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Abstract. We study the impact of the system dimension on commonly used model
selection criteria (AIC, BIC, HQ) and LR based general to specific testing strategies for lag
length estimation in VARs. We show that AIC’s well known overparameterization feature
becomes quickly irrelevant as we move away from univariate models, with the criterion
leading to consistent estimates under sufficiently large system dimensions. Unless the
sample size is unrealistically small, all model selection criteria will tend to point towards
low orders as the system dimension increases, with the AIC remaining by far the best
performing criterion. This latter point is also illustrated via the use of an analytical power
function for model selection criteria. The comparison between the model selection and
general to specific testing strategy is discussed within the context of a new penalty term
leading to the same choice of lag length under both approaches.
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1. INTRODUCTION

The specification of a proper dynamic structure is a crucial preliminary step in
univariate or multivariate ARMA type time series models. Although the
determination of a proper lag structu seldom of individual interest or the
final objective of an empirical investigation, it has a great impact on subsequent
inferences whether they are about causality, cointegration, impulse response
analysis or forecasting. Typically, the most common way of selecting an
appropriate lag structure for a VAR involves first assuming that the true, but
unknown, lag length is bounded by some finite constant and, subsequently using
information theoretic criteria such as the AIC (Akaike, 1974), BIC (Schwarz,
1978) or HQ (Hannan and Quinn, 1979; Quinn, 1980) to determine an optimal lag
length. This is clearly the most frequently used approach in the time series
literature which abunds in studies that evaluated the asymptotic and finite sample
properties of the above mentioned methods. On the theoretical side, it has been
shown that criteria such as the BIC and HQ lead to consistent estimates in both
stationary and nonstationary systems (Hannan, 1980; Quinn, 1980; Tsay, 1984;
Paulsen, 1984; Potscher (1989, 1990)) while the AIC is characterized by a positive
limiting probability of overfitting.

Focusing on the finite sample properties of lag length selection methods,
Liitkepohl (1985) conducted an extensive Monte Carlo study analysing the
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properties of a large number of methods in bivariate and trivariate stationary VARs.
The overall conclusion of the study supported the view that the BIC and the HQ lead
to the most accurate results. In the context of a cointegrated system, Cheung and Lai
(1993) found that both the AIC and BIC perform well in finite samples provided that
the true error structure has a finite and parsimonious autoregressive representation.
If the system contains moving average components however, then both criteria
displayed poor performance. In this latter case, the AICled to lag length estimates as
distorted as the ones obtained by the BIC in the sense of generating truncation lags
that are too short for the finite autoregressive approximation to be reliable. This
confirms a recent point by Ng and Perron (1995) who showed in the context of a
univariate framework that, despite its well known overfitting feature, the AIC
abandons information at long lag lengths and is therefore also unreliable under
moving average components. Their analysis further suggests that a sequential
testing strategy could be preferable under moving average errors, leading to a better
size power trade off in the subsequent inferences about the presence of unit roots.
Overall, however, our reading of the literature is that the AIC and BIC, still remain
the favourite tools for specifying the lag structure in both univariate and
multivariate models. More recently, Ho and Sorensen (1996) analysed the impact
of the system dimension on the performance of LR based cointegration tests and, as

a byproduct of their study, concluded that the BIC is more reliable than the AIC in
such a setting. The fact that the negative consequences of an underparameterized
model are much more serious than in an overparameterized case (wrong inferences
versus loss of efficiency, for instance), however, often led practitioners to argue in
favour of the AIC criterion. These mixed and often contradictory conclusions,
clearly highlight the point that it is difficult to come up with a universally accepted
typology of methods ranked in terms of their performance. Indeed, the number of
factors influencing the behaviour of these procedures is such that conclusions can
only be DGP specific, with different parameterizations possibly leading to
contradictory features for the same criterion. It is, however, possible to explain
why most studies reached conflicting results by focusing mainly on the system
dimension and available sample size, together with the rates of convergence of the
various model selection criteria. This can then allow us better to classify the
circumstances under which a specific method will perform better than the others.

In this paper, our objectives are twofold. First, we focus on a series of factors
(system dimension, sample size, preset upper bound, etc.) that influence the
performance of alternative lag length selection methods in both small and large
samples with the aim of explaining and clarifying the often conflicting results
obtained in the literature. Our second objective is then to provide a set of practical
guidelines for the choice of the lag order determination method. The plan of the
paper is as follows. Section 2 presents the competing information theoretic
methods and evaluates their theoretical features in relation to the dimensionality
aspect. Section 3 focuses on the general to specific testing strategy and its
connection with the model selection approach. Section 4 concludes. All proofs are
relegated to the Appendix.



2. FEATURES OF COMMONLY USED LAG LENGTH SELECTION CRITERIA

In this section, we focus on some theoretical features of the penalized likelihood
based methods for selecting the lag order in the vector autoregression

Xi=0 X 1+ +Op Xy, + & (1)
where {X;} is a K x 1 vector, py denotes the unknown true lag length and

AssumpTioN 1. {¢} is a Gaussian i.i.d. vector sequence with mean zero and
E(e€)) = Q>0 V1.

ASSUMPTION 2. The determinant of the autoregressive polynomial |®(z)| =
lIx @iz -~ @y 2" has all its roots outside the unit circle or at most K roots at
z =1 and the lag length py is such that py <pmax With pmax denoting a known finite
constant.

Using Engle and Granger’s (1987) terminology, the above assumptions allow
the vector autoregressive process in (1) to be purely stationary (I1(0)), purely non
stationary (I(1)) or cointegrated (CI(I,1)). Given the above specification, the
primary objective of any investigation involving VAR models is the selection of
an optimal value for p the unknown lag length. The general expression of the
objective function of penalty based methods is given by

IC(p) = log \Q(p)\ + %Tmp (2)

where Q(p) denotes the estimated residual covariance matrix when p lags have
been fitted to (1), m, the number of freely estimated parameters (m, = K*p)
and cr is a deterministic penalty term. When ¢y = 2, we have the well known
AIC criterion; ¢y =logT corresponds to the BIC; and c¢r =2loglogT is
commonly referred to as the HQ. The optimal lag length, say p is then selected
as follows:

p=arg min IC(p). (3)

0<p<Pmax

Regarding the asymptotic properties of p obtained from (3), Tsay (1984) and
Paulsen (1984) showed that provided that ¢y — oo and ¢7/T — 0 as T — oo, p is
consistent in both stationary and I(1) systems. Clearly, the AIC criterion violates
the first of the above two conditions leading to a non zero limiting probability of
overfitting. It is worth pointing out, however, that, even for the AIC, the
probability of underestimation vanishes asymptotically. These limiting results,
however, provide little guidance for the choice of a reliable criterion in finite
samples.



2.1.  Overfitting in large samples

The impact of the system dimension on the probability of overfitting of criteria
such as the AIC can be analysed by focusing on P[IC(py + k) < IC(py)] which
represents the probability of selecting py + & over py lags with 4#>1. Numerous
studies have shown that this probability does not vanish asymptotically for
constant penalty criteria such as the AIC since the requirement that ¢z — oo is
violated. This has often been used as a strong argument against the practice of
model selection via the AIC. However, an important point established in Paulsen
and Tjostheim (1985), in the context of a purely stationary VAR, is that the AIC’s
nonzero asymptotic probability of overfitting is also a decreasing function of the
system dimension. This feature of the AIC criterion seems to have often been
overlooked in applied work. The following proposition will allow us to formally
quantify the behaviour of the overfitting probability across different system
dimensions for purely stationary, nonstationary and cointegrated systems, and it
will illustrate the fact that, even for a criterion such as the AIC, the probability
becomes rapidly negligible as we move from a univariate to a larger dimensional
system.

ProposiTION 1. Under assumptions 1 2 and letting p denote the lag length
estimate obtained via the model selection approach using a constant penalty cr = c,
the probability of selecting py + h over py lags converges to P[y*(K*h) > K*hc] as
T — oo and Vpy € [1, puax] if the polynomial in assumption 2 has at least one root on
the unit circle and N'py € [0, pmax| if it has all its roots outside the unit circle.

The requirement that py > 1 under the presence of I(1) components ensures that
lag length restrictions on the VAR in levels can be reformulated as restrictions on
coefficient matrices of stationary regressors only, thus validating the use of
standard asymptotics. Differently put, when the polynomial in Assumption 2 has
at least one root on the unit circle, the quantity

T(log|Q(p)|  log|Q(p +h)l)

will be asymptotically distributed as y*>(K?4) only if p > 1. The above result
highlights the crucial importance that the system dimension will have on the
performance of model selection criteria, and it illustrates the fact that the
probability of overfitting is an exponentially decreasing function of K in both
stationary and nonstationary systems. For the AIC criterion, for instance, it is
clear that one does not need an extremely large system dimension for the
above probability to be close to zero and, for practical purposes, it can be
considered as negligible even in the trivariate case. Indeed, under K = 3, for
instance, the limiting probabilities of selecting py + /4 over p, are given by
3.52%, 0.71% and 0.15% for h=1,2 and 3, respectively, while when K = 1
(i.e. univariate model), the corresponding figures increase to 17.73%, 13.43%
and 11.16%. Thus, even in moderately large systems, the risk of overparam



eterization is negligible and therefore the AIC criterion may also lead to
consistent like estimates since

2

Jlim PIAIC(py + 1) < AIC(py)] = o(e 8.

For the BIC and HQ criteria, the probability of overfitting converges to zero as
T — oo since for both criteria ¢ — oo, implying that

Jim PlIC(po +h) < IC(py)] = 0.

It is worth pointing out, however, the influence that the system dimension K will
have on this latter probability. Specifically, for the probability of fitting one
spurious variate under the BIC, we have

Q
P[BIC(py + 1) < BIC(py)] = P[TlogA‘i)| > K?logT]
1Q(po + 1)
~ P[*(K?) > K*logT)
£
logT)>
~ofloeD) ™
T
with the last approximation following from the asymptotic expansion of the
incomplete gamma function. Proceeding similarly for the HQ type penalty, we
obtain
K2
PIHQ(po + 1) < HQ(m)] ~ O((loglog 7) "
Thus, although the BIC’s convergence rate may appear as very desirable, it also
casts serious doubts on its ability to move away from the lowest possible lag
length when the system dimension is large.

(log 7)),

2.2, Overfitting in finite samples

So far, the validity of our arguments has been conditional on the availability of a
sufficiently large sample size so as to ensure that the distribution of

T(log [Q(po)|  log [Q(po + 1))

is accurately approximated by a y?(K’h) random variable. Typically, in finite
samples, the degrees of freedom limitations will introduce severe upward biases in
the estimated covariance matrices, resulting in a rightward shift of the empirical
distribution relative to that of the theoretical y*. Thus, despite the evidence from
the above large sample based results, even in large dimensional systems, the AIC
criterion might still end up pointing to very high lag orders if the inflated y*(K>*h)
dominates the deterministic term 2K24. This effect could be particularly strong if a
large system dimension is combined with a large value of the upper bound pmax.



When this happens, it would be inaccurate to attribute the causes of the resulting
overparameterization to AIC’s ‘overfitting nature’ since it arises solely from the
degrees of freedom restrictions. The chances of this occurring for the BIC are
negligible, however, since K>/ log T will be extremely large (at least twice as large
as 2K2h) even for a relatively small 7.

To gain further insight into this latter point, we simulated data from a 10
dimensional VAR (py = 1) using samples of size T = 90, 150, 250 and 1000 and
with a VAR (p =2) as the fitted model. The empirically obtained 95% critical
values of the LR statistic for testing ®; =0 were 184.08, 158.22, 143.15 and
129.88, respectively, compared with the theoretical 1550 7 (100) counterpart of
124.35. Since, for the AIC criterion, we have

K?her =100 x 1 x 2 = 200

it is clear that, under moderately small samples, overfitting might occur
frequently. For the BIC, on the other hand, even under T =90, we have
K?her ~ 500 suggesting that overfitting is unlikely to occur no matter how
inflated the finite sample distribution of LR is. Note that the above empirical
percentiles were highly robust to the stationarity properties and parameter values
of the DGP, having experimented across various stationary, purely nonstationary
and cointegrated specifications. In finite samples and large dimensional systems,
AIC’s overfitting feature will arise only if T is small relative to the system
dimension K and the chosen upper bound pp;x.

It is possible to be more explicit about this claim by using existing results on finite
sample corrections. Indeed, the important discrepancies between the finite sample
and asymptotic distributions are a well documented issue in the multivariate
analysis literature. Since Bartlett (1954), numerous authors introduced correction
factors to various expressions of the likelihood ratio statistic so as to make the
moments of the finite sample distributions match those of the asymptotic
distribution, up to a certain order of magnitude. At this stage, and for the clarity
of the exposition, it is useful to reformulate the IC based lag length selection
problem by focusing on a slightly modified objective function we denote by

E([J) = IC(p) IC(pmax)

with IC(p) defined as in (2). Note that the selection of an optimal p by minimizing
IC(p) is a program identical to the one in (3). The modified criterion can be
written as

e 1Q(p)| 2
IC(p) = Tlog \Q(pmax)| K*cr(pmax D) (4)
where we can recognize the expression of the LR statistic, asymptotically
distributed as y*(K*(pmax ~ p)), in its first right hand side component. (Note that,
in this modified framework, we have E(pmax) = 0 by construction.)
By appealing to existing results on finite sample corrections, it is now possible
to gain further insight on the effects that a limited sample size might have on the



choice of p. In the context of VAR models, Sims (1980), for instance, proposed a
finite sample correction to the LR statistic based on replacing the normalizing
factor T by T 6 with 0 denoting the number of parameters estimated in each
equation of the model. Within the above framework, therefore, the small sample
adjusted LR statistic is given by

1Q(p)|
LR = (T Kpmay) log| —1 ).
( iz )0g<|g(pmx))

Interestingly, this correction is also equivalent to the theoretically derived
adjustment obtained by Fujikoshi (1977) in the context of static canonical
correlation analysis. To our knowledge, an explicit and theoretically derived small
sample adjustment for the LR statistic does not exist in the VAR literature;
however, numerous simulation studies Reinsel and Ahn (1992), Cheung and Lai
(1993), Gonzalo and Pitarakis (1995, 1998, 1999) among others have shown that
the above correction improves significantly on the raw LR statistic in both
stationary or cointegrated VARs and is commonly used in the time series
literature. It is also important to point out that this simple small sample
adjustment has often been criticized on the grounds that it does not always
provide a good approximation of the tail areas, allowing solely a good match of
the first moment of LR with that of a y>(K?*(pmax  p)) random variable. This is
potentially a serious problem when the adjusted statistic is used for hypothesis
testing; here, however, our focus being on expected values rather than tail areas, it
should serve our purpose quite accurately. Indeed, our motivation here is to
obtain a quantitative indication of the average ability of the IC approach not to
overfit. Consider for instance the quantity

E[E(Pma)() E(P()H

and let us focus on the loose requirement that, on average, t}Emodel selection
procedure selects py over pm.. Using the expression of IC(p) in (4), the

requirement that E[IC(py)] < 0 can be written as

Q(po)|
KZCT(pmax p()) >E |:T10g|A .
‘Q(_pmux”

Next, assuming that the distribution of LR, is accurately approximated by the
asymptotic }>(K*(pmax o)) even for moderately small magnitudes of 7 and
rewriting the above expression as

(o)

chr(pmax o) > E[(T Kpmax)logA—}

T
T Kpmax |Q(Pmax)|

and making use of the fact that

E[XZ(KZ(Pmax PO)]:Kz(Pmax o)

leads to the requirement that



KCTpmax
T>—7 5
o (5)

for E[IC(po)] < 0 to hold. As an illustration, consider the case of the AIC criterion
with K = 10, pnax = 7 and py = 1. To ensure that, ‘on average’, py is chosen over
Pmax> I must exceed 140. Regardless of the DGP’s parameter structure, if the
above condition is not satisfied, the AIC will often point to lag lengths greater
than py. This simple scenario has occurred quite frequently in applied work but its
reasons have been attributed solely to AIC’s natural tendency to overfit. In Ho
and Sorensen (1996) for instance, the authors estimated a seven dimensional VAR
with pmax = 4 and found that the AIC was systematically selecting p = 4. Our
previous results provide a clear explanation for this finding and highlight the
dangers of using the AIC under these conditions. In the case of the HQ criterion,
the requirement drops to 7 > 104 and, for the BIC, T > 90. Thus, although when
K is large the AIC does not overfit asymptotically, in small samples (small
compared to pmax and K), it might repeatedly select the preset upper bound if the
latter is not chosen carefully. In summary, with moderate or large sample sizes,
none of the model selection criteria will overfit. This is also true for the AIC in
large dimensional systems with 7 sufficiently large relative to pmax and K. If 7' is
small relative to pmax and K (i.e. T < Kerpmax/(cr 1) for instance) then the AIC
criterion and, to a lesser extent, HQ might frequently point to lag lengths close to
the upper bound. In those instances, our analysis suggests that it might be
beneficial to adjust the LR component of IC(p) in a way similar to the Bartlett
type small sample adjustment applied to the LR statistic.

2.3.  Underfitting

Regarding the probability of underfitting, it is well known that, for all criteria, it
vanishes asymptotically regardless of the location of the roots of |®(z)| = 0.
Indeed, if we consider the probability of selecting py over py 1 for instance, we
have

CTK2
T

P[IC(po) <IC(py 1)]=P|log|Q(py 1)| log|Q(po)| > (6)

and since |Q(po)| < |Q(i)|Vi=1,...,p0 1, the probability in (6) will converge to
one provided that ¢r/T tends to zero. Most finite sample simulation studies,
however, found that criteria such as the BIC might often lead to an overly
parsimonious model. The AIC, on the other hand, has been rarely found to
underfit. Here we argue that, if the sample size is moderate (greater than
Kerpmax/(cr 1) for instance) and the system dimension large, all criteria
including the AIC might lead to lag lengths artificially clustered at very low levels.
The problem will arise from the K? term adjacent to c7/T in (6) which, even for
T moderately large, may leave the factor K%cr/T too high. This suggests that, in



finite samples, an increased system dimension may adversely affect the probability
of underfitting by increasing the possibility of selecting underspecified models.
This phenomenon can be illustrated by focusing on a set of simple generic models
which will also allow us to isolate the impact of the stationarity properties of the
system. Initially, we consider the following K dimensional VAR driven by
VAR(1) errors

AX, = u, u; = Ru, 1 +¢

with R = diag(p;,...,pr),|p] <1 for i=1,...,K, and ¢, denoting a Gaussian
vector white noise process with E(ee€;) = Q. > 0. The above model can be
rewritten as

AX; =T1X—1 + RAX, 1 + &

with IT= 0. Equivalently, it can also be viewed as a VAR(py = 2) in levels.
Suppose that, instead of the true model, we fit

AX, =YX, + v,

thus omitting the relevant lagged dependent variable. It is well known that, in this
underfitted model, we will continue to have W 2,0 due to the I(I)ness of the
components of X,. Letting Q denote the residual covariance matrix obtained
from the underfitted model, it is then straightforward to show that

- 1 1
Q= diag(i,...77>9( +o0,(1).
A !
On the other hand, if we were fitting the correct model, we would have
Q) = Q.+ 0,(1) with Q, denoting the residual covariance from the correctly
specified model. Recalling the general expression of the model selection criteria
given in (2) and putting Q. = Ix, we have

IC(p=2) IC(pzl):Kz%HzK:log(l p7) +0,(1) (7
il

and since py = 2, we need

. K
K2‘7T+Zlog(1 p2) +0,(1) <0 (8)
i1

so as not to underfit. Although (8) will always hold asymptotically, if K is large, it
is very likely that even a criterion such as the AIC might underfit since the
‘negativity’ of X log(1  p2) will be masked by a large value of K2c7/T. This
also highlights the reason why a criterion such as the BIC for which K?c7/T is
likely to be very large relative to the second negative component in (8) might
persistently point to lag lengths below py. The above results also illustrate the
importance of the magnitudes of the chosen values for the parameters driving the
error process. It is clear that one needs to be cautious when properties of model



selection criteria are established under specific DGPs. In fact, virtually any
property can be obtained by a proper manipulation of the parameters of the
DGP.

The above example can also be used to assess the influence of the stationarity
properties of the data on the probability of underfitting. Indeed, instead of
focusing on a system of I(1) variables, we can consider the following VAR (py = 2)
specification

X =AX—1 +uy

ur = Ru; 1 + €
where, for simplicity, we let 4 = diag(ay,...,0x), and R and Q. are defined as
above. In a purely stationary system, |o;| < 1Vi=1,...,K. In this context, it is
straightforward to show that

K
logQ(p =1)| = > log(l  pie)
i 1

i

and

log|Q(p = 2)| > 0.

We can therefore write
K
IC(p=2) IC(p=1) :KZ%TJerog(l p2a2) + o0,(1) 9)
i1

which can be compared with (8) in the purely nonstationary case. It is clear that,
when o; = 1Vi, the possibility that IC(p =2) < IC(p = 1) will be much greater
than when |o;| < 1, suggesting that, in finite samples, the presence of unit roots
will help to push the inequality in the desired direction. Finally, for the
cointegrated case, we consider the specification given by

Xir = Xy + uir
with |o;] < 1 fori=1,...,r and
AXiy = uy

fori=r+1,...,K and the u;,’s specified as above. Thus, the true model is now a
VAR (py = 2)with cointegrating rank r. Proceeding as above, we obtain

IC(p=2) IC(p=1) + Zlog oc,-pl Z log(1 p, +0,(1)

(10)

thus illustrating the fact that, in relation to the effects of K on the probability of
underfitting in finite samples, the cointegrated case will correspond to an
intermediate scenario between the purely I(1) and purely I(0) cases.



2.4. Local properties

In this section, we investigate the behaviour of the various model selection criteria
when the entries of the coefficient matrix @, in model (1) are allowed to shrink
towards zero as the sample size increases. In other words, while the true model has
lag length py, the latter will be approaching py 1 as T' — oo. Intuitively, the
smaller the entries of @, , the more difficult it will be to distinguish between py and
po 1 thus raising the risk of underfitting. Although all model selection criteria
whose penalty terms satisfy ¢y/7 — 0 do not underfit asymptotically, for
moderate samples and large system dimensions, in particular, the probability of
underestimating po might be very high. This way of proceeding will also allow us
to formally isolate the factors that influence the ability of the model selection
criteria to correctly detect the true lag length and is very similar in spirit to the
local power analysis conducted in the context of standard hypotheses tests. For
simplicity, we focus on a VAR(py = 2) model with I(0) variables and restrict
ourselves to a binary decision problem by imposing pm.x = 2 and operating under
po=1. We have

X =01 X +DOX; 2 + & (11)

where @, = A/v/T with A a K x K constant coefficient matrix. We also define
O = (0, D,), Z, = (X]_1,X]_,) and ¢ypo, = vec(P). Letting g2, = vec(A), we
introduce a K? x 2K? restriction matrix G conformable with ¢ such that
G¢ = 02, corresponds to a VAR(I) model (ie. ¢, =0) and Gp = 2/ T
corresponds to a VAR(2) local to a VAR(l). The following proposition
summarizes the ability of the IC based model selection procedure to detect the
true lag length py = 2.

PrOPOSITION 2. Under DGP (11) the probability of correct decision P[IC(2) <
IC(1)] is such that  limp . PIC(2) < IC(1)] = P[2(K2,¥*) > K*cr], where
$2(K2, W) is a noncentral y* random variable with K?* degrees of freedom and
noncentrality parameter > = 2 [G(Q ® E(Z,Z)) )G " .

The above result can be used to assess analytically the ‘power’ properties of the
model selection approach. The components of the noncentrality parameter 1>
include the elements that will affect the probability of correct decision of the
model selection criteria. From Kendall and Stuart (1961), the noncentral y°
distribution can be approximated by a centered one as follows

LK) ~ by (m) (12)
where
e K2 4 2y°
= " lﬁz

and
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By focusing on simple DGPs that could allow the calculation of the noncentrality

parameter to be done analytically, we can establish the main factors affecting the
probability of correct decision as well as the degree of their importance. Consider

the VAR(2) in (11) with ®, :diag(¢l7...,¢>,<),<D2=diag<ﬁ,...7ﬁ> and
Q. = I, for instance. It is straightforward to establish that the noncentrality
parameter is given by

o= XX (13)

1

illustrating the fact that the correct decision frequencies depend on the system
dimension, the sample size and the magnitude of the A parameter. Note that the
magnitude of the parameters appearing in ®; does not affect the correct decision
frequencies. More general models allowing for nonzero cross correlations and
general covariances can also be handled using a symbolic algebra package such as
Mathematica or Maple. To evaluate the accuracy of the analytical power, we used
the above DGP to compute both Monte Carlo and analytical probabilities of
correct decisions. Although the empirical and analytical powers did not coincide,
they were rarely more than 10% apart, suggesting that the analytical asymptotic
power is sufficiently accurate even in finite samples. Table I presents the analytical
powers corresponding to (11) across a wide range of system dimensions and
parameters for all three types of model selection criteria. For the chosen
parameterization, the magnitudes clearly illustrate the rapid deterioration of the
BIC based results as the system dimension is allowed to grow beyond K = 3.

Overall, the results suggest that the AIC criterion is the best performer,
especially in large dimensional systems where criteria such as the BIC are totally
unable to move away from the lowest possible lag length, even under very large
sample sizes. Recalling that we operate under pm,x = 2, it is also important to
observe that, as K grows, the incorrect decisions resulting from the AIC criterion
are clustered at p =1, the underfitted specification. This also supports our
discussion centered around (8) where we argued that even for a small penalty
magnitude such as ¢y = 2, the size of the system dimension might prevent the
inequality in (8) to take the desired sign in finite samples.

2.5.  Further empirical evidence

Our previous results aimed to establish and explain the diversity of outcomes that
could arise when evaluating the performance of alternative lag length selection
methods. Given the large number of individual factors and their joint interactions
influencing the overall properties of each criteria, our analysis allowed us to



TABLE 1
ANALYTICAL CORRECT DECISION FREQUENCIES (py = 2)

A3, T 150 A3, T 400
K AIC BIC HQ AIC BIC  HQ
2 98% 59% 89% 98% 38%  81%
3 98% 24% 76% 97% 8%  62%
4 97% 4% 55% 96% 0%  34%
5 94% 0% 29% 93% 0% 12%
6 90% 0% 10% 88% 0% 2%
7 83% 0% 2% 79% 0% 0%
8 72% 0% 0% 67% 0% 0%
9 57% 0% 0% 52% 0% 0%
10 41% 0% 0% 36% 0% 0%

isolate features that would have required an impracticably large number of DGP
parameterizations for them to be uncovered via direct simulations. Here, our aim
is to use our previous analysis as a framework for designing a selective set of
DGPs so as to provide further insight on the sensitivity of each model selection
criterion to factors such as the sample size, system dimension, preset upper bound
Pmax and, more importantly, to highlight the fact that even slightly altered DGP
parameterizations may lead to contradictory features for the same criterion.

We initially considered a ten dimensional system of 1(1) variables. The true lag
length was set to py = 1 and we experimented across various values of the upper
bound pmax and sample size T (pmax = {3,5,7} and T = {90, 100, 150,200, 250}).
The correct decision frequencies corresponding to each criterion are displayed in
Table II. Although we implemented the model selection approach for 0 <p < pmax,
we only present the frequencies corresponding to choices of p> 1 since none of the
criteria pointed to p = 0 throughout all replications. Due to the I(1)ness of our
DGPs, this latter point should not be interpreted as a strong ability of the model
selection criteria not to underfit, however. Indeed, for the model selection criteria
to point to p =0, we need P[IC(0) < IC(1)] which can also be rewritten as

R R 2
Pllog|Q(0)]  log|&(1))| <KTCT .

Since Q = >, X:X]/T and, given that X, is an I(1) vector process, it follows that
Q(0) = 0,(T) which makes the probability P[IC(0] < IC(1)] converge to zero
extremely fast. From the results in Table 11, the consistency of the AIC based lag
length estimate is striking. For values of 7> 150, the AIC selected p = 1, 100% of
the times, behaving exactly as the BIC and HQ. The frequencies corresponding to
T =100 clearly highlight the importance of the selected upper bound ppax.
Indeed, although for pmax = 3 the correct decision frequency corresponding to the
AIC is approximately 99% under both 7 = 90 and 7 = 100, as we increase pmax to
5 and 7, we can observe that the AIC is systematically pointing to the upper
bound, confirming our previous discussion and result in (5).



TABLE 11
AXy =e;Fori=1,...,K (K=10,py = 1))

T 9 T 100 T 150 T 200 T 250
p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

Pmax 3
1988 100 100 99.4 100 100 100 100 100 100 100 100 100 100 100
205 0 0 03 0 0 0 0 0 0 0 0 0 0 0
307 0 0 03 0 0 0 0 0 0 0 0 0 0 0

Pmax 5

1 40.1 100 100 91.8 100 100 100 100 100 100 100 100 100 100 100
2 01 0 0 02 0 0 o 0 o0 o0 0 0 0 0 0
300 0 0 0 0 0 0o 0 0 0 0 0 0 0 0
4 01 0 0 0O 0 0 o 0 0 0 0 0 0 0 0
5 597 0 0 8 0 0 o0 0 0 0 0 0 0 0 0
Pmax 7

1 0 999 04 0 100 992 100 100 100 100 100 100 100 100 100
2 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 o0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 o 0 o0 0 0 0 0 0 0
6 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0
7 100 01 996 100 0 08 0 0 0 0 0 0 0 0 0

When we conducted the same experiments across smaller system dimensions
while maintaining the restriction that py.x should be such that the lower bound in
(5) is kept identical to the K = 10 scenario (e.g. {K, pmax} = {5, 14} under ¢ =2
requires 7 > 140 as does {K,pmax} = {10,7}) we found the correct decision
frequency patterns to be both quantitatively and qualitatively similar to the ones
presented in Table II. The magnitude and patterns of the above frequencies also
remained unchanged when we introduced I(0) components into the system,
confirming the irrelevance of the stationarity properties of the data for the
probability of overfitting. The fact that the BIC points to py = 1V ppax and VT
also casts some doubt on its genuine ability to move away from the lowest
possible lag length. Indeed, this might be due to the strength of its penalty which,
combined with the dimensionality factor, makes it spuriously select p = 1.

To explore alternative scenarios under which underfitting is likely to occur in
finite samples, we next focus on a class of VAR(py = 2) models, concentrating on
the individual and joint influence of factors isolated in our analysis in (8) (10) and
(13). We consider two types of VAR (py = 2) specifications, having large and small
parameter magnitudes, i.e. p} in (7) respectively. The chosen parameterization for
the first DGP leads to

K
> log(l pj)= 274
il

while the second one leads to



K
> log(l pi)= 042.
il

Our result in (8) suggests that, for moderately small samples, the BIC will point to
p = 1 most of the time even in the ‘strong parameter value’ case. This is indeed
confirmed by the empirical results presented in Table III which suggest that the
BIC requires samples much greater than 7= 200 to achieve acceptable correct
decision frequencies. The AIC based estimates, on the other hand, are converging
to pp = 2 quite rapidly with the AIC selecting the true lag length close to 100% of
the times for 7> 150 and any magnitude of pmax.

It is also important to observe that the AIC does not overfit unless T is
extremely small relative to pm.x and K. When we reconsidered the same
experiment with smaller magnitudes of the p!, the correct decision frequencies
(Table IV) were reduced by half for the AIC which continued, however, to remain
by far the best performing criterion since the BIC and HQ were totally unable to
select any lag length other than the lower bound p = 1 close to 100% of the times.
Another feature also worth emphasizing is that, even for the AIC criterion, all
wrong decisions are clustered at p < py, the underfitted model, confirming our
analysis in (8) and our results in Table I. Thus our overall findings strongly
suggest that, in large dimensional systems and for moderately large sample sizes,
underfitting is the main problem practitioners should concentrate on, even when
using the AIC criterion. Regarding the relative performance of the criteria
considered in this study, the AIC is clearly the best performer in large dimensional
systems. In a related study, Koreisha and Pukkila (1993) also investigated the
influence of the system dimension on the behaviour of standard information
theoretic criteria via an extensive set of Monte Carlo experiments based on purely
stationary VAR(1) and VAR(2) models. In addition to providing further
theoretical support and an analysis of the causes of some of their findings, our
results suggest that the sample sizes considered in their study forced an
overemphasis on the overfitting aspect. Indeed, our findings suggest that
underfitting might be a more serious and common problem in large dimensional
systems.

So far, our framework has assumed the order of the VAR to be finite and
bounded by pnax. It is also important to evaluate the properties of the lag length
estimation techniques when the error process of the VAR contains (invertible)
moving average components, with the latter implying the the true DGP has a
VAR(o0) representation. Within this framework, it is still possible to approximate
the VAR(o0o) by a truncated VAR(p) version and obtain consistent estimates of
the parameter matrices provided that the truncating lag p is allowed to grow at an
appropriate rate with the sample size (Berk, 1974; Lewis and Reinsel, 1985; Ng
and Perron, 1995). The key issue that arises in this context is the quality of the
different methods for the selection of an appropriate truncation lag. In the context
of a univariate autoregression, Ng and Perron (1995) showed that, under the
presence of moving average errors with large MA parameter magnitudes, model



TABLE III
Axip = i, uyy = pjuyr 1+ € FORiI=1,...,K py =0.3,p, =0.7,p3 = 0.5, p, = 0.6, p5 = 0.8, ps = 0.2,
p7=0.5,p5 =0.4,p = 0.0,p,0=0.0 K =10,p0 = 2,31 log(1 p2)= 274

T 9 T 100 T 150 T 200 T 250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

Pmax 3
1 03 100 698 03 100 545 0 955 1.5 0 324 0 0 05 0
2 758 0 302 8.6 0 455 100 45 985 100 67.6 100 100 99.5 100

3239 0 0 101 0 0 0 0 0 0 0 0 0 0 0
Pmax 5

1 0 100 69.8 0.1 100 545 0 955 15 0 324 0 0 05 0
2 08 0 302 256 0 455 99.8 45 985 100 67.6 100 100 99.5 100
301 0 0 12 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 08 0 0 0.1 0 0 0 0 0 0 0 0
5 99.1 0 0 723 0 0 01 0 0 0 0 0 0 0 0
Pmax 7

1 0 935 0 0 100 31.1 0 955 1.5 0 324 0 0 05 0
2 0 0 0 0 0 19.1 984 45 985 100 67.6 100 100 99.5 100
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0
7 100 65 100 100 0 498 13 0 0 0 o0 0 0 0 0

TABLE IV
Axj = i, uy = piuy 1+ € FoRi=1,...,10 p, =0.2,p, =0.3,p3 =0.1,p, = 0.4, ps = 0.15,
P =0.25,p7 = 0.1,pg = 0,py = 0,19 = 0 K = 10, = 2,57" log(l  p}) = 0.42
T 90 T 100 T 150 T 200 T 250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ
Pmax 3

1888 100 100 92 100 100 91.6 100 100 77.1 100 100 50.6 100 0
2 71 0 0 71 0 0 84 0 0 229 0 0 494 0 0
3 41 0 0 09 0 0 0 0 0 0 0 0 0 0 0
Pmax

1 191 100 100 70.6 100 100 91.6 100 100 77.1 100 100 50.6 100 100
2 03 0 0 31 0 0 84 0 0 229 0 0 494 0 0
3 01 0 0 01 0 0 0 0 0 0 0 0 0 0 0
4 01 0 0 02 0 0 0 0 0 0 0 0 0 0 0
5 804 0 0 26 0 0 o0 0 0 0 0 0 0 0 0
Pmax 7

1 0 994 0 0 100 974 91.5 100 100 77.1 100 100 50.6 100 100
2 0 0 0 0 0 0 84 0 0 229 0 0 494 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 100 0.6 100 100 0 26 0.1 0 0 0 0 0 0 0 0