurable space (
;G) :

We say that a model admits the existence of an equivalent martingale measure property (EMM)
if the set QF is non empty, and the economy represented by this model is complete if this martingale
measure is unique. Then two questions naturally arise:

(1) Can our model be an equilibrium or no-arbitrage model? Or equivalently: Can we �nd the
martingale measure using our model? The answer is "no" unless we have a very special structure
for the coe¢ cients of our model. The present section is devoted to show these conditions under
di¤erent credit risk frameworks.

(2) Assuming that there exists an equivalent martingale measure, Is our model complete? or in other
words, Is this martingale measure unique? The answer is "no", even if the dimension of the
LIBOR market process is one (see Eberlein et al. (2006)) due to the introduction of the credit
migration.

This section is basically focused to derive the necessary and su¢ cient conditions on the forward rate
process with credit risk, such that there exists an equivalent martingale measure according to the well-
known theorems of asset-pricing that appear in Harrison and Kreps (1979) and Harrison and Pliska
(1981). Basically we generalize the corresponding results of Heath, Jarrow and Morton (1992) and
Björk et al. (1997) and we obtain the no-arbitrage expressions for di¤erent frameworks of credit risk
and we derive a new risk-neutral form for the probability of default. An outline of this section is as
follows:

- In subsection 1 we mainly focus to obtain the no-arbitrage conditions when we assume corporate
bonds with credit migration and fractional recovery of market value. Under this framework we
obtain the necessary conditions to have a discounted corporate bond martingale, and we derive
some relevant results and expressions for the forward rate process and probability of default.

- In subsection 2 we derive similar results but when we assume corporate bonds with credit migra-
tion and fractional recovery of treasury.

- And identically, in subsection 3 we study how to obtain the equivalent martingale measure in the
case of corporate bonds with credit migration and fractional recovery of par value.

In order to construct this set QF we will follow Jacod and Shiryaev (1989), Björk et al. (1997)
and Eberlein et al. (2006). Let us consider the sequence of pairs (�j ; Yj) such that

� �j =
�
�i

0

j (t)
�
i0�d

is a predictable Rd-valued process such that

X
j��(t)

Z t^Tj+1

Tj

�
�
0

jAj�j

�
ds <1 : for any t 2 [0; T ?] a.s. (3.1)
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� Yj = (Yj (!; t; x)) is a sequence of Rd-measurable (0;1)-valued function such thatX
j��(t)

Z t^Tj+1

Tj

Z
Rd
(Yj (s; x)� 1) d��(t) (dx; ds) <1 : for t 2 [0; T ?] a.s. (3.2)

Using these de�nitions, let us formulate a modi�ed �short� version of Girsanov�s Theorem for
semimartingales8,

Theorem 3. Let the sequence of pairs (�j ; Yj)j=0;1;:::;n be de�ned as above, and let us de�ne the density
process M by

dMt =Mt��(t)dWt +Mt�

Z
Rd

�
Y�(t) (t; x)� 1

� �
��(t) � ��(t)

�
(dt; dx)

with M0 = 1 and suppose that for all �nite t

EP [Mt] = 1

Then there exists a probability measure ~P on F locally equivalent to P with

d~Pt =MtdPt

such that:

(i): ~Wt :=Wt �
P

j��(t)
R t^Tj+1
Tj

�j (s) ds is a ~P-Wiener process, and
(ii): �~P�(t) (t; dx) = Y�(t) (t; x) � ��(t) (t; dx) is the ~P-compensator of ��(t):

Remark 1. Notice that the real-world probability measure P itself belongs to QF if we use directly as
Girsanov�s quantities

�
�j = 0; Yj = 1

�
for any j = 0; 1; :::; n.

In the following three subsections, for sake of clarity, we assume directly that P 2 QF or equivalently,
using the Girsanov�s quantities

�
�j = 0; Yj = 1

�
for any j = 0; 1; :::; n:

3.1. Absence of arbitrage condition in a corporate-bond market with fractional recovery of
market value. Basically this subsection is devoted to show the main results concerning the existence of
an equivalent martingale measure when we assume credit migration with fractional recovery of market
value. They generalize the corresponding results of Heath, Jarrow and Morton (1992) and Björk et
al. (1997). Let us recall that a model has the equivalent martingale measure property (EMM) if
the set QF is not empty.

Proposition 5. The initial probability measure P itself belongs to QF if and only if the following two
conditions hold, for every Ti 2 J :X

j��(t)

Z t^Tj+1

Tj

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (ds; dx) <1 (3.3)

and

~a�(t) (t; Ti; Ct�)� l � �ct�;1 +
R
Rd
�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
�(t) (dt; dx) = 0 (3.4)

for any t 2 [0; Ti] ; and any Ct� 2 Knf1g where 9

~a�(t) (t; Ti; Ct�) := a�(t) (t; Ti; Ct�) + s (t; t; Ct�) +
1

2

��b�(t)(t; Ti; Ct�)��2 (3.5)

8The reader can �nd an extended and complete version of this Girsanov Theorem for Semimartingales in the Chapter 1
of this thesis (Theorem 48).

9Notice that if C�k = 0 it means default-free asset and s
0
t (Ti) = 0: It is the risk-free bond.
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Proof. [(] According to Theorem 2 and assuming, for the sake of simplicity, that j = � (t)

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
aj (t; Ti; c) + s (t; t; c) +

1

2
jbj(t; Ti; c)j2

�
dt

+bj(t; Ti; c)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�l � d
�
1fC�k=1g

�
Notice that using the Doob-Meyer expression

d
�
1fCt=1g

�
= dM1(t) + �Ct�;1dt

we get

dZ(t; Ti; Ct)

Z (t�; Ti; Ct�)
=

�
~aj (t; Ti; c)� l � �Ct�;1

�
dt

+bj(t; Ti; c)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx)

�l � dM1(t)

which has a local martingale solution if�
~aj (t; Ti; c)� l � �Ct�;1

�
dt+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx) = 0

and Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx) <1

[)] Let us de�ne the process M := [Z(t�; Ti; C�k)]
�1
Z(t; Ti; Ct) that is a local martingale. Let �M

be the jump measure of M , and �M be its compensator. According to Jacod and Shiryaev (1989)
(II:2:29) we have that

R
Rd jxj ^ jxj

2
�Mi (dx) <1 for �nite t. Hence, for every j = 0; 1; :::; n;Z

Rd

����eh(t;x;Ti) � 1��� ^ ���eh(t;x;Ti) � 1���2� �Mj (dx) = Z
Rd

�
jxj ^ jxj2

�
�Mj (dx) <1

Since
R
Rd jh (t; x; Ti)j

2
�t (dx) <1 the �rst condition holds, by virtue of the following inequality

eh(t;x;Ti) � 1� h (t; x; Ti) � C

����eh(t;x;Ti) � 1��� ^ ���eh(t;x;Ti) � 1���2 + h (t; x; Ti)2�
where C is a constant. Using the dynamic of

�
Z(t�; Ti; Ct�)

��1
Z(t; Ti; Ct), we infer that M is a local

martingale only if the process given by the left hand side is equal to zero. �

Remark 2. This is a generalization of the Heath, Jarrow and Morton (1992) drift condition when
the credit migration and default are possible. It reveals that in a simple remarkable way, this model can
be speci�ed under a (local) martingale measure.

Remark 3. Notice that under this framework, the risk-neutral condition has a direct relationship with
the intensity matrix or with the default probabilities in the following sense:

�ct�;1
=

1

(1� q)

�
~aj (t; Ti; Ct�) +

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx)

�
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Additionally, we can obtain, almost directly, the following results:

- The �rst one (Proposition 6) is related with the risk-neutral dynamics of instantaneous
forward rates, and this result will be invariant with respect to the recovery framework we use.

- The second proposition (Proposition 7) basically exposes the dynamics of corporate-bonds
with fractional recovery of market value when we impose the risk-neutrality using conditions
(2:34) and (2:35).

Proposition 6. Assume that we specify the forward rate dynamics under a martingale measure P by

df (t; T; c) = ��(t) (t; T; c) dt+ ��(t) (t; T; c) dWt +

Z
Rr
��(t) (t; x; T )

�
�c�(t) � �c�(t)

�
(dt; dx) : (3.6)

Then the following relation holds

��(t) (t; T; c) = ���(t) (t; T; c)| bj(t; Ti; c) + s (t; t; c)

+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�cj (dt; dx) (3.7)

Proof. Since we are working under a martingale measure P we have by Proposition 5 that

~aj (t; Ti; Ct�)� l � �ct�;1
+

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) = 0

and di¤erentiating this equation with respect Ti gives us the equation (3:6). �

Proposition 7. The corporate-bond price dynamics under a martingale measure P, and under
the fractional recovery of market value hypothesis, will follow the stochastic di¤erential equation

dB (t; Ti; Ct)

B
�
t�; Ti; Ct�

� = rtdt+ bj(t; Ti; Ct�)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)� l � dM1 (t) (3.8)

where ~�cj is the P-compensated Lévy measure, l = 1 � q 2 (0; 1) is the portion of the market value that
the investor will lose in the default case.

Proof. We know by de�nition that

B (t; Ti; C�k) = BtZ (t; Ti; Ct) :

Then, under the risk-neutral measure,

dB (t; Tj ; C�k) = Z (t; Ti; Ct) dBt +BtdZ (t; Ti; Ct)

= B
�
t�; Ti; Ct�

� �
rtdt+ bj(t; Ti; Ct�)dWt

+

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx)� l � dM1(t)

�
�

3.2. Absence of arbitrage in a corporate-bond market with fractional recovery of treasury.
In this second subsection, we basically reproduce the results given in the last subsection, but under
fractional recovery of treasury framework.

Proposition 8. The initial probability measure P itself belongs to QF if and only if the following two
conditions hold, for every Ti 2 J :X

j��(t)

Z t^Tj+1

Tj

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) <1 (3.9)

and

~aj (t; Ti; Ct�)�
�
1� q

S(t;Ti;c)

�
� �ct�;1

+
R
Rd
�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) = 0 (3.10)
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for any t 2 [0; Ti] ; and any Ct� 2 Knf1g where 10

~aj (t; Ti; Ct�) := aj (t; Ti; Ct�) + s (t; t; Ct�) +
1

2
jbj(t; Ti; Ct�)j2 (3.11)

and

S (t; Ti; c) = exp

(
�
Z Tj

t

s (t; s; c) ds

)

Proof. Basically the proof is the same as for Proposition 5: �

Remark 4. Notice how in this case we obtain the following expression for the default intensity, under
risk-neutral measure

�ct�;1 =
S (t; Ti; c)

S (t; Ti; c)� q

�
~aj (t; Ti; Ct�) +

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx)

�
Proposition 9. The corporate-bond price dynamics under a martingale measure P, and under the
fractional recovery of market value hypothesis, will follow

dB (t; Ti; Ct)

B
�
t�; Ti; Ct�

� = rtdt�
�
1� q

S(t; Ti; c)

�
� dM1 (t)

+bj(t; Ti; Ct�)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx) (3.12)

where rt is the usual short-rate, M1 (t) is the martingale from the Doob-Meyer decomposition of the default
indicator and ~�cj is the P-compensated Lévy measure.

Proof. As in Proposition 7. �

3.3. Absence of arbitrage in a corporate-bond market with fractional recovery of par value.
And �nally, in this third subsection, we give the results under the hypothesis that in the case of a default
the investor will recover a fractional part of par value .

Proposition 10. The initial probability measure P itself belongs to QF if and only if the following two
conditions hold, for every Ti 2 J :X

j��(t)

Z t^Tj+1

Tj

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) <1 (3.13)

and

~aj (t; Ti; Ct�)�
�
1� q

Z(t;Ti;Ct�)

�
� �ct�;1

+
R
Rd
�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx) = 0 (3.14)

for any t 2 [0; Ti] ; and any Ct� 2 Knf1g where 11

~aj (t; Ti; Ct�) := aj (t; Ti; Ct�) + s (t; t; Ct�) +
1

2
jbj(t; Ti; Ct�)j2 (3.15)

Proof. Basically the proof is the same as for Proposition 60: �

Remark 5. Notice how in this case we obtain the following expression for the default intensity, under
risk-neutral measure

�ct�;1
=

Z (t; Ti; c)

Z (t; Ti; c)� q

�
~aj (t; Ti; Ct�) +

Z
Rd

�
eh(t;x;Ti) � 1� h (t; x; Ti)

�
�
Ct�
j (dt; dx)

�
10Notice that if C�k = 0 it means default-free asset and s

0
t (Ti) = 0: It is the risk-free bond.

11Notice that Ct = 0 means default-free bond and consequently the spread s0t (Ti) = 0:
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Proposition 11. The corporate-bond price dynamics under a martingale measure P, and under the
fractional recovery of market value hypothesis, will follow

dB (t; Ti; Ct)

B
�
t�; Ti; Ct�

� = rtdt�
�
1� q

Z(t; Ti; c)

�
� dM1 (t)

+bj(t; Ti; Ct�)dWt +

Z
Rd
h (t; x; Ti) 1fjxj�1g ~�

c
j (dt; dx) (3.16)

where rt is the usual short-rate, M1 (t) is the martingale from the Doob-Meyer decomposition of the default
indicator and ~�cj is the P-compensated Lévy measure.

Proof. As in Proposition 5. �
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