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Abstract 

 

 
This paper analyzes the Shot-Noise Jump-Diffusion model of Altmann, Schmidt and Stute (2008), which 

introduces a new situation where the effects of the arrival of rare, shocking information to the financial 

markets may fade away in the long run. We analyze several economic implications of the model, 

providing an analytical expression for the process distribution. We also prove that certain specifications 

of this model can provide negative serial persistence. Additionally, we find that the degree of serial 

autocorrelation is related to the arrival and magnitude of abnormal information. Finally, a GMM 

framework is proposed to estimate the model parameters. 
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1 INTRODUCTION

This paper focuses on a continuous-time process named Shot-Noise Jump-
Diffusion (SNJD, hereafter) recently proposed by Altman et al. (2008). The
SNJD model incorporates the Jump-Diffusion (JD) process introduced by
Merton (1976) for modeling stock price movements. According to Merton
(1976), the total variation in the asset prices reflects the joint effect of a)
the normal changes (owing to the bid-ask crossing of common information
and modeled by a Brownian Motion) and b) the abnormal ones (modeled
by a Poisson process) originated by the arrival of uncommon information.
These abnormal changes in prices produce discontinuities in the stock paths,
known as jumps, which may be related to news about corporate defaults,
bank crises, etc.

Basically, the SNJD process extends the JD models by adding a term
(known as Shot-Noise function) to the Poisson process. As we will see, this
additional term tries to reflect some situations that can arise in financial
markets such as, for instance, when the effects of a jump fade away in
the short/long run. For example, the surprise reaction of the interest rate
markets to the auctions of Central Banks is reflected in the presence of jumps
in the interest rate quotes. However, the effects of these jumps disappear
rapidly, causing the spikes which are present in the interest rate series.

In a similar way, this kind of up-down (down-up) impulses are also
present in electricity markets: the spikes are a common shape in spot elec-
tricity prices as a consequence of shocks in demand1 (Escribano, Peña and
Villaplana, 2002). This behaviour is not correctly modeled by traditional
JD processes; as will be presented further ahead, the SNJD model fulfills in
a simple and elegant manner this trade-off between economic intuition and
analytical tractability.

An additional feature of the SNJD model is its ability to introduce se-
rial dependence into financial series. Particularly, we demonstrate that a
simple version of the Shot-Noise function produces negative autocorrelation
coefficients. Moreover, an additional advantage of the SNJD models is that,
as discussed in Bondesson (1988), many statistical distributions appear as
marginal distributions for simple Shot-Noise processes.

1.1 The economic significance of the SNJD model

We show several different implications of the SNJD model. As was previ-
ously mentioned, some economic series exhibit abrupt changes in their value

1Schmidt (2007) is pioneer in modeling the electricity spikes by using the Shot-Noise
process.
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in short periods of time. Visually, we can observe how this type of series ex-
hibit a jump followed by a instantaneous (partial) drop back to the previous
level (Weron, 2005). These effects are often named spikes in the financial lit-
erature2. Economically, its origin could be due to changes on the monetary
policy (Das (2002) or Benito, León and Nave, 2007) or extreme fluctua-
tions in supply and demand (Barone-Adesi and Gigli (2003) and Lućıa and
Schwartz, 2002). Financial academics tend to model the spikes by using a
mean-reverting process with jumps, where the mean-reversion speed leads
the convergence to the long-term value after the jump. As a consequence,
estimations of this speed are higher than real. This is erroneous as this
speed value is related to the Brownian motion component, and not to the
jump one.

As an example, Figure 1 displays the sample path of the European
Overnight Index Average (EONIA) rate and its increments. The sample
period ranges from 05/02/2004 to 23/08/2005. This figure illustrates the
cited spikes on the EONIA rates. Taking the previous considerations into
account, the SNJD model could be considered as an adequate candidate for
dealing with such empirical features.

[INSERT FIGURE 1 ABOUT HERE]

Another possible application of the SNJD model concerns long-range
dependence problems. Campbell, Lo, and MacKinlay (1997) refer to long-
range memory as observations in the remote past that are nontrivially corre-
lated with observations in the distant future, even as the time span between
the two observations increases. As pointed out by Singleton (2006), an
important number of studies indicate the presence of some kind of serial
dependence in stock returns.

Additionally, Lo (1991) enumerates some possible implications of long-
range dependence on financial economics and emphasizes the inconsistency
with long-memory of the most common continuous-time models. Moreover,
he also concludes that stochastic models for short-range dependence could
correctly capture the behavior of asset returns. Our results seem to confirm
that a suitable specification of the SNJD model is capable of generating
persistence in log-returns, providing support to previous empirical findings.

This type of model can be also interesting for risk management purposes.
On the one hand, the estimation of Value at Risk (VaR) and other tail
statistics depends dramatically on large price changes. As pointed out by

2We reserve the name of jumps for those events that, once triggered, return -or not- to
their previous position at a lower rate than those for the spikes.
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Aı̈t-Sahalia (2004), many of these techniques are oriented to distinguish
between eventual jumps and the daily Brownian noise. The presence of a
serial dependence pattern in asset returns can lead to a miscalculation in the
total volatility of the data generating process, leading to model risk effects.

Finally, the SNJD model can be useful for dealing with EBIT (earnings
before interests and taxes)-based models (Lando, 2004) that try to reflect
the possibility that, after an announcement of extraordinary profits (jump),
the results of the company go back to the previous (pre-jump) level. To the
best of our knowledge, we have no evidence (empirical or simulated) about
how the persistence through time of jumps can affect the risk management
strategy of a firm. We are inclined to believe that the SNJD model could
provide additional insights on this issue.

1.2 Literature Review

The trade-off between the adequacy of the distribution for capturing the
behavior of an economic variable and its analytical tractability currently
constitutes an important issue. Nowadays, as pointed out by Duffie, Pan
and Singleton (2000), the Affine Jump-Diffusion (AJD) process can pro-
vide analytical solutions to many problems in arbitrage-free pricing theory.
Moreover, the existence of an econometric theory for its estimation3 leads
to the current wide range use of ADJ processes in financial economics. For
instance, Vasicek (1977) or Cox, Ingersoll and Ross (1985) are some exam-
ples of continuous-time based models that model how interest rates evolve
through time.

All things considered, do we need to consider a new family of models?
This extension is clearly needed if previous models are not able to reflect
some empirical features present in economic series. For instance, the Ge-
ometric Brownian Motion (GBM) is often presented as paradigmatic: the
most popular option pricing model introduced in Black and Scholes (1973)
assumes that the price of an asset follows a lognormal distribution. How-
ever, the excess kurtosis or volatility clusters detected in financial prices
series (see, for instance, Andersen, Benzoni and Lund, 2002) motivate the
interest of extending this model.

Additional examples of drawbacks in the current AJD literature can be
reviewed also. Regarding interest rate models, Duffee (2002) points out the
inner restrictions of standard affine models when it comes to compensat-
ing the risk faced by investors4, based on the poor performance of AJD

3See Duffie et al. (2000) or Singleton (2001).
4An interesting discussion about this feature can be found in Singleton (2006).
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models when analyzing Treasury yields. On the other hand, Lo (1991) and
references therein stress that the continuous-time stochastic processes most
commonly employed are inconsistent with the persistence patterns found in
asset returns (Campbell et al., 1997), in view of the fact that these mod-
els cannot generate serial dependence consistent with long-term memory in
returns.

The SNJD model is a further step in the tradition of JD models initiated
by Merton (1976) and continued by Ball and Torous (1983, 1985) and Jorion
(1988). The SNJD model reflects in a simple and intuitive way not just the
jump, but also what happens after the occurrence of such jump.

1.3 Summary of Main Results and Contributions

This paper provides some additional insights into the SNJD model and con-
tributes to the existing literature in several directions: Firstly, from a theo-
retical point of view, we provide an analytical expression for the process dis-
tribution and several statistical properties, generalizing the results obtained
by Das and Sundaram (1999). Secondly, we introduce a brief treatment
of the Shot-Noise process in the economic literature. Thirdly, we provide
results related to the ability of the model to generate serial persistence in
financial asset returns. Additionally, our results imply a close link between
the intensity of this persistence and the arrival of the shocking informa-
tion. Finally, we propose and illustrate the methodology for estimating the
parameters of the model. To our knowledge, this is the first study on i)
analyzing the statistical applications of the SNJD model in Economics and
ii) providing an econometric framework for its estimation.

The structure of this paper is as follows: Section 2 presents a general
treatment of the Shot-Noise process and the SNJD model in the statistical
literature. Sections 3 and 4 provide the distribution of the SNJD process and
its cross moments. Section 5 analyzes the most basic example of the SNJD
process. Section 6 carries out the estimation methodology of the process.
Finally, Section 7 summarizes the main conclusions.

2 THE MODEL

This section introduces the Shot-Noise process and, later, presents the
SNJD model and some of its main features. Finally, we compare the SNJD
process with the GBM and JD alternatives.
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2.1 The Shot-Noise process

Let Ht be a stochastic process of the form

Ht =

Nt∑

k=1

Akh (t − τk) , t ≥ 0 (1)

where {Ak, k = 1, · · · , Nt} are i.i.d. random variables, {Nt}t≥0 is an homo-
geneous Poisson process with intensity λ, h (t − τk) represents the reaction
to a possible event with magnitude Ak, and {τk} indicates the jump time of
the Poisson process. It is also assumed that the variables Ak are independent
of the Poisson process, Nt.

Then, Ht is named Shot-Noise process and it has been intensively studied
by Rice (1954) and Parzen (1962)5. Moreover, Bondesson (1988) provides a
general treatment of these processes and includes extensive references. For
illustrative purposes, Figure 2 represents a simulated path of a Shot-Noise
process.

[INSERT FIGURE 2 ABOUT HERE]

An interesting feature of the Shot-Noise model is that many distributions
appear as marginals of this kind (see Bondesson, 1988). This is the reason
why the function h(·) plays an important role in the process distribution.
As an example, if {Ak} is a mixture of exponential distributions and

h(x) =

{
0 x < 0

c exp (−ax) x ≥ 0

with c ∈ R and a ∈ R
+, Bondesson (1988) shows that the Shot-Noise distri-

bution is a generalized gamma convolution.
An additional characteristic of the Shot-Noise process is its ability to in-

troduce autocorrelation in data. Table 1 displays the autocorrelation func-
tion (ACF) for the Shot-Noise process with exponential decaying function6

h(·). The parameter a controls the decay degree of the process. Each col-
umn corresponds to different values of this parameter. For completeness,
the last column includes the ACF for an AR(1) model. Different lags are
disposed in rows. This Table is directly inspired by Campbell et al. (1997),

5The Shot-Noise process is sometimes called Filtered Poisson process (Parzen, 1962).
6Advancing some results that will be presented later, the ACF of this process is given

by corr[Ht, Ht+n∆t] = exp (−a n∆t) and can be found in Ross (1996).
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where we have employed the Shot-Noise model instead of the fractionally
differenced process.

Table 1 reflects that the parameter a modulates the persistence of the
process in time: the higher the parameter a is, the higher decay the ACF
at first lags is. To put it another way, as a increases, we observe that
serial correlation in time diminishes, as it is observed by direct comparison
with the AR(1) process column. Generally speaking, we can observe similar
patterns of decay between the AR(1) process and the Shot-Noise. Although,
as we will see, this autocorrelation pattern is modified in an interesting way
when it comes to the SNJD model.

[INSERT TABLE 1 ABOUT HERE]

2.2 A model with Shot-Noise effects

According to Merton (1976), the arrival of abnormal information (for exam-
ple, news about a company default) can produce a non-marginal change in
the price of a certain asset. This change is modeled as a compound Poisson
process that reflects the impact of this non-marginal information. Within
the current financial literature, these abrupt changes in prices lead to the
so-named jumps. As a result of this, Merton (1976) model describes the
behavior of stock prices more realistically.

An additional implication of this model is that the effect of a jump
on stock prices does not vanish with time. After an upward jump, prices
following a JD process do not return to the pre-jump level.

By contrast, it can be thought that these jumps in stock prices fade away
in the long run. An intuitive explanation for this decay is that a positive
jump is followed by a profit taking, encouraging the investors to sell their
assets. Similarly, an abnormal decrease in the asset price can encourage
investors to buy such asset. In terms of the stochastic literature, these
impulses can produce a Shot-Noise effect.

The Shot-Noise effect is also observable in other markets, such as those
of electricity or interest rates. For instance, the spikes, a common shape in
electricity prices owing to demand shocks (Escribano et al., 2002), have been
analyzed by Schmidt (2007) by using the Shot-Noise process. Additionally,
as pointed out by Das (2002) or Benito et al. (2006), the interventions of
the Federal Reserve or the European Central Bank can produce jumps. As
we will see, the SNJD model can be suitable for reflecting this issue.

Altmann et al. (2008) present a model that captures some of these
effects and, thus, can be a more suitable candidate to reflect these empirical
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features than previous models. The SNJD model assumes that the process
for the stock price is given by

St = S0 exp

[(
µ − σ2

2

)
t + σBt

] Nt∏

j=1

[1 + Ujh (t − τj)] (2)

where

• Sj denotes the asset price at time j

• µ, σ are constants

• {Bt}t is a standard Brownian motion

• {Nt}t≥0 is a Poisson process with intensity λ

• {Uj}j is a sequence of i.i.d. jumps

• h is an arbitrary response function

• τj are the jump times.

Additionally, {Bt}t , {Nt}t, and {Uj}j are assumed to be mutually inde-
pendent.

To our knowledge, the functional form of h (t) has not been reported yet
in the financial literature. Thus, for analytical and intuition purposes, we
will assume an exponential decreasing function of the form

h(t) =

{
0, t < 0

exp (−at) , t ≥ 0
(3)

where a ∈ R
+ is the speed at which jumps decay.

The main advantage of this specification is that we can relate, in a simple
form, the results obtained for our SNJD model with the two standard models
for stock prices: firstly, the GBM and the JD processes. Both models are
special cases of the SNJD process7.

Figure 3 displays the simulation of the SNJD process in equation (2)
with exponential response function as given in (3). For simplicity, all the
simulations will be carried out with jump sizes U = exp(−β2/2+βǫ)−1, ε ∼
N (0, 1). This implies E [U ] = 0. The assumption of a lognormal distribution

7According to the proposed response function, if parameter a is zero, the SNJD model
leads to the JD model of Merton (1976). On the other hand, the GBM is obtained in
absence of jumps.
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for jump sizes is common in the JD literature (see, for instance, Merton,
1976)8. Moreover, it is convenient as it decreases the number of parameters
under estimation9.

[INSERT FIGURE 3 ABOUT HERE]

To illustrate the differences between GBM, JD and SNJD processes, we
carried out different simulations of these models. The results obtained are
displayed in Table 2. This Table reports, in columns, the mean, some per-
centiles and the first three autocorrelation coefficients of log-returns. To
control for the degree of serial dependence, the SNJD model has been sim-
ulated considering a = 0.5, 1.0 and 10.0. Finally, rows are grouped in three
different blocks, attending to their frequency -daily, weekly or monthly-.

[INSERT TABLE 2 ABOUT HERE]

To compare the jump and Shot-Noise effects against the Brownian noise,
the simulations in Table 2 have been carried out by keeping the total variance
of the process constant. Two main conclusions arise from this Table: Firstly,
the SNJD model presents negative autocorrelation coefficients; attending to
the value of the parameter a, the magnitude of these coefficients differs.
Secondly, the existence of serial correlation results in fatter tails: this effect
is observable as the frequency declines. Thus, it seems that the presence of
serial correlation affects the distribution of the simulated data.

3 THE STATISTICAL DISTRIBUTION OF

THE PROCESS

This section focuses on the characteristic function of the log-returns of
the SNJD process, as a necessary step to analyze the empirical performance
of the model with Shot-Noise effects. We also provide expressions for the first
moments, and compare our results with those obtained for the JD processes
in Das and Sundaram (1999) and Aı̈t-Sahalia (2004).

8Some studies propose exponential distribution for the jump size. See, for instance,
Duffie and Gârleanu (2001) in the context of credit risk markets, or Barone-Adesi and
Giggli (2002) and Villaplana (2003) for electricity markets, among others.

9Navas (2003) and references therein offers an interesting discussion about this assump-
tion in the JD process literature.
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3.1 Characteristic function

Let (Ω,Ft, P ) be a probability space and denote with 0 ≤ t ≤ T the set
of trading dates. ∆t denotes the length of time between two price fixings.
The log-return of the stock price between times t and t + ∆t is defined as
Zt = ln(St+∆t/St). Using (2), Zt is given by the sum of three independent
random variables, Xt, Yt, and Ht, where

Xt =

(
µ − σ2

2

)
∆t + σ (Bt+∆t − Bt) (4)

Yt =

Nt+∆t∑

j=Nt+1

ln [1 + Ujh (t + ∆t − τj)] (5)

Ht =

Nt∑

j=1

ln

[
1 + Ujh (t + ∆t − τj)

1 + Ujh (t − τj)

]
(6)

The term Xt pertains to the log-returns of a GBM process. Owing to
the independence property of Brownian increments, log-returns generated
by these terms alone over a time grid are not serially correlated.

The term Yt reflects the local contribution of jump events on SNJD log-
returns in the time interval (t, t + ∆t]. It equals zero if no jump happens.
Also, the Yt’s are independent over disjoint time intervals, as follows easily
from the independence of the U ’s and basic properties of the Poisson process.

If we compute the log-returns of a JD process, like Merton (1976), this
just leads to the expressions obtained for Xt and Yt. Not surprisingly, an
additional term, Ht, appears when it comes to calculate the log-returns in a
SNJD process. It is clear that Ht has cumulative rather than local character,
as it takes all Shot-Noise effects in the past properly weighted into account.
Consequently, this part will be in charge of dependencies among the log-
returns over time. Actually, as will be pointed out in the next section, this
term is the source of the autocorrelation in the SNJD process.

The probability law of the stochastic process Zt can be expressed in
terms of its characteristic function: ΦZ (ξ) = E[exp(iξZt)]. The following
Proposition presents an explicit expression of ΦZ .
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Proposition 1 The characteristic function of the variable Zt is given by

ΦZt
(ξ) = exp

(
i

(
µ − σ2

2

)
∆tξ − 1

2
σ2∆tξ2

)

× exp

(
λ

∫ t+∆t

t
E [exp (iξ ln [1 + Uh (t + ∆t − τ)]) − 1] dτ

)

× exp

(
λ

∫ t

0
E

[
exp

(
iξ ln

[
1 + Uh (t + ∆t − τ)

1 + Uh (t − τ)

])
− 1

]
dτ

)

(7)

Proof. See the Appendix

This result includes the one for JD processes without Shot-Noise effects
as obtained by Das and Sundaram (1999). Indeed, if we set h ≡ 1, (7) leads
to

Example 1 In the case of a JD process, expression (7) reduces to

ΦZt
(ξ) = exp

(
i

(
µ − σ2

2

)
∆tξ − 1

2
σ2∆tξ2 + λE [exp (iξ ln [1 + U ]) − 1] ∆t

)

(8)

3.2 Moments of the process

From the characteristic function of the log-returns we may readily derive
the pertaining moments.

Lemma 1 Under (2), we have

E [Zt] =

(
µ − σ2

2

)
∆t + C + D (9)

V ar [Zt] = σ2∆t + C2 + D2 (10)

Skewness =
C3 + D3

(V ar[Zt])
3/2

(11)

Kurtosis = 3 +
C4 + D4

(V ar[Zt])
2 (12)
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with

Cn = λ

∫ t+∆t

t
E [{ln (1 + Uh (t + ∆t − τ))}n] dτ (13)

Dn = λ

∫ t

0
E

[{
ln

(
1 + Uh (t + ∆t − τ)

1 + Uh (t − τ)

)}n]
dτ (14)

Proof. See the Appendix.

The above expressions further simplify for GBM and JD.

Example 2 For the Merton (1976) JD process, i.e., when h(t) = 1, we get

Cn = λ∆tE [{ln (1 + U)}n] (15)

Dn = 0 (16)

Furthermore,

E [Zt] =

((
µ − σ2

2

)
+ λE [ln (1 + U)]

)
∆t (17)

V ar [Zt] =
(
σ2 + λE

[
{ln (1 + U)}2

])
∆t (18)

Skewness =
1√
∆t




λE

[
{ln (1 + U)}3

]

(
σ2 + λE

[
{ln (1 + U)}2

])3/2



 (19)

Kurtosis = 3 +
1

∆t




λE

[
{ln (1 + U)}4

]

(
σ2 + λE

[
{ln (1 + U)}2

])2



 . (20)

See also Das and Sundaram (1999) and Aı̈t-Sahalia (2004)10.

To analyze the Shot-Noise effects on the higher-order moments of the
SNJD model, it can be interesting to compare the skewness and excess kurto-
sis generated by the SNJD model under different degrees of autocorrelation.
Tables11 3 and 4 display the skewness and excess kurtosis coefficients (in
rows) obtained from equations (11)-(12). Each Table contains four blocks of
columns: the first one provides the parameters of the jump component of the

10Aı̈t-Sahalia (2004) also provides an expression for the centered, absolute moments of
non-integer order.

11These Tables are directly inspired by Das and Sundaram (1999).
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SNJD model. Jumps are normally distributed with ln(1 + U) ∼ N(θ, β2).
Again, the SNJD model has been simulated by using an exponential re-
sponse function. The second to fourth blocks correspond to the frequencies
under study: daily, weekly and monthly, respectively. Each block contains
the skewness and excess kurtosis for different values of a (0.00, 0.50, 1.00 and
10.00).

[INSERT TABLES 3 AND 4 ABOUT HERE]

By taking into account the expression for the total variance of the JD
process σ2∆t + λ∆tE[{ln (1 + U)}2] it is possible to provide an intuitive
explanation of the results: For example, a parameter β = 0.02 represents
about 10% of contribution of the jumps to the total variance; similarly,
values of β = 0.04, 0.06 constitute 36% and 64% over the total variance of
the JD process owing to jumps.

One main conclusion arises from Tables 3 and 4: the serial dependence
introduced by the SNJD model affects the results. By and large, it seems
clear that the case a = 0.00 exhibits different skewness and excess kurtosis
coefficients from the remaining cases. These differences increase across the
time intervals: the lower the frequency is, the higher the impact of the serial
correlation in skewness and excess kurtosis is. For example, the differences
in skewness between a JD process (a = 0.00) and the SNJD process with
high persistence (a = 10.00) range from 10% for daily frequency to 60% for
monthly frequency. When it comes to the excess kurtosis coefficients, these
differences vary from 14% to 55% 12.

Some additional conclusions are obtained from Table 3. For example,
the Shot-Noise effects in the SNJD model seem to be an additional source
of asymmetries in returns. This is observable by modifying the parameter
θ, which controls for the jump mean. For example, no skewness is produced
with symmetric jumps (θ = 0.00) for a = 0.00. By contrast, a positive skew-
ness is observed in the remaining a cases. Although this asymmetry effect
is also noticed across frequencies, it seems to decrease with the frequency.

Similarly to the case of skewness, the Shot-Noise has effects on the excess
kurtosis coefficients. For instance, the different values of excess kurtosis
observed for the case without persistence (a = 0.00) range from 8% to 10%
in daily frequencies.

12Das and Sundaram (1999) mention that the rate of decay of skewness and kurtosis
in JD models is faster than that empirically observed. According to this, the authors
notice that implied volatility smiles should not exist at long-periods (three months), as it
is contrary to the market. This could be considered as a drawback of the JD models.
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Finally, Tables 3 and 4 show that, as the time-step decreases, the value
of coefficients also decrease and tend, by the Central Limit Theorem, to
those of a Normal distribution.

3.3 Cross moments

The cumulative Shot-Noise term Ht (see 6) introduces some kind of serial
dependence in log-returns, as could be seen in Table 2. This features should
also be found in the cross moments of the series generated by the model (2).

The next Lemma provides the autocovariance for the log-returns in
model (2).

Lemma 2 For n ≥ 1, the autocovariance of the SNJD process is given by

Cov [Zt+n∆t, Zt] = σ2∆tδ(n) + λE[U2]∆tδ(n)

+λ

∫ t

0
E

[
ln

(
1 + Uh (t + ∆t − τ)

1 + Uh (t − τ)

)
ln

(
1 + Uh (t + (n + 1)∆t − τ)

1 + Uh (t + n∆t − τ)

)]
dτ

+Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+n∆t∑

j=Nt+1

Uj(h(t + n∆t − τj) − h(t − τj))



 (21)

where n indicates the corresponding lag and δ(·) denotes the Dirac delta
function.

Proof. See the Appendix

Again, as expected, this result generalizes those obtained for GBM and
JD processes since, in these cases, the right-hand side of (21) equals zero.

4 THE SNJD MODEL WITH EXPONENTIAL

DECAYING FUNCTION

The SNJD model with exponential response function constitutes the
simplest and most intuitive form of introducing a deterministic behavior
after the jump into the model posited by Altmann et al. (2008). This
section provides the main first moments and correlation expressions for this
particular case of the SNJD model.
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By replacing the exponential response function in the moments derived
in Lemma 1, we obtain

E [Zt] =

(
µ − σ2

2

)
∆t (22)

V ar [Zt] =
(
σ2 + λE[U2]

)
∆t (23)

Skewness =
1√
∆t

[
λE[U3]

(V ar[Zt])
3/2

]
(24)

Kurtosis = 3 +
1

∆t

[
λE[U4]

(V ar[Zt])
2

]
(25)

Notice that expressions (22)-(25) reduce to those of the JD process in
Example 2. Then, it seems that the SNJD process with exponential response
function is similar to a JD process, at least in their first four moments.
More precisely, the SNJD with exponential decaying function and the JD
processes are almost equal in their first four moments. Notice that i) terms
into expectations differ from E[ln(1 + U)n] for a JD process, with those of
E[Un] for a SNJD process13 and ii) their main differences arise in their cross
moments. To illustrate this last point, consider the following example where
we provide an expression for the autocovariance of the SNJD process.

Example 3 For the exponential decay response function, the autocovari-
ance for the log-returns of the process (2) is given by

Cov [Zt+n∆t, Zt] =
[
σ2 + λE

[
U2

]]
∆tδ(n)

+λ(exp (−a∆t) − 1)E[U2] ∆t exp (−a n∆t) (26)

where n indicates the corresponding lag and δ(·) denotes the Dirac delta
function.

Proof. See the Appendix

The first term in equation (26) reflects the contribution of the GBM and
JD parts to the autocovariance of the SNJD process. As this expression
reflects, this term is null for non-zero lags which means no additional con-
tribution to the total variance of the process from the past. However, the

13Again, the origin of these differences is related to the numerical approximations in-
volved in the computations of the SNJD process.
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last term in (26) shows that this covariance has an exponential decaying
pattern owing to the Shot-Noise term. In other words, an additional source
of covariance in the SNJD process is contained in past information.

Once the autocovariance of the SNJD process with the exponential re-
sponse function (see equations (23)-(26)) has been obtained, the next Ex-
ample provides an expression for the autocorrelation.

Example 4 For the exponential decay response function, the autocorrela-
tion for the log-returns of the process (2) is given by

corr [Zt+n∆t, Zt] =






1 if n = 0

(exp (−a∆t) − 1) λE[U2]
σ2+λE[U2]

exp (−a n∆t) if n ≥ 1

(27)

An inspection of this result reveals the following features:

• For positive values of a, the autocorrelation is always negative. As a
function of this parameter, the autocorrelation attains its minimum
at a∗ = ln(n + 1/n)/∆t, has an inflection point at 2a∗ and converges
asymptotically to zero when a tends to infinity. Figure 4 illustrates
graphically these facts. Additionally, Figure 5 graphs the correlation
as a function of the parameters a and n.

• For a = a∗, the minimum autocorrelation, corr∗, takes the value

corr∗ = − λE[U2]

σ2 + λE[U2]

nn

(n + 1)n+1
(28)

Thus, the minimum autocorrelation depends on the volatilities of the
jump and Brownian motion components and the corresponding lag.
Moreover, from (28), we obtain that the jump volatility is given as

E[U2] = −σ2

λ

corr∗(n + 1)n+1

nn + corr∗(n + 1)n+1
(29)

establishing a link between this volatility and the minimum autocor-
relation of the log-returns for the exponential decay response function.

• The factor λE[U2]/
(
σ2 + λE[U2]

)
represents the relative importance

of the jump volatility with respect to that of the whole process.
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[INSERT FIGURES 4 AND 5 ABOUT HERE]

To illustrate numerically (27), Table 5 includes the sample (ρ̂n) and the-
oretical autocorrelation values (ρtheo

n ) of the SNJD model. The first column
contains the number of lags. Each successive pair of columns exhibit, re-
spectively, the theoretical ACF’s obtained from equation (27) and the mean
of a sample ACF coefficients of 100 simulation paths each with 1,800 steps.
Finally, this experiment is repeated for different values of the parameter a.

[INSERT TABLE 5 ABOUT HERE]

Some conclusions arise from this Table:

1. As expected, the parameter a controls the persistence of the process
over time.

2. The theoretical autocorrelation values for the first few lags of a = 0.6
and 1.0 seem to be closer to the sample autocorrelations than those
obtained for a = 0.2 and 10.0. This may be a consequence of the
approximations carried out.

3. Any autocorrelation value for the SNJD process under study exhibits
negative values, in contrast to the Shot-Noise results (see Table 1).

5 ESTIMATION METHODOLOGY

This section provides the econometric framework to estimate the param-
eters of the SNJD model. Our approach is based on the GMM estimate of
Hansen (1982). The mathematical notation employed here has been taken
from Hamilton (1994).

5.1 General setting

Once the moments of the SNJD model have been computed (see equations
(22)-(25) and (27)), we employ the GMM to estimate the SNJD parame-
ters. Basically, the main idea of this methodology consists of finding the
parameters that match, as closely as possible, the population moments with
their sample counterparts. This matching is obtained by minimizing the
quadratic form

JT = min
θ

[g (θ)]′ WT [g (θ)] (30)
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where g (θ) is a vector that contains the sample and population moments,
and consequently, the unknown parameters vector θ that we are looking for.
Additionally, WT is called the weighting matrix. The subindex T denotes
the sample size.

We consider three alternative weighting matrices: Firstly, to keep in-
tuition in equation (30), WT will be equal to the Identity matrix. In this
case, we are minimizing the sum of quadratic errors between sample and
population moments. The estimate JT is known as the classical method
of moments (Hamilton, 1994), it is consistent and asymptotically normal
distributed and will be called first stage estimate (Cochrane, 2005).

Secondly, we use the weighting matrix proposed in Hansen (1982). This
author considers WT = S−1

T , where ST is a variance-covariance matrix given
by

ST =
1

T

T∑

t=1

[h (θ0)] [h (θ0)]
′ (31)

where h(·) indicates the vector of error terms and θ0 denotes the true value
of the parameter vector. Now, the estimate JT obtained by employing equa-
tion (31) is a consistent, asymptotically normal, and asymptotically efficient
estimate (Cochrane, 2005) of the parameter vector (θ). This will be our sec-
ond stage estimate.

Finally, to take into account the possible existence of serial correlation,
we will consider the Newey-West (1987) estimate as an alternative to ST .
This alternative will be our third stage estimate and is given as

ŜT = Γ̂0,T +

q∑

v=1

[
1 −

(
v

(q + 1)

)] (
Γ̂v,T + Γ̂′

v,T

)
(32)

where q indicates a truncation parameter and

Γ̂v,T =
1

T

T∑

t=v+1

[
h

(
θ̂, wt

)] [
h

(
θ̂, wt−v

)]′
(33)

5.2 Results

The moment conditions used in this Section comprise equations (22)-(25).
Owing to the ability of the SNJD process to generate serial dependence, we
also include the information contained in cross moments by means of the
correlation function in equation (27).

Taking everything into account, the parameter vector of log-returns in
(2) results Λ = (µ, σ, λ, β, a)′, where µ and σ are the drift and the volatility of
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the Brownian motion, respectively; λ is the intensity of the Poisson process;
β is related to the impact of the jump, and the parameter a indicates the
speed of the decaying effect after a jump.

To check the suitability of the GMM procedure, we have carried out a
Monte Carlo experiment simulating 3,000 sample paths composed of 1,800
data each one. Table 6 reports the results. The two first columns of this
Table display the SNJD parameters and their simulation values, respectively.
Then, three vertical blocks contain the results for the alternative weighting
matrices aforementioned14.

[INSERT TABLE 6 ABOUT HERE]

To keep the main results of these simulations manageable, each block
reports the mean, the percentiles [2.5%, 97.5%] and the root mean squared
error (RMSE) of the obtained estimates. Additionally, to compare across
samples for different experiments, Pearson’s coefficient of variation (CV) is
also included.

Some features derived from this Table can be highlighted. Firstly, under
the different weighting matrices employed, estimates of the parameter a seem
to remain equal. However, the efficiency and precision of these estimates is
different in each case, as is reflected in the CV and RMSE values (e.g., when
a = 0.6, 1.0). The worst performance in terms of RMSE is obtained for
a = 0.2, where the methodology seems to be slightly biased.

Secondly, as expected, the inclusion of the third stage estimate increases
the efficiency of all the estimates, reflected in both the percentile interval
and the CV coefficients.

Finally, for estimates of the parameter λ, it is remarkable that the more
efficient the matrix we use, the higher is the bias obtained (see, for instance,
when a = 1.0). Moreover, this bias increases with the serial correlation.
In contrast, the opposite behavior is observed for the parameters σ and β
(e.g. σ and β estimates in the third stage column go, respectively, from 1.72
to 1.37 and 7.72 to 6.18 when we move from a = 0.20 to a = 1.00). This
fact suggests a possible compensation effect between the components of the
SNJD variance: Brownian noise and Shot-Noise term.

After discussing Table 6 briefly, it can be interesting to obtain a visual
idea of these results. With this aim, Figures 6 and 7 display the sample

14For the sake of brevity, we have omitted the mean sample autocorrelation coefficients
for all the experiments. On the whole, it can be said that these series exhibit significant
sample autocorrelation values for one and two lags. This justifies the usage of the Newey-
West (1987) weighting matrix estimate. The results concerning these values are available
upon request.
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distribution for first to third stage estimates of the parameters σ, λ and a
in the case a = 0.6. Graphs in columns are equally scaled for the horizontal
axis.

[INSERT FIGURES 6 AND 7 ABOUT HERE]

As expected, these figures reveal that the third stage estimate seems
to offer more efficient results than the others. The sample distributions
obtained for the first and second stage estimates depict shapes which are
different from the normal distribution, a fact that is owing to the pres-
ence of autocorrelation in the sample. Once again, the sample distributions
obtained for the parameter a present problems in the left tail (some observa-
tions (less than 5% of the total amount in the worst case) are around zero).
Apparently, there is no bias in the obtained results.

6 CONCLUSIONS

To a certain extent, the formulation of modern finance from Black and
Scholes (1973) to our days is based on continuous-time stochastic processes.
Of all the available processes, the AJD model family studied by Duffie et al.
(2000) seems to offer an optimum balance between empirical adequacy and
analytical tractability. However, several recent empirical studies raise the
question about considering new models to capture some of the drawbacks
present in the existing models by, of course, keeping the usual requirements
about parsimony in the number of variables and economic intuition.

This paper has presented a model that tries to fulfill the former requests.
We focus on the SNJD model posited by Altmann et al. (2008). Basically,
it is an extension of the JD models proposed by Merton (1976) where an
additional term (named Shot-Noise function) is added to the Poisson pro-
cess. The intuition behind this model is that a shock effect can fade away
on the long run. As a result of this, the SNJD model can generate serial
persistence in asset returns. As far as we know, this is the first study that
analyzes in detail the main features of this model.

We have provided a general treatment of the Shot-Noise process in the
economic literature. To the best of our knowledge, no similar analysis has
been found in the financial literature. We have also provided an expression
for log-returns of the SNJD model, identifying the source of autocovariance
in the process. Not surprisingly, we find that the SNJD model is capable
of nesting former versions of continuous-time processes such as GBM or JD
ones.
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We have computed the characteristic function of the SNJD process, de-
riving some of its main moments and providing some useful numerical ap-
proximations for computational purposes. Regarding the dynamics of the
model, we have analyzed the covariance function of the SNJD process. As
we have pointed out, we observe that a considerable source of information
is embedded in past information.

In addition to this, an extension to the paradigm of the SNJD mod-
els, the SNJD model with exponential decaying response function, has also
been studied. Our results seem to conclude that the SNJD model with this
response function is close to the JD version if we focus on their central mo-
ments, differing in their autocorrelation function specifications. It could be
interesting to remark that we find a link between the serial correlation and
the jump parameters.

Finally, we have also provided an estimation methodology for the SNJD
model parameters based on the GMM estimate of Hansen (1982). With the
purpose of checking the posited methodology, an exhaustive Monte Carlo
study has been carried out. Our results reveal the presence of a certain
bias for the parameter related to the jump probability. This bias may be
explained in terms of a compensation effect between the components of
the SNJD variance: Brownian noise and Shot-Noise term. In any case, we
consider that the GMM framework is suitable for capturing the parameters
of the SNJD model.

To conclude, for further research, we suggest studying the implications
of the SNJD model from a financial point of view in depth. How deep the
impact of the autocorrelation is on option prices or asset allocation strategies
is a question which remains open. Moreover, the influence of Shot-Noise
effects on, for example, electricity forward contracts is not clear. Taking
these issues into account, this paper must be intended as a first attempt to
analyze the main features of the SNJD model.

21



ACKNOWLEDGMENTS

We are very grateful for the comments received from A. Cartea, A. León,
M.A. Mart́ınez, V. Meneu, A. Novales, D. Nualart, G. Rubio and from the
attendants at the 63rd Econometric Society European Meeting (ESEM-08),
XIV Foro de Finanzas and IX Italian-Spanish Congress on Financial and
Actuarial Mathematics, where a previous version of this paper received the
Best Paper Award in the category “Investments and Financial Mathemat-
ics”. Moreno gratefully acknowledges financial support by DGESIC grant
SEJ2005-3924 and JCCM grant PCI08-0089-0766.

22



Appendix

Proof of Proposition 1

The representation Zt = Xt + Yt + Ht follows inmediately from (2) and

St+∆t

St
= exp

[(
µ − σ2

2

)
∆t + σ (Bt+∆t − Bt)

]

×
Nt+∆t∏

j=Nt+1

[1 + Ujh (t + ∆t − τj)]

×
Nt∏

j=1

[1 + Ujh (t + ∆t − τj)]

[1 + Ujh (t − τj)]
(34)

That Xt, Yt and Ht are independent follows from the independence of
B, N and the U ’s and the fact that N has independent and stationary incre-
ments. To prove (7) recall the characteristic function of a normal variable
to get the first factor. The arguments for the remaining two are similar.
Therefore we only study Ht in detail.

Now, given Nt = m, the jumps τ1 < . . . < τm have the same distribution
as the order statistics of a sample of m i.i.d. random variables uniformly
distributed on [0, t]. See Parzen (1962). Thus,

ΦHt
(ξ) = E [exp (iξHt)] =

= E



exp




iξ

Nt∑

j=1

ln

[
1 + Ujh (t + ∆t − τj)

1 + Ujh (t − τj)

]


 | Nt = m



 × P (Nt = m)

=
+∞∑

m=0

[
(λt)m

m!
exp (−λt) × m!

(t)m

∫ t

0
dτ1

∫ t

τ1

dτ2...

∫ t

τm−1

dτm

]

×
m∏

j=1

E

[
exp

{
iξ ln

(
1 + Ujh (t + ∆t − τj)

1 + Ujh (t − τj)

)}]

= exp (−λt)
∞∑

m=0

[
(λt)m

m!
×

[
1

t

∫ t

0
E

[
exp

{
iξ ln

(
1 + Uh (t + ∆t − τ)

1 + Uh (t − τ)

)}]
dτ

]m]

= exp

{
λ

∫ t

0
E

[
exp

{
iξ ln

(
1 + Uh (t + ∆t − τ)

1 + Uh (t − τ)

)}
− 1

]
dτ

}
(35)

This completes the proof of Proposition 1. �
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Proof of Lemma 1

The non-central unconditional moments can be computed by differenti-
ating expression (7), that is,

µ′
n = E [Zn

t ] =
1

in
∂ΦZt

∂ξ

∣∣∣∣
ξ=0

(36)

In our case, the first four non-central moments are given as

µ′
1 = A + C + D (37)

µ′
2 = σ2∆t + C2 + D2 +

(
µ′

1

)2
(38)

µ′
3 = C3 + D3 − 3 (A + C + D)

(
2B − C2 − D2

)
+ (A + C + D)3(39)

µ′
4 = C4 + D4 + 4 (A + C + D)

(
C3 + D3

)

+3
(
2B − C2 − D2

)2 − 5
(
2B − C2 − D2

)
(A + C + D)

−
(
2B − C2 − D2

)
(A + C + D)2 + (A + C + D)4 (40)

with

A =

(
µ − σ2

2

)
∆t (41)

B = −σ2

2
∆t (42)

Cn = λ

∫ t+∆t

t
E [{ln (1 + Uh (t + ∆t − τ))}n] dτ (43)

Dn = λ

∫ t

0
E

[{
ln

(
1 + Uh (t + ∆t − τ)

1 + Uh (t − τ)

)}n]
dτ (44)

The proof is complete by applying the relationship between central and
non-central moments (Abramowich and Stegun, 1968). �
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Proof of Lemma 2

As the covariance is a linear operator and using the independence prop-
erty between Bt, Nt and Uj , we get

Cov [Zt+n∆t, Zt] = Cov [Xt+n∆t, Xt] + Cov [Yt+n∆t, Yt] + Cov [Ht+n∆t, Ht]

+ Cov [Ht+n∆t, Yt] , n = 0, 1, 2, . . . (45)

The autocovariance of Brownian motion and Poisson process are easily
obtained by applying standard arguments of independence between incre-
ments. We provide the results for the remaining cases:

1. Shot-Noise part. We get15

Cov [Ht+n∆t, Ht] = λ

∫ t

0
E

[
ln

(
1 + Uh (t + ∆t − τ)

1 + Uh (t − τ)

)

× ln

(
1 + Uh (t + ∆t + n∆t − τ)

1 + Uh (t + n∆t − τ)

)]
dτ (46)

2. Jump / Shot-Noise part. The persistence in time of the realization
of the random variable Uj produces a cross effect between the processes
Yt and Ht, which contributes to the appearance of a new source of
autocovariance in the process Zt.

Cov [Yt, Ht+n∆t] =

= Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+n∆t∑

j=1

Uj(h(t + n∆t − τj) − h(t − τj))





= Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+n∆t∑

j=Nt+1

Uj(h(t + n∆t − τj) − h(t − τj))





(47)

�

15For a formal proof of the covariance of the Shot noise, we refer the reader to Parzen
(1962), Klüppelberg and Mikosch (1995) or Ross (1996).
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Proof of Example 4

As the Brownian and Jump parts of the autocovariance in the SNJD
process are immediately computed, we focus on the Shot-Noise and Jump /
Shot-Noise terms.

1. Shot-Noise part. Replacing h(t) = exp(−at) into (46) and applying
the power expansions of the logarithmic and exponential functions
(around one and zero, respectively), we get

Cov [Ht+n∆t, Ht]

= λ

∫ t

0
E

[
ln

(
1 + U exp (−a (t + ∆t − τ))

1 + U exp (−a (t − τ))

)

× ln

(
1 + U exp (−a (t + (n + 1)∆t − τ))

1 + U exp (−a (t + n∆t − τ))

)]
dτ

≃ λE
[
U2

] (exp (−a∆t) − 1)2

2a
(1 − exp(−2at)) exp (−an∆t)

≃ 0 (48)

2. Jump / Shot-Noise part. Replacing h(t) = exp (−at) into (47),
applying the linearity of the covariance operator and the independence
between Poisson increments, we obtain

Cov [Ht+n∆t, Yt]

= (exp (−a∆t) − 1)Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+n∆t∑

j=Nt+1

Uj exp (−a(t + n∆t − τj)





= (exp (−a∆t) − 1)Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+∆t∑

j=Nt+1

Uj exp (−a(t + n∆t − τj))





+ (exp (−a∆t) − 1)Cov




Nt+∆t∑

j=Nt+1

Uj ,

Nt+n∆t∑

j=Nt+∆t+1

Uj exp (−a(t + n∆t − τj))





= (exp (−a∆t) − 1)V ar(Yt) exp(−a n ∆t) (49)
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Table 1: Autocorrelation function for different values of the parameter a.

Lag (n) a = 0.2 a = 0.6 a = 1.5 AR(1), φ = 0.6

1 0.8187 0.5488 0.2231 0.6000
2 0.6703 0.3012 0.0498 0.3600
3 0.5488 0.1653 0.0111 0.2160
4 0.4493 0.0907 0.0025 0.1296
5 0.3679 0.0498 0.0006 0.0778
10 0.1353 0.0025 3.06 × 10−7 0.0060
25 0.0067 3.06 × 10−7 5.17 × 10−17 2.84 × 10−6

50 4.54 × 10−5 9.35 × 10−14 0.0000 8.08 × 10−12

100 2.06 × 10−9 8.75 × 10−27 0.0000 6.53 × 10−23

This Table reports the theoretical autocorrelation coefficients ρ(n) for differ-
ent lags and values of the parameter a included in the response function
h(t − τk) = exp (−a(t − τk)). Random variable Ak is lognormally distributed as
A = exp(−β2/2 + βε) − 1, with ε ∼ N(0, 1). Simulation parameters are λ = 0.04,
β = 0.10 and a = 0.50.
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Table 2: Distributions and some statistics of GBM, JD and SNJD processes

Parameters Mean Percentile (×10−3) ACF
σ λ β a (×10−4) 2.5% 5% 10% 50% 90% 95% 97.5% ρ1 ρ2 ρ3

Daily frequency (∆ = 1/250)
0.30 – – – 0.2 -1.2 -0.9 -0.7 0.0 0.8 1.0 1.2 0.05 -0.01 -0.02
0.20 5.00 0.10 – 0.4 -1.1 -1.0 -0.7 0.0 0.8 1.0 1.1 -0.01 0.07 0.00
0.20 5.00 0.10 0.5 1.6 -1.0 -0.9 -0.7 0.1 1.0 1.2 1.4 -0.11 -0.12 -0.02
0.20 5.00 0.10 1.0 1.5 -1.3 -0.9 -0.8 0.1 1.1 1.3 1.5 -0.21 -0.05 -0.00
0.20 5.00 0.10 10.0 1.2 -1.4 -1.2 -0.9 0.1 1.1 1.4 1.6 -0.27 -0.10 0.03

Weekly frequency (∆ = 1/52)
0.30 – – – -1.3 -2.6 -2.4 -1.6 -0.3 1.5 2.0 2.3 -0.13 0.10 -0.02
0.20 5.00 0.10 – 0.8 -2.5 -2.2 -1.4 0.0 1.4 1.6 2.8 0.12 -0.09 -0.05
0.20 5.00 0.10 0.5 5.2 -2.3 -1.8 -1.6 0.8 2.6 2.9 3.1 -0.08 -0.07 -0.08
0.20 5.00 0.10 1.0 7.7 -2.0 -1.7 -1.1 1.0 2.4 3.2 3.3 -0.36 0.08 -0.01
0.20 5.00 0.10 10.0 6.6 -2.4 -1.8 -1.6 0.7 2.9 3.4 3.9 -0.32 -0.10 0.08

Monthly frequency (∆ = 1/12)
0.30 – – – 14.0 -0.5 -0.5 -0.5 1.3 4.0 4.4 4.5 0.18 -0.20 -0.10
0.20 5.00 0.10 – 13.0 -3.1 -3.0 -2.3 1.1 4.9 5.1 5.2 0.00 0.08 0.10
0.20 5.00 0.10 0.5 22.0 -3.9 -3.6 -2.0 2.6 6.0 6.8 7.0 -0.27 -0.13 0.03
0.20 5.00 0.10 1.0 21.0 -3.0 -2.8 -1.8 2.4 5.6 7.2 7.5 -0.20 -0.14 0.26
0.20 5.00 0.10 10.0 21.0 -6.2 -5.7 -2.8 1.7 7.5 7.8 7.8 -0.60 0.42 -0.47

This Table includes the mean, some percentiles and the autocorrelation coefficients ρ(n) for different lags and values for
simulated samples of the GBM, JD and SNJD moels under different frequencies. Jump distribution in JD and SNJD models
are lognormally distributed with U = exp(−β2/2 + βε) − 1, with ε ∼ N(0, 1). The SNJD response function takes the form
h(t − τk) = exp (−a(t − τk)). Parameter µ has been fixed to 0.20 in all cases.
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Table 3: Skewness in the SNJD process

Parameters a (∆ = 1/250) a (∆ = 1/52) a (∆ = 1/12)

σ θ β 0.0 0.5 1.0 10.0 0.0 0.5 1.0 10.0 0.0 0.5 1.0 10.0

0.24 0.00 0.02 0.000 0.008 0.007 0.007 0.000 0.003 0.003 0.003 0.000 0.002 0.001 0.000
0.24 -0.001 0.02 -0.013 -0.005 -0.005 -0.005 -0.006 -0.002 -0.002 -0.002 -0.003 -0.001 -0.001 -0.000
0.24 -0.100 0.02 -2.737 -2.562 -2.557 -2.464 -1.243 -1.155 -1.143 -0.954 -0.597 -0.537 -0.514 -0.230

0.20 0.00 0.04 0.000 0.138 0.138 0.132 0.000 0.062 0.061 0.050 0.000 0.029 0.027 0.010
0.20 -0.001 0.04 -0.058 0.080 0.080 0.077 -0.026 0.036 0.036 0.029 -0.013 0.017 0.016 0.006
0.20 -0.100 0.04 -3.813 -3.567 -3.560 -3.440 -1.732 -1.608 -1.594 -1.347 -0.832 -0.741 -0.720 -0.341

0.15 0.00 0.06 0.000 0.655 0.654 0.630 0.000 0.295 0.292 0.244 0.000 0.137 0.131 0.059
0.15 -0.001 0.06 -0.121 0.534 0.533 0.513 -0.055 0.241 0.238 0.199 -0.026 0.112 0.107 0.048
0.15 -0.100 0.06 -5.233 -4.923 -4.915 -4.764 -2.377 -2.222 -2.203 -1.892 -1.142 -1.038 -1.001 -0.509

Skewness for the SNJD process. Jump size in returns is normally distributed with ln(1+U) ∼ N(θ, β2). Response function in the SNJD process
is of exponential decay type. The annual volatility has been fixed to σannual = 0.25 for all cases. Parameter λ (the average number of jumps
per year) is also constant and equal to 10.
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Table 4: Excess Kurtosis in the SNJD process

Parameters a (∆ = 1/250) a (∆ = 1/52) a (∆ = 1/12)

σ θ β 0.0 0.5 1.0 10.0 0.0 0.5 1.0 10.0 0.0 0.5 1.0 10.0

0.24 0.00 0.02 0.319 0.319 0.318 0.297 0.066 0.065 0.064 0.047 0.015 0.014 0.013 0.005
0.24 -0.001 0.02 0.320 0.317 0.316 0.295 0.066 0.065 0.063 0.047 0.015 0.014 0.013 0.005
0.24 -0.100 0.02 12.012 10.933 10.903 10.387 2.479 2.232 2.203 1.774 0.572 0.493 0.467 0.260

0.20 0.00 0.04 6.171 6.248 6.227 5.862 1.274 1.273 1.252 0.953 0.294 0.278 0.260 0.116
0.20 -0.001 0.04 6.177 6.202 6.181 5.819 1.274 1.263 1.243 0.946 0.294 0.276 0.258 0.115
0.20 -0.100 0.04 21.091 18.971 18.923 18.093 4.352 3.877 3.830 3.137 1.004 0.860 0.817 0.490

0.15 0.00 0.06 28.630 29.449 29.368 27.977 5.908 6.013 5.935 4.784 1.363 1.329 1.258 0.700
0.15 -0.001 0.06 28.636 29.274 29.194 27.811 5.910 5.976 5.899 4.746 1.363 1.321 1.251 0.686
0.15 -0.100 0.06 35.598 31.993 31.920 30.651 7.346 6.544 6.472 5.413 1.695 1.456 1.392 0.916

Skewness for the SNJD process. Jump size in returns is normally distributed with ln(1 + U) ∼ N(θ, β2). Response function in the SNJD
process is of exponential decay type. The annual volatility has been fixed to σannual = 0.25 for all cases. Parameter λ (the average
number of jumps per year) is also constant and equal to 10.
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Table 5: Autocorrelation function for different values of the parameter a

a = 0.2 a = 0.6 a = 1.0 a = 10.0
Lag ρtheo

n ρ̂n ρtheo
n ρ̂n ρtheo

n ρ̂n ρtheo
n ρ̂n

1 -0.144 -0.068 -0.240 -0.172 -0.225 -0.250 0.000 -0.416
2 -0.118 -0.057 -0.132 -0.096 -0.083 -0.091 0.000 0.001
3 -0.096 -0.046 -0.072 -0.047 -0.031 -0.031 0.000 -0.000
4 -0.079 -0.038 -0.040 -0.029 -0.011 -0.013 0.000 -0.005
5 -0.065 -0.027 -0.022 -0.016 -0.004 -0.003 0.000 0.005

10 -0.024 -0.013 -0.001 0.005 0.000 -0.001 0.000 0.002
25 -0.001 0.001 0.000 -0.001 0.000 0.005 0.000 -0.003
50 0.000 0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001
100 0.000 -0.003 0.000 -0.001 0.000 -0.001 0.000 -0.003

This Table includes the sample, ρ̂n, and theoretical, ρtheo
n (see equation (27)), auto-

correlation values of the SNJD model for different values of the parameter a. Sample
autocorrelation coefficients have been computed from 100 simulation paths with 1,800
steps of the SNJD model with response function h(t−τk) = exp(−a(t − τk)). The random
variable U is lognormally distributed as U = exp(−β2/2 + βε) − 1, with ε ∼ N(0, 1).
Simulated (annualized) parameters are µ = 0.05, σ = 0.20, λ = 10.00, β = 0.10 and
∆t = 1/250.
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Table 6: GMM estimates for the SNJD process

First stage Second stage Third stage
Parameter True value Mean RMSE CV Mean RMSE CV Mean RMSE CV

µ × 10−2 0.02 0.02
[−0.12,0.12]

0.06 348.85 0.06
[−0.03,0.14]

0.06 73.06 0.05
[−0.03,0.13]

0.05 72.92

σ × 10−2 1.26 1.54
[0.06,2.93]

0.76 45.59 1.75
[1.38,2.10]

0.54 12.80 1.72
[1.36,2.08]

0.49 10.63

λ × 10−2 4.00 4.99
[1.61,9.10]

2.17 38.69 8.30
[2.17,16.88]

5.94 49.28 8.87
[2.80,16.53]

6.01 39.74

β × 10−2 10.00 11.31
[4.53,19.06]

4.08 34.13 8.01
[5.59,10.59]

2.37 16.02 7.72
[5.53,10.44]

2.60 16.16

a 0.20 0.51
[0.06,2.38]

0.67 1.18 0.38
[0.02,1.45]

0.43 1.00 0.48
[0.04,1.75]

0.60 1.09

µ × 10−2 0.02 0.01
[−0.06,0.09]

0.04 253.35 0.06
[−0.03,0.14]

0.06 73.26 0.05
[−0.03,0.11]

0.04 78.00

σ × 10−2 1.26 0.92
[−0.01,1.65]

0.54 45.34 1.59
[−0.63,2.09]

0.57 29.26 1.55
[1.29,1.81]

0.32 8.42

λ × 10−2 4.00 7.14
[2.94,11.59]

3.75 28.70 15.91
[3.62,36.39]

13.83 44.26 17.15
[10.23,24.45]

13.65 21.26

β × 10−2 10.00 10.49
[5.78,15.69]

2.61 24.39 7.02
[5.20,9.43]

3.16 15.17 6.57
[4.98,8.19]

3.53 12.51

a 0.60 0.63
[0.16,1.31]

0.31 0.49 0.60
[0.03,1.13]

0.26 0.43 0.61
[0.25,1.08]

0.22 0.37

µ × 10−2 0.02 0.01
[−0.05,0.07]

0.03 237.38 0.06
[−0.03,0.14]

0.06 70.86 0.04
[−0.03,0.11]

0.04 80.68

σ × 10−2 1.26 0.30
[−0.03,1.36]

1.05 141.88 1.16
[−0.32,2.00]

0.80 68.84 1.37
[1.04,1.62]

0.18 10.89

λ × 10−2 4.00 9.15
[4.19,13.00]

5.60 24.04 25.78
[8.97,47.99]

24.41 42.71 23.76
[15.07,31.86]

20.28 19.15

β × 10−2 10.00 19.30
[9.30,26.61]

10.32 23.27 6.50
[4.90,8.51]

3.62 14.14 6.18
[4.82,7.65]

3.89 11.57

a 1.00 0.84
[0.04,1.13]

0.27 0.26 0.84
[0.03,1.32]

0.33 0.35 0.83
[0.45,1.20]

0.27 0.25

This Table includes the GMM (first, second and third stage) estimates of the SNJD process for different values of the
parameter a. The first stage estimate corresponds to a GMM with the identity as weighting matrix. The second stages
estimate uses the efficient version of the weighting matrix of Hansen (1982). Due to the presence of autocorrelation in
the sample, we use the weighting matrix version of Newey-West (1987) as third stage estimate. We assume a jump size
U lognormally distributed of the form U = exp

(
−β2/2 + βε

)
− 1, with ε ∼ N(0, 1), and response function of the form

h(t) = exp(−at). Each row refers the true simulation values, mean, RMSE and CV of first to third stage estimates for
each parameter of the SNJD process, respectively.
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Figure 1: Sample path for the EONIA rate. Upper and lower lines display the
sample path for levels and increments of this variable, respectively.
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Figure 2: A simulated path of the Shot Noise process as given in expression (1).
The response function is h(t − τk) = exp (−a(t − τk)). The random variables Ak

are lognormally distributed as A = exp(−β2/2 + βε) − 1, with ε ∼ N(0, 1) and β
is a constant. Simulation parameters are λ = 10.00, β = 0.10 and a = 0.50.
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Figure 3: Representation of a simulated path of a SNJD (Altmann et al., 2008)
process. The random variable U is lognormally distributed as U = exp(−β2/2 +
βε) − 1, with ε ∼ N(0, 1). The (annualized) parameters are S0 = 10.00, µ = 0.05,
σ = 0.20, λ = 10.00, β = 0.05 and a = 0.50
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Figure 4: Autocorrelation function for the log-returns of the exponential decay
function h(t) = exp (−at) as a function of the parameter a . The random vari-
able U is lognormally distributed as U = exp(−β2/2 + βε) − 1, with ε ∼ N(0, 1).
Simulation parameters are σ = 0.20, λ = 10.00, β = 0.10, n = 1 and ∆t = 1/250.
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Figure 5: Autocorrelation function for the log-returns of the exponential decay
function h(t) = exp (−at) as a function of the parameters a and n. The random
variable U is lognormally distributed as U = exp(−β2/2 + βε)−1, with ε ∼ N(0, 1).
Simulation parameters are σ = 0.20, λ = 10.00, β = 0.10 and ∆t = 1/250.
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Newey-West (1987) (third stage estimate)
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Figure 6: Sample distribution of estimated σ and λ SNJD parameters for different
weighting matrices. Simulation values are µ = 0.02 × 10−2, σ = 1.26 × 10−2,
λ = 4.00 × 10−2, β = 10.00 × 10−2 and a = 0.60. The random variable U is
lognormally distributed. Note that the axis OX are equally scaled.
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Figure 7: Sample distribution of estimated a SNJD parameter for different
weighting matrices. Simulation values are µ = 0.02 × 10−2, σ = 1.26 × 10−2,
λ = 4.00× 10−2, β = 10.00× 10−2 and a = 0.60. The random variable U is lognor-
mally distributed. Note that the axes OX are equally scaled in all the graphs.
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