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Abstract. We study the impact of the system dimension on commonly used model
selection criteria (AIC, BIC, HQ) and LR based general to specific testing strategies for lag
length estimation in VARs. We show that AIC’s well known overparameterization feature
becomes quickly irrelevant as we move away from univariate models, with the criterion
leading to consistent estimates under sufficiently large system dimensions. Unless the
sample size is unrealistically small, all model selection criteria will tend to point towards
low orders as the system dimension increases, with the AIC remaining by far the best
performing criterion. This latter point is also illustrated via the use of an analytical power
function for model selection criteria. The comparison between the model selection and
general to specific testing strategy is discussed within the context of a new penalty term
leading to the same choice of lag length under both approaches.
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1. INTRODUCTION

The specification of a proper dynamic structure is a crucial preliminary step in
univariate or multivariate ARMA type time series models. Although the
determination of a proper lag structu seldom of individual interest or the
final objective of an empirical investigation, it has a great impact on subsequent
inferences whether they are about causality, cointegration, impulse response
analysis or forecasting. Typically, the most common way of selecting an
appropriate lag structure for a VAR involves first assuming that the true, but
unknown, lag length is bounded by some finite constant and, subsequently using
information theoretic criteria such as the AIC (Akaike, 1974), BIC (Schwarz,
l978) or HQ (Hannan and Quinn, l979; Quinn, 1980) to determine an optimal lag
length. This is clearly the most frequently used approach in the time series
literature which abunds in studies that evaluated the asymptotic and finite sample
properties of the above mentioned methods. On the theoretical side, it has been
shown that criteria such as the BIC and HQ lead to consistent estimates in both
stationary and nonstationary systems (Hannan, 1980; Quinn, l980; Tsay, 1984;
Paulsen, 1984; Pötscher (1989, 1990)) while the AIC is characterized by a positive
limiting probability of overfitting.

Focusing on the finite sample properties of lag length selection methods,
Lütkepohl (1985) conducted an extensive Monte Carlo study analysing the
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properties of a large number of methods in bivariate and trivariate stationary VARs.
The overall conclusion of the study supported the view that the BIC and the HQ lead
to the most accurate results. In the context of a cointegrated system, Cheung and Lai
(1993) found that both the AIC and BIC perform well in finite samples provided that
the true error structure has a finite and parsimonious autoregressive representation.
If the system contains moving average components however, then both criteria
displayed poor performance. In this latter case, the AIC led to lag length estimates as
distorted as the ones obtained by the BIC in the sense of generating truncation lags
that are too short for the finite autoregressive approximation to be reliable. This
confirms a recent point by Ng and Perron (l995) who showed in the context of a
univariate framework that, despite its well known overfitting feature, the AIC
abandons information at long lag lengths and is therefore also unreliable under
moving average components. Their analysis further suggests that a sequential
testing strategy could be preferable under moving average errors, leading to a better
size power trade off in the subsequent inferences about the presence of unit roots.
Overall, however, our reading of the literature is that the AIC and BIC, still remain
the favourite tools for specifying the lag structure in both univariate and
multivariate models. More recently, Ho and Sorensen (1996) analysed the impact
of the system dimension on the performance of LR based cointegration tests and, as
a byproduct of their study, concluded that the BIC is more reliable than the AIC in
such a setting. The fact that the negative consequences of an underparameterized
model are much more serious than in an overparameterized case (wrong inferences
versus loss of efficiency, for instance), however, often led practitioners to argue in
favour of the AIC criterion. These mixed and often contradictory conclusions,
clearly highlight the point that it is difficult to come up with a universally accepted
typology of methods ranked in terms of their performance. Indeed, the number of
factors influencing the behaviour of these procedures is such that conclusions can
only be DGP specific, with different parameterizations possibly leading to
contradictory features for the same criterion. It is, however, possible to explain
why most studies reached conflicting results by focusing mainly on the system
dimension and available sample size, together with the rates of convergence of the
various model selection criteria. This can then allow us better to classify the
circumstances under which a specific method will perform better than the others.

In this paper, our objectives are twofold. First, we focus on a series of factors
(system dimension, sample size, preset upper bound, etc.) that influence the
performance of alternative lag length selection methods in both small and large
samples with the aim of explaining and clarifying the often conflicting results
obtained in the literature. Our second objective is then to provide a set of practical
guidelines for the choice of the lag order determination method. The plan of the
paper is as follows. Section 2 presents the competing information theoretic
methods and evaluates their theoretical features in relation to the dimensionality
aspect. Section 3 focuses on the general to specific testing strategy and its
connection with the model selection approach. Section 4 concludes. All proofs are
relegated to the Appendix.
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2. FEATURES OF COMMONLY USED LAG LENGTH SELECTION CRITERIA

In this section, we focus on some theoretical features of the penalized likelihood
based methods for selecting the lag order in the vector autoregression

Xt ¼ U1Xt�1 þ � � � þ Up0
Xt�p0

þ �t ð1Þ

where fXtg is a K 	 1 vector, p0 denotes the unknown true lag length and

ASSUMPTION 1. f�tg is a Gaussian i.i.d. vector sequence with mean zero and
Eð�t�0tÞ ¼ X� > 0 8t:

ASSUMPTION 2. The determinant of the autoregressive polynomial jUðzÞj ¼
jIK U1z � � � Up0

zp0 j has all its roots outside the unit circle or at most K roots at
z ¼ 1 and the lag length p0 is such that p0Opmax with pmax denoting a known finite
constant.

Using Engle and Granger’s (1987) terminology, the above assumptions allow
the vector autoregressive process in (1) to be purely stationary (I(0)), purely non
stationary (I(1)) or cointegrated (CI(l,1)). Given the above specification, the
primary objective of any investigation involving VAR models is the selection of
an optimal value for p the unknown lag length. The general expression of the
objective function of penalty based methods is given by

ICðpÞ ¼ log jX̂XðpÞj þ cT

T
mp ð2Þ

where X̂XðpÞ denotes the estimated residual covariance matrix when p lags have
been fitted to (1), mp the number of freely estimated parameters (mp ¼ K2p)
and cT is a deterministic penalty term. When cT ¼ 2, we have the well known
AIC criterion; cT ¼ log T corresponds to the BIC; and cT ¼ 2 log log T is
commonly referred to as the HQ. The optimal lag length, say p̂p is then selected
as follows:

p̂p ¼ arg min
0OpOpmax

ICðpÞ: ð3Þ

Regarding the asymptotic properties of p̂p obtained from (3), Tsay (1984) and
Paulsen (1984) showed that provided that cT ! 1 and cT =T ! 0 as T ! 1, p̂p is
consistent in both stationary and I(1) systems. Clearly, the AIC criterion violates
the first of the above two conditions leading to a non zero limiting probability of
overfitting. It is worth pointing out, however, that, even for the AIC, the
probability of underestimation vanishes asymptotically. These limiting results,
however, provide little guidance for the choice of a reliable criterion in finite
samples.
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2.1. Overfitting in large samples

The impact of the system dimension on the probability of overfitting of criteria
such as the AIC can be analysed by focusing on P ½ICðp0 þ hÞ < ICðp0Þ� which
represents the probability of selecting p0 þ h over p0 lags with hP1. Numerous
studies have shown that this probability does not vanish asymptotically for
constant penalty criteria such as the AIC since the requirement that cT ! 1 is
violated. This has often been used as a strong argument against the practice of
model selection via the AIC. However, an important point established in Paulsen
and Tjostheim (1985), in the context of a purely stationary VAR, is that the AIC’s
nonzero asymptotic probability of overfitting is also a decreasing function of the
system dimension. This feature of the AIC criterion seems to have often been
overlooked in applied work. The following proposition will allow us to formally
quantify the behaviour of the overfitting probability across different system
dimensions for purely stationary, nonstationary and cointegrated systems, and it
will illustrate the fact that, even for a criterion such as the AIC, the probability
becomes rapidly negligible as we move from a univariate to a larger dimensional
system.

PROPOSITION 1. Under assumptions 1 2 and letting p̂p denote the lag length
estimate obtained via the model selection approach using a constant penalty cT ¼ c,
the probability of selecting p0 þ h over p0 lags converges to P ½v2ðK2hÞ > K2hc� as
T ! 1 and 8p0 2 ½1; pmax� if the polynomial in assumption 2 has at least one root on
the unit circle and 8p0 2 ½0; pmax� if it has all its roots outside the unit circle.

The requirement that p0 � 1 under the presence of I(1) components ensures that
lag length restrictions on the VAR in levels can be reformulated as restrictions on
coefficient matrices of stationary regressors only, thus validating the use of
standard asymptotics. Differently put, when the polynomial in Assumption 2 has
at least one root on the unit circle, the quantity

T ðlog jX̂XðpÞj log jX̂Xðp þ hÞjÞ

will be asymptotically distributed as v2ðK2hÞ only if p � 1. The above result
highlights the crucial importance that the system dimension will have on the
performance of model selection criteria, and it illustrates the fact that the
probability of overfitting is an exponentially decreasing function of K in both
stationary and nonstationary systems. For the AIC criterion, for instance, it is
clear that one does not need an extremely large system dimension for the
above probability to be close to zero and, for practical purposes, it can be
considered as negligible even in the trivariate case. Indeed, under K ¼ 3, for
instance, the limiting probabilities of selecting p0 þ h over p0 are given by
3.52%, 0.71% and 0.15% for h ¼ 1; 2 and 3, respectively, while when K ¼ 1
(i.e. univariate model), the corresponding figures increase to 17.73%, 13.43%
and 11.16%. Thus, even in moderately large systems, the risk of overparam
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eterization is negligible and therefore the AIC criterion may also lead to
consistent like estimates since

lim
T!1

P ½AICðp0 þ 1Þ < AICðp0Þ� ¼ Oðe�K2Þ:

For the BIC and HQ criteria, the probability of overfitting converges to zero as
T ! 1 since for both criteria cT ! 1, implying that

lim
T!1

P ½ICðp0 þ hÞ < ICðp0Þ� ¼ 0:

It is worth pointing out, however, the influence that the system dimension K will
have on this latter probability. Specifically, for the probability of fitting one
spurious variate under the BIC, we have

P ½BICðp0 þ 1Þ < BICðp0Þ� ¼ P ½T log
jX̂Xðp0Þj

jX̂Xðp0 þ 1Þj
> K2 log T �

� P ½v2ðK2Þ > K2 log T �

� O
ðlog T Þ

K2

2 �1

T
K2

2

0
@

1
A

with the last approximation following from the asymptotic expansion of the
incomplete gamma function. Proceeding similarly for the HQ type penalty, we
obtain

P ½HQðp0 þ 1Þ < HQðp0Þ� � Oððlog log T Þ
K2

2 �1ðlog T Þ�
K2

2 Þ:

Thus, although the BIC’s convergence rate may appear as very desirable, it also
casts serious doubts on its ability to move away from the lowest possible lag
length when the system dimension is large.

2.2. Overfitting in finite samples

So far, the validity of our arguments has been conditional on the availability of a
sufficiently large sample size so as to ensure that the distribution of

T ðlog jX̂Xðp0Þj log jX̂Xðp0 þ hÞjÞ

is accurately approximated by a v2ðK2hÞ random variable. Typically, in finite
samples, the degrees of freedom limitations will introduce severe upward biases in
the estimated covariance matrices, resulting in a rightward shift of the empirical
distribution relative to that of the theoretical v2. Thus, despite the evidence from
the above large sample based results, even in large dimensional systems, the AIC
criterion might still end up pointing to very high lag orders if the inflated v2ðK2hÞ
dominates the deterministic term 2K2h. This effect could be particularly strong if a
large system dimension is combined with a large value of the upper bound pmax.
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When this happens, it would be inaccurate to attribute the causes of the resulting
overparameterization to AIC’s ‘overfitting nature’ since it arises solely from the
degrees of freedom restrictions. The chances of this occurring for the BIC are
negligible, however, since K2h log T will be extremely large (at least twice as large
as 2K2h) even for a relatively small T .

To gain further insight into this latter point, we simulated data from a 10
dimensional VAR ðp0 ¼ 1Þ using samples of size T ¼ 90, 150, 250 and 1000 and
with a VAR ðp ¼ 2Þ as the fitted model. The empirically obtained 95% critical
values of the LR statistic for testing U2 ¼ 0 were 184.08, 158.22, 143.15 and
129.88, respectively, compared with the theoretical v2

95%
ð100Þ counterpart of

124.35. Since, for the AIC criterion, we have

K2hcT ¼ 100 	 1 	 2 ¼ 200

it is clear that, under moderately small samples, overfitting might occur
frequently. For the BIC, on the other hand, even under T ¼ 90, we have
K2hcT ’ 500 suggesting that overfitting is unlikely to occur no matter how
inflated the finite sample distribution of LR is. Note that the above empirical
percentiles were highly robust to the stationarity properties and parameter values
of the DGP, having experimented across various stationary, purely nonstationary
and cointegrated specifications. In finite samples and large dimensional systems,
AIC’s overfitting feature will arise only if T is small relative to the system
dimension K and the chosen upper bound pmax.

It is possible to be more explicit about this claim by using existing results on finite
sample corrections. Indeed, the important discrepancies between the finite sample
and asymptotic distributions are a well documented issue in the multivariate
analysis literature. Since Bartlett (1954), numerous authors introduced correction
factors to various expressions of the likelihood ratio statistic so as to make the
moments of the finite sample distributions match those of the asymptotic
distribution, up to a certain order of magnitude. At this stage, and for the clarity
of the exposition, it is useful to reformulate the IC based lag length selection
problem by focusing on a slightly modified objective function we denote by

ICðpÞ ¼ ICðpÞ ICðpmaxÞ

with ICðpÞ defined as in (2). Note that the selection of an optimal p by minimizing
ICðpÞ is a program identical to the one in (3). The modified criterion can be
written as

ICðpÞ ¼ T log
jX̂XðpÞj

jX̂XðpmaxÞj
K2cT ðpmax pÞ ð4Þ

where we can recognize the expression of the LR statistic, asymptotically
distributed as v2ðK2ðpmax pÞÞ, in its first right hand side component. (Note that,
in this modified framework, we have ICðpmaxÞ ¼ 0 by construction.)

By appealing to existing results on finite sample corrections, it is now possible
to gain further insight on the effects that a limited sample size might have on the
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choice of p. In the context of VAR models, Sims (1980), for instance, proposed a
finite sample correction to the LR statistic based on replacing the normalizing
factor T by T d with d denoting the number of parameters estimated in each
equation of the model. Within the above framework, therefore, the small sample
adjusted LR statistic is given by

LRc ¼ ðT KpmaxÞ log
jX̂XðpÞj

jX̂XðpmaxÞj

 !
:

Interestingly, this correction is also equivalent to the theoretically derived
adjustment obtained by Fujikoshi (1977) in the context of static canonical
correlation analysis. To our knowledge, an explicit and theoretically derived small
sample adjustment for the LR statistic does not exist in the VAR literature;
however, numerous simulation studies Reinsel and Ahn (1992), Cheung and Lai
(1993), Gonzalo and Pitarakis (1995, 1998, 1999) among others have shown that
the above correction improves significantly on the raw LR statistic in both
stationary or cointegrated VARs and is commonly used in the time series
literature. It is also important to point out that this simple small sample
adjustment has often been criticized on the grounds that it does not always
provide a good approximation of the tail areas, allowing solely a good match of
the first moment of LRc with that of a v2ðK2ðpmax pÞÞ random variable. This is
potentially a serious problem when the adjusted statistic is used for hypothesis
testing; here, however, our focus being on expected values rather than tail areas, it
should serve our purpose quite accurately. Indeed, our motivation here is to
obtain a quantitative indication of the average ability of the IC approach not to
overfit. Consider for instance the quantity

E½ICðpmaxÞ ICðp0Þ�
and let us focus on the loose requirement that, on average, the model selection
procedure selects p0 over pmax. Using the expression of ICðpÞ in (4), the
requirement that E½ICðp0Þ� < 0 can be written as

K2cT ðpmax p0Þ > E T log
jX̂Xðp0Þj
jX̂XðpmaxÞj

" #
:

Next, assuming that the distribution of LRc, is accurately approximated by the
asymptotic v2ðK2ðpmax p0ÞÞ even for moderately small magnitudes of T and
rewriting the above expression as

K2cT ðpmax p0Þ >
T

T Kpmax
E ðT KpmaxÞ log

jX̂Xðp0Þj
jX̂XðpmaxÞj

" #

and making use of the fact that

E½v2ðK2ðpmax p0Þ� ¼ K2ðpmax p0Þ

leads to the requirement that
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T >
KcT pmax

cT 1
ð5Þ

for E½ICðp0Þ� < 0 to hold. As an illustration, consider the case of the AIC criterion
with K ¼ 10, pmax ¼ 7 and p0 ¼ 1. To ensure that, ‘on average’, p0 is chosen over
pmax, T must exceed 140. Regardless of the DGP’s parameter structure, if the
above condition is not satisfied, the AIC will often point to lag lengths greater
than p0. This simple scenario has occurred quite frequently in applied work but its
reasons have been attributed solely to AIC’s natural tendency to overfit. In Ho
and Sorensen (1996) for instance, the authors estimated a seven dimensional VAR
with pmax ¼ 4 and found that the AIC was systematically selecting p̂p ¼ 4. Our
previous results provide a clear explanation for this finding and highlight the
dangers of using the AIC under these conditions. In the case of the HQ criterion,
the requirement drops to T > 104 and, for the BIC, T > 90. Thus, although when
K is large the AIC does not overfit asymptotically, in small samples (small
compared to pmax and K), it might repeatedly select the preset upper bound if the
latter is not chosen carefully. In summary, with moderate or large sample sizes,
none of the model selection criteria will overfit. This is also true for the AIC in
large dimensional systems with T sufficiently large relative to pmax and K. If T is
small relative to pmax and K (i.e. T < KcT pmax=ðcT 1Þ for instance) then the AIC
criterion and, to a lesser extent, HQ might frequently point to lag lengths close to
the upper bound. In those instances, our analysis suggests that it might be
beneficial to adjust the LR component of ICðpÞ in a way similar to the Bartlett
type small sample adjustment applied to the LR statistic.

2.3. Underfitting

Regarding the probability of underfitting, it is well known that, for all criteria, it
vanishes asymptotically regardless of the location of the roots of jUðzÞj ¼ 0.
Indeed, if we consider the probability of selecting p0 over p0 1 for instance, we
have

P ½ICðp0Þ < ICðp0 1Þ� ¼ P log jX̂Xðp0 1Þj log jX̂Xðp0Þj >
cTK2

T

	 

ð6Þ

and since jX̂Xðp0Þj < jX̂XðiÞj 8 i ¼ 1; . . . ; p0 1, the probability in (6) will converge to
one provided that cT=T tends to zero. Most finite sample simulation studies,
however, found that criteria such as the BIC might often lead to an overly
parsimonious model. The AIC, on the other hand, has been rarely found to
underfit. Here we argue that, if the sample size is moderate (greater than
KcT pmax=ðcT 1Þ for instance) and the system dimension large, all criteria
including the AIC might lead to lag lengths artificially clustered at very low levels.
The problem will arise from the K2 term adjacent to cT=T in (6) which, even for
T moderately large, may leave the factor K2cT=T too high. This suggests that, in
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finite samples, an increased system dimension may adversely affect the probability
of underfitting by increasing the possibility of selecting underspecified models.
This phenomenon can be illustrated by focusing on a set of simple generic models
which will also allow us to isolate the impact of the stationarity properties of the
system. Initially, we consider the following K dimensional VAR driven by
VAR(1) errors

DXt ¼ ut ut ¼ Rut�1 þ �t

with R ¼ diagðq1; . . . ; qkÞ; jqij < 1 for i ¼ 1; . . . ;K, and �t denoting a Gaussian
vector white noise process with Eð�t�0tÞ ¼ X� > 0. The above model can be
rewritten as

DXt ¼ PXt�1 þ RDXt�1 þ �t

with P ¼ 0. Equivalently, it can also be viewed as a VARðp0 ¼ 2Þ in levels.
Suppose that, instead of the true model, we fit

DXt ¼ WXt�1 þ mt

thus omitting the relevant lagged dependent variable. It is well known that, in this
underfitted model, we will continue to have ŴWols !

p
0 due to the I(1)ness of the

components of Xt. Letting X̂X1 denote the residual covariance matrix obtained
from the underfitted model, it is then straightforward to show that

X̂X1 ¼ diag
1

1 q2
1

; . . . ;
1

1 q2
K

� �
X� þ opð1Þ:

On the other hand, if we were fitting the correct model, we would have
X̂X2 ¼ X� þ opð1Þ with X̂X2 denoting the residual covariance from the correctly
specified model. Recalling the general expression of the model selection criteria
given in (2) and putting X� ¼ IK , we have

ICðp ¼ 2Þ ICðp ¼ 1Þ ¼ K2 cT

T
þ
XK
i 1

logð1 q2
i Þ þ opð1Þ ð7Þ

and since p0 ¼ 2, we need

K2 cT

T
þ
XK
i 1

logð1 q2
i Þ þ opð1Þ < 0 ð8Þ

so as not to underfit. Although (8) will always hold asymptotically, if K is large, it
is very likely that even a criterion such as the AIC might underfit since the
‘negativity’ of

PK
i 1 logð1 q2

i Þ will be masked by a large value of K2cT=T . This
also highlights the reason why a criterion such as the BIC for which K2cT =T is
likely to be very large relative to the second negative component in (8) might
persistently point to lag lengths below p0. The above results also illustrate the
importance of the magnitudes of the chosen values for the parameters driving the
error process. It is clear that one needs to be cautious when properties of model
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selection criteria are established under specific DGPs. In fact, virtually any
property can be obtained by a proper manipulation of the parameters of the
DGP.

The above example can also be used to assess the influence of the stationarity
properties of the data on the probability of underfitting. Indeed, instead of
focusing on a system of I(1) variables, we can consider the following VARðp0 ¼ 2Þ
specification

Xt ¼ AXt�1 þ ut

ut ¼ Rut�1 þ �t

where, for simplicity, we let A ¼ diagða1; . . . ; aKÞ, and R and X� are defined as
above. In a purely stationary system, jaij < 1 8 i ¼ 1; . . . ;K. In this context, it is
straightforward to show that

log jX̂Xðp ¼ 1Þj!p
XK
i 1

logð1 q2
i a

2
i Þ

and

log jX̂Xðp ¼ 2Þj!p 0:

We can therefore write

ICðp ¼ 2Þ ICðp ¼ 1Þ ¼ K2 cT

T
þ
XK
i 1

logð1 q2
i a

2
i Þ þ opð1Þ ð9Þ

which can be compared with (8) in the purely nonstationary case. It is clear that,
when ai ¼ 1 8i, the possibility that ICðp ¼ 2Þ < ICðp ¼ 1Þ will be much greater
than when jaij < 1, suggesting that, in finite samples, the presence of unit roots
will help to push the inequality in the desired direction. Finally, for the
cointegrated case, we consider the specification given by

Xit ¼ aiXit�1 þ uit

with jaij < 1 for i ¼ 1; . . . ; r and

DXit ¼ uit

for i ¼ r þ 1; . . . ;K and the uit’s specified as above. Thus, the true model is now a
VARðp0 ¼ 2Þwith cointegrating rank r. Proceeding as above, we obtain

ICðp ¼ 2Þ ICðp ¼ 1Þ ¼ K2 cT

T
þ
Xr

i 1

logð1 aiq
2
i Þ þ

XK
i rþ1

logð1 q2
i Þ þ opð1Þ

ð10Þ

thus illustrating the fact that, in relation to the effects of K on the probability of
underfitting in finite samples, the cointegrated case will correspond to an
intermediate scenario between the purely I(1) and purely I(0) cases.
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2.4. Local properties

In this section, we investigate the behaviour of the various model selection criteria
when the entries of the coefficient matrix Up0

in model (1) are allowed to shrink
towards zero as the sample size increases. In other words, while the true model has
lag length p0, the latter will be approaching p0 1 as T ! 1. Intuitively, the
smaller the entries of Up0

, the more difficult it will be to distinguish between p0 and
p0 1 thus raising the risk of underfitting. Although all model selection criteria
whose penalty terms satisfy cT=T ! 0 do not underfit asymptotically, for
moderate samples and large system dimensions, in particular, the probability of
underestimating p0 might be very high. This way of proceeding will also allow us
to formally isolate the factors that influence the ability of the model selection
criteria to correctly detect the true lag length and is very similar in spirit to the
local power analysis conducted in the context of standard hypotheses tests. For
simplicity, we focus on a VARðp0 ¼ 2Þ model with I(0) variables and restrict
ourselves to a binary decision problem by imposing pmax ¼ 2 and operating under
p0P1. We have

Xt ¼ U1Xt�1 þ U2Xt�2 þ �t ð11Þ

where U2 ¼ K= T
p

with K a K 	 K constant coefficient matrix. We also define
U0 ¼ ðU1;U2Þ, Z 0

t ¼ ðX 0
t�1;X

0
t�2Þ and /2K2	1 ¼ vecðUÞ. Letting kK2	1 ¼ vecðKÞ, we

introduce a K2 	 2K2 restriction matrix G conformable with / such that
G/ ¼ 0K2	1 corresponds to a VAR(1) model (i.e. /2 ¼ 0) and G/ ¼ k= T

p

corresponds to a VAR(2) local to a VAR(l). The following proposition
summarizes the ability of the IC based model selection procedure to detect the
true lag length p0 ¼ 2.

PROPOSITION 2. Under DGP (11) the probability of correct decision P ½ICð2Þ <
ICð1Þ� is such that limT!1 P ½ICð2Þ < ICð1Þ� ¼ P ½v2ðK2;w2Þ > K2cT �, where
v2ðK2;w2Þ is a noncentral v2 random variable with K2 degrees of freedom and
noncentrality parameter w2 ¼ k0½GðX � EðZtZ 0

tÞ
�1ÞG0��1k.

The above result can be used to assess analytically the ‘power’ properties of the
model selection approach. The components of the noncentrality parameter w2

include the elements that will affect the probability of correct decision of the
model selection criteria. From Kendall and Stuart (1961), the noncentral v2

distribution can be approximated by a centered one as follows

v2ðK2;w2Þ � hv2ðmÞ ð12Þ

where

h ¼ K2 þ 2w2

K2 þ w2

and
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m ¼ ðK2 þ w2Þ2

K2 þ 2w2
:

By focusing on simple DGPs that could allow the calculation of the noncentrality
parameter to be done analytically, we can establish the main factors affecting the
probability of correct decision as well as the degree of their importance. Consider

the VAR(2) in (11) with U1 ¼ diagð/1; . . . ;/KÞ;U2 ¼ diag k
T

p ; . . . ; k
T

p
� �

and

X� ¼ IK , for instance. It is straightforward to establish that the noncentrality

parameter is given by

w2 ¼ Kk2

1 k2

T

ð13Þ

illustrating the fact that the correct decision frequencies depend on the system
dimension, the sample size and the magnitude of the k parameter. Note that the
magnitude of the parameters appearing in U1 does not affect the correct decision
frequencies. More general models allowing for nonzero cross correlations and
general covariances can also be handled using a symbolic algebra package such as
Mathematica or Maple. To evaluate the accuracy of the analytical power, we used
the above DGP to compute both Monte Carlo and analytical probabilities of
correct decisions. Although the empirical and analytical powers did not coincide,
they were rarely more than 10% apart, suggesting that the analytical asymptotic
power is sufficiently accurate even in finite samples. Table I presents the analytical
powers corresponding to (11) across a wide range of system dimensions and
parameters for all three types of model selection criteria. For the chosen
parameterization, the magnitudes clearly illustrate the rapid deterioration of the
BlC based results as the system dimension is allowed to grow beyond K ¼ 3.

Overall, the results suggest that the AIC criterion is the best performer,
especially in large dimensional systems where criteria such as the BIC are totally
unable to move away from the lowest possible lag length, even under very large
sample sizes. Recalling that we operate under pmax ¼ 2, it is also important to
observe that, as K grows, the incorrect decisions resulting from the AIC criterion
are clustered at p ¼ 1, the underfitted specification. This also supports our
discussion centered around (8) where we argued that even for a small penalty
magnitude such as cT ¼ 2, the size of the system dimension might prevent the
inequality in (8) to take the desired sign in finite samples.

2.5. Further empirical evidence

Our previous results aimed to establish and explain the diversity of outcomes that
could arise when evaluating the performance of alternative lag length selection
methods. Given the large number of individual factors and their joint interactions
influencing the overall properties of each criteria, our analysis allowed us to
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isolate features that would have required an impracticably large number of DGP
parameterizations for them to be uncovered via direct simulations. Here, our aim
is to use our previous analysis as a framework for designing a selective set of
DGPs so as to provide further insight on the sensitivity of each model selection
criterion to factors such as the sample size, system dimension, preset upper bound
pmax and, more importantly, to highlight the fact that even slightly altered DGP
parameterizations may lead to contradictory features for the same criterion.

We initially considered a ten dimensional system of 1(1) variables. The true lag
length was set to p0 ¼ 1 and we experimented across various values of the upper
bound pmax and sample size T ðpmax ¼ f3; 5; 7g and T ¼ f90; 100; 150; 200; 250gÞ.
The correct decision frequencies corresponding to each criterion are displayed in
Table II. Although we implemented the model selection approach for 0OpOpmax,
we only present the frequencies corresponding to choices of pP1 since none of the
criteria pointed to p ¼ 0 throughout all replications. Due to the I(1)ness of our
DGPs, this latter point should not be interpreted as a strong ability of the model
selection criteria not to underfit, however. Indeed, for the model selection criteria
to point to p ¼ 0, we need P ½ICð0Þ < ICð1Þ� which can also be rewritten as

P log jX̂Xð0Þj log jX̂Xð1Þj < K2cT

T

	 

:

Since X̂X ¼
P

t XtX 0
t =T and, given that Xt is an I(1) vector process, it follows that

X̂Xð0Þ ¼ OpðT Þ which makes the probability P ½ICð0� < ICð1Þ� converge to zero
extremely fast. From the results in Table II, the consistency of the AIC based lag
length estimate is striking. For values of TP150, the AIC selected p ¼ 1, 100% of
the times, behaving exactly as the BIC and HQ. The frequencies corresponding to
T ¼ 100 clearly highlight the importance of the selected upper bound pmax.
Indeed, although for pmax ¼ 3 the correct decision frequency corresponding to the
AIC is approximately 99% under both T ¼ 90 and T ¼ 100, as we increase pmax to
5 and 7, we can observe that the AIC is systematically pointing to the upper
bound, confirming our previous discussion and result in (5).

TABLE I

ANALYTICAL CORRECT DECISION FREQUENCIES ðp0 ¼ 2Þ

k 3, T 150 k 3, T 400

K AIC BIC HQ AIC BIC HQ

2 98% 59% 89% 98% 38% 81%
3 98% 24% 76% 97% 8% 62%
4 97% 4% 55% 96% 0% 34%
5 94% 0% 29% 93% 0% 12%
6 90% 0% 10% 88% 0% 2%
7 83% 0% 2% 79% 0% 0%
8 72% 0% 0% 67% 0% 0%
9 57% 0% 0% 52% 0% 0%

10 41% 0% 0% 36% 0% 0%
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When we conducted the same experiments across smaller system dimensions
while maintaining the restriction that pmax should be such that the lower bound in
(5) is kept identical to the K ¼ 10 scenario (e.g. fK; pmaxg ¼ f5; 14g under cT ¼ 2
requires T > 140 as does fK; pmaxg ¼ f10; 7g) we found the correct decision
frequency patterns to be both quantitatively and qualitatively similar to the ones
presented in Table II. The magnitude and patterns of the above frequencies also
remained unchanged when we introduced I(0) components into the system,
confirming the irrelevance of the stationarity properties of the data for the
probability of overfitting. The fact that the BIC points to p0 ¼ 1 8 pmax and 8T
also casts some doubt on its genuine ability to move away from the lowest
possible lag length. Indeed, this might be due to the strength of its penalty which,
combined with the dimensionality factor, makes it spuriously select p ¼ 1.

To explore alternative scenarios under which underfitting is likely to occur in
finite samples, we next focus on a class of VARðp0 ¼ 2Þ models, concentrating on
the individual and joint influence of factors isolated in our analysis in (8) (10) and
(13). We consider two types of VARðp0 ¼ 2Þ specifications, having large and small
parameter magnitudes, i.e. q0

i in (7) respectively. The chosen parameterization for
the first DGP leads to

XK
i 1

logð1 q2
i Þ ¼ 2:74

while the second one leads to

TABLE II

DXit ¼ �it FOR i ¼ 1; . . . ;K ðK ¼ 10; p0 ¼ 1ÞÞ

T 90 T 100 T 150 T 200 T 250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

pmax 3
1 98.8 100 100 99.4 100 100 100 100 100 100 100 100 100 100 100
2 0.5 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0
3 0.7 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0

pmax 5
1 40.1 100 100 91.8 100 100 100 100 100 100 100 100 100 100 100
2 0.1 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0
3 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 59.7 0 0 8 0 0 0 0 0 0 0 0 0 0 0

pmax 7
1 0 99.9 0.4 0 100 99.2 100 100 100 100 100 100 100 100 100
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 100 0.1 99.6 100 0 0.8 0 0 0 0 0 0 0 0 0
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XK
i 1

logð1 q2
i Þ ¼ 0:42:

Our result in (8) suggests that, for moderately small samples, the BIC will point to
p ¼ 1 most of the time even in the ‘strong parameter value’ case. This is indeed
confirmed by the empirical results presented in Table III which suggest that the
BIC requires samples much greater than T ¼ 200 to achieve acceptable correct
decision frequencies. The AIC based estimates, on the other hand, are converging
to p0 ¼ 2 quite rapidly with the AIC selecting the true lag length close to 100% of
the times for TP150 and any magnitude of pmax.

It is also important to observe that the AIC does not overfit unless T is
extremely small relative to pmax and K. When we reconsidered the same
experiment with smaller magnitudes of the q0

i, the correct decision frequencies
(Table IV) were reduced by half for the AIC which continued, however, to remain
by far the best performing criterion since the BIC and HQ were totally unable to
select any lag length other than the lower bound p ¼ 1 close to 100% of the times.
Another feature also worth emphasizing is that, even for the AIC criterion, all
wrong decisions are clustered at p < p0, the underfitted model, confirming our
analysis in (8) and our results in Table I. Thus our overall findings strongly
suggest that, in large dimensional systems and for moderately large sample sizes,
underfitting is the main problem practitioners should concentrate on, even when
using the AIC criterion. Regarding the relative performance of the criteria
considered in this study, the AIC is clearly the best performer in large dimensional
systems. In a related study, Koreisha and Pukkila (1993) also investigated the
influence of the system dimension on the behaviour of standard information
theoretic criteria via an extensive set of Monte Carlo experiments based on purely
stationary VAR(1) and VAR(2) models. In addition to providing further
theoretical support and an analysis of the causes of some of their findings, our
results suggest that the sample sizes considered in their study forced an
overemphasis on the overfitting aspect. Indeed, our findings suggest that
underfitting might be a more serious and common problem in large dimensional
systems.

So far, our framework has assumed the order of the VAR to be finite and
bounded by pmax. It is also important to evaluate the properties of the lag length
estimation techniques when the error process of the VAR contains (invertible)
moving average components, with the latter implying the the true DGP has a
VARð1Þ representation. Within this framework, it is still possible to approximate
the VARð1Þ by a truncated VARðpÞ version and obtain consistent estimates of
the parameter matrices provided that the truncating lag p is allowed to grow at an
appropriate rate with the sample size (Berk, 1974; Lewis and Reinsel, 1985; Ng
and Perron, 1995). The key issue that arises in this context is the quality of the
different methods for the selection of an appropriate truncation lag. In the context
of a univariate autoregression, Ng and Perron (1995) showed that, under the
presence of moving average errors with large MA parameter magnitudes, model
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TABLE III
Dxit ¼ uit; uit ¼ qiuit 1 þ �it FOR i ¼ 1; . . . ;K q1 ¼ 0:3;q2 ¼ 0:7;q3 ¼ 0:5;q4 ¼ 0:6;q5 ¼ 0:8;q6 ¼ 0:2;

q7 ¼ 0:5; q8 ¼ 0:4; q9 ¼ 0:0; q10 ¼ 0:0 K ¼ 10; p0 ¼ 2;
P10

i 1 logð1 q2
i Þ ¼ 2:74

T 90 T 100 T 150 T 200 T 250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

pmax 3
1 0.3 100 69.8 0.3 100 54.5 0 95.5 1.5 0 32.4 0 0 0.5 0
2 75.8 0 30.2 89.6 0 45.5 100 4.5 98.5 100 67.6 100 100 99.5 100
3 23.9 0 0 10.1 0 0 0 0 0 0 0 0 0 0 0

pmax 5
1 0 100 69.8 0.1 100 54.5 0 95.5 1.5 0 32.4 0 0 0.5 0
2 0.8 0 30.2 25.6 0 45.5 99.8 4.5 98.5 100 67.6 100 100 99.5 100
3 0.1 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0.8 0 0 0.1 0 0 0 0 0 0 0 0
5 99.1 0 0 72.3 0 0 0.1 0 0 0 0 0 0 0 0

pmax 7
1 0 93.5 0 0 100 31.1 0 95.5 1.5 0 32.4 0 0 0.5 0
2 0 0 0 0 0 19.1 98.4 4.5 98.5 100 67.6 100 100 99.5 100
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0
7 100 6.5 100 100 0 49.8 1.3 0 0 0 0 0 0 0 0

TABLE IV
Dxit ¼ uit; uit ¼ qiuit 1 þ �it FOR i ¼ 1; . . . ; 10 q1 ¼ 0:2;q2 ¼ 0:3; q3 ¼ 0:1; q4 ¼ 0:4; q5 ¼ 0:15;

q6 ¼ 0:25;q7 ¼ 0:1;q8 ¼ 0;q9 ¼ 0;q10 ¼ 0 K ¼ 10; p0 ¼ 2;
P10

i 1 logð1 q2
i Þ ¼ 0:42

T 90 T 100 T 150 T 200 T 250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

pmax 3
1 88.8 100 100 92 100 100 91.6 100 100 77.1 100 100 50.6 100 0
2 7.1 0 0 7.1 0 0 8.4 0 0 22.9 0 0 49.4 0 0
3 4.1 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0

pmax 5
1 19.1 100 100 70.6 100 100 91.6 100 100 77.1 100 100 50.6 100 100
2 0.3 0 0 3.1 0 0 8.4 0 0 22.9 0 0 49.4 0 0
3 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0
4 0.1 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0
5 80.4 0 0 26 0 0 0 0 0 0 0 0 0 0 0

pmax 7
1 0 99.4 0 0 100 97.4 91.5 100 100 77.1 100 100 50.6 100 100
2 0 0 0 0 0 0 8.4 0 0 22.9 0 0 49.4 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 100 0.6 100 100 0 2.6 0.1 0 0 0 0 0 0 0 0
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selection criteria such as the BIC or AIC are unable to select large values of p
unless an impracticably large sample size becomes available. Here, we initially
explore the same issue in a K dimensional VAR context by considering a simple
VMA(l) model written as

Xt ¼ �t H�t�1:

Assuming H ¼ diagðh1; . . . ; hKÞ for simplicity and putting X� ¼ IK , then we can
write

ICðp þ 1Þ ICðpÞ � cTK2

T
þ
XK
i 1

log
ð1 h2ðpþ3Þ

i Þð1 h2ðpþ1Þ
i Þ

ð1 h2ðpþ2Þ
i Þ2

" #
ð14Þ

provided that T is sufficiently large so that

jX̂XðpÞj �
YK
i 1

ð1 h2ðpþ2Þ
i Þð1 h2ðpþ1Þ

i Þ�1:

Ideally, (14) should continue to remain negative for sufficiently large values of p,
but the presence of the K2 factor clearly highlights the fact that even an AIC type
penalty may not allow the IC approach to select large lag lengths even when the
jhij0 are large, unless an extremely large sample size is available. As a numerical
illustration, letting K ¼ 5, T ¼ 1000 and hi ¼ 0:4 8 i ¼ 1; . . . ;K, we have
ICð2Þ ICð1Þ < 0 while ICð3Þ ICð2Þ > 0.

In this VARð1Þ context, it is obviously difficult to analyse the properties of
alternative lag length selection techniques without having a benchmark to
evaluate the costs of an inappropriate truncation (e.g. validity of the subsequent
distribution theory of cointegration tests, accuracy of forecasts, validity of the
resulting impulse response functions, Granger causality tests). Although the true
lag length is infinite, the parameters of the AR representation are declining
geometrically; thus if the parameters of the MA process are not too large in
absolute value, a small truncation lag could possibly lead to approximately white
noise residuals. Although it is beyond the scope of this paper to extend the
univariate results presented in Hall (1994) and Ng and Perron (1995) to this VAR
framework, here we adopt the view that an LM test for residual autocorrelation
could be used to evaluate the quality of the selected truncation lag. For this
purpose, we simulated a ten dimensional VAR(l) model driven by VMA(l) errors
given by

DXt ¼ �t H�t�1

setting H ¼ diagð0:8; 0:7; 0:6; 0:4; 0:2; 0:65; 0; 0; 0; 0Þ and letting pmax ¼ f3; 5; 7g.
Across all sample sizes, we found that both the BIC and HQ were unable to move
away from p ¼ 1. The AlC, on the other hand, pointed to p ¼ 2 most of the time
(approximately 83% of the times for TP250 and any magnitude of pmax, with the
remaining frequencies concentrated at p ¼ 1). When we performed an LM test of
residual autocorrelation across all the replications using the lag length chosen by
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the AIC and T ¼ 250, the test could not reject the white noise hypothesis
approximately 85% of the times at a 5% level (compared with 3% for the BIC
based estimated lag length), thus suggesting that p ¼ 2 might be a reasonable
truncation lag for our chosen DGP.

3. GENERAL TO SPECIFIC LR-BASED TESTING

Instead of using an information theoretic approach for choosing an appropriate
lag length, it is also possible to use a sequential testing strategy that focuses on the
significance of the coefficient matrices in the VAR. A scheme commonly used in
applied work involves testing

Hi
0 : Upmax�iþ1 ¼ 0

versus

Hi
1 : Upmax�iþ1 6¼ 0jUpmax

¼ � � � ¼ Upmax�iþ2 ¼ 0

for i ¼ 1; . . . ; pmax using the v2ðK2Þ distributed

LR ¼ T ðlog jX̂Xðpmax iÞj log jX̂Xðpmax iþ 1ÞjÞ

test statistic. The procedure stops when a null hypothesis is rejected for the first
time, leading to p̂p ¼ pmax iþ 1 (Lütkepohl, 1992, ch. 2). Although alternative
testing schemes such as a specific to general approach have also been proposed in
the literature, numerous studies that focused on univariate time series models
documented the overall superiority of the GS approach (Hall, 1994; Ng and
Perron, 1995) relative to alternative testing schemes and accordingly in what
follows, we concentrate solely on the testing strategy outlined above. This general
to specific approach has been criticized on the grounds that it does not lead to a
consistent estimator of p0 since the probability of overfitting does not vanish
asymptotically. Also, the build up of Type I errors could become considerable
when the test involves long sequences, as is the case when the chosen maximum
lag length pmax is large.

The literature on model selection criteria has often argued that selecting the lag
length via an information theoretic criterion is similar to performing a likelihood
ratio based test with the critical values determined ‘internally’ by the chosen
penalty term rather than by the v2 distribution’s specific cutoff points. This
statement is not entirely correct however. In what follows, we define

p̂pðjÞIC ¼ arg minjOpOpmax
ICðpÞ

for j ¼ f0; 1g and let p̂pGS denote the corresponding lag order obtained via the GS
testing approach. We also let ca denote the cut off point from the v2ðK2Þ
distribution used in the GS testing approach (i.e. ca is such that
P ½v2ðK2Þ > ca� ¼ a). Proposition 3 summarizes our main result
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PROPOSITION 3. Under Assumptions 1 2 and if cT ¼ ca=K2 8 T we have p̂pð0ÞIC ¼
p̂pGS whenever p̂pGS 2 ½0; pmax 1� if the polynomial in Assumption 2 has all its roots

outside the unit circle and p̂pð1ÞIC ¼ p̂pGS whenever p̂pGS 2 ½1; pmax 1� if the polynomial
in Assumption 2 has at least one root on the unit circle.

Proposition 3 can allow us to make interesting parallels between the IC and GS
testing approaches. This is particularly useful in this context since the overall
significance level of the GS testing approach is difficult to determine. It is,
however, important to emphasize the fact that cT ¼ ca=K2 will not be able to force
the IC approach to choose the same lag length as the GS testing approach when
the latter leads to p ¼ pmax. It is only when two nested models with pmax ¼ 2 are
being compared that one can obtain a unique penalty ðca=K2Þ which guarantees
the same choice of p across the two methods 8p. An important implication of the
above proposition is that, as the system dimension increases, the use of the GS
testing approach will lead to greater and greater lag lengths since as K increases it
becomes less and less costly to overfit. It is also clear that the lag length selected by
the GS approach will always be greater than the one obtained using the usual
model selection criteria, since the probability of overfitting is a decreasing
function of the penalty term.

We next evaluated the empirical performance of the GS approach by
considering the same DGPs as in our earlier experiments. Within this finite
order autoregressive and large dimensional framework, our results unanimously
confirmed the excessive tendency of the GS approach to point to lag orders
close to pmax even under the most favourable parameter configurations and
sample sizes. Under T ¼ 250, for instance, and considering the same DGP as in
Table II, the GS testing strategy pointed to the true order p0 ¼ 1 close to 60%,
16% and 1% of the times under pmax ¼ 3; pmax ¼ 5 and pmax ¼ 7 respectively,
with most of the wrong frequencies clustered around p ¼ pmax. More import
antly, across all previous experiments presented in Tables II IV there was no
single scenario under which the AIC criterion underperformed the GS approach.
To also evaluate the behaviour of the GS approach under moving average
errors and compare its decision frequency patterns with the model selection
criteria, we reconsidered the previously introduced VARMA (1,1) specification
given by

DXt ¼ �t H�t�1:

Recall that, under this scenario, the largest lag length selected by the model
selection criteria was p ¼ 2. Within this testing framework, the GS approach, on
the other hand, led to lag lengths concentrated around pmax most of the times,
pointing to pmax ¼ 5 approximately 55% of the times under T ¼ 250 and to
pmax ¼ 7 approximately 85% of the times. Interestingly, these latter frequencies
are also similar to the ones obtained under a finite VAR(2) DGP, thus raising
doubts about the ability of the GS approach to select lag lengths other than or
close to pmax.
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4. CONCLUSIONS AND IMPLICATIONS FOR APPLIED RESEARCH

In applied work, the frequent interest in dynamic interrelationships among
economic variables across different countries, sectors or regions makes large
dimensional VARs a common framework of analysis. Although the specification
of their dynamic structure is not of direct interest, its accuracy is crucial for
subsequent inferences. In this paper, we have shown that the commonly used
model selection criteria for choosing an optimal lag length can be extremely
sensitive to factors such as the system dimension and the preset upper bound.
Contrary to the common belief that the AIC criterion has a tendency to overfit,
we found that, in large dimensional systems, the opposite is more likely to happen
under moderate sample sizes. Furthermore, AIC’s well known non zero asymp
totic probability of overfitting is negligible in medium sized systems and zero in
larger ones. We also derived a lower bound for the sample size under which the
AIC will repeatedly point to the preset upper bound, thus explaining various
anomalies in the literature. From a practical point of view, our results strongly
point in favour of an AIC based approach for selecting lag lengths in large
dimensional systems.

APPENDIX

PROOF OF PROPOSITION 1. From (2), the requirement that

ICðp0 þ hÞ < ICðp0Þ

can be formulated as

log jX̂Xðp0Þj log jX̂Xðp0 þ hÞj > K2h
cT

T

implying that

lim
T!1

P ½ICðp0 þ hÞ < ICðp0Þ� lim
T!1

PðT ðlog jX̂Xðp0Þj log jX̂Xðp0 þ hÞjÞ > K2hcT �

where T ðlog jX̂Xðp0Þj log jX̂Xðp0 þ hÞjÞ is the likelihood ratio statistic for testing the null
hypothesis H0: G/ 0 in (1) with /K2	ðp0þhÞ vecðUÞ, U0 ðU1; . . . ;Up0

;Up0þ1; . . . ;Up0þhÞ
and G a known K2h 	 K2ðp0 þ hÞÞ restriction matrix of rank K2h. Under Assumption 1 and
assuming also that all the roots of the polynomial in Assumption 2 lie outside the unit circle,
we have (Lutkepohl, 1993, ch. 3)

T
p

ð/̂/ /Þ!d Nð0;X � Q 1Þ

where /̂/ denote the MLE of /, z0t ðx0t 1; . . . ; x
0
t ðp0þhÞÞ and Q Eðztz0tÞ. Thus under

H0 : G/ 0, we can write

T
p

G/̂/!d Nð0;GðX � Q 1ÞG0Þ
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also implying that the null limiting distribution of the Wald statistic, asymptotically
equivalent to the LR is given by

T /̂/G0½GðX � Q 1ÞG0� 1G/̂/!d v2ðK2hÞ:

Since the law of large numbers ensures that

plim
X

t

ztz0t
T

Q

and plim X̂X X as T ! 1, the quantity given by

/̂/G0 G X̂X �
X

ztz0t
� � 1

� �
G0

	 
 1

G/̂/

will also be distributed as v2ðK2hÞ, as required. Next, when Xt has I(1) components, the
original VAR can be reparameterized in such a way that the restrictions implied by the
above null hypothesis can be reformulated as restrictions imposed on the parameter

matrices corresponding to stationary regressors only. Indeed assuming p0P1 and letting

ðIK U1L Up0þhLp0þhÞ ðIK PLÞ ðC1Lþ þ Cp0þh 1Lp0þh 1Þð1 LÞ

with

P � U1 þ þ Up0þh

and

Cs � ðUsþ1 þ þ Up0þhÞ

for s 1; 2; . . . ; p0 þ h 1, the VARðp0 þ hÞ can now be reparameterized as

Xt PXt 1 þ C1DXt 1 þ þ Cp0þh 1DXt ðp0þh 1Þ þ �t:

Then, the null hypothesis in the original model is equivalent to

H0
0 : Cp0

Cp0þh 1 0

in the reparameterized version. Since the restrictions implied by H0
0 involve coefficients on

stationary regressors only, the likelihood ratio statistic will have the same asymptotic
distribution as in the I(0) case.

PROOF OF PROPOSITION 2. Using the same notation as in the proof of Proposition 1,
and noting that the restriction

G/
1

T
p k

implies T
p

G/ k, we have

T
p

ðG/̂/ G/Þ ! Nðk;GðX � Q 1ÞG0Þ

instead of the central multivariate normal limiting distribution that we had under G/ 0.
since the quadratic form of a non central normal random vector with identity covariance is

non central v2, the result follows.
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PROOF OF PROPOSITION 3. Letting xi ¼ T log jX̂XðiÞj where X̂Xi denotes the residual
covariance matrix from a fitted VAR(i) specification and using (2) (3) with
1OpOpmax, we have that the model selection approach will point to lag length
p 8p 2 ½1; pmax� when

xi xp > ðp iÞK2cT 8 i 1; . . . ; p 1

xp xiþ1 < ði þ 1 pÞK2cT 8 i p; . . . ; pmax 1:

Similarly, for p obtained via the likelihood ratio based GS approach with 1OpOpmax, the
estimated p is such that

xp 1 xp > ca

xi xiþ1 < ca 8 i p; . . . ; pmax 1:

The result then follows by observing that when cT ca=K2, the conditions that lead to the

choice of p 1; 2; . . . ; ðpmax 1Þ under the GS approach are identical to the ones that
make the IC approach point to the same value of p. It is only when the GS strategy leads to
p pmax that the two approaches might lead to distinct lag choices, since the above

conditions do not overlap. When the roots of the polynomial in Assumption 2 are known
to lie strictly outside the unit circle, the result follows by proceeding in an identical manner
as above, with 0OpOpmax.
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