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A FRACTIONAL DICKEY-FULLER TEST FOR UNIT ROOTS

By Juan J. Dolado, Jesús Gonzalo, and Laura Mayoral1

This paper presents a new test for fractionally integrated (FI) processes. In particular,
we propose a testing procedure in the time domain that extends the well-known Dickey-
Fuller approach, originally designed for the I(1) versus I(0) case, to the more general
setup of FI�d0� versus FI�d1�, with d1 < d0. When d0 = 1, the proposed test statistics are
based on the OLS estimator, or its t-ratio, of the coefficient on �d1yt−1 in a regression of
�yt on �d1yt−1 and, possibly, some lags of �yt . When d1 is not taken to be known a priori,
a pre-estimation of d1 is needed to implement the test. We show that the choice of any
T 1/2-consistent estimator of d1 ∈ �0
1� suffices to make the test feasible, while achieving
asymptotic normality. Monte-Carlo simulations support the analytical results derived in
the paper and show that proposed tests fare very well, both in terms of power and size,
when compared with others available in the literature. The paper ends with two empirical
applications.

Keywords: ARFIMA, Dickey-Fuller test, fractional processes, long memory, unit
roots.

1� introduction

It has become quite a standard practice in applied work to perform
tests on whether a variable is integrated or stationary using both the null hypothe-
ses of I(1) and I(0); cf. Phillips and Xiao (1998) for an updated survey of unit
root testing approaches. By proceeding in this way, it is often found that both
null hypotheses are rejected, suggesting that many time series are not well rep-
resented as either I(1) or I(0). In view of this outcome, the class of fraction-
ally integrated processes, denoted as FI�d�, where the order of integration d is
extended to be any real number, has proved very useful in capturing the persis-
tence properties of many long-memory processes; cf. Baillie (1996), Beran (1994),
and Granger and Joyeux (1980).
In general, unit root tests are consistent when the alternative is a FI�d� pro-

cess but their power turns out to be quite low (see Diebold and Rudebusch
(1991), Lee and Schmidt (1996)). In particular, this lack of power has motivated
the development of new testing approaches that take this type of alternative
explicitly into consideration. There is a growing literature on this subject that can
be basically classified into two strands. First, there are Wald-type tests that, by
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working under the alternative hypothesis, provide point estimates of the mem-
ory parameter and build confidence intervals around it. Secondly, there are
Lagrange Multiplier (LM) tests where statistics are evaluated under the corre-
sponding null hypothesis. Within the first group, there are a very large number
of rather heterogeneous contributions: parametric and semiparametric meth-
ods of estimating d both in the frequency and in the time domain (see, inter
alia, Geweke and Porter-Hudak (1983), Fox and Taqqu (1986), Sowell (1992),
Robinson (1992)). However, most of them lack power when used for testing
purposes. On the one hand, the semiparametric techniques tend to yield large
confidence intervals that include too often the null hypothesis. On the other
hand, although in general the parametric methods present narrower confidence
intervals, the precision with which the parameters are estimated hinges on the
correct specification of the model (see Hauser, Potscher, and Reschenhofer
(1999)).
Within the second group, Robinson (1994) and Tanaka (1999) have proposed

useful LM tests in the frequency and the time domain, respectively. A distinctive
feature of both approaches is that, in contrast to the classical unit root tests where
asymptotic distributions are nonstandard and require case-by-case numerical tab-
ulation, they do have standard asymptotic distributions. In this respect, Robinson
(1994) has attributed this different limit behavior to the use of an explicit autore-
gressive (AR) alternative in the classical unit root-testing approach. Nonetheless,
despite the advantage of having a standard limit distribution, a possible short-
coming of the LM approach is that, by working under the null hypothesis, it does
not yield any direct information about the correct long-memory parameter, d,
when the null is rejected.
In order to overcome that drawback, we propose in this paper a simple Wald-

type test in the time domain that has acceptable power properties and, as a
by-product of its implementation, provides information about the values of d
under the alternative hypothesis. It turns out to be a generalization of the well-
known Dickey-Fuller (D-F) test, originally developed for the case of I(1) versus
I(0), to the more general case of FI�d0� versus FI�d1� with d1 < d0 and, thus,
we will refer to it as the Fractional Dickey-Fuller (FD-F) test. The test is based
on the normalized-OLS coefficient, or on its t-ratio, of the coefficient on �d1yt−1
in a regression of �d0yt on �d1yt−1 and, possibly some lags of �d0yt . In particular,
we will concentrate on the case where d0 = 1 and 0≤ d1 < 1, since this is the case
which has received most attention in the literature. Specifically, we shall show
that, in contrast to what happens with the LM test, the standard or nonstandard
limiting behavior of the proposed test statistics hinges on the distance between
the null and the alternative hypotheses and on the nature of the process under
the null.
Since the FD-F is a Wald type test, a value of d is needed under the alterna-

tive hypothesis to make it feasible. When a simple hypothesis is considered, i.e.,
H0 � d = d0 against H1 � d = d1, this last value is used to run the test. However,
when a more general alternative hypothesis is envisaged, namely H0 � d = d0 ver-
sus H1 � d < d0, a pre-estimation of d under the alternative has to be used in



order to implement the test. We show that the choice of a T 1/2-consistent esti-
mator of d in its relevant range suffices to make the FD-F test feasible while
retaining asymptotic normality.
The advantages of the FD-F test arise from several sources. First, by general-

izing the simple D-F framework to deal with FI�d� processes, it keeps simplic-
ity as one of its key features. Secondly, in contrast to some of the LM tests, it
does not need to assume any known density for the errors and, therefore, offers
potential for greater robustness. Thirdly, for the particular case where d0 = 1, the
FD-F approach inherits the flexibility of the standard D-F test for unit roots in
providing a natural framework to test the null of I(1) against some interesting
composite alternatives. For instance, we might be interested in testing against
the alternative of FI�d� plus a break in the mean or in any other parameters of
the processes, an extension that, to the best of our knowledge, cannot be eas-
ily undertaken with the available tests for fractional integration. Lastly, it fares
very well in finite samples, in terms of power and size, when compared to other
competing tests.
The rest of the paper is structured as follows. In Section 2, the FD-F test is

defined and its asymptotic properties are derived. Further, its finite sample behav-
ior is studied via Monte Carlo simulation and a comparison of its properties with
those of other leading unit root tests is undertaken. For expository purposes, we
just consider fractional white noise processes in this section, whose integration
order, d, is taken to be known under the alternative. Section 3 extends the analy-
sis to the more realistic case where d needs to be estimated. For this, it is shown
that the required property of the estimator is T 1/2-consistency. Section 4, in turn,
extends the results in Section 2 to more general FI�d� processes. Section 5 dis-
cusses some empirical applications of the previous tests. Finally, Section 6 draws
some concluding remarks.
Proofs of theorems and lemmae are collected in Appendix A, and critical

values needed to implement the FD-F test for the particular case where it follows
a nonstandard limiting distribution are reported in Appendix B.
In the sequel, the definition of a FI�d� process that we will adopt is that of

an (asymptotically) stationary process when d < 0�5, and that of a nonstationary
(truncated) process when d ≥ 0�5. Those definitions are similar to those used in,
e.g., Robinson (1994) and Tanaka (1999) and are summarized for convenience at
the beginning of Appendix A. Moreover, the following conventional notation is
adopted throughout the paper: L is the lag operator, � = �1−L�
� �·� denotes
the gamma function, and ��i�d�� represents the sequence of coefficients associ-
ated to the expansion of �d in powers of L, which are defined as

�i�d�=
� �i−d�

� �−d�� �i+1� �

The indicator function is denoted by 1�·�.; B�·� represents standard Brown-
ian motion (BM), whereas Bd�·� and Wd�·� are standard fractional Brownian
motions (FBM) corresponding to the limit distributions of standardized partial
sums of stationary and asymptotically stationary (truncated) FI�d� processes,
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respectively, as defined in Marinucci and Robinson (1999); see also the def-
initions of both processes and their limiting distributions at the beginning of
Appendix A. Finally,

w→ and
p→ denote weak convergence and convergence in

probability, respectively.

2� fractional dickey-fuller (fd-f) test

In this section we lay out the basis of the FD-F test in the simple case where
a variable is considered to be a random walk under the null hypothesis, and
a FI�d� process under the alternative. When considering the class of ARIMA
process, the Dickey and Fuller (1979, 1981) test statistic turns out to be one
of the most popular tests in analyzing whether a process is I(1) or I(0). Its
widespread use in applied work is mainly due both to its computational simplicity
and adaptability to more general setups, such as serial correlation in the residuals,
seasonality, breaking trends, etc. In its simplest formulation, the D-F statistic
is based upon testing for the statistical significance of the parameter � in the
following regression model:

�yt = �yt−1+ut�(1)

If ut = �t is i.i.d., yt is a random walk when � = 0 whilst yt is a stationary
AR�1� process if �< 0. Regression (1) is an unbalanced one since the regressand
and the regressor have different orders of integration under the null hypothesis:
the regressand has been differenced to achieve an I�0� variable under the null,
whereas the regressor is in levels since it is I(0) under the alternative. When
considering the class of FI�d� processes, the previous setup turns out to be very
restrictive since 1 and 0 are only two specific points in the parameter space d ∈�.
Despite the fact that the D-F test is consistent against fractional alternatives, its
low power makes it convenient to consider other testing procedures in such a
case. In what follows, we generalize the regression model in (1) to test the null
hypothesis that a series is FI�d0� against the alternative that it is FI�d1�, where
d0 and d1 ∈�. Specifically, our proposal is based upon testing for the statistical
significance of coefficient � in the following regression:

�d0yt = ��d1yt−1+ut
(2)

where ut is an I�0� process. Notice that, as in the standard D-F test, (2) is again
an unbalanced regression where regressand and regressor have been differenced
in agreement with their degree of integration under the null and the alternative
hypothesis, respectively. Assuming that ut = �t in (2) then, when �= 0, the series
follows the process

�d0yt = �t
(3)

implying that yt is FI�d0�. When �< 0, yt can be expressed as(
�d0−d1 −�L)�d1yt = �t�(4)



The polynomial  �z� = (�1− z�d0−d1 −�z) has absolutely summable coeffi-
cients and verifies  �0�= 1 and  �1�=−� 	= 0. All the roots of the polynomial
are outside the unit circle if −21−d1 <�< 0. As in the D-F framework, this con-
dition excludes explosive processes.2 Under the previous restriction on �
�d1yt
is I�0�, so that yt is an FI�d1� process that can be rewritten as

�d1yt = C�L��t
(5)

where C�z�= �z�−1 = ��1−z�d0−d1 −�z�−1, with C�0�= 1 and 0<C�1� <
.
In this manner, we are able to formulate a test statistic that is based either

on the normalized-OLS estimated coefficient or on its t-ratio, as in the standard
D-F testing approach, namely

H0 � �= 0
 yt is FI�d0�
(6)

H1 � � < 0
 yt is FI�d1�
(7)

such that when d0 = 1 and d1 = 0 the conventional I(1) vs. I(0) framework is
recovered.
For simplicity, we shall restrict our analysis in the sequel to the specific case

where d0 = 1, namely, yt is I(1) under the null, whereas it is FI�d1�, 0≤ d1 < 1,
under the alternative hypothesis. The choice for this case is dictated by its empir-
ical relevance since that is the most treated case in the literature. However,
in principle, the proposed framework can be potentially extended to deal with
more general cases, such as FI�d0� against FI�d1� with d0 > d1, and in several
instances throughout the rest of the paper we will make some conjectures about
which results hold under this more general setup. Note that the case where d1< 0
is not considered since standard unit root tests behave well in such a case (see
Mármol (1998)).
At this stage, it is convenient to discuss briefly the nature of the FI�d� pro-

cesses that we will use in the theoretical derivations, as well as the computa-
tion of the regressor �d1yt−1 in equation (2).3 In agreement with the results in
Lemma 1 below, we will use for the theoretical derivations the truncated version
of an FI�d� process, namely yt = �−d1ut1�t>0� where ut is an I�0� disturbance,
such that ut = �t for the fractional white noise process. For convenience, we shall
use the notation �d1yt = ut1�t>0� for that process. This truncation ensures that yt
has finite variance (albeit evolving at rate t2d−1) and it implies that yt = 0, t ≤ 0.
For practical purposes, we shall compute �d1yt =

∑t−m−1
i=0 �i�d1�yt−i where m is

the integer part of �d1+1/2�. Notice that a number of observations equal to m
is lost when computing the filtered series in order to be consistent with the way
in which integer differences would be applied to the data. For instance, if d1 = 1,
only the first observation would be lost.

2 This restriction includes � ∈ �−2
0% as a particular case (when d1 = 0), which is the familiar one
in the D-F set-up.

3 Since only the case d0 = 1 is considered in the paper, we will omit the discussion about how to
compute �d0yt , which, however, can be done along similar lines to the computation of �d1yt .
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As mentioned above, a particularly interesting situation arises when d0 = 1 and
�t is i.i.d. in (3). In this case, we will be testing whether a series is a random walk
against the alternative of a mean-reverting FI�d� process. In order to convey the
main properties of the FD-F test in a simple way, we will adopt this restrictive
setting until Section 4 where the results are extended to the more general case
where ut is considered to be a linear process.

2�1� The Test and its Asymptotic Properties

Let us consider d0 = 1 and ut = �t in (3), where ��t� is a sequence of zero-
mean i.i.d. random variables with unknown variance &2 and the finite fourth-
order moment. The OLS estimator of �, �̂ols, and its t-ratio, t�̂ols , are given by
the usual least-squares expressions

�̂ols =
∑T
t=2�yt�

d1yt−1∑T
t=2��d1yt−1�2


(8)

t�̂ols =
∑T
t=2�yt�

d1yt−1
ST
(∑T

t=2��d1yt−1�2
)1/2 
(9)

where the variance of the residuals, S2T , is given by

S2T =
∑
��yt− �̂ols�d1yt−1�2

T
�(10)

To obtain the asymptotic properties of �̂ols and t�̂ols , under the null hypothesis,
we need the following auxiliary lemmae.

Lemma 1: Let ��t� be a sequence of zero-mean i.i.d. random variables with
variance &2 such that E��4t �<
, and consider the following linear processes:

�dxt = �t
 d ∈ �−0�5
0�5�

�dx∗t = �t1t>0
 d ∈ �−0�5
0�5�


and

z∗t =
t∑
i=1
x∗i �

Then the following processes verify:
• if −0�5< d < 0�5,

T −1
T∑
t=1
�xt−x∗t �= op�1�
(11)

T −1
T∑
t=1

(
x2t −x∗2t

)= op�1�
(12)



and

T −1
T∑
t=1
�xtxt+k−x∗t x∗t+k�= op�1�,(13)

• if d =−0�5,

�T logT �−1
T∑
t=1
z∗

2

t

p−→ &2

�
,(14)

• if −0�5< d < 0�5,

T −2�1+d�
T∑
t=1
z∗

2

t

w−→
∫ 1

0
W 2
d �r�dr�(15)

Lemma 2: Let �t
 xt and x∗t and z
∗
t be defined as in Lemma 1. Then the follow-

ing processes are martingale differences and verify:
• if 0< d < 0�5,

T −1/2
T∑
t=2
xt−1�t

w−→N

(
0
&4

� �1−2d�
� 2�1−d�

)

(16)

T −1/2
T∑
t=2
x∗t−1�t

w−→N

(
0
&4

� �1−2d�
� 2�1−d�

)
,(17)

• if d =−0�5,

�T logT �−1/2
T∑
t=2
z∗t−1�t

w−→N

(
0

&4

�

)
,(18)

• if −0�5< d < 0,

T −�1+d�
T∑
t=2
zt−1�t

w−→ &2
∫ 1

0
Bd�r�dB�r�
(19)

T −�1+d�
T∑
t=2
z∗t−1�t

w−→ &2
∫ 1

0
Wd�r�dB�r��(20)

In view of the previous lemmae, the following two theorems state the con-
sistency and derive the asymptotic distribution of a suitably standardized-OLS
estimator of � and its t-ratio, under the null hypothesis of I(1).

Theorem 1: Under the null hypothesis that yt is a random walk, �̂ols is a con-
sistent estimator of � = 0 and converges to its true value at a rate T 1−d1 when
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0 < d1 < 0�5, �T logT �1/2 when d1 = 0�5, and at the standard rate T 1/2 when
0�5< d1 < 1. Its asymptotic distribution is given by

T 1−d1�̂ols
w−→
∫ 1
0 W−d1�r�dB �r�∫ 1

0 W
2
−d1�r�dr

if 0≤ d1 < 0�5
(21)

�T logT �1/2�̂ols
w−→N�0
�� if d1 = 0�5
(22)

and

T 1/2�̂ols
w−→N

(
0


� 2�d1�

� �2d1−1�
)
if 0�5< d1 < 1�(23)

Theorem 2: Under the null hypothesis that yt is a random walk, the asymptotic
distribution of t�̂ols is given by

t�̂ols
w−→
∫ 1
0 W−d1�r�dB �r�

�
∫ 1
0 W

2
−d1�r�dr�

1/2
if 0≤ d1 < 0�5
(24)

and

t�̂ols
w−→N�0
1� if 0�5≤ d1 < 1�(25)

Theorems 1 and 2 state that the standard or nonstandard asymptotic behav-
ior of the previous test statistics depend on the distance between the null and
the alternative hypotheses. When the alternative is also a nonstationary process
�0�5 ≤ d1 < 1�, the limit distributions are standard (gaussian) and, conversely,
they are nonstandard (functionals of FBM) when the alternative is a station-
ary (or asymptotically stationary) process �0 ≤ d1 < 0�5�. More generally, if the
extended FI�d0� vs FI�d1� framework is considered, the asymptotic distribution
of the FD-F test statistics will be standard when either the process is station-
ary (or asymptotically stationary) under both hypotheses or when the process is
nonstationary under the null hypothesis �d0 > 0�5� and d0−d1 < 0�5, and non-
standard otherwise. Thus, in this framework, it is the distance between both the
null and the alternative hypotheses, rather than the autoregressive specification
under the alternative in the classical unit root approach, as argued by Robinson
(1994), that determines the nature of the asymptotic distribution. Finally, note
once again that when d0 = 1 and d1 = 0, we recover again the super-consistency
of �̂ols, and the asymptotic distributions correspond to those derived by Dickey
and Fuller (1979, 1981).
Next, we consider the behavior of the test under the alternative hypothesis.

For simplicity we shall start assuming that the data generating process (DGP) is
a simple fractional white noise defined as

�d1yt = �t1�t>0�
(26)



where �t is a zero-mean i.i.d process. Denoting / = d1− 1, then �d1yt = �1+/yt
and can be rewritten as

�yt = �−/�t1�t>0� = �t+�1�−/��t−1+
t−1∑
i=2
�i�−/��t−i
(27)

where the coefficients �i�−/� are derived from the expansion of �1−L�−/ in
terms of powers of L. Since �1�−/�= / = d1−1�<0�, under H1 we can write

�yt = /�d1yt−1+at
(28)

with at = �t +
∑t−1
i=2 �i�−/��t−i. In this case, the coefficient on �d1yt−1 can be

interpreted as the distance between the orders of integration of the processes
under the alternative and the null hypotheses. Note that, despite the fact that
at is not a white noise process, / can be consistently estimated by OLS since
at and �d1yt−1 are uncorrelated. It is a well-known result that the D-F test is
consistent against fractional alternatives (see Sowell (1990) and Mármol (1998),
for the stationary and nonstationary cases, respectively). In the following theorem
we prove a more general result, which states the consistency of the FD-F test
when the DGP is a fractional white noise with a true integration order, d∗1 , which
could possibly differ from the order d1 that is used to compute the proposed
test statistics. Therefore, this theorem encompasses the results obtained for the
standard D-F test, when d1 = 0, namely, when the regressor in equation (2)
is yt−1.

Theorem 3: If the DGP is given by

�d
∗
1yt = �t1�t>0�
 d∗1 ∈ �0
1�
(29)

the test statistics based upon �̂ols or t�̂ols in the regression of �yt on �
d1yt−1 are

consistent for any value of d1 ∈ �0
1�.

Note that the previous theorem turns out to be extremely helpful since it guar-
antees the consistency of the proposed tests even when, under the alternative, an
incorrect value of d1 is considered to make the test feasible, insofar as d1 ∈ �0
1�.
Another type of alternative hypothesis that is often considered in the litera-

ture is a local alternative to the null hypothesis. The LM test statistics proposed
by Robinson (1994) and Tanaka (1999) are, under the assumption of gaussian
errors, asymptotically uniformly most powerful invariant (UMPI) tests, in the
sense of achieving asymptotically the largest power among all invariant tests
under a sequence of local alternatives (see also Sargan and Bhargava (1983),
Bhargava (1986), Tanaka (1996) for a more detailed analysis of the optimality
properties of this type of test). The FD-F test also has power against that type of
alternative but, in contrast to the LM tests, is not UMPI. The following theorem
derives the asymptotic distribution of the test statistic based on t�̂ols , under the
assumption that the DGP is given by �1+1/

√
T yt = �t1�t>0�, with 1 < 0.
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Theorem 4: Under the assumption that the DGP is a fractional white noise
defined as

�1+1/
√
T yt = �t1�t>0�
 with 1 < 0


the asymptotic distribution of the statistic t�̂ols computed from the regression of �yt
on �1+1/

√
T yt−1 is given by

t�̂ols
w−→N�1
1��(30)

This result implies that the probability of rejecting H0� �yt = �t , under the
DGP above, is

P
(
t�̂ols <−z3

)−→4�−z3−1�
(31)

where z3 and 4�z� are the quantile l003% and the distribution function of a
N�0
1� variate, respectively. However, under the assumption of normality, the
maximum power of the LM tests against those alternatives is given by

4

(
−z3−1

√
�2

6

)
�(32)

Since
√
�2/6= 1�28> 1, it follows that the FD-F test is not a UMPI test.

However, in order to check how important is that loss of power, Table I
reports the power of both the FD-F and Tanaka’s test (denoted as TAN) for
T = 25
50
100
400, and 1000 when the null hypothesis is a random walk against
the local alternative of 1−1/T 1/2 with 1= �1
2
5
10�. The Monte Carlo experi-
ment uses 1000 replications in MATLAB 5.3 for UNIX and the significance level
is 5%. As it can be observed, the power of the TAN test is higher only for very
local alternatives �1= 1
2� and for very large sample sizes. Otherwise, the FD-F
test outperforms the TAN test in terms of power. This result also holds for the
standard unit root test and it is precisely for that reason that the D-F test is
more commonly used in practice than the corresponding LM test. Further, we
also found evidence that when the errors are nongaussian (for instance, when

TABLE I
Power of FD-F and TAN Tests

FD-F TAN

1/T 25 50 100 400 1000 
 25 50 100 400 1000 


0 5�15 6�2 6�1 5�3 5�2 5 0�3 2 3�3 3�3 3�6 5
1 23�3 22�2 25�9 24�9 24�1 26 4�4 10�5 18�4 27�1 26�8 36
2 57�8 63�8 61�6 63�8 63�5 64 13�9 40�9 55�2 74�6 74�4 82
5 99�9 100 99�6 100 100 100 76�1 98�4 99�8 100 100 100
10 100 100 100 100 100 100 99�5 100 100 100 100 100



TABLE II
Size of Unit Root Tests against Fractional Alternatives

FD-F D-F GPH TAN ROB

d1 0�5 0�6 0�7 0�8 0�9
T = 100 5% 4�4% 3�1% 9�7%

size 5�6% 5�9% 5�5% 4�9% 5�3%

d1 0�5 0�6 0�7 0�8 0�9
T = 400 5% 4�6% 3�7% 7�9%

size 5�6% 5�2% 5�1% 5�0% 5�4%

they follow a zero-mean standardized 52�1� distribution), the power of the FD-F
test is higher (68% and 66%) than that of the TAN test (62% and 41%) for two
of the smaller sample sizes (T = 50 and 100) and 1= 2.
The results on power of the FD-F test that are collected in Theorems 3 and 4

only have asymptotic validity and, in the case of Theorem 4, they are derived
against local alternatives. Thus, they turn out not to be too informative about
how the test behaves in finite samples and when the alternative hypothesis is not
a local one. In the following subsection we shall examine, through Monte Carlo
simulations, how the FD-F test performs in those cases vis-á-vis other competing
tests in the literature.

2�2� Power of the FD-F Test in Finite Samples

In order to analyze the size and power of the proposed test, we have generated
a random walk and a number of FI processes with order of integration d∗

1 ∈
�0
0�9�, defined as �d∗1yt = �t1�t>0�, where �t are NID�0
1� innovations, for two
sample sizes: T = 100 and T = 400. The number of replications is 1000 and the
significance level is 5%.
Table II reports the rejection frequencies at the 5% significance level, corre-

sponding to the case where the true DGP is a random walk. For the FD-F test,
t�̂ols was computed using different values of d1 and size is reported for each of
those values.4 Table II also offers the size of the standard D-F test, the Geweke
and Porter-Hudak (1983) test, and the LM tests proposed by Tanaka (1999) and
Robinson (1994), denoted as GPH, TAN, and ROB, respectively. The number of
periodogram ordinates included in the log-periodogram regression for the com-
putation of the GPH test is set equal to T 1/2, as originally suggested by those
authors. Figure 1, in turn, depicts the power of all those tests for T = 100, with
the order of integration of the process, d1, represented in the horizontal axis and
the rejection frequencies in the vertical axis. For the FD-F test, we have com-
puted the t-ratio t�̂ols , under the assumption that the true order of integration,

4 The empirical size is only reported for d1 ∈ �0�5
0�9%, which is the range whose critical values
are those of a N�0
1� distribution. For d1 ∈ �0
0�5�, the critical values were derived numerically and
therefore size is always the nominal one.
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Figure 1.—Power of unit root tests.

d∗1 , is known.
5 When d∗1 ∈ �0
0�5�, the critical values reported in Appendix B, for

T = 100 and T = 400, are used to compute the power whereas, for the remaining
values of d1, the nominal critical values from a N�0
1� variate are considered.
From Table II and Figure 1, it follows that the FD-F test performs very well

both in terms of size and power. As regards size, both LM tests present distor-
tions in opposite directions while the other tests perform correctly. As for power,
the FD-F test performs best in samples of moderate size (T = 100) and almost as
well as TAN for larger sample sizes (T = 400), where power is not reported for
the sake of brevity. Note that the low power of the GPH test is to be expected
since it is designed to cater for general fractional models without any assump-
tion on their spectral density, whereas the FD-F procedure is fully parametric
and uses all available information, including the a priori known value of d under
the null hypothesis. Finally, for all tests, given their consistency against fractional
alternatives, power improves as the sample size grows.
As discussed in the Introduction, two definitions of a FI�d� process (see

Appendix A) have been adopted in the literature, depending on how the pro-
cess is initialized: either it is assumed that the process (under stationarity) starts
at −
 or, by contrast, it is assumed that all pre-sample values are equal to zero.
As mentioned above, the latter is the assumption that we adopt in this paper.
Nonetheless, it is interesting to examine whether the alternative definition can
affect the properties of the test. Note that size will not be affected since, under
the null hypothesis, the process is I�1� and the initial condition is assumed to be

5 Below, Table V reports the rejection frequencies of the FD-F test when d1 is unknown and, thus,
needs to be estimated according to the estimation procedure described in Section 3. Notice that in
both cases the power is very similar.



TABLE III
Power of the FD-F Tests against FI Alternatives

d∗1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T = 100 100% 100% 100% 100% 100% 100% 91.2% 65.9% 25.9%
T = 400 100% 100% 100% 100% 100% 100% 100% 99.8% 62.3%

equal to zero, as in the case of our truncated FI�d� process. However, that is not
the case when power is considered. This is so since we are dealing with a FI�d�
process and, unless we assume that all pre-sample values are set equal to zero,
they will appear in the definition of the process. In order to evaluate the effect
on the power of the test of using the alternative initializations of the process, we
have carried out a small-scale Monte Carlo study, generating FI�d� processes ini-
tialized in the distant past to compute the test statistics. More specifically, when
d1 ≤ 0�5, we have generated FI�d� processes with sample size T ′ =K+T , having
discarded the first K = 1000 observations. When d1 > 0�5, we have generated the
partial sums of the corresponding stationary FI�d� processes with order of inte-
gration given by �d1−1�. Nevertheless, to compute the test statistics we need to
filter the originally generated series and for that only observations t = 1
 7 7 7 
 T
have been used since, in practice, the values when t ≤ 0 are unknown. Table III
displays the power of the FD-F test for that last case, which turns out to be very
similar to that shown in Figure 1. Thus, the effect of the initialization of the
process at t = 0 seems to have minor effects on the power of the proposed test.
Under the alternative hypothesis, the true value of d1, d∗1 , is unknown in prac-

tice. Thus, it is convenient to analyze, again by means of a Monte Carlo study,
how robust is the FD-F test against misspecification in the value of d1 used to
run regression (2). Figure 2 displays the power of such a test for T = 100 when
incorrect values of d1 are used. More specifically, we have considered deviations
of size ±0�1, ±0�2, and ±0�3 from the true value, d∗1 . As it can be seen, we
obtain very similar rejection rates to those reported in Figure 2, when d∗1 was
used to compute the power, in accord with the result in Theorem 3. It is worth
noticing that the power tends to decrease when values of d1 larger than d∗1 are
employed, especially when d∗1 > 0�7. This is so because in that case we are con-
sidering an alternative that is close to the null hypothesis and, therefore, the
test turns out to be less powerful. Overall, the previous evidence suggests that
the FD-F is quite robust in finite samples to misspecification in the value of d1
and that by and large the good properties of the test do not depend too much
on the accuracy of the estimation of d1 under the alternative.

3� the fd-f with unknown d1

To implement the FD-F test, we need a value of the memory parameter d1
under the alternative hypothesis. Sometimes, we can have an a priori knowledge



, ,

Figure 2.—Robustness against a misspecified d1.

of this value but,6 more realistically, we will need to estimate it, particularly
when a composite alternative is being posed. There is a substantial literature
on the estimation of the degree of integration, d, in FI�d� models, both in the
frequency and the time domain that can be helpful in order to find an appropriate
pre-estimate. Indeed, the results in Section 2 about the relative robustness of
the good power properties of the FD-F test to the degree of accuracy in the
estimation of d1, will help us in restricting the search to those estimators that
satisfy a certain consistency property within the range 0 ≤ d1 < 1. In particular,
as shown in Theorems 5 and 6 below, the choice of any of the available T 1/2-
consistent estimators of d1 in the time domain will suffice to make the FD-F
feasible. The basic result that we obtain is that if a T 1/2-consistent estimator of d1
is used, the asymptotic distribution under H0 of t�̂ols remains a N�0
1�. Next, we
analyze the behavior of the FD-F test in finite samples through a Monte Carlo
study to find that the results of these simulations strongly support the theoretical
results.

3�1� Asymptotic Distribution of the FD-F Test with an Estimated d1

To prove the previous result, let us assume that the DGP is a random walk
such that �yt = �t . Let d̂T be a T 1/2-consistent estimator of d ≤ 1, such that

6 For example, there is broad evidence that the long-memory parameter characterizing the time
series behavior of political opinion polls in most OECD countries is d= 0�7; cf. Byers, Davidson, and
Peel (1997).



T 1/2�d̂T −d� w→ 8, where 8 is a non-degenerate distribution. Since the value of d1
that is needed to implement the test ought to be strictly smaller than 1, the pre-
estimated value of d1, d̂1, is chosen in accord with the following trimming rule:

d̂1 =
{
d̂T 
 if d̂T < 1−c

1−c
 if d̂T ≥ 1−c
(33)

where c > 0 is a (fixed) value in a neighborhood of zero,7 such that �1− c� is
sufficiently close to unity. Then, the following theorem derives the asymptotic
distribution of the test statistic t�̂ols under the null hypothesis that yt is a random
walk and that the value of d1 needed to implement the test has been chosen in
accord with criterion (33).

Theorem 5: Under the null hypothesis that yt is a random walk, the test statistic
t�̂ols�d̂1� associated to parameter � in the regression

�yt = ��d̂1yt−1+at

where d̂1 has been chosen according to the criterion defined in (33), is asymptotically
distributed as

t�̂ols�d̂1�
w−→N�0
1��(34)

The result in the previous theorem implies that when a pre-estimated value of
d1 is used to implement the FD-F test, the corresponding critical values are those
from a N�0
1� distribution, for any value of d̂1 which verifies criterion (33). It is
important to note that this result differs from the one obtained before when the
value of d1 was assumed to be a priori known. In that case, when d1 ∈ �0
0�5�, the
test had a nonstandard distribution under the null. However, the interpretation
behind this seemingly contradictory result is a simple one. In effect, the fact that
the limit distribution of the feasible FD-F test is always N�0
1� just reflects that,
under the null and for T sufficiently large, the T 1/2-consistency of the estimator
will lead to a small distance between the unit root and the estimated d1, which
is precisely the case where asymptotic normality is achieved in Theorem 1.

3�1�1� Some Suitable Estimation Methods

As proven above, in principle, any T 1/2-consistent estimator of d1 ∈D ≡ �0
1�
could be used in regression (2) to make the FD-F test feasible. This restricts
the choice to the class of parametric estimators of d1, since semiparametric
estimators generally have a slower rate of convergence (see, e.g., the survey in
Baillie (1996)). Amongst the parametric class of estimators there are several pro-
cedures that achieve T 1/2-consistency within the specified set of values of d1,
both in the frequency and in the time domain. Within the frequency domain,

7 It has to be verified that 0< c < 0�5.



, ,

Velasco and Robinson (2000) have extended the Whittle estimator, available
for d1 ∈ �−0�5
0�5� to the nonstationary range achieving a T 1/2-consistent and
asymptotically normal estimator based on tapered data for d1 > 0�5. That esti-
mator, however, is not efficient for d1 > 0�5 since the tapering increases its vari-
ance. Moreover, the amount of tapering to be included in the data increases
with d1, implying lower efficiency of the estimator the higher is the degree of
fractional integration. A further shortcoming of that tapered estimator is that
it is computationally complex to apply in practice. For that reason, and in par-
allel with the choice of the time domain as an appropriate underlying frame-
work for the implementation of the FD-F test, we prefer to advocate the use
of T 1/2-consistent estimators of d1 ∈ �0
1� in the time domain to make the test
feasible. Within the time-domain class of T 1/2-consistent estimators in the per-
missible range of d1, the most popular ones are the maximum-likelihood estima-
tors (MLE) due to Beran (1995) and Tanaka (1999) and the minimum distance
(MD) estimator due to Galbraith and Zinde-Walsh (1997). Although any of those
estimators can be used in principle to estimate d1 we prefer to use a gener-
alized MD estimator proposed by Mayoral (2000) (labelled as GMD) for the
following two reasons. First, in contrast to Beran (1995) and Tanaka (1999),
gaussianity of the error term is not assumed in the derivation of GMD. And
secondly, in contrast with the other MD estimator by Galbraith and Zinde-
Walsh (1997), where T 1/2-consistency is only proved for the stationary range of
values of d1 and conjectured for the nonstationary range, the GMD estima-
tor can be shown to be T 1/2-consistent in the whole range of d1 ∈ �0
1�. Thus
the GMD estimator will be used to illustrate the computation of the feasible
FD-F test in the sequel. This estimator can be seen as an extension of the
MD estimator proposed by Tieslau, Schmidt, and Baillie (1996) where, instead
of minimizing a criterion function based on the distance between the theoret-
ical and the sample autocorrelations of the original series yt (which only exist
for stationary FI�d� processes), it minimizes a similar criterion based this time
on the autocorrelations of the residuals obtained after filtering the series with
the appropriate ARFIMA parameters (which also exist for nonstationary FI�d�
processes).
Specifically, the proposed GMD estimator can be used for the general case

where ut is an ARMA �p
q� process, i.e., ut =4p�L�−1<q�L��t , such that 4p�L�
and <q�L� are pth and qth order lag polynomials, respectively, with all their
roots outside the unit circle. Hence, yt is assumed to follow the ARFIMA�p
d
q�
process

4p�L��
dyt =<q�L��t
(35)

such that d ∈ �−3/4

�, i.e., a set that contains D.
Let = = ��1
 7 7 7 �p
 /1
 7 7 7 /q�′ be the vector containing the AR and MA

parameters, > = �d
= ′�′ and ?j�>�, j = 0
 7 7 7 

, be the coefficients associated
to the expansion 4r�L�<s�L�−1�d. Also let >∗ be the true parameter values of



the model in (35). Then, given the observations y1
 7 7 7 
 yT , we can define the
residuals

et�>�=
t−1∑
j=0
?j�>�yt−j �(36)

Next, define VTe�>�=
∑k
i=1 D̂

2
ie�>�, where D̂ie�>� is the sample ith order autocorre-

lation associated with the residuals et�>�, where k= op�T �. In practice, k= T 1/4

is a good choice. Then, the MDE of > is defined as

>̂= argmin
>∈E
VTe�>��(37)

Notice that, since et�>∗� = �t , the population autocorrelations are zero and
VTe�>� has a unique minimum at > = >∗. Mayoral (2000) has proved that >̂
turns out to be a T 1/2-consistent, asymptotically normally distributed estimator
of >, for d ∈ �−3/4

�, with the same asymptotic variance as the MLE derived
by Beran (1995). MATLAB programs to implement this estimator are available
upon request.

3�1�2� Behavior of the Estimator of d1 in Finite Samples

In this section, we evaluate the accuracy of the proposed GMD estimator of
d1 in finite samples through Monte Carlo experimentation. We have generated
fractional white noise processes like (26) with �t ∼ NID�0
1�, with the initial
values needed to start the minimization algorithm being set equal to zero in all
cases. Table IV lists the mean of the estimated d̂1 across simulations. That is,
d̂1 =

∑N
1 d̂1i/N and &̂ = �∑N

1 �d̂1i− d̂1�2/N�1/2, where N = 1000 is the number of
replications, for two sample sizes, T = 100 and T = 400.
In general, we find that the proposed GMD estimator provides very accurate

estimates of d1 for both sample sizes and, therefore, that turns out to be useful
in implementing a feasible FD-F test.

TABLE IV
Estimation of d Based on Criterion (37)

T = 100

d∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d̂T 0�001 0�105 0�203 0�311 0�407 0�501 0�602 0�704 0�801 0�903 1�01
&̂d̂ 0�092 0�093 0�092 0�092 0�093 0�093 0�091 0�094 0�093 0�091 0�094

T = 400

d∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d̂T 0�00 0�102 0�203 0�299 0�403 0�501 0�598 0�701 0�800 0�910 0�998
&̂d̂ 0�043 0�042 0�044 0�042 0�043 0�040 0�041 0�043 0�042 0�041 0�040
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TABLE V
Size and Power of FD-F Test with an Estimated d1

T � d∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T = 100 100% 100% 100% 100% 100% 99.4% 97.7% 86.4% 65.4% 25.1% 4.3%
T = 400 100% 100% 100% 100% 100% 100% 100% 100% 98.9% 63.1% 5.1%
T = 1000 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 5%

3�2� Behavior of the FD-F Test with an Estimated d1

In this subsection we present the results of the simulations carried out to
evaluate the behavior of the FD-F test when d1 is estimated using the GMD
estimator defined above. We designed the same Monte Carlo experiment as in
subsection 2.2, albeit using this time the pre-estimated value of d1 to compute
the t-ratio. The chosen value of c was 0.02, so that d̂1 ≤ 0�98. Table V lists the
power and size of the test in that case.
As can be seen, the results in Table V turn out to be very similar to those

reported in Table II and Figure 1, where the true value of d1 was being used to
compute the test. In accord with the results derived in Theorems 3 and 5, the
basic observation that we draw from this exercise is that replacing the true value
of d1 by d̂1 hardly affects the size and power properties of the proposed test.
Next, Figure 3 displays the normal probability plot (NP-plot) which compares

the empirical distribution of the feasible t-ratio, t�̂ols�d̂1�, with a N�0
1� distri-
bution, for two sample sizes, T = 100 and T = 400. We can observe that the
approximation to a standardized normal variate works well even for the smaller
sample size.
Next, we check if the promising results obtained so far for the null that a series

is a random walk against the alternative that is a fractional white noise can be
extended to more general set-ups where serial correlation in the disturbances is
allowed.

4� the augmented fd-f test

In several applications, such as in the case of financial or opinion poll data,
the characterization of a series as a fractional white noise may well be plausi-
ble. However, in many other cases, it seems of paramount importance to allow
for more general models where there is serial correlation in the errors. In this
section, the results in Section 2 are extended to that more general setup. For that,
we follow the well-known Augmented Dickey-Fuller (AD-F) testing approach,
and find that the asymptotic distribution of the t-ratio (see Theorem 2) remains
valid in the presence of serial correlation, as long as a sufficient number of lags
of �d0yt ��yt if d0 = 1� is included in the regression.



Figure 3.—NP-plot of t�̂ols �d̂1�.

4�1� Definitions and Asymptotic Properties

The proposed testing procedure imitates the traditional DF approach in the
context of ARIMA processes. Let us consider again regression (1):

�yt = �yt−1+ut

where now 3�L�ut = �t , i.e., an autoregressive process of order p, AR�p�, such
that 3�L� = 1−31L− · · ·−3pLp has all its roots outside the unit circle. Then
the AD-F test is based upon the following regression:

�yt = �yt−1+
p∑
i=1
Fi�yt−i+�t�

Under the null hypothesis, Dickey and Fuller (1981) showed that the asymptotic
distribution of the t-ratio t�̂ols is identical to the one derived in the absence of
serial correlation. Following the same analogy that was used in Section 2, the
proposed regression for the case where ut is an AR (p) process8 is as follows:

�yt = ��d1yt−1+
p∑
i=1
Fi�yt−i+�t�(38)

As in regression (2), the null of a unit root and the alternative hypotheses of
a FI�d1� can be expressed in terms of the parameter � when �= 0 and � < 0,

8 As in the case of the AD-F test for unit roots, a generalization to ARMA�p
q� processes can be
implemented along the lines of Said and Dickey (1984) and Ng and Perron (1995).
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respectively. When �= 0, it is easy to prove that yt follows an ARIMA�p
1
0�
process whereas, when �< 0, yt is given by

�3�L��1−d1 −�L��d1yt = ut

where, as in Section 2, the polynomial  �z� = �3�z��1−z�1−d1 −�z� has abso-
lutely summable coefficients which verify that  �0� = 1,  �1� = −�, and �d1yt
is an invertible process9 that, under H1, can be rewritten as

�d1yt = C�L��t

where, in this case, C�z�= � �z��−13�z� such that C�0�= 1 and 0<C�1� <
.
The previous arguments lead to a test based upon the t-ratio t�̂ols computed

this time from the extended regression (38). In the following theorem we derive
the asymptotic distribution of that test statistic and the remaining coefficients in
(38). In parallel with the well-known result for the standard AD-F test, it is found
that the asymptotic distribution of the t�̂ols is identical to that derived under the
assumption of uncorrelated disturbances.

Theorem 6: Under the null hypothesis that yt is an ARIMA�p
1
0� process:
• The asymptotic distribution of t�̂ols in regression (38) is the same as in the

i.i.d. case, given in Theorem 2.
• �F̂1
 7 7 7 
 F̂p�′ are asymptotically normally distributed for any value of d1 ∈

�0
1� used in the regression (38).

Notice that, as is the case in the standard AD-F framework, a test based on the
normalized OLS coefficient, �̂ols, will depend on nuisance parameters. Hence, the
results in Theorem 1 do not hold for that test statistic when short-term structure
is allowed in the errors. Therefore, in the sequel only the performance of t�̂ols
will be analyzed.
First, let us now consider the behavior of the test under the alternative hypoth-

esis of fractional integration. Krämer (1998) proves the consistency of the AD-F
test when the DGP is a fractional white noise, provided that the number of lags
included in the regression does not tend to infinity too fast. To our knowledge,
however, no results are available on the consistency of the AD-F test when the
DGP is a more general ARFIMA process. The following theorem states the con-
sistency of the AFD-F test when the DGP is an ARFIMA�p
d1
 q� and the num-
ber of lags included in the regression, k, tends to infinity at a slower rate than
T , so that k3/T → 0.

Theorem 7: If the DGP is given by �d1yt = ut1�t>0�, with d1 ∈ �0
1� and ut is a
stationary and invertible ARMA �p
q� process satisfying 3p�L�ut = Gq�L��t, �t ∼
i�i�d��0
&2�, 30 = G0 = 1 with p and q possibly unknown, the t-ratio associated to

9 The condition that 3�−1�21−d1 < � < 0 is needed to ensure that all the roots of the polynomial
 �z� are outside the unit circle.



the OLS estimator of � in the regression �yt =��d1yt−1+11�yt−1+· · ·+1k�yt−k+
itk diverges to −
 when k→
 as T →
, and k3/T → 0, implying the consistency
of the test.

Since the implementation of the LM test needs precise knowledge of the serial
correlation structure of the process, the previous result implies an important
advantage of the AFD-F vis-á-vis the use of parametric LM tests. This is so since
the semiparametric nature of the AFD-F test does not require such a precise
information.

4�2� Behavior of the AFD-F Test in Finite Samples

A Monte Carlo study has been carried out to evaluate the performance of the
test in this more general framework. As in Tanaka (1999), we have considered
FI�d1� processes with an AR(1) structure in the errors, that is:

�d
∗
1yt = ut
(39)

ut = 3ut−1+�t
 �t ∼ n�i�d��0
1�
(40)

for different values of d1 and 3, having computed the t-ratio associated to �̂ in
the model:

�yt = ��d∗1yt−1+ F�yt−1+at�(41)

We have computed the size of the test using the same critical values as in the
i.i.d. case and have obtained similar values to those reported in Table II. This
implies that the test is very well behaved in terms of size, even when short-term
structure is allowed in the errors, due to its ability to capture this structure in ut .
The size values are not reported here although they are available upon request.
Table VI provides the rejection frequencies at the 5% significance level for

T = 100 and T = 400 and 3=−0�8
0�2 and 0�6. The two extreme values in that

TABLE VI
Power of the Test with Stationary AR(1) Errors

3=−0�8
T � d∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T = 100 100% 100% 100% 100% 100% 100% 99.1% 97.2% 77.2% 31.0%
T = 400 100% 100% 100% 100% 100% 100% 100% 100% 100% 78.6%

3= 0�2

T = 100 100% 100% 100% 100% 100% 98.8% 90.0% 65.6% 39.2% 19.0%
T = 400 100% 100% 100% 100% 100% 100% 100% 99.6% 85.6% 38.6%

3= 0�6

T = 100 100% 100% 99.7% 95.5% 84.3% 63.5% 42.5% 36.0% 17.2% 9.90%
T = 400 100% 100% 100% 100% 100% 100% 95.4% 68.2% 32.3% 14.1%
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range are those analyzed by Tanaka (1999) whereas the middle one has been
chosen as an intermediate value. The number of replications is 1000. In all cases,
the true d1 has been used to run the regression. To a large extent, the power of
the test depends on how close the polynomial 3�z� is to having a unit root. To
check that, let us assume that yt follows an ARFIMA�1
d1
0� process defined
as �d1yt = �t/�1−3L�; then yt can be rewritten as (see the proof of Theorem 7):

�yt =−3�1��d1yt−1+ �1−�d1��yt+�t

where the first coefficient in the expansion of �1−�d1� around L = 0 is zero.
Note that the closer 3�1� is to zero, i.e. the closer the coefficient on �d1yt−1 is
to zero, the smaller the power of the test will be. That is to be a priori expected
since, in the limit, as 3 tends to unity, yt will tend to a FI�1+d1� process that
contains a unit root within the range of values permitted under the alternative
hypothesis, and hence its power will be small. This is confirmed in the simulation
when 3= 0�6. However, the AFD-F test remains quite powerful for other smaller
or negative values of 3.
We have also carried out simulations to study the robustness of the test when

d1 is misspecified in the regression and 3 = 0�2. As in the i.i.d. case, we have
considered deviations of ±0�1
±0�2, and ±0�3 from the true value of d1 and
found small changes with respect to the power reported in Table VI. For example,
when d∗1 = 0�6 and T = 100, the power for d∗1±0�2 is 88.5 and 83.3%, respectively,
whereas at the true value it is 90.6%. Other alternative values of 3 have also
been considered, yielding similar results.

4�3� Behavior of the AFD-F Test with an Estimated d1

Finally, we analyze properties of the AFD-F test when d1 is estimated. As in
the i.i.d. case, the asymptotic distribution of the t-ratio with an estimated d1 is
identical to that obtained with known d1 whenever a T 1/2-consistent estimator of
d1 is used, as shown in the following Theorem.

Theorem 8: Under the null hypothesis that yt is generated by

�yt = ut
 3p�L�ut = �t
(42)

the asymptotic distribution of the t-ratio t�̂ols�d̂1� associated to coefficient � in regres-
sion (38), where d1 is an estimator of d that minimizes the criterion function defined
in (33), is as follows:

t�̂ols�d̂1�
w−→N�0
1��(43)

Figure 4 portrays the NP-Plot, which compares the distribution of t�̂ols�d̂1� with
a N�0
1� distribution when the DGP is an ARIMA�1
1
0� and d1 has been
estimated in two samples of size T = 100 and T = 400 using the GMD estimator



Figure 4.—NP-plot of t�̂ols �d̂1�.

described in subsection 3.1.1. As in the i.i.d. case, the approximation to a N�0
1�
distribution works reasonably well in the finite samples considered.
Finally, to explore the behavior of the test with an estimated d1, we have run

another small Monte Carlo study. Table VII reports the rejection frequencies, at
the 5% significance level, of the test based on the t-ratio in the regression: �yt =
��d̂yt−1+F�yt−1+et . As shown above, the critical values are those of a N�0
1�.
The DGP is ARFIMA �1
d1
0� process with the autoregressive parameter, 3,
taking the values 3= 0�2 and 0.6.
As in the i.i.d. case, we can observe that the power loss due to the pre-

estimation of d1 turns out to be small, although it happens to be larger than that
obtained under i.i.d. error terms.

TABLE VII
Power and Size of the AFD-F Test with Estimated d1

3= 0�2

T � d∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T = 100 100% 100% 100% 100% 99.0% 98.2% 88.5% 63.3% 38% 18.2% 4.5%
T = 400 100% 100% 100% 100% 100% 100% 99.9% 98.1% 83.5% 37.1% 6.0%

3= 0�6

T � \d∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T = 100 100% 100% 99.7% 92.2% 82.9% 59.3% 41.3% 34.2% 15% 9.4% 5.4%
T = 400 100% 100% 100% 100% 100% 97.5% 94.5% 67.8% 31.1% 13.4% 5.1%
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4�4� Analogies between the FD-F and the LM Tests

As mentioned above, Robinson (1994) and Tanaka (1999) have developed LM
tests in the frequency and time domain, respectively. Both those tests and the
FD-F and AFD-F tests share some features that makes them different from the
traditional unit root tests, their most remarkable property being that they have
standard limit distributions. To analyze the analogies and differences between
those tests and the one we propose, we will focus on Tanaka’s test since, as with
the FD-F test, it is defined in the time domain.
Tanaka’s (1999) LM test statistic is designed to test H0 � /= 0 against H1 � / < 0

or H1 � / > 0 in the model

�d0+/yt = ut
 yt ∼N�0
H�
(44)

where d0 is a given constant and ut = Gq�L�/3p�L��t is an ARMA�p
q� pro-
cess. Let L�·� be the log-likelihood and I = �31
 7 7 7 
3p
G1
 7 7 7 
Gq�′. Then, the
proposed LM test statistic, LMTAN , is given by

LMTAN = KL�/
I
&
2�

K/

∣∣∣∣
H0

= T
T−1∑
k=1

1
k
D̂k
(45)

where D̂k =
∑T
j=k+1 �̂j−k�̂j/

∑T
j=1 �̂

2
j is the kth autocorrelation of the residuals

�̂1
 7 7 7 
 �̂T , calculated under the null and therefore defined as

�̂t = 3̂�L�Ĝ�L�−1�1−L�d0yt�
Under H0, it can be shown that the previous test statistic is asymptotically

distributed as a N�0
W�, where W is a function of both the elements of the
inverse of the Fisher matrix and the coefficients I (for a detailed description,
see Tanaka (1999)). As pointed out by the author, the computation of W can
become cumbersome when ut follows a general linear process. Note that this is
not the case for the AFD-F test whose asymptotic distribution is always a N (0,
1). However, the latter test needs, in most cases, a pre-estimation of d under H1,
in contrast to the LM tests.
In the absence of serial correlation, it is possible to carry out a detailed ana-

lytical comparison of both tests. In such a case, the LMTAN test in (45) and the
FD-F test, based upon the OLS estimator of � are, respectively

LMTAN = T
∑T
t=1�

d0yt
(∑t−1

k=1
1
k
�d0yt−k

)∑T
t=1��d0yt�2




�̂ols =
∑T
t=1�

d0yt�
d1yt−1∑T

t=1��d1yt−1�2
�

Under the null hypothesis, they can be written as

LMTAN �H0
= T

∑T
t=2 �t

(∑t−1
k=1

1
k
�t−k

)∑T
t=1��t�2

= T
T−1∑
k=1

1
k
D̂��k�(46)



and

�̂ols
∣∣
H0
=
∑T
t=2 �t

(∑t−1
k=1�i�d1−d0��t−k

)∑T
t=2
(∑t−1

k=1�i�d1−d0��t−k
)2 �(47)

A comparison of (46) and (47) yields the following interesting observations. On
the one hand, the numerators in the expressions above look similar except that
the weights on the innovations �t−k differ. In the case of �̂ols , the weights are a
function of the distance between d0 and d1. When that distance is large, the size
of the weights increases �0 ≤ d1 < 0�5� implying that a CLT does not hold, and
therefore that the limit distribution of the test is a nonstandard one. This feature
does not arise with the LMTAN test since its weights do not depend on d1. On
the other hand, a similar argument applies to the denominator, which precludes
a choice of weights that would make both expressions equivalent. When dealing
with serially correlated disturbances, the analytical comparison between both test
statistics becomes much more cumbersome since, in that case, they differ not
only in the weighting factors but in many other dimensions.

5� empirical applications

In order to provide some empirical illustrations of how the testing and estima-
tion methods proposed in this paper can be applied in practice, we have exam-
ined two series for which evidence of fractional integration has been found before
in the literature. More specifically, the first one is the UK Gallup opinion poll
series (cf. Byers, Davidson, and Peel (1997)) whereas the second one is the US
unemployment rate series in Nelson and Plosser’s (1982) data set.

5�1� Opinion Poll Data

We consider the Gallup opinion poll series of support for the Conserva-
tive and the Labour parties in the UK, analyzed by Byers, Davidson, and Peel
(1997). Their basic finding is that the logistic transformation of these series (after
removal of the deterministic components due to the ‘election cycle’ effect)10 is
well characterized by a fractional white noise with 0�5 < d < 1, so it is nonsta-
tionary, albeit mean reverting. The results obtained through our method are very
similar. The data are monthly and their length consists of 434 observations. We
have considered the logistic transformation of the series centered by their sam-
ple mean (which corresponds to the case of treating the effect of the election
cycle as a constant). Table VIII presents the results of applying the FD-F test to
both series, i.e., regressing �yt on �d̂1yt−1, where d̂1 is the GMD estimate, and
computing the t-ratio associated to the estimated coefficient. Asterisks denote
rejection of the null hypothesis at the nominal 5% level, using the N (0, 1) critical
values since d1 has been pre-estimated.

10 This effect refers to the tendency of a party’s support to depend on the proximity of an election
in a deterministic way.
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TABLE VIII
FD-F Test on Opinion Polls

tH0 �d0=1 d̂1

Conservative −4�60∗ 0.772
Labour −7�09∗ 0.707

The test strongly rejects the null of unit root, showing evidence of fractional
integration. The estimated values of d1 are close to the ones obtained by Byers,
Davidson, and Peel (1997) using the Sowell (1992) exact maximum likelihood
approach, which are 0.779 and 0.726 for the Conservative and Labour cases,
respectively.
In view of those results, the conclusion that can be drawn is that the shocks

(news) have a transitory effect on voting intentions and that voters forget even-
tually about them, albeit not rapidly, implying that voting intentions can be char-
acterized as a long-memory process. Similar results are obtained for the Spanish
opinion polls (see Dolado, Gonzalo, and Mayoral (2001)).

5�2� Unemployment Rate Data

Finally, we consider the extended version of Nelson and Plosser’s data set.
These series have been analyzed, among others, by Gil-Alaña and Robinson
(1997). By applying Robinson’s LM test, they find evidence of fractional integra-
tion in many of them. In particular, we examine the unemployment rate, which
is the series where there is more controversy about its degree of integration.
The data are annual, from 1891 to 1988 and, as in Nelson and Plosser (1982),
they have been transformed to natural logarithms. Unlike in most of the above-
considered examples, the fractional white noise hypothesis does not seem to be
appropriate in this instance. Thus, we consider different specifications of ut in
equation (2), namely that ut is white noise, with and without a constant in the
model,11 and that it is an AR(p) process. For the first two specifications, the null
hypothesis of a unit root cannot be rejected. Nevertheless, this result is hardly
reliable since the residuals obtained after differencing the series show significant
autocorrelations, presenting evidence of misspecification in the model (the val-
ues for the Q(10)-statistic are 19.58 and 18.13 respectively, which are rejection
values for a 529 distribution at the nominal 5% level). Table IX also reports the
values of the test when an AR(1) is fitted to ut . In this case, none of the auto-
correlations of the residuals were significant, making this specification preferable

11 As in the D-F framework, the asymptotic behavior of the FD-F test changes when deterministic
components are introduced in the regression equation for the case where d1 < 0�5. It is straight-
forward to check that when a constant is introduced in the model and the DGP is a random walk
without drift, the limiting distributions correspond to the ones derived in Theorem 2, with the FBM
replaced by demeaned FBM. Appendix B incorporates the critical values for the nonstandard range
of values of d.



TABLE IX
FD-F and AFD-F Test on Unemployment Rate

tH0 �d0=1 d̂1

ut white noise 0.57 0.852
Constant term and ut white noise 0.36 0.863

to the previous ones (the Q(10) statistic is distributed in this case as a 528 , and
yields a value of 13.47) and therefore the null of white noise residuals cannot
be rejected. The AFD-F test rejects the unit root null hypothesis, a result that
agrees with those obtained by Gil-Alaña and Robinson (1997) and Nelson and
Plosser (1982) in the context of ARIMA models. The estimated value of d1 is
in this case 0.412, lying in the stationary range of values of d1, although close to
the nonstationary boundary.

6� concluding remarks

In this paper we have proposed Wald type tests of H0 � FI�d0� versus H1 �
FI�d1�, with d1 < d0, based upon the same principles as the Dickey-Fuller test
for I(1) versus I(0) processes. The test statistics are based on the standardized
OLS and the t-ratio in a very simple regression model. In particular, we focus
on the case when d0 = 1 and 0 ≤ d1 < 1, where the regression model consists of
regressing �yt on �dyt−1 and, possibly, lags of �yt to correct for serial correlation.
To implement the tests, any T 1/2-consistent estimator of d1, within the permissible
range can be used. In particular, we advocate the use of a Generalized Minimum-
Distance estimator of d1 proposed by Mayoral (2000) in the time domain which
achieves T 1/2-consistency and asymptotic normality, and which turns out to work
well in finite samples. Several empirical illustrations of how to use and interpret
these tests are provided. Further, various Monte Carlo experiments throughout
the paper support the analytical results and show that the proposed tests behave
reasonably well in finite samples.
Further research is currently being undertaken towards generalizing the FD-F

testing approach along similar directions as the D-F test has been extended
in the unit root literature accounting for exogenous and endogenous structural
breaks, heteroscedastic error terms, seasonality, fractional cointegration, etc. The
extension of the proposed testing approach to a multivariate framework is par-
ticularly interesting since some of the best-known cointegration tests, such as
Stock-Watson (1988) and Johansen (1991), can be interpreted as multivariate
generalizations of the AD-F tests. This extension is also crucial for cointegration
analysis since it is known that a mistake in the determination of the parameter
d can produce spurious cointegration (see Gonzalo and Lee (1988)).
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APPENDIX A

Definition 1 (Stationary ARFIMA�p
d
q� process): yt is an invertible and stationary ARFIMA�p

d
q� process if it can be written as

�dyt = ut
(A.1)

where �ut�
t=−
 is an ARMA�p
q� process such that ut =4p�L�−1<q�L��t and both lag polynomials
have their roots outside the unit circle, where, �t is a zero-mean i.i.d. random variable with variance
& 2 and d ∈ �−0�5
0�5�.

Definition 2 (Asymptotically stationary ARFIMA�p
d
q� process): Let u∗t be generated by

u∗t = ut
 t > 0


u∗t = 0
 t ≤ 0


where �ut�
t=−
 verifies the same properties as in Definition 1. Then, yt is an asymptotically stationary
ARFIMA�p
d
q� process if it can be written as

�dyt = u∗t 
(A.2)

with d ∈ �−0�5
0�5�.

Definition 3 (Nonstationary ARFIMA�p
d
q� process): Let yt be an ARFIMA�p
d∗
 q� defi-
ned as in (A.1). Then, if xt is defined as

xt =
t∑
i=1
yi =

t∑
i=1

(

∑
j=0
�j�d

∗�ui−j

)



it is a nonstationary ARFIMA�p
d
q� process with d = 1+d∗, i.e., d ∈ �0�5
1�5�.

Definition 4 (Nonstationary (truncated) ARFIMA�p
d
q� process): Let yt be an ARFIMA�p

d∗
 q� as defined in (A.2). Then, if xt is defined as

xt =
t∑
i=1
yi =

t∑
i=1

(
i−1∑
j=0
�j�d

∗�ui−j

)



it is a nonstationary (truncated) ARFIMA�p
d
q� process with d = 1+d∗, i.e., d ∈ �0�5
1�5�.

Consider the following sequences of partial sums of stationary and asymptotically stationary
ARFIMA processes:

S�Tr% =
�Tr%∑
i=1
yi
 r ∈ �0
1%




with yt defined as in (A.1), and

S∗
�Tr% =

�Tr%∑
i=1
y∗i 
 r ∈ �0
1%


with y∗t defined as in (A.2). Then, it can be proved (see Marinucci and Robinson (1999)) that

c−1/2T −d−1/2S�Tr%�r�
w−→ Bd�r�
 r ∈ �0
1%


with c a constant such that var�ST �∼ cT 2�d+1/2�, and

� �d+1�
{
d+1/2

T 2d−1�g�0�

}1/2
S∗
�Tr%

w−→Wd�r�
 r ∈ �0
1%


where g�0� is the spectral density of ut at frequency zero, and Bd�r� andWd�r� are Fractional Brown-
ian Motions (FBM) as defined in Samorodnitsky and Taqqu (1994) and Mandelbrot and Van Ness
(1968), respectively (see also Marinucci and Robinson (1999)).

Proof of Lemma 1: First Part of the Lemma: Let us express xt as

xt = x∗t +8t
(A.3)

where 8t is given by

8t =

∑
i=t
�i�−d��t−1�(A.4)

In order to prove (11), it is enough to show that the second moment of �1/T �
∑T
t=1 8t converges to

zero, namely,

1
T 2
E

((
T∑
t=1
8t

)2)
= &

2

T 2

T∑
t=1

( 
∑
i=t
�2
i �−d�

)
�(A.5)

Since �2
i �−d�= i2�d−1� for large i,

∑

i=1�

2
i �−d� is summable. Taking into account that

∑

i=t �

2
i �−d�=

O�t2d−1� and that

& 2

T 2

T∑
t=1
t2d−1 =O

(
T 2d

T 2

)

(A.6)

it is straightforward to see that the left side of (11) tends to zero. To prove (12), we can rewrite it as

1
T

T∑
t=1
�x2t −x2∗t �=

1
T

(
T∑
t=1
82t +2

T∑
t=1
x∗t 8t

)

(A.7)

whose first moment converges to zero since

1
T
E

(
T∑
t=1
82t +2

T∑
t=1
x∗t 8t

)
= 1
T

T∑
t=1
E�82t �=O�T 2d−1��

To show that the second-order moment also converges to zero, we first apply Loève’s inequality (see
Davidson (1994, p. 140)) to the first term of the right side of (A.7):

1
T 2
E

((
T∑
t=1
82t

)2)
≤ 1
T

T∑
t=1
E�84t �(A.8)

≤ E��
4
t �

T

T∑
t=1

( 
∑
i=t
�4
i �−d�

)
+ 6& 4

T

T∑
t=1

(

∑
i=t

(

∑

j=i+1
�2
i �−d��2

j �−d�
))
�
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Since �4
i �−d� = i4�d−1�, then

∑

i=t �

4
i �−d� = O�t4d−3� and therefore

∑T
t=1 t

4d−3 = O�1�, implying that
the first term in (A.8) converges to zero. With regard to the second term in (A.8)

T∑
t=1

(

∑
i=t
�2
i �−d�

(

∑

j=i+1
�2
j �−d�

))
≤

T∑
t=1

(

∑
i=t
�2
i �−d�


∑
j=t
�2
j �−d�

)
(A.9)

≤
T∑
t=1

(

∑
i=t
�2
i �−d�

)2
�

Since
∑

i=t �

2
i �−d�2 = O�t2�2d−1��, then T −1∑T

t=1 t
4d−2 = O�T −1� if d < 1/4 and O�T 4d−2� if d ≥ 1/4.

From (A.9) it is clear that the second term in (A.8) also tends to zero. Secondly, applying Loève’s
inequality to the second term of the right side of (A.7), we get

T −2E

((
T∑
t=1
x∗t 8t

)2)
≤ T −1

(
T∑
t=1
E�x∗282t �

)
= T −1

(
T∑
t=1
E�x∗2t �E�8

2
t �

)

(A.10)

where the last inequality holds because of the independence between x∗2t and 82t . Since E�x
∗2
t �=O�1�

and E�82t �=O�t2d−1�, it is straightforward to prove that expression (A.10) tends to zero, leading to
the final required result. The proof of (13) is analogous and therefore is omitted.
Second Part of the Lemma: In order to prove the convergence in (14), consider

�T logT �−1
T∑
t=1
E�z∗2t �= �T logT �−1

& 2

�

T∑
t=1

(
t−1∑
i=0

� 2�i+0�5�
� 2�i+1�

)
�(A.11)

Since �T logT �−1
∑T
t=1�
∑t−1
i=0

� 2�i+0 5�
� 2�i+1�

)→ 1, then �T logT �−1
∑T
t=1E�z

∗2
t �→ & 2/�. To show that the

variance of �T logT �−1
∑T
t=1 z

∗2
t converges to zero, notice that

var

(
�T logT �−1

T∑
t=1
z∗2t

)
= �T logT �−2

(
T∑
t=1
var�z∗2t �+2

T∑
t=2

t−1∑
j=1
cov�z2t 
 z

2
j �

)

(A.12)

and

T∑
t=1
var
(
z∗2t
)= (E(�4t ) T∑

t=1

(
t∑
i=0
�4
i �−0�5�+6& 4

t−1∑
i=1

i−1∑
j=0
�2
i �−0�5��2

j �−0�5�
)
−T &

4

�2

)
(A.13)

=O�T �+O�T �logT �2�−O�T �=O�T �logT �2��

This implies that �T logT �−2
∑T
t=1 var�z

∗2
t �→ 0. It is easy to check, by applying the Cauchy-Schwartz

inequality to the second term on the right side of (A.12), that

2
T∑
t=2

t−1∑
j=1
cov
(
z2t 
 z

2
j

)=O�T �logT �2��(A.14)

(A.13) and (A.14) imply the desired result.
Third Part of the Lemma: The result in (15) has already been proved in the literature (see

Gourieroux, Maurel, and Monfort (1989)). Q.E.D.

Proof of Lemma 2: The proof of the first and second part of this lemma is based on checking
that the sequence �xt−1�t� verifies the conditions of the standard Central Limit Theorem (CLT) for
martingale difference sequences (m.d.s.) (see Hall and Heyde (1980, Chapter 3), Helland (1982)).
These conditions are: (i) the sequence is a m.d.s., (ii) the sum of the conditional variances tends to
unity, and (iii) the Lindeberg condition (LC) holds.



A. 0< d < 0�5: Define

�̃t = &−1�t
(A.15)

x̃t =
(
& 2 � �1−2d�
� 2�1−d�

)−1/2
xt
(A.16)

and

XT ·t = T −1/2x̃t−1�̃t �(A.17)

Let FT ·t be an array of &-fields such that FT ·t−1 ⊂ FT ·t . Condition (i) is fulfilled since
T −1/2E

(
x̃t−1�̃t �FT ·t−1

)= T −1/2E
(
x̃t−1�FT ·t−1

)
E
(
�̃t �FT ·t−1

)= 0�(A.18)

Regarding condition (ii), we have

T −1∑ var
(
x̃t−1�̃t �FT ·t−1

)= T −1∑(E(x̃2t−1�̃2t �FT ·t−1)−E(x̃t−1�̃t �FT ·t−1)2)(A.19)

= T −1∑(E(x̃2t−1�FT ·t−1)E(�̃2t �FT ·t−1))= T −1∑ x̃2t−1 p−→ 1�

Finally, condition (iii) holds since

T∑
t=1
E
(�XT ·t �2I��XT ·t �> Q��)= E(�x̃t−1�̃t �2I��x̃t−1 �̃t �>T 1/2Q��)−→ 0
 for all Q > 0�(A.20)

Conditions (A.18), (A.19), and (A.20) jointly imply the desired result.
The proof for the truncated process x∗t is similar. Condition (i) holds since x∗t−1 and �t

are independent. Condition (ii) holds since T −1�
∑
�x̃∗t−1�

2 −∑�x̃t−1�2� = op�1� (see Lemma 1)
implies T −1∑�x̃∗t−1�2 p→ 1. Lastly, a sufficient condition for condition (iii) is Liapunov’s condition,
1/T 2∑T

t=1E�x̃
4
t−1�̃

4
t �→ 0. To prove this, consider

1
T 2

T∑
t=1
E
(
x̃4t−1�̃

4
t

)= 1
T 2
E
(
�̃4t
) T∑
t=1

(
t−1∑
i=0
�4
i �−d�+6

t−1∑
i=1

i−1∑
j=0
�2
i �−d��2

j �−d�
)
�(A.21)

Noticing that �i�−d�= id−1, it is easy to check that
T−1∑
i=0
�4
i �−d�+6

T−1∑
i=1

i−1∑
j=0
�2
i �−d��2

j �−d�=O�1�

and therefore T −1�
∑T−1
i=0 �

4
i �−d�+ 6

∑T−1
i=1
∑i−1
j=0�

2
i �−d��2

j �−d��→ 0. This implies that expression
(A.21) tends to zero as desired.
B. d = 0�5: Now let us define

�̃t = &−1�t


x̃t =
(
�logT �& 2/�

)−1/2
x∗t 


and

XT ·t = T −1/2x̃∗t−1�̃t �

Condition (i) is satisfied by following the same arguments as in the previous case. Condition (ii),
follows from (A.19),

T −1
T∑
var�x̃∗t−1�̃t �FT ·t−1�= T −1

T∑
x̃∗2t−1


and the results in Tanaka (1999). From them, we know that ��
∑T x̃2t−1�/T �

p→ 1. Condition (iii) can
be proved using a similar argument as in the previous part of this lemma.
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C. −0�5< d < 0: The convergence for the truncated and nontruncated processes has been
proved by Gourieroux, Maurel, and Monfort (1989) and by Davidson and de Jong (2001),
respectively. Q.E.D.

Proof of Theorem 1: Under the null, �d1yt ∼ FI�1−d1�. Hence, for values of d1 ∈ �0
0�5%
the process will be nonstationary whereas it will be (asymptotically) stationary when d1 ∈ �0�5
1%.
Applying Lemmae 1 and 2 and results in Tanaka (1999) and in Gourieroux, Maurel, and Monfort
(1989), we obtain

T 1−d1 �̂ols =
T −�1−d1�

T −2�1−d1�

∑
�t�

d1yt−1∑
��d1yt−1�2

w−→
∫ 1
0 W−d1 �r�dB∫ 1
0 W

2
−d1 �r�dr

if 0≤ d1 < 0�5


T 1/2�logT �1/2�̂ols =
�T logT �−1/2

∑
�t�

d1yt−1
�T logT �−1

∑
��d1yt−1�2

w−→N�0
�� if d1 = 0�5


T 1/2�̂ols =
T �−1/2�

∑
�t�

d1yt−1
T −1∑��d1yt−1�2 w−→N

(
0


� 2�d1�

� �2d1−1�
)

if 0�5< d1 < 1� Q.E.D.

Proof of Theorem 2: The proof of this theorem is similar to that of Theorem 1, and therefore
is omitted.

Proof of Theorem 3: For the sake of brevity, we present the proof of this theorem for the
t-ratio defined in (9). A similar proof remains valid for the OLS estimator defined in (8).
Under DGP (29), �yt ∼ FI�d∗

1 −1� and �d1yt−1 ∼ FI�d∗
1 −d1�. According to the sign of d∗

1 −d1,
the process �d1yt−1 can be asymptotically stationary with intermediate memory �d∗

1 −d1 < 0�, short
memory �d∗

1−d1 = 0�, asymptotically stationary with long memory �0<d∗
1−d1 < 0�5� or nonstationary

�d∗
1 −d1 ≥ 0�5�. Therefore, the asymptotic behavior of the FD-F test will depend upon the value of

d1 that is used in the regression. Let us consider separately each of the following cases:
1. d∗

1 −d1 < 0: In this case both �yt and �d1yt−1 are asymptotically stationary processes. Proceed-
ing in a similar way to the proof of Lemma 1, it is easy to prove that

T −1
T∑
t=2
��yt�

d1yt−�yst �d1yst �= op�1�


where �yst and �
d1yst are the corresponding nontruncated stationary processes associated to �yt and

�d1yt , respectively, which are defined as follows:

�yst = �yt+

∑
i=t
�i�1−d∗

1��t−i(A.22)

and

�d1yst = �d1yt+

∑
i=t
�i�d1−d∗

1��t−i �

That allows us to apply the Law of Large Numbers (LLN) for stationary and ergodic processes to
both the denominator and numerator of the t-ratio t�̂ols . The denominator is Op�T

1/2� since ST is

strictly positive and Op�1�, and
(∑(

�d1yst−1
)2)1/2 =Op�T 1/2�. The numerator is Op�T � since∑

�yt�
d1yt−1
T

p−→ cov
(
�yst 
�

d1yst−1
)
�(A.23)

Therefore the t-ratio t�̂ols diverges. It remains to be proved that it diverges to −
. Because the
denominator is always positive, the sign of the ratio is determined by the sign of the numerator,

cov��yst 
�
d1yst−1�= cov��1−d

∗
1�t
�

d1−d∗1�t−1�(A.24)

= & 2��1+�2�1�d1−d∗
1�+�3�2�d1−d∗

1�+· · · ��



All the coefficients �i and �i�d1−d∗
1� are negative for i ≥ 1; therefore

�2�1�d1−d∗
1�+�3�2�d1−d∗

1�+· · ·> 0�

To check that (A.24) is negative, notice that

�2�1�d1−d∗
1�+�3�2�d1−d∗

1�+· · · ≤ sup
j∈�2

�

�−�j�

∑
i=1

−�i�d1−d∗
1�=−�2 <−�1�(A.25)

Therefore, the covariance in (A.24) is negative and the t-ratio t�̂ols diverges to −
.
2. d∗

1 −d1 = 0: The covariance in (A.24) is also a negative quantity since∑
�yt�

d1yt−1
T

=
∑
�yt�t−1
T

p−→ �1�1−d1�=−�1−d1��(A.26)

Applying the same argument for the denominator as in the previous case, it is easy to check that the
t-ratio t�̂ols diverges to −
.
3. 0< d∗

1 −d1 < 0�5: Proceeding in an analogous way as above, it is easy to show that the denom-
inator of t�̂ols is positive and that the covariance in (A.24) is negative.
4. d∗

1 −d1 > 0�5: In this case, �d1yt is a nonstationary process. We can write t�̂ols as

t�̂ols =
∑T
t=2 �yt�

d1yt−1((∑T
t=2��yt−1�2

∑T
t=2��

d1yt−1�2−
(∑T

t=2 �yt�
d1yt−1

)2)/
T
)1/2 �

To prove that t�̂ols diverges it is sufficient to show that

T∑
t=2
��yt−1�

2 =Op�T �
(A.27)

T∑
t=2
��d1yt−1�

2 =Op�T 2�d∗1−d1��
(A.28)

and
T∑
t=2
�yt�

d1yt−1 =Op�T ��(A.29)

Expressions (A.27) and (A.28) follow immediately. With respect to (A.29), it follows from
Theorem 3 in Dolado and Mármol (1999) and some algebra that

T −1
T∑
t=2
�yt�

d1yt−1
p−→


∑
j=0
�j�1−d1�zj =O�1�
(A.30)

where

zj = & 2

∑
i=0


∑
k=1
�i�1−d∗

1��i+k+j �1−d∗
1��(A.31)

The previous probabilistic orders of magnitude imply that the t-statistic diverges. It remains to check
that it diverges towards −
. For that, we need to show first that zj < 0 and that �zj �> �zj+1� for all
j ≥ 0. With respect to the former inequality, notice that from (A.31), it follows that

zj = & 2

(

∑
k=1
�k+j �1−d∗

1�+

∑
i=1


∑
k=1
�i�1−d∗

1��i+k+j �1−d∗
1�

)
�(A.32)
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Since �j�1−d∗
1� < 0 for all j ≥ 1, the first term in (A.32) will be negative and the second one is

positive. Now, because∣∣∣∣∣ 
∑
i=1


∑
k=1
�i�1−d∗

1��i+k+j �1−d∗
1�

∣∣∣∣∣≤
(


∑
i=1

��i�1−d∗
1��
)


∑
k=1

��1+k+j �1−d∗
1��
(A.33)

it is clear that
∑

k=1 ��k+j �1−d∗

1�� >
∑

k=1 ��1+k+j �1−d∗

1��, which in turn implies zj < 0. Since both
zj and zj+1 are negative, to prove the second inequality, �zj �> �zj+1� for all j ≥ 0, it is equivalent to
show that zj −zj+1 < 0. Consider

zj −zj+1 = �j+1�1−d∗
1�+


∑
i=1


∑
k=1
��i+k+j �1−d∗

1�−�i+k+j+1�1−d∗
1�%(A.34)

= �j+1�1−d∗
1�+


∑
i=1
�i�1−d∗

1��i+j+1�1−d∗
1� < 0
(A.35)

where the last inequality follows from noticing that

�j+1�1−d∗
1� < 0



∑
i=1
�i�1−d∗

1��i+j+1�1−d∗
1� > 0


but 
∑
i=1
�i�1−d∗

1��i+j+1�1−d∗
1�≤−�j+2�1−d∗

1��

Finally, to prove that the probability limit in (A.30) is negative, notice that


∑
j=0
�j�1−d1�zj ≤ z0+z1


∑
i=1
�i�1−d1�= z0−z1 < 0�(A.36)

Thereby, the test statistic diverges to −
 and the test is consistent. Q.E.D.

Proof of Theorem 4: The t-ratio t�̂ols , computed from the regression of �yt on �1+1/
√
T yt−1 is

given by

t�̂ols = T 1/2

∑
�yt�

1+1/√T yt−1(∑
��yt�

2
∑(
�1+1/

√
T yt−1

)2− (∑�yt�1+1/√T yt−1)2)1/2 �(A.37)

Assuming that �1+1/
√
T yt = �t1�t>0�, expression (A.37) can be rewritten as

t�̂ols = T 1/2

∑
�−1/√T �t1�t>0��t−1((∑

��1/
√
T �t�

2
)(∑

��t−1�2
)− (∑�−1/√T �t1�t>0��t−1

)2)1/2 �(A.38)

The denominator of (A.38) is Op�T �, and divided by T , converges in probability to & 2 (see Tanaka
(1999)). As for the numerator

T −1/2∑�−1/√T �t1�t>0��t−1(A.39)

= T −1/2
(
T∑
t=2
�t�t−1+�1�−1/

√
T �

T∑
t=3
�2t−1+

T−1∑
j=2
�j�−1/

√
T �

T∑
t=j+1

�t−j�t−1

)
�



The last term in the right side of (A.39) converges to zero in mean square:

T −1E

(
T−1∑
j=2
�j�−1/

√
T �

T∑
t=j+1

�t−j�t−1

)2
= T −1E

(
T−1∑
j=2
�2
j �−1/

√
T �

T∑
t=j+1

�2t−j�
2
t−1

)

= T −1& 4
T−1∑
j=2
�2
j �−1/

√
T ��T − j�

= & 4T −1O�1�−T −2O�T 3/2�−→ 0


since �j�−1/
√
T �= 1/�j√T �+O�1/T �. Therefore (A.39) can be rewritten as

T −1/2∑�−1/√T �t1�t>0��t−1 = T −1/2∑�t�t−1+1T −1∑�2t−1+op�1��(A.40)

Applying the corresponding CLT and the LLN for m.d.s. to expression (A.40) and given that the
denominator of (A.38) converges in probability to & 2, then

t�̂ols �1+1/
√
T ��H1�d=1+1/√T

w−→N�1
1�� Q.E.D.

Proof of Theorem 5: Since dT is a consistent estimator of d �=1�, it follows that if d̂1 is
chosen according to the criterion function in (33), d̂1

p→ 1− c. In order to prove that �t�̂ols �d̂1�−
t�̂ols �1−c�� is op�1� we apply the mean value theorem (MVT) on t�̂ols around the point �1−c�:

t�̂ols

(
d̂1
)= t�̂ols �1−c�+ Kt�̂ols �d̆�Kd

(
d̂1− �1−c�

)

(A.41)

where d̆ is an intermediate point between d̂1 and �1− c�. Thus, d̆
p→ �1− c�. In order to prove(

t�̂ols �d̂1�− t�̂ols �1− c�
) = op�1�, from (A.41), it suffices to show Kt�̂ols �d̆�/Kd = op�T 1/2�, since �d̂1−

�1−c��=Op�T −1/2�. The t-ratio t�̂ols can be rewritten as

t�̂ols �d�= T 1/2

∑
�yt�

dyt−1(∑
��yt�

2
∑
��dyt−1�2− �

∑
�yt�

dyt−1�2
)1/2 


and under the null hypothesis

t�̂ols �d�=T 1/2

∑
�t�

d−1�t−11�t−1>0�(∑
��t�

2
∑(
�d−1�t−11�t−1>0�

)2−(∑�t�d−1�t−11�t−1>0�)2)1/2 �
The first derivative, evaluated at d = �1−c�, is given by

Kt�̂ols �d�

Kd

∣∣∣∣
d=1−c

(A.42)

= T 1/2

(∑
�t
(
log�1−L��−c�t−11�t−1>0�

))
A1−

(∑
�t�

−c�t−11�t−1>0�
)
A2

A2
1

∣∣∣∣
d=1−c




where

A1�d=1−c =
((∑

�2t

)(∑
�−c�2t−11�t−1>0�

)
−
(∑

�t�
−c�t−11�t−1>0�

)2)1/2

(A.43)

and

A2 = KA1/Kd�d=1−c�(A.44)



, ,

Taking into account that c < 0�5, then
∑
�−c�2t−11�t−1>0� = Op�T � and

∑
�t�

−c�t−1 = op�T �, and
therefore A1 is Op�T �. As regards A2, notice that it can be written as

A2 =A−1
1

((∑
�2t

)∑(
log�1−L��−c�t−11�t−1>0�

)
�−c�t−1

)
(A.45)

−A−1
1

((∑
�t�

−c�t−1
)∑

�t�
−c�t−11�t−1>0� log�1−L�

)
�

Since the function log�1− z� is analytic in the convergence disc �z� < 1, the expansion log�1−
z� = −�z+ 1/2z2+ 1/3z3+· · · � applies and therefore it follows that A2 = Op�T �. The first element
of the numerator in the right side of (A.42), namely �

∑
�t�

−c�t−1 log�1−L��= op�T �, since divided
by T , converges in mean square to zero. To check this last statement, notice that

T −1
T∑
t=1
�t�

−c�t−11�t−1>0� log�1−L�= T −1
T−2∑
j=1

1
j

(
T∑

t=j+2
�t�

−c�t−1−j1�t−1−j>0�

)
�(A.46)

To simplify notation, let us call aj =
∑T
t=j+2 �t�

−c�t−1−j1�t−1−j>0�. Then,

T −2E

(
T−2∑
j=1

1
j
aj

)2
= T −2E

(
T−2∑
j=1

1
j2
a2j +2

T−2∑
j=1

T−2∑
k>j

ajak

jk

)
�(A.47)

The first term of the right side of (A.47) converges to zero since

E
(
a2j
)= E( T∑

t=j+2
�t�

−c�t−1−j1�t−1−j>0�

)2
=

T∑
t=j+2

E
(
�2t
)
E
(
�−c�t−1−j1�t−1−j>0�

)2
= & 2

T∑
t=0

(
t∑
i=0
�i�−c�2

)
= & 2

T∑
t=0
�T − t+1��t�−c�2

= T
T∑
t=0
�t�−c�2−

T∑
t=0
t�t�−c�2+

T∑
t=0
�t�−c�2 =O�T 3/2�

(see Gray and Zhang (1988) to check the intermediate equalities).
The second term of the right side of (A.47) also converges to zero since

T −2
T−2∑
j=1

T−2∑
k>j

E�ajak�

jk
≤ T −2

T−2∑
j=1

T−2∑
k=1

�E�a2j �E�a
2
k��

1/2

jk
≤ T −2E

(
a2j
)
T −2

T−2∑
j=1

1
j

T−2∑
k=1

1
k

=O�T −2�O�T 3/2��logT �2 −→ 0�

Assembling these results, we get

Kt�̂ols �d�

Kd

∣∣∣∣
d=1−c

= T 1/2 op�T �Op�T �−Op�T 1/2�Op�T �

Op�T
2�

= T 1/2op�1��(A.48)

Therefore, the asymptotic distributions of t�̂ols �d̂1� and t�̂ols �1−c� are identical, namely, t�̂ols �d̂1�
w→

N�0
1�. Q.E.D.

Proof of Theorem 6: Let 4̂ols be the OLS estimator of the vector of parameters 4 =
�F1
 7 7 7 
 Fp
��

′ in regression (38):

RT �4̂ols−4�=
(
R−1
T Y

′YR−1
T

)−1
R−1
T Y

′�t
(A.49)



where Y is the matrix of regressors

Y = ��yt−1
 · · · 
 �yt−p
 �d1yt−1�
(A.50)

and RT is a weighting matrix to be defined below. In order to analyze the asymptotic behavior of 4ols,
we need to consider three different cases according to the value of d1 that is used in the regression.
This value determines the (asymptotic) stationary or nonstationary nature of ��d1yt�.
1. 0≤ d1 < 0�5: Define the following weighting matrix:

RT =
(
T 1/2Ip 0

0 T 1−d1

)

(A.51)

where Ip is the p×p identity matrix. Applying the corresponding LLN for stationary ARMA pro-
cesses and results in Gourieroux, Maurel, and Monfort (1989), it can be proved that the first term
of the right side of (A.49), �R−1

T Y
′YR−1

T �, converges in probability to
T0 T1 · · · 0

T1 · · · · · ·
· · · T0 0

0 · · · 0 & 2
∫ 1
0 W

∗2
−d1 �r�dr

=
(
V 0

0 Q

)

(A.52)

where Tj is the autocovariance function of ut . With respect to the second term, R−1
T Y

′�t , the first p
elements satisfy the standard CLT for m.d.s. with a variance-covariance matrix given by

E



�yt−1�t

· · ·
�yt−p�t

 ��yt−1
 �t
 7 7 7 
�yt−p
 �t�
= & 2


T0 T1 · · · Tp−1

T1 · · · · · ·
· · · T0 · · ·
Tp−1 · · · · · · T0

= & 2V �(A.53)

Thus 
T −1/2∑�yt−1�t

· · ·
T −1/2∑�yt−p�t

 w−→h1 =Np�0
& 2V ��(A.54)

The last element in R−1
T Y

′�t converges to (see Lemma 2)

T −�1−d1�
∑
�d1yt−1�t

w−→h2 = & 2
∫ 1

0
W ∗

−d1 �r�dB�(A.55)

Putting together (A.52), (A.54), and (A.55), we get

RT �4̂ols−4� w−→
(
V −1h1

Q−1h2

)
�

Consistency of 4̂ols implies &̂�̂ols
p−→&Q−1/2, and therefore the desired result for t�̂ols = �̂ols/&̂�̂ols

follows.
2. 0�5< d1 < 1: In this case, �d1yt is a (asymptotically) stationary process. Consider again expres-

sion (A.49) where now RT = T 1/2Ip+1. In this case the LLN applies to all the elements of the first
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term of the right side of (A.49), yielding

R−1
T Y

′YR−1
T

p−→


T0 T1 · · · cov��yst−1
�

d1yst−1�

T1 · · · · · ·
· · · · · · cov��yst−p
�

d1yst−1�

cov��yst−1
�
d1yst−1� · · · cov��yst−p
�

d1yst−1� var��d1yst−1�

(A.56)

=
(
Q1 Q2

Q′
2 Q4

)
�(A.57)

Applying both the corresponding CLT for m.d.s. and Lemma 2 to the second term of the right side
of (A.49) yields T

−1/2∑�yt−1�t
· · ·

T −1/2∑�dyt−1�t
 w−→Z =

(
z1
z2

)
∼Np+1

(
0


& 2V & 2Q2

& 2Q′
2 & 2 var��d1yt−1�

)
�(A.58)

Hence

RT �4̂ols−4� w−→
(
Q1 Q2

Q′
2 Q4

)−1(
z1

z2

)
�(A.59)

Using the notation(
b1 b2

b2 b4

)
=
(
Q1 Q2

Q′
2 Q4

)−1




then

T 1/2��̂ols−�� w−→b2z1+b4z2�(A.60)

To simplify the presentation, we consider the case where 3�L� is an AR(1) process. In that case

b2 =
− cov��yst−1
�d1yst−1�

var��yst−1� var��d1y
s
t−1�− cov2��yst−1
�d1yst−1�


(A.61)

and

b4 =
var��yst−1�

var��yst−1� var��d1y
s
t−1�− cov2��yst−1
�d1yst−1�

�(A.62)

Then, it is easy to show that

T 1/2��̂ols−�� w−→N�0
& 2b4��(A.63)

Again, since 4̂ols is consistent, so is ST for & , and thus the t-ratio converges to

t�̂ols
w−→N�0
& 2b4�/&b

1/2
4 =N�0
1��(A.64)

The more general case can be proved along a similar line of reasoning.
3. d1 = 0�5: Define the following weighting matrix:

RT =
(
T 1/2Ip 0

0 �T logT �1/2

)
�(A.65)

The rest of the proof is analogous to the previous one and therefore is omitted. Q.E.D.



Proof of Theorem 7: The following proof is similar to the one proposed by Said and Dickey
(1984) and Xiao and Phillips (1998) in the context of the AD-F test. Both are based upon Berk
(1974).
The ut process is a stationary and invertible ARMA with the following autoregressive representa-

tion:

X�L�ut =

∑
i=0
Xiut−i = �t with X0 = 1


where X�L� = 3�L�/G�L�. Applying the Beveridge-Nelson decomposition to X�L� we get X�L� =
X�1�+X�L��1−L�, where the coefficients of X̃�L� decay at an exponential rate. Thus, we can write
yt as follows:

�yt =−�d1yt−1+ �1−�d1 ��yt+ut�(A.66)

Multiplying (A.66) by X�L� and rearranging terms,

�yt =−X�1��d1yt−1+ �1− �X�1�+ X̃�L���d1 ��yt+�t�(A.67)

Define E�z� = �1− �X�1�+ X̃�z���1− z�d1 �. Notice that E�0� = 0, since X�1�+ X̃�0� = 1. This
result implies that the right-hand side of (A.67) does not contain the contemporaneous value of �yt ,
but only lagged values of �yt . Let �1i�
i=1 be the coefficients in the expansion of polynomial E�z� in
increasing powers of L. Then, expression (A.67) can be rewritten as

�yt = ��d1yt−1+11�yt−1+12�yt−2+· · ·+�t�
The rate at which the �1i� coefficients decay is given by the rate at which the coefficients on

�1−z�d1 decay, since the latter are those with a slower rate of decay in the polynomial E�z�. Hence,
for large j , 1∼ j−d1−1. This implies that those coefficients are absolutely summable for all d1 > 0.
Next, we show that the OLS estimators of the parameters in the regression model �yt =��d1yt−1+

11�yt−1+· · ·+1k�yt−k+8tk (where only k lags of �yt have been included, and the remaining terms
appear in the disturbance, 8tk) are consistent, when k grows to infinity (as T →
) at a chosen rate.
Define
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To show that
∑T
t=k+1Ut8tk/�T −k�= op�1� , consider
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�(A.68)

Applying Lemma 2 in Berk (1974), we obtain

E
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(A.69)
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and
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12j �(A.70)

As 1j ∼ j−d−1, then
∑

j=k+1 1

2
j = Op�k−2d−1�. Thus, (A.68) tends to zero, implying that �T −

k�−1
∑T
t=k+1Ut8tk does it as well. Further, Berk (1974) has shown that

k1/2
∥∥�T −k�−1R−1

0 −R−1∥∥= op�1�
if k3/T → 0 , where R is the population variance-covariance matrix associated to sample moments
matrix R0 (recall that all the processes in R0 are either I�0� or I�d1−1�). This implies that

R−1
0

T∑
t=k+1

Ut8tk
p−→0


and hence ��̂
 1̂1
 7 7 7 
 1̂k�′ − ��
11
 7 7 7 
 1k�′ = op�1�. To check that the t-ratio t�̂ols diverges, note
that its numerator is Op�1� while the denominator is Op��T −k�1/2�, since &̂ 2 is Op�1� and �X ′

kXk�

is Op�T −k�. Both properties imply that t�̂ols diverges. As �̂→ � = −X�1� < 0 (since X0 is positive
and all the roots of X�L� are outside the unit circle), the divergence is towards −
. Q.E.D.

Proof of Theorem 8: The proof is similar to the one used in Theorem 5. Applying the MVT
to t�̂ols �d̂1� around �1−c� yields

t�̂ols �d̂1�= t�̂ols �1−c�+
t�̂ols �d̆�

Kd
�d̂1− �1−c���(A.71)

Since d̆ in this expression is an intermediate point between d̂1 and 1− c and d̂1
p→1− c, then

d̆
p→1− c. Next, we check that the second term in (A.71) is op�1�. As before, for the sake of sim-

plifying the presentation, we will focus on the case where ut is a stationary AR�1� process, namely
3�L�= 1−3L. In such a case, the t-ratio t�̂ols �d� can be written as

t�̂ols �d�=
�
∑
�y2t−1��

∑
�dyt−1�t�− �

∑
�dyt−1�yt−1��

∑
�yt−1�t�

&̂�
∑
�y2t−1�1/2�

∑
�y2t−1

∑
�dy2t−1− �

∑
�dyt−1�yt−1�2�1/2&̂�

∑
�y2t−1�1/2

= A3

A4
�(A.72)

The first derivative of t�̂ols �d� with respect to d is given by

Kt�ols �d�

Kd
= �KA3�d�/Kd�A4−A3�KA4�d�/Kd�

A2
4


(A.73)

where
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Using the same arguments as in Theorem 5, it can be checked that
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(A.76)
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(A.77)

A3�d=1−c =Op�T 3/2�
(A.78)

and

A4�d=1−c =Op�T 3/2�
(A.79)

implying that expression (A.73) evaluated at �1−c� is Op(1). This result implies again that

Kt�ols �d�

Kd

∣∣∣∣1/2
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= T 1/2op�1��

Moreover, since �d̂1− �1−c��=Op�T −1/2�, it follows that

Kt�̂ols �d̆1�

Kd
�d̂1− �1−c��= op�1��(A.80)

Therefore �t�̂ols �d̂1�− t�ols �1−c��= op�1�, implying that

t�̂ols �d̂1�
w−→N�0
1��(A.81) Q.E.D.

APPENDIX B

In this appendix, we report the critical values corresponding to the range of values of d for which
the FD-F does not have a standard distribution under the null. Table X presents the critical values
for the case where the DGP is a random walk and the t-ratio is computed from equation (2) whereas
Table XI (Table XII) presents the corresponding values for the case where the DGP is the same as

TABLE X
Critical Values

DGP: �yt = �t ; Regression: �yt = ��d1yt−1+et
T T = 100 T = 400 T = 1000

d1/sig. lev. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.0 −1�61 −1�95 −2�6 −1�62 −1�95 −2�6 −1�62 −1�95 −2�6
0.05 −1�59 −1�93 −2�57 −1�61 −1�92 −2�57 −1�59 −1�91 −2�56
0.10 −1�57 −1�87 −2�56 −1�57 −1�9 −2�56 −1�57 −1�90 −2�55
0.15 −1�56 −1�86 −2�55 −1�56 −1�87 −2�52 −1�55 −1�87 −2�50
0.20 −1�51 −1�84 −2�53 −1�53 −1�84 −2�49 −1�53 −1�84 −2�45
0.25 −1�50 −1�83 −2�5 −1�49 −1�83 −2�44 −1�47 −1�82 −2�43
0.30 −1�46 −1�82 −2�49 −1�46 −1�81 −2�43 −1�45 −1�80 −2�43
0.35 −1�45 −1�82 −2�49 −1�44 −1�8 −2�42 −1�44 −1�79 −2�42
0.40 −1�43 −1�81 −2�47 −1�38 −1�79 −2�41 −1�42 −1�75 −2�41
0.45 −1�40 −1�80 −2�46 −1�36 −1�75 −2�40 −1�35 −1�71 −2�39
0.50 −1�36 −1�75 −2�40 −1�33 −1�66 −2�36 −1�33 −1�66 −2�35



, ,

TABLE XI
Critical Values

DGP: �yt = �t ; Regression: �yt = c+��d1yt−1+et
T T = 100 T = 400 T = 1000

d1/sig. lev. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.0 −2�58 −3�17 −3�51 −2�57 −2�87 −3�44 −2�57 −2�86 −3�44
0.05 −2�50 −2�88 −3�50 −2�48 −2�77 −3�37 −2�49 −2�82 −3�33
0.10 −2�49 −2�87 −3�49 −2�45 −2�76 −3�30 −2�47 −2�79 −3�31
0.15 −2�44 −2�80 −3�35 −2�41 −2�74 −3�25 −2�39 −2�76 −3�29
0.20 −2�36 −2�67 −3�31 −2�31 −2�57 −3�20 −3�37 −2�70 −3�28
0.25 −2�32 −2�66 −3�30 −2�24 −2�55 −3�15 −2�27 −2�59 −3�09
0.30 −2�27 −2�53 −3�16 −2�14 −2�51 −3�11 −2�15 −2�46 −3�05
0.35 −2�25 −2�51 −3�06 −2�13 −2�36 −3�06 −2�02 −2�45 −3�02
0.40 −2�13 −2�42 −3�01 −1�91 −2�21 −2�86 −1�98 −2�33 −2�98
0.45 −1�96 −2�39 −2�92 −1�87 −2�14 −2�87 −1�85 −2�17 −2�68
0.50 −1�85 −2�20 −2�9 −1�74 −2�10 −2�91 −1�77 −2�09 −2�73

TABLE XII
Critical Values

DGP: �yt = c+�t ; Regression: �yt = c0+c1t+��d1yt−1+et
T T = 100 T = 400 T = 1000

d1/sig. lev. 90% 95% 99% 90% 95% 99% 90% 95% 99%

0.0 −3�20 −3�51 −4�36 −3�13 −3�38 −4�01 −3�14 −3�44 −3�99
0.05 −3�00 −3�35 −3�99 −2�71 −3�11 −3�77 −2�33 −2�69 −3�48
0.10 −2�71 −3�03 −3�67 −2�26 −2�69 −3�49 −1�81 −2�22 −3�01
0.15 −2�54 −2�90 −3�57 −2�01 −2�35 −3�20 −1�77 −2�15 −2�86
0.20 −2�26 −2�62 −3�50 −1�87 −2�27 −3�15 −1�66 −2�06 −2�83
0.25 −2�25 −2�61 −3�47 −1�85 −2�26 −3�02 −1�65 −2�06 −2�80
0.30 −2�24 −2�60 −3�35 −1�77 −2�21 −2�90 −1�62 −2�05 −2�79
0.35 −2�09 −2�45 −3�19 −1�76 −2�13 −2�88 −1�60 −2�03 −28
0.40 −2�05 −2�44 −2�88 −1�65 −2�11 −2�86 −1�59 −1�99 −2�74
0.45 −2�04 −2�40 −2�87 −1�63 −2�09 −2�83 −1�58 −1�95 −2�59
0.50 −1�91 −2�37 −2�73 −1�61 −2�08 −2�63 −1�56 −1�85 −2�47

in the previous case but a constant (a constant and a linear trend) is included in regression (2). To
compute those critical values, we have generated random walk processes (with a drift in the case
of Table XII) from i.i.d. N�0
1� disturbances and computed the t-ratio associated to �̂ols in the
corresponding regression. In all the tables above, d is the value used in regression (2) to compute
the t-ratio. The number of replications is 10,000.

REFERENCES

Baillie, R. T. (1996): “Long Memory Processes and Fractional Integration in Economics and
Finance,” Journal of Econometrics, 73, 15–131.

Bhargava, A. (1986): “On the Theory of Testing for Unit Roots in Observed Time Series,” Review
of Economic Studies, 53, 369–384.

(1994): Statistics for Long Memory Processes. New York: Chapman and Hall.



Beran, J. (1995): “Maximum Likelihood Estimation of the Differencing Parameter for Invertible
and Short and Long Memory Autoregressive Integrated Moving Average Models,” Journal of the
Royal Statistical Society, 57, 659–672.

Berk, K. N. (1974): “Consistency of Spectral Estimates,” The Annals of Statistics, 2, 489–502.
Byers, D., J. Davidson, and D. A. Peel (1997): “Modelling Political Popularity: An Analysis of
Long-range Dependence in Opinion Polls Series,” Journal of the Royal Statistical Society Series A,
160, 471–490.

Davidson, J. (1994): Stochastic Limit Theory. New York: Oxford University Press.
Davidson, J., and R. M. de Jong (1999): “The Functional Central Limit Theorem and Weak Con-
vergence to Stochastic Integrals II: Fractionally Integrated Processes,” Unpublished Manuscript,
Michigan State University.

Dickey, D. A., and W. A. Fuller (1979): “Distribution of Estimators of Autoregressive Time
Series with a Unit Root,” Journal of the American Statistical Association, 74, 427–431.

(1981): “Likelihood Ratio Tests for Autoregressive Time Series with a Unit Root,” Econo-
metrica, 49, 1057–1072.

Diebold, F. X., and G. D. Rudebusch (1991): “On the Power of the Dickey-Fuller Tests against
Fractional Alternatives,” Economic Letters, 35, 155–160.

Dolado, J. J., J. Gonzalo, and L. Mayoral (2001): “Long-range Dependence in Spanish Opin-
ion Poll Data,” forthcoming in Journal of Applied Econometrics.

Dolado, J. J., and F. Marmol (1999): “Asymptotic Inference for Nonstationary Fractionally Inte-
grated Processes,” Working Paper Series No. 99-68, Universidad Carlos III de Madrid.

Fox, R., and M. S. Taqqu (1986): “Large Sample Properties of Parameter Estimates for Strongly
Dependent Stationary Gaussian Time Series,” The Annals of Statistics, 14, 517–532.

Galbraith, J. W., and V. Zinde- Walsh (1997): “Time Domain Methods for the Estimation of
Fractionally-integrated Time Series Models,” Mimeo.

Geweke, J., and S. Porter-Hudak (1983): “The Estimation and Application of Long Memory
Time Series Models,” Journal of Time Series Analysis, 4, 221–238.

Gil-Alaña, L. A., and P. M. Robinson (1997): “Testing of Unit Root and Other Nonstationary
Hypotheses in Macroeconomic Series,” Journal of Econometrics, 80, 241–268.

Gonzalo, J., and T. Lee (1998): “Pitfalls in Testing for Long Run Relationships,” Journal of
Econometrics, 86, 129–154.

Gourieroux, C., F. Maurel, and A. Monfort (1989): “Least Squares and Fractionally Inte-
grated Regressors,” Document de Travail No. 8913, INSEE.

Granger, C. W. J., and K. Joyeux (1980): “An Introduction to Long-memory Time Series and
Fractional Differencing,” Journal of Time Series Analysis, 1, 15–29.

Gray, H. L., and N. F. Zhang (1988): “On a New Definition of the Fractional Difference,” Math-
ematics of Computation, 50, 513–529.

Johansen, S. (1991): “Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian
Vector Autoregressive Models,” Econometrica, 59, 1551–1580.

Hall, P., and C. C. Heyde (1980): Martingale Limit Theory and its Applications. New York:
Academic Press.

Hauser, M. A., B. M. Potscher, and E. Reschenhofer (1999): “Measuring Persistence in
Aggregate Output: ARMA Models, Fractionally Integrated ARMA Models and Nonparametric
Procedures,” Empirical Economics, 24, 243–269.

Helland, I. S. (1982): “Central Limit Theorems for Martingales with Discrete or Continuous Time,”
Scandinavian Journal of Statistics, 9, 79–94.

Kramer, W. (1998): “Fractional Integration and the Augmented Dickey-Fuller Test,” Economic
Letters, 61, 269–272.

Lee, D., and P. Schmidt (1996): “On the Power of the KPSS Test of Stationarity against Fraction-
ally Integrated Alternatives,” Journal of Econometrics, 73, 285–302.

Mandelbrot, B. B., and J. W. Van Ness (1968): “Fractional Brownian Motions, Fractional Noises
and Applications,” SIAM Review, 10, 422–437.

Marinucci, D., and P. M. Robinson (1999): “Alternative Forms of Brownian Motion,” Journal
of Statistical Planning and Inference, 80, 11–122.



, ,

Marmol, F. (1998): “Searching for Fractional Evidence Using Combined Unit Root Tests,” Working
Paper Series No. 98-39, Universidad Carlos III de Madrid.

Mayoral, L. (2000): “A New Minimum Distance Estimation Procedure of ARFIMA Processes,”
Working Paper Series No. 00-17, Universidad Carlos III de Madrid. Revised version (2002) avail-
able upon request.

Nelson, C. R., and C. I. Plosser (1982): “Trends and Random Walks in Macroeconomic Time
Series,” Journal of Monetary Economics, 10, 139–162.

Ng, S., and P. Perron (1995): “Unit Root Tests in ARMA Models with Data Dependent Methods
for the Selection of the Truncation Lag,” Journal of the American Statistical Association, 90, 268–281.

Phillips, P. C. B., and Z. Xiao (1998): “A Primer on Unit Root Testing,” Journal of Economic
Surveys, 12, 423–470.

Robinson, P. M. (1992): “Semiparametric Analysis of Long Memory Time Series,” Annals of Statis-
tics, 22, 515–539.

(1994): “Efficient Tests of Nonstationary Hypotheses,” Journal of the American Statistical
Association, 89, 1420–1437.

Said, S. E., and D. A. Dickey (1984): “Testing for Unit Roots in Autoregressive Moving Average
Models of Unknown Order,” Biometrika, 71, 599–608.

Samarodnitski, G., and M. S. Taqqu (1994): Stable Non-Gaussian Random Processes. New York:
Chapman and Hall.

Sargan, J. D., and A. Barghava (1983): “Maximum Likelihood Estimation of Regression Models
with First Order Moving Average Errors when the Root Lies on the Unit Circle,” Econometrica,
51, 799–820.

Sowell, F. B. (1990): “The Fractional Unit Root Distribution,” Econometrica, 58, 495–505.
(1992): “Maximum Likelihood Estimation of Stationary Univariate Fractionally-integrated

Time-series Models,” Journal of Econometrics, 53, 165–188.
Stock, J. H., and M. W. Watson (1988): “Testing for Common Trends,” Journal of the American
Statistical Association, 83, 1097–1107.

Tanaka, K. (1996): Time Series Analysis: Nonstationary and Noninvertible Distribution Theory.
New York: Wiley.

(1999): “The Nonstationary Fractional Unit Root,” Econometric Theory, 15, 549–582.
Tieslau, M., P. Schmidt, and R. Baillie (1996): “A Minimum Distance Estimator for Long-
Memory Errors,” Journal of Econometrics, 71, 249–264.

Velasco, C., and P. M. Robinson (2000): “Whittle Pseudo-Maximum Likelihood Estimation for
Nonstationary Time Series,” Journal of the American Association, 95, 1229–1243.

Xiao, Z., and P. C. B. Phillips (1998): “An ADF Coefficient Test for a Unit Root in ARMA Mod-
els of Unknown Order with Empirical Applications to the US Economy,” Econometrics Journal, 1,
27–43.


