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1 Introduction 

The notion of a benevolent auctioneer is sometimes used to explain the following paradoxical 

aspect of competitive equilibrium. In competitive economies each agent takes prices as given. 

But when all agents take prices as given, the process by which prices come to be equilibrium 

prices is left unexplained. The role of the auctioneer is to adjust prices until markets clear, thus 

resolving the paradox. (See Hahn [4] for a discussion of the auctioneer.) Our objective is to 

show that a self-interested monopolist intermediary may effectively play the role of a benevolent 

Walrasian auctioneer by setting nearly Walrasian bid and ask prices. 

In our model agents have the option of trading through a monopolistic intermediary or 

trading privately in a random matching market. The intermediary strategically chooses bid and 

ask prices to maximize its own profits. Given the intermediary's bid and ask price, at each 

date buyers and sellers remaining in the market choose whether to attempt to trade with the 

intermediary or whether to attempt to trade privately. Agents entering the mediated market 

potentially trade immediately with the intermediary at the bid or ask price, but sacrifice the 

spread as potential gains to trade. Agents entering the private trading market capture all gains 

to trade once matched, but risk costly delay in finding a trading partner. In equilibrium each 

agent follows an optimal policy of entering the mediated and private trading market given (a) 

the bid and ask price, (b) the price negotiated in the private trading market, and (c) the entry 

policy of all other agents. 

We show that when the costs of delay are small the intermediary sets bid and ask prices nearly 

equal to Walrasian equilibrium prices. The costs of delay arise from the discounting by agents 

of the utility from consumption in the future. We show that as the discount factor approaches 

one, the cost of delay therefore vanishing, the equilibrium bid and ask prices converge to the 

Walrasian equilibrium prices. In fact, for the economy under consideration intermediation is 

necessary for a Walrasian outcome. In the absence of intermediation all trade must take place 

in the private trading market and prices are not close to Walrasian prices, even as the cost of 

delay vanishes. 

These results are obtained for an economy in which each agent has an interest in carrying 

out only one transaction. There are two goods, money and an indivisible good, at each of an 

infinite number of dates. A generation t buyer who at date T exchanges p units of money for 
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a unit of the indivisible good obtains utility or-t(1 - p), where 0 is the discount factor. A 

generation t f seller who takes the other side of such an exchange obtains utility or-tIp. The 

demographics are such that there is a greater measure of generation zero sellers than generation 

zero buyers, and for each generation t thereafter there is an equal measure of sellers and buyers 

of that generation. 

The equilibrium with intermediation is first compared to the equilibrium of a Walrasian 

trading procedure and then to the equilibrium of a trading procedure where there is only private 

trade. Walrasian equilibrium is defined to represent equilibrium in a situation where at each 

date there is a spot market for each good. The Walrasian trading procedure is interpreted as 

a centralized trading procedure; at each date agents can trade at the prevailing spot market 

prices without search. Formally, a Walrasian equilibrium is a sequence of spot market prices 

and an allocation such that the market for each good at each date clears and the allocation of 

each agent maximizes his utility given his budget. In Section 2 we show that the Walrasian 

equilibrium price of the indivisible good (in units of money) is zero at each date. 

Section 3 describes the model of intermediation. In this model prices need not clear markets. 

Transaction prices in the mediated market are the bid and the ask price, while in the private 

trading market they are determined by Nash bargaining. l In section 4 we show that in equilib­

rium, at each date the indivisible good is bought by the intermediary at a price of zero and sold 

at a price which is positive, but less than one. Thus, the intermediary and buyers capture all 

of the gains to trade. The difference in the prices is the "spread," which represents the profit 

to the intermediary of transacting a single unit of the indivisible good. As the discount factor 

approaches one, we show that in the limit the indivisible good is bought and sold at a price of 

zero at each date, and each buyer and seller obtains his Walrasian equilibrium payoff. 

Section 5 discusses the situation when there is only private trading, in which case prices at 

each date are determined by bargaining. The private trading market is modeled as a random 

matching market and is therefore related to the models in Diamond [1], Gale [2], and Rubinstein 

and Wolinsky [8]. When there is only private trading, the equilibrium price of the indivisible 

good is greater than zero at each date. The price is positive, and the payoff of each agent different 

from his Walrasian equilibrium payoff, even in the limit as the discount factor approaches one. 

1Using Nash rather than strategic bargaining simplifies the analysis and clarifies the intuition behind the 

results. Results similar to those reported here were obtained in Wooders [11] using strategic bargaining. 
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In the context of strategic bargaining this result is well known from Rubinstein and Wolinsky 

[8]. 

For concreteness the gains to trade are taken to arise from exchange. The model of inter­

mediation, therefore, is a model of intermediation in a goods market. Alternatively, one can 

take the gains as arising from the marriage of agents or as arising from the joint production of 

a divisible output. If the gains arise from marriage, then the intermediary is a matchmaker, 

matching boys to girls. If the gains arise from joint production, then the intermediary is an 

employment agency, matching workers to firms. In either case, the formalism of the model of 

intermediation is unchanged. 

The intermediary in the present paper is a monopolist and is "large" in the sense that its 

choice of a bid and ask price influences the composition of the private trading market. Rubin­

stein and Wolinsky [9] consider a model of intermediation with many "small" intermediaries (or 

middlemen), where the activity of anyone intermediary has no influence on market aggregates. 

They show that the distribution of the gains to trade is biased in favor of buyers when inter­

mediaries take ownership of the good as opposed to when they trade on consignment. It is an 

open question whether the introduction of many small intermediaries of the kind in [9] makes 

the market outcome more nearly competitive. 

2 The Economy and Its Walrasian Equilibrium 

We consider an economy where each agent has an interest in carrying out only one transaction. 

Each buyer is concerned with the date and the price at which he obtains a unit of the indivisible 

good. Each seller is concerned with the date and the price at which he supplies a unit of the 

indivisible good. It is convenient to represent such an economy as an overlapping-generations 

economy with infinitely lived agents. 

The Economy 

The set of agents is denoted by G, where G c ~. The Lebesgue measure on the line is 

denoted by /1. Let {Gs,Gs} be a Lebesgue measurable partition of G, where Gi is the set 

of agents of type i. The indices Band S refer to "buyers" and "sellers," respectively. Time 

is indexed by t E {O, 1, ...}. Let {GO, Gt, ...} be another Lebesgue measurable partition of 
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G, where Gt is the set of agents born at date t. The set of generation t agents of type i is 

G~ = Gi n Gt. The demographics of the economy are such that there is a greater measure of 

generation zero sellers than generation zero buyers, and an equal measure of sellers and buyers 

at every generation thereafter. In particular, there exist numbers v > 0 and A > 0 such that 

Jl(G~) = v + A,Jl(G~) = v, and Jl(G~) = Jl(Gk) = v for each t > O. Therefore, by date t a 

measure vt +A of sellers has been born while only a measure vt of buyers has been born. 

At each date there are two goods. Good 0 is divisible and plays the role of money, while 

good 1 is indivisible. An allocation for agent h is a pair (Xh, 'Th) where Xh = (x~, xl), x{ is the 

consumption of good j by agent h, and 'Th is the date at which agent h consumes. We assume 

for each agent h that x~ E ~ (money holdings may be negative) and xl E {0,1}. Each agent 

may consume no earlier than the date at which he is born. Therefore, the consumption set of 

each agent h E Gt is 

x t =!R x {O,l} x {t,t+ 1, ...}, 

where (x~, xl, 'Th) E X t denotes the allocation of agent h. An allocation is a pair of functions 

(x, 'T), each mapping G to u~oxt = X O, such that for each t we have: 

(i) (x, 'T) : Gt -+ X t. 

(ii) For each j E {O, l}: xi is integrable on {h : 'Th = t}. 

Condition (i) is that the allocation of each agent is in his consumption set. Condition (ii) insures 

that it is meaningful to speak of the measure of good j consumed by agents trading at date t. 

Agent h's utility from the allocation (Xh, 'Th) is the utility that he obtains from consumption, 

Uh(X~, xl), discounted from the date he consumes, 'Th, back to the date he was born. In particular, 

from the allocation (Xh,'Th) agent h E Gt obtains utility 

where 6, the discount factor, is less than one. The endowment of each buyer h E Gk is (Wh, t) 

where Wh = (0,0). Although the income of each buyer is zero, each buyer has a non-trivial 

budget set since consumption of money may be negative. Each seller is endowed with a unit of 

the indivisible good at the date he is born. In other words, the endowment of each seller h E G~ 

is (Wh, t) where Wh= (0,1). 
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We assume for each buyer hE GB that 

{ x~ +1 if xl = 1o 1
Uh(Xh,Xh) = 

XO
h if xl = 0 

and for each seller h E Gs that Uh(X~, xl) = x~. Given these preferences and endowments, a 

generation t buyer whose allocation is obtained by an exchange at date 8 ~ t of Ps units of 

money for a unit of the indivisible good has utility os-t(l - Ps). A generation t' seller whose 

allocation is obtained by taking the other side of such an exchange has utility os-t'Ps. Thus, a 

buyer and seller have an (undiscounted) unit gain to trade. 

Walrasian equilibrium (in spot markets) 

Walrasian equilibrium as defined here represents equilibrium in a situation where trade is 

centralized; at each date, agents may trade at the prevailing prices without search. We take 

the Walrasian trading procedure to be one where (i) at each date there is only a spot market 

for each good, and (ii) each agent concentrates his purchases and sales on spot markets at one 

date. This setup parallels the one in our model of the intermediated market and our model of 

the market with only private trade. In both of these models, (i) exchanges at date t involve only 

date t money and date t indivisible good, and (ii) each buyer and seller participates in only one 

exchange. Defining the Walrasian trading procedure in this fashion isolates the differing degrees 

of centralized trade under the different trading procedures (rather than, say, the presence or 

absence of futures markets) as the source of the differences in the market outcomes. 

Since there is only a spot market for each good at each date, the price of money can be 

normalized to one at each date.2 Let Ps denote the price of a unit of the indivisible good at date 

s in terms of units of money at date s. Let p = (Po,Pb" .). 

2We show that the price of money can be normalized to one at each date. For each j e to, 1} and each t ~ 0, 

let pS,; denote the price of good j at date 8. If agent h concentrates his purchases and sales on spot markets 

at date s, his budget constraint at date 8 is p',oz~ +ps,lz1~ p"o",g + p"lwl. The problem of agent h e Gt is 

to choose a date 1"h at which to trade, and a feasible consumption Zh given his budget constraint at 1"h. Given 

prices (pO,O ,pO,I, ... , p"o ,p"l, ...), agent h e Gt solves 

max 6,.,,-t"h(Zh) 8.t.p,.",ozg + p,.",lzl ~ p,.",o",g +p,.",l"'l. 
(:p:",,.,,)EXf 

If (zh,rh) is a solution to this problem, then it is also a solution given prices (1, ~'" ., 1, ~, ...). Denote by 

Ps =~ the price of date s indivisible good in terms of date s money. 
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Given an allocation (x, 7"), the set of agents trading at date s is {h E G: 7"h = s}. When each 

agent concentrates his purchases and sales at one date, aggregate excess demand for commodity 

j at date s is 

f (x{-wOdh. 
J{hEGITh=s} 

A Walrasian equilibrium is a price sequence and an allocation for each agent such that (i) 

the market for each good at each date clears, and (ii) each agent's allocation maximizes his 

utility given his budget.3 

Definition: A Walrasian equilibrium is a pair (p, (x, 7")) satisfying for all t ~ °: 
(i) Foreachj E {O,l}: 

f (x{ -wOdh ~ 0. 
J{hEG!Th=t} 

(ii) For each h E Gt : 

Although there is an infinite measure of each type of agent in the economy, the integration 

in (i) is over a set of agents of finite measure since the set of agents who can feasibly trade at 

date t (i.e. the set of agents born at or prior to date t) has measure 2vt + .6 < 00. We say that 

p is Walrasian if there exists an allocation (x, 7") such that (p, (x, 7")) is a Walrasian equilibrium. 

THEOREM 1: If pis Walrasian then p = (0,0, ... ). 

PROOF: Appendix. 

Clearly p = (0,0, ...) and the allocation Xh = (0,1) and 7"h = t for each h E G~ and 

Xh = (0,0) and 7"h = t for each h E G~ is a Walrasian equilibrium, and so a Walrasian equilibrium 

exists. (The excess supply of the indivisible good at date °is consistent with the date zero 

indivisible good having a price of zero.) The Walrasian equilibrium is not unique. When the price 

of the indivisible good is zero at each date, then each seller obtains a utility of zero regardless 

sOur definition ofWalrasian equilibrium is similar to the one in Schmidt and Aliprantis [10]. In both definitions 

there is only a spot market price for each good at each date. 
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of the date (or even whether or not) it supplies a unit of the indivisible good. Nonetheless, in 

any Walrasian equilibrium each generation t buyer obtains a unit of date t indivisible good at a 

price of zero, the utility of each buyer is one, and the utility of each seller is zero. 

3 A Model of an Intermediated Market 

Under the Walrasian trading procedure the allocation of each agent maximizes his utility given 

his budget. In our model of an intermediated market, each agent's feasible trades are no longer 

described by his budget set; rather, they are determined by the intermediary's bid and ask price, 

the bargained price in the private trading market, and the probability that entry in either the 

mediated or the private trading market concludes with trade. Each of these is endogenously 

determined in our model of intermediation, just as the budget set is endogenously determined 

under the Walrasian trading procedure. In the intermediated market each buyer and seller 

follows an optimal policy of entering the mediated or the private trading market. The policy 

an agent follows determines a (possibly degenerate) probability distribution over allocations for 

him. 

In our model there is an ocean of buyers and sellers and a single distinguished agent, the 

intermediary. At each date, each buyer and seller born, but not having yet traded, chooses 

whether to attempt to trade with the intermediary or whether to attempt to trade privately. 

Agents entering the mediated market potentially trade immediately with the intermediary at 

the bid or ask price, but sacrifice the spread as potential gains to trade. The private trading 

market is modeled as a random matching market. An agent entering the matching market shares 

all the gains to trade with his partner once matched, but may experience costly delay in being 

matched. The bid price Pb and the ask price Po. are chosen by the intermediary to maximize his 

profits. 

An important aspect of the mediated market is that the intermediary is not endowed with 

an inventory of the traded good, nor can he accumulate one. The intermediary may only 

cross trades and so, if unequal measures of buyers and sellers enter the mediated market, the 

intermediary must ration the type of agent entering in greater measure. It is assumed that the 

intermediary rations only the type of agent entering the mediated market in greater measure 

and that agents of the same type are rationed with the same probability. Let mi denote the 
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measure of agents of type i E {5, B} born but not having yet traded, and let Ai denote the 

proportion of those agents entering the mediated market. The probability that a type i agent 

trades when entering the mediated market, denoted by Pi, is 

(1) 

The notation "-i" is used to refer to agents not of type i. 

Attention is restricted to situations where Pa, Pb, mi, and Ai are stationary for each i E 

{5, B}. In a steady state, at each date a measure AiPimi of type i agents trade in the mediated 

market and then exit. (It is unambiguous to refer to volume as AiPimi since by (1) we have 

Aspsms = ABPBmB.) Those agents who enter the mediated market and are rationed, at the 

next date again choose whether to enter the mediated or the matching market. Since at each 

date a measure v or greater of each type of agent is born, we have mi ~ v for each i E {5, B}. 

When the intermediary crosses a trade, transferring a unit of the indivisible good from a 

seller to a buyer, the seller receives a price of Pb while the buyer pays a price of Pa• Agents 

have rational conjectures about their probability of trading when entering the mediated or the 

matching market. Hence when RB = 1- Pa and Rs = Pb, the expected reward to a type i agent 

to entering the mediated market is PiRi. The difference 1 - RB - Rs = Pa - Pb is the "spread" 

and represents the profit to the intermediary from crossing a single trade. 

Those agents not entering the mediated market enter the matching market. The probability 

that a type i agent finds a partner when entering the matching market depends upon the measure 

of each type of agent entering the matching market. In particular, the probability an agent of 

type i is matched is 
k (1 - A-i)m-i (2) 

(}i = (1 - Ai)mi +(1 - A-i)m-i' 

where (1- Ai)mi is the measure of agents oftype i entering the matching market, and k E (0,1] 

is an exogenous parameter indexing the efficiency of the random matching process.4 (The same 

4The matching process has the following interpretation. For agent h, let E denote the event that "agent h 

meets another agent" and let F denote the event that "agent h meets an agent of type i." We consider the 

family of matching processes where for each agent in the matching market (i) Prob(E) = le and (ii) Prob(FIE) = 
(l-X;)g;~W~L;)m_i' Condition (i) says that each agent has the same probability of meeting another agent. (The 

matching process itself does not differentiate between buyers and sellers.) Condition (ii) says that the probability 

that an agent meets an agent of type i is equal to the proportion of agents in the matching market that are of 
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"matching technology," for k = 1, is used in Gale [2].) When each match ends with trade, at 

each date a measure O'i(1 - -\dmi of type i agents trade in the matching market and then exit. 

Those agents who enter the matching market, but who are not matched, again choose whether 

to enter the mediated or the matching market at the next date. 

Since there is an (undiscounted) unit gain to trade in any match, the net surplus of a match 

is one minus the sum of the buyer's and seller's disagreement payoff. Let Ni denote the surplus 

negotiated by a type i agent when matched. We assume that when the net surplus is non­

negative, each match ends with trade. In this case, Ns +NB = 1 and a matched buyer and 

seller exchange a unit of the indivisible good at a price of Ns. If the net surplus is negative, 

then bargaining ends with disagreement and Ni is defined to be zero for each i E is, E}. The 

expected reward to an agent of type i to entering the matching market is O'iNi. 

When Pi, O'i, Ri, and Ni are stationary, the problem of choosing an optimal policy for enter­

ing the mediated and the matching market is a stationary discounted dynamic programming 

problem. Agents are assumed to be von Neumann-Morgenstern expected utility maximizers. 

Let Vi denote the expected utility of an agent of type i under the optimal policy. It is well 

known (see Theorem 2.1 of Ross [6], for example) that Vi satisfies the optimality equationS 

(3) 

The disagreement payoff of a matched agent of type i is e5Vi, so the net surplus of a match is 

1- e5Vs - e5VB. Since each agent is able to obtain a utility of zero by consuming his endowment, 

attention is restricted to situations where Vs ~ 0 and VB ~ O. 

type i. A match is a meeting of two agents of the opposite type. 
15 An agent of type i faces a discounted dynamic programming problem with two states and two actions 

{enter mediated, enter matching}. In state 1 an agent remains in the market while in state 2 an agent has 

exited the market. In state 1, the action "enter mediated" yields an expected reward of PiRi and the transition 

probability to state 1 and 2 is Pi and 1-pi, respectively. The action "enter matching" yields an expected reward 

of aiNi and the transition probability to state 1 and 2 is ai and 1 - ai, respectively. State 2 is an absorbing 

state. The expected reward in state 2 is zero for either action. The value equations satisfy 

Vi(I) = max{piRi + c5[piVi(2) + (1- pi)Vi(I)],aiNi + c5[aiVi(2) + (1- ai)Vi(I)]} 

Vi(2) = 0 + c5Vi(2). 

The second of these equations implies that Vi(2) =O. The first equation then reduces to equation (3) where Vi 

denotes Vi(I). 
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A matched buyer and seller are assumed to negotiate a price for the indivisible good which 

evenly splits the net surplus of their match when the net surplus is non-negative. Therefore 

Ni = { l-SV~-SVR +6Vi if 1 - 6Vs - 6VB ~ 0 (4) 

o otherwise. 

Since Vi ~ 0, we have Ni ~ O. Using Nash rather than strategic bargaining simplifies the 

analysis, allowing us to focus on the issues of interest. 

The value to an agent of type i of entering the mediated market and following the optimal 

policy thereafter, is Pi~ +(1- pi)6Vi. The value of entering the matching market and following 

the optimal policy thereafter is (XiNi + (1 - (Xi)6Vi. It is well known that there is a stationary 

policy which is optimal. (See Theorem 2.2 of Ross [6].) In particular, if Pi~ + (1 - pi)6Vi is 

greater than aiNi +(1 - ai)6Vi, then the policy of entering the mediated market at each date is 

optimal. Therefore, the proportion of type i agents entering each market is related to the value 

of entering each market as follows 

Pill; + (1 - pi)5V; ( :) "iN,+ (1 - "i)5V; =} Ai = ( ~ ) . (5) 

Either policy is optimal when the value of entering each market is equal. One can also interpret 

'xi as, for each agent of type i, the probability that he enters the mediated market. Then the 

interpretation of (5) is that a type i agent enters the market that has the higher value and mixes 

only if the value of entering each market is the same. 

In a steady state, at each date exits from the mediated market plus exits from the matching 

market are exactly balanced by entry. Thus, for each i E {5, E}, mi is related to 'xi, Pi, and ai 

by the equation 

(6) 

Equation (6) presumes that each match ends with trade, which is indeed the case when entering 

the matching market is optimal for both types.6 Since buyers and sellers exit in pairs from each 

market, it is natural to require that 

mS-mB = D.. (7) 

6That entering the matching market is optimal for both types implies that Vi =CI,N, + (1 - Cli)oVi for each 

i E {S, B}. Moreover, we have that Ni = 1-6V~-6Vfl +oVi if 1 - oVs - OVB ~ 0, and Ni = 0 otherwise. This 

system of equations has a unique solution where Va = 2-6r~-k) for each i E {S, B}. This implies oVs +OVB = 
2-6~Lk) < 1, and therefore each match ends with trade. 

10 



In other words, the steady-state difference between the measure of sellers born, but not having 

yet traded, and the measure of buyers born, but not having yet traded, must be the same as 

the difference in the measures at date zero. 

A solution to the system of equations (1 )-(7) represents a steady state of the intermediated 

market when each agent follows an optimal policy of entering the mediated and matching market 

given the bid and ask price, the price negotiated in the private trading market, and the entry 

policy of every other agent. We refer to such a solution as a quasi-equilibrium. A quasi­

equilibrium can be viewed as a conjecture by the intermediary of the steady state that prevails 

for given bid and ask prices. A quasi-equilibrium need not be a full equilibrium as the bid and 

ask prices need not maximize the intermediary's profit. 

Definition. The vector {Ri, Vi, mi, .xi, ai, pdi=S,B is a quasi-equilibrium if it is a solution to the 

system of equations (1 )-(7). 

Let Qdenote the set of quasi-equilibria. Given a quasi-equilibrium {Ri, Vi, mi, .xi, ai, pih=s,B, 

the profit to the intermediary is (1 - RB - Rs).ximiPi. Let IT : Q -+ ~ give the profit to 

the intermediary for each quasi-equilibrium. The intermediary chooses bid and ask prices to 

maximize its profits, therefore we define an equilibrium with intermediation as follows. 

Definition. We say that q* E Q is an equilibrium with intermediation if for all q E Q that 

IT(q*) 2 IT(q). 

We are interested in intermediation when there is an active private trading market (Le. a 

positive proportion of at least one type of agent enters the matching market) and we have 

implicitly restricted attention to this case. To see this notice that in any quasi-equilibrium we 

have.x i < 1 for some i E {S, B}, and therefore the matching market is active, since otherwise ai 

is not given by (2). If the matching market were inactive, then an agent entering the matching 

market does not find a partner. In this case, the intermediary no longer faces any competition 

from the matching market and he can extract all the gains to trade. The definition of quasi­

equilibrium rules out this kind of degenerate situation.7 

7The definition of quasi-equilibrium rules out, for example, the conjecture by the intermediary that all agents 
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The definition of quasi-equilibrium also rules out situations where the mediated market is 

inactive. (If'xs = 'xB = 0 then Pi is not given by (1).) If the mediated market is inactive, 

then an agent entering the mediated market trades with probability zero since the intermediary 

only crosses trades. This situation is also uninteresting as the intermediary cannot attract entry 

regardless of the bid and ask prices it sets. 

4 Equilibrium with Intermediation is Walrasian 

The main result of this section is that in every equilibrium with intermediation the bid price 

is zero and the ask price, which depends on the discount factor, is positive but less than one. 

As the cost of delay vanishes, the ask price goes to zero, and the intermediary buys and sells 

the indivisible good at each date at its Walrasian equilibrium price. Our first result is that an 

equilibrium with intermediation exists. 

THEOREM 2: An equilibrium with intermediation exists. 

Theorem 3 shows that equilibria with intermediation differ only in the proportion of sellers 

entering the mediated market and in the probability that a seller entering the mediated market 

trades. 

THEOREM 3: Every equilibrium with intermediation {.Ri, Vi, mi, 'xi, ai, pdi=S,B satisfies: 

(i) RB ::;:: VB ::;:: 2-2~+6k' Rs = VS::;:: Dj 

(ii) mB::;:: 1/, ms ::;:: 1/ +~j 

(iii) aB =k, as ::;:: 0; 

(iv) 'xB = 1, JI~L\ :::; ,xs < 1j 

(v) PB::;:: 1,ps = >.s(:+L\)' 

Every equilibrium with intermediation has the following characteristics. At each date, each 

buyer born, but not having yet traded, enters the mediated market and, since PB = 1, he trades 

enter the mediated market when the ask price is one and the bid price is zero. 
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immediately. Therefore, each generation t buyer purchases one unit of date t indivisible good 

at the ask price Pa. = 1 - RB = (~:~)J~6:)' which is greater than zero but less than one. At each 

date, each seller born, but not having yet traded, enters the mediated market with probability 

).,5. Since ps > 0 and as = 0, each generation t seller eventually supplies one unit of the 

indivisible good at the bid price Pb = Rs = 0.8 (Sellers may be rationed in equilibrium since 

Ps < 1 when ).,5 > /I;~') All trade takes place in the mediated market. Hence the volume of 

trade in the mediated market is v, the maximum possible steady-state volume. The spread is 

1- RB - Rs = (~:~~~6t), and therefore the intermediary's profit in equilibrium is (~:~~~li:)v. 

Since the bid price is zero, the intermediary and buyers capture all of the gains to trade. 

The comparative statics with respect to the efficiency of the matching process go in the 

expected direction: As k increases, the random matching process thereby becoming more effi­

cient, the intermediary's spread (and hence his profit since volume does not depend on k) both 

decrease. 

Of primary interest is the equilibrium behavior of the intermediary as the cost of delay 

vanishes. As the discount factor approaches one, the ask price obtained in the limit is zero since 

lim8.....1 (~:~)j~6:) = O. The spread also goes to zero as the cost of delay vanishes, since the bid 

price is zero regardless of the cost of delay. In the limit, the intermediary buys and sells the 

indivisible good at each date at its Walrasian equilibrium price of zero. Each buyer and seller 

obtains his Walrasian equilibrium payoff. 

In the remainder of this section, we prove Theorems 2 and 3 and we discuss the intuition 

underlying the result that when the costs of delay are small, the intermediary sets the bid and ask 

price of the indivisible good nearly equal to its Walrasian equilibrium price. Lemma 1 establishes 

some properties of quasi-equilibria. The properties established are also properties of equilibria 

with intermediation since an equilibrium with intermediation is also a quasi-equilibrium. The 

proof of Lemma 1 is given in the appendix. 

LEMMA 1: If {R" Vi, rn" ).,i, a" p,}a=S,B E Q then (i) ).,i > 0 for each i E {S, E}, (ii) Vs+ VB ~ 

k d ( ...) D. 11 1- 6(l-p;), h . E {S E}
2-28+8k' an ZU.ll-1 = Y, Pi Jor eac z ,. 

8Here we interpret >"5 as the probability that a seller enters the mediated market. A seller entering the 

matching market does not trade since o:s =O. Since >"s > 0 and Ps > 0, each seller eventually trades one unit 

of the indivisible good in the mediated market with probability one. 
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Part (i) of Lemma 1 shows that a positive proportion of each type of agent enters the 

mediated market in each quasi-equilibrium. This result holds since in a quasi-equilibrium at 

least one type of agent enters the mediated market, but it cannot be optimal for only one type 

to enter the mediated market. An implication of Part (i) of Lemma 1 is that volume is positive 

in each quasi-equilibrium. Part (i) does not imply that volume is positive for every bid and ask 

price, since not every combination of bid and ask prices can be realized as part of a solution to 

(1)-(7). 

Part (ii) of Lemma 1 shows that the sum Vs +VB is at least as great as 2-2~+Sk' This result 

holds since in a quasi-equilibrium each agent has the opportunity to trade in an active private 

trading market. 

Part (iii) of the Lemma holds since to induce a type i agent to enter the mediated market 

the intermediary must offer him a share of the surplus Ri at least as great as Vi. Together, 

parts (ii) and (iii) of the Lemma imply that in a quasi-equilibrium the spread is no greater than 

1- 2-2~+Sk' Moreover, if Vi is positive and 0 < Pi < 1 for some type i E {S, B}, then Ri must 

be greater than Vi and the spread is strictly less than 1 - 2-2~+Sk' 

We are now prepared to prove the main results of this section. 

PROOF OF THEOREM 2: We show that the vector q* = {Ri, y:*, mi, ~i, ai, pi}i=S,B given by 

R* k v;* - k * -B = 2-2S+Sk' B - 2-2S+Sk' mB - 11, ~B = 1, aB = k, PB = 1, 

and 

Rs=0, Vs =0, ms = 11 +~, ~s = v~a' as = 0, Ps = 1, 

is an equilibrium with intermediation. It is easy to verify that q* E Q. We then need to show 

that for each q = {Ri, Vi, mi, ~i, ai, Pi}i=S,B E Q one has 

(1 - 6)(2 - k) * 
II(q) = (1 - RB - RS)~imiPi ~ 2 _ 26 +6k 11 = II(q ). 

Part (i) of Lemma 1 and equation (1) yield Pi> 0 for each i E {S,B}. Therefore l-S~i-Pi) is 

well defined, and Part (iii) of Lemma 1 and Vi ~ 0 imply ~ ~ Vi for each i E {S,B}. Part 

(ii) of Lemma 1 and Ri ~ Vi for each i E {S,B} imply that 1 - RB - Rs ~ (12-=-W~"i:)' The 

inequality is obtained by noting that ~iPimi ~ 11 by (6). 0 
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The proof of Theorem 3 follows. 

PROOF OF THEOREM 3: Suppose that q = {.R;, Vi, mi, Ai, 0i, pdi=S,B is an equilibrium with 

intermediation. We show that AiPimi = v and RB + Rs = 2-2~+6k' By (6) we have that 

AiPimi :::; v and by Part (ii) and (iii) of Lemma 1 we have that RB +Rs ~ 2-2~+6k' If either 

AiPimi < v or RB + Rs > 2-2~+6k' then 

k) (1 - 6)(2 - k) * 
II(q) = (1 - RB - RS)AiPimi < (1 - 2 _ 26 +6k v = 2 _ 26 +6k v =II(q ), 

contradicting that q is an equilibrium with intermediation. 

We show that RB +Rs = 2-2~+6k and Lemma 1 imply that: 

(a) Vs +VB = 2-2~+6k' 

(b) For each i E {S, E} : Vi > 0 implies Pi = 1. 

Since RB +Rs = 2-2~+Sk and since Ri > Vi for each i E {S, E} by Part (iii) of Lemma 1, then 

(a) holds by Part (ii) of Lemma 1. Suppose contrary to (b) that Vi > 0 and Pi < 1. Then.R; > Vi 

by Part (iii) of Lemma 1. Since Ri > Vi and R_i ~ V-i, then Rs + RB > Vs +VB = 2-2~+6k 

which is a contradiction. 

We now show that AB = 1. Since AiPimi = v we have by (6) that oi(l- Ai)mi = O. Therefore 

either Ai = 1 or 0i = O. But 0i is zero only if A-i = 1. Therefore, either Ai = 1 or A-i = 1. 

Suppose that AB < 1. Then AS = 1. Moreover, ms = mB + Do > v and ASpsms = v imply 

that ps < 1. Observation (a) yields 1 - 6Vs - 6VB > 0, and therefore by (4) we have that 

Ns = 1-6V~-6VB +6Vs > O. Since AB < 1, it follows from (2) that Os > O. By (3), we have 

Vs > osNs +(1 - os)6Vs. 

Thus Ns > 0 and Os > 0, and therefore Vs > 0, which contradicts (b) since Ps < 1. 

We now show that Vs = 0 and VB = 2-2~+6k' In a quasi-equilibrium either AS < 1 or 

AB < 1. (If both AS = AB = 1, then the matching market is inactive and 0i is not given by (2).) 

Therefore, AB = 1 implies that AS < 1. Moreover, AB = 1 implies by (2) that Os = O. Since 

AS =1= 1, then (3) and (5) imply that Vs = osNs + (1 - os)6Vs. As Os = 0 and 6 < 1, we have 

Vs = O. Part (iii) of Lemma 1 implies that Rs = O. From (a) it follows that VB = 2-2~+6k' 

15 

r
 



From VB > °and (b), we have PB = 1. Part (iii) of Lemma 1 and VB = 2-2~+6k then imply that 
- kRB - 2-26+c5k' 

It is only left to be shown that ms = v +~, mB = v, .As ;::: v;~, and Ps = >'s(:+~)' Since 

PB = 1, by (1) we have .Asms ;::: .ABmB. Moreover, .ABPBmB = v and .AB = PB = 1 imply that 

mB = v, and therefore ms = v +~ by (7). Then .Asms ;::: .ABmB implies that .As ;::: v;~, and 

.Aspsms = v implies that Ps = >.s(:+~)' 0 

To understand the result that the intermediary sets nearly Walrasian bid and ask prices 

when the cost of delay is small, it is useful to note that there are quasi-equilibria in which the 

intermediary and sellers capture all of the gains to trade. Consider, for example, the quasi­

equilibrium where Vs = 2-2~+6k' VB = 0, ms =2v +~, mB = 2v,.As = 1,.AB = !,as = k, OB = 
0, ps = 2v~~' PB = 0, Rs = Vs l-c5~s-ps), and RB =0. In this quasi-equilibrium the bid price is 

2-2~+6k l-c5~s-ps) and the ask price is 1. As the cost of delay vanishes, in the limit the bid and 

the ask price are both one. This quasi-equilibrium is not an equilibrium with intermediation, 

however, as these bid and ask prices do not maximize the intermediary's profit. Although the 

volume of trade in the mediated market is v, sellers have a positive value and are rationed, and 

therefore the spread is less than 1 - 2-2~+6k' 

In the next section we show that when agents only have the opportunity to trade privately, 

then the price of the indivisible good at each date is positive even as the cost of delay vanishes. 

We conclude that some degree of centralized trade, like that provided by an intermediary, is 

necessary for the market outcome to be Walrasian. 

5 Equilibrium with Only Private Trading 

We now consider the trading procedure obtained by removing the possibility of trading through 

the intermediary from the model of intermediation. In this case, all trade is private and at each 

date the price of the indivisible good is determined by bargaining between matched buyers and 

sellers. We define an equilibrium with private trading to represent equilibrium in the market 

when trade is completely decentralized. 
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Definition: The vector {Vi, mi, ai, h=S,B is an equilibrium with private trading if for each i E 

{S,B} : 

(i) o· = k m_i • 
, mi+m_i' 

(ii) Vi =Oie-svrsVa +6Vi) +(1 - oi)6Vii 

(iii) 0imj = Vj 

(iv) ms - mB = ~. 

Equation (i) defines matching probabilities when there is only private trade. Equation (ii) 

gives the value to an agent of type i (when unmatched, prior to the random matching of agents) 

when the price of the indivisible good in each match is determined by Nash bargaining. Equation 

(iii) says that in a steady state, exits are balanced by entry. Equation (iv) requires that the 

difference at date zero between the measure of sellers born but not having yet traded and the 

measure of buyers born but not having yet traded is preserved in a steady state. 

It turns out that there is a unique equilibrium with private trading, denoted by the vector 

{Vi-, m:, 0ni=S,B. In this equilibrium 

_ 07 
Vi = 2 _ 6(2 _ k) > 0, 

where 0 < 0: < k. 9 By equation (2) we have that Os +OB = k, and therefore 

v:- v;- Os +OB k 
S + B = 2 _ 6(2 - k) = 2 - 6(2 - k)'
 

The sum is less than one since, when all trade is private, each agent typically trades only
 

following costly delay. The price of the indivisible good at each date is given by l-SV\-SVa +6V;
 
l-S(l-~S) 0 

and equa s I 2-S(2-k) > . 
When delay costs are positive, each agent in a match has market power and one should not 

expect the bargained price to be Walrasian. More surprisingly, as the cost of delay vanishes the 

price of the indivisible good at each date is given by lims_l l;!Sl;~:) = ¥, which is greater 

than its Walrasian equilibrium price of zero. Neither buyers nor sellers obtain their Walrasian 

equilibrium payoff. Buyers obtain lims_l 2-:Cf-k) =~ < 1 and sellers obtain ¥- > O. 

This non-Walrasian result does not depend on the assumption that prices are determined by 

Nash bargaining. Rubinstein and Wolinsky [8] embed the alternating offer game of Rubinstein 

9The remainder of the equilibrium vector is mB = 21-~+(4t+~~)ln and ms = 21+~+(4t+~~)1/~, where 

" - k m~i 0'Y =I and (}:j = mO .+m~ > .-. . 
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[7] into a model where there is only private trade. They show that even with strategic bargaining, 

the market outcome is not close to the Walrasian outcome as the cost of delay vanishes. lo 

6 Concluding Remarks 

It is natural to ask how the entry of an intermediary into a market where heretofore all trade was 

private affects the welfare of buyers and sellers. It turns out that the average welfare of buyers 

and sellers, as measured by Vs +VB, is the same in the equilibrium with private trading as in 

the equilibrium with intermediation. The effect of the entry of an intermediary, and therefore 

the introduction of the possibility of centralized trade, is to shift the capture of the gains to 

trade towards the type of agent present in the market in smaller measure. 

In the equilibrium with intermediation there is no costly delay; each buyer trades at the date 

he is born and, since the bid price is zero, each seller obtains a utility of zero regardless of the 

delay (if any) he experiences prior to trading. Since the average welfare of buyers and sellers 

is the same in the equilibrium with private trading and in the equilibrium with intermediation, 

we see that the intermediary captures all the gains arising from the elimination of costly delay. 

This result is not surprising given that the intermediary is a monopolist. 

Other authors have studied models of "large" intermediaries that differ from our model in 

significant respects. In Yavas [12] and in Gehrig [3] the search market operates for only one 

period. Moresi [5] characterizes the steady state that prevails in the search market for given bid 

and ask prices, but does not determine the intermediary's profit maximizing bid and ask. In 

the present paper the search market operates perpetually and the intermediary sets bid and ask 

prices to maximize his profits. 

7 Appendix 

Before proving Theorem 1, we state two claims which are used to prove Theorem 1. Claim A 

is that in a Walrasian equilibrium price sequence, the price of the indivisible good is bounded 

10They obtain this result for a economy where each agent who trades is replaced by an agent of the same type. 

Their assumption that entry is through replacement, rather than exogenously given as in the present paper, is 

not essential for their result. 
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below by zero and above by one. Claim B gives a lower bound on the rate of growth of prices 

along an arbitrarily long subsequence of dates if Pt > 0 for some t. These results are then used 

to prove Theorem 1, that in any Walrasian equilibrium p == (0,0, ...). 

CLAIM A: Let p be a Walrasian price sequence. Then 0 :5 Pt :5 1 for each t. 

PROOF: Suppose that p is Walrasian. We first show that Pt :5 1 for each t. Suppose to the 

contrary that we have Pt > 1 for some t. Then xl == 0 for each seller h E G~ since the allocation 

(Pt, 0, t) is feasible and yields a utility of Pt > 0, while any allocation with xl == 1 yields at most a 

utility of zero (by the budget constraint of seller h). Thus, there is a date k ~ t such that Th == k 

and xl == 0 for a positive measure of sellers h E G~. Utility maximization and Th == k imply that 

Pkok-t ~ Ph and therefore Pk > 1. By Walras's law, since Pk > 0 the market-clearing condition 

for date k indivisible good must hold as an equality.ll Therefore, we must have Th == k and 

xl == 1 for a positive measure of buyers h E G~ U ... U Gt. But the allocation (-Pk' 1, k) yields 

a utility of less than zero for any such buyer, while the allocation (0,0, k) is feasible and yields a 

utility of zero. Therefore, utility maximization is contradicted. The symmetric argument shows 

that Pt ~ 0 for each t. 0 

CLAIM B: Let p be a Walrasian price sequence. If Pt > 0, then for any n ~ t there exists an 

m > n, such that Pt :5 Pmom-t. 

PROOF: Let (p,(x, T)) be a Walrasian equilibrium and suppose that Pt > 0 for some t. We first 

show that Pt > 0 implies that 

f (xl - wl) dh == O. (8) 
J{heGlr"St} 

We begin by showing that the market-clearing condition for the indivisible good at each date 

holds with equality for each date k < t. By Claim A, we have Pk > O. If Pk > 0 then Walras's 

Law implies that J{heGlr,,:k}(xl- wl) dh == O. If Pk == 0 and k :5 t, then utility maximization 

implies that Th #- k for each h E ~ U ... U G~, since seller h obtains at most a utility of 

llIn this economy, for each k Walras's Law states 
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zero trading at date k, while the allocation (Pt, 0, t) is feasible and yields a positive utility. 

Thus, for each k $ t we have that f{hEGsITh=k}(xl - wl) dh = O. Now wl = 0 for each buyer 

h E G~ u ... u G~, which implies that J{hEGsITh=k}(xl- wl) dh ~ O. Summing these last two 

integrals yields J{hEGITh=k}(xl- wl) dh ~ 0, which together with the market-clearing condition 

for good 1 at date k, implies that J{hEGITh=k}(xl- wl) dh = O. Summing over k $ t we obtain 

(8). 

The Claim is proved by induction. Let P(n) be the proposition "If Pt > 0, then there exists 

an m > n such that Pt $ Pm6m-t." To prove the Claim we need to establish that P(n) is true 

for each n ~ t. We begin by showing that P(n) is true for n = t. 

Utility maximization and Pt > 0 implies that for each seller h E G~, where k $ t, we have 

xl =O. This follows since the allocation (Pt, 0, t) is feasible and it yields a utility of 6t- kpt > O. 

In contrast, any allocation with xl = 1 must be such that x~ $ 0, and therefore yields at 

most a utility of zero. Suppose contrary to P(t) that for all m > t we have Pt > Pm6m-t. 

Then pt6t-k > Pm6m-k for all m > t, and therefore each generation k seller, k $ t, obtains a 

higher utility trading at date t than trading at any other date m > t. Hence, for each seller 

h E ~ U ... u G~ we have rh $ t, xl = 0, and wl = 1. Thus, 

f (xl- wl) dh = -[Jl(G~) +... + Jl(G~)].J{hEG SITh~t} 

Since xl $ 1 and wl = 0 for each h E G~ u .. ,u G~ we have that f{hEGsITh~t}(xl-wl) dh $ 

Jl(G~) +... + Jl(G~). Summing these last two integrals yields 

which contradicts equation (8). 

Let i ~ t be arbitrary. We assume that P(i) is true and we show that P(i +1) is true. Since 

P(i) is true there exists an m > i such that Pt $ Pm6m-t. Suppose P(i + 1) is false; Le. for all 

oS > i + 1 we have Pt > P363-t. Then for all s > i +1 we have 

(10) 

Clearly, it must be the case that m = i + 1. (If m > i + 1 then equation (10) does not hold for 

oS = m, which is a contradiction.) 
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Since Pt > 0, then (10) implies PHI > O. Utility maximization and PHI > 0 imply that for 

each seller h E G~U ...UG~+l we have xl = o. Now (10) also implies that Pi+l6Hl- k > p,6,-k for 

all s > i +1, and therefore each generation k seller, k:$; i +1, obtains a higher utility trading at 

date i+l than trading at any subsequent date. We have shown for each seller h E G~U ...UG~+l 

that rh :$; i +1, xl =0, and wl =1. Therefore 

I ,(xl-wl)dh=-[Jl(~)+ ... +Jl(G~+l)]. 
J{hEGsl'Th$I+l} 

Since xl :$; 1 and wl = 0 for each h E G~ U ... U di l we have that J{hEGBI'Th$Hl}(xl-wl) dh < 
o '+1Jl(GB ) +... + Jl(GB ). Therefore, 

(11) 

which since Pi+l > 0 contradicts equation (8). 0 

PROOF OF THEOREM 1: Suppose contrary to the theorem that p :F (0,0, ... ). Since by 

Claim A we have Pt ~ 0 for all t, there is a t such that Pt > O. By Claim B we have that for any 

positive integer n ~ t, there exists an m > n such that Pt < Pm6m-t. Since 6 < 1 this implies 

that for n sufficiently large there exists an m such that Pm > 1, contradicting Claim A. This 

contradiction establishes Theorem 1. 0 

The proof of Lemma 1 follows. 

PROOF OF LEMMA 1: PROOF OF PART (i). In a quasi-equilibrium Ai > 0 for some i E {S, E}. 

(If As = AB = 0, then Pi is not given by equation (1).) We show that in fact Ai > 0, for each 

i E {S, E}. Suppose to the contrary that Ai = 0 for some i E {S, E}. We show this implies that 

V- i = O. As Ai = 0 and A-i > 0 we have P-i = 0 by (1) and Q-i > 0 by (2). Since A-i :F 0 then 

(12) 

where the inequality follows from (5) and the equality follows from (3). The equality in (12), 

P-i = 0, and 6 < 1, imply that V-i = O. The inequality in (12) and Q-i > 0 imply that N-i = O. 

In order to prove Part (i) of the Lemma we consider two cases. 
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CASE I: Suppose that 1 - bVs - bVB ~ O. In this case we have N-i = 1-6V~-6VR + bV_i by 

(4). Since N_i = 0 and V-i = 0 we have that 1 - bVs - bVB = O. Therefore, we also have that 

Vi = !. As Ai # 1, then (3) and (5) yield 

(13) 

Because Vi = i, 1 - bVs - bVB = 0, and Ni = 1-6V~-6VB + bVi, we have Ni = 1. Replacing Ni 

with 1 and Vi with! in (13) gives i =1, which is a contradiction. 

CASE 11: Suppose that 1 - bVs - bVB < O. In this case we have Ns = NB = 0 by (4). 

Equation (13) then implies that Vi = O. But \Ii = 0 and V- i = 0 (from above) contradicts that 

1 - bVs - bVB < O. 

PROOF OF PART (ii). By equation (5), for each i E {S,E} we have 

(14) 

Suppose that 1 - bVs - bVB ~ O. Then summing (14) over i E {S,E} and using (4), we have 

1 - bVs - bVB)Vs+ VB ~ (as+aB) 2 +b(Vs + VB).( 

Equation (2) implies that as + aB = k. Substituting as + aB = k into the equation above and 

rearranging the result yields the desired inequality. If 1 - bVs - bVB < 0, then we have that 

Vs +VB > }. Therefore 2-2~+6k < 1 <Vs +VB and the result is proven. 

PROOF OF PART (iii). By Lemma 1, we have Ai > 0 for each i E is, E}. Since Ai # 0 for each 

i E is, B}, then (3) and (5) imply that Vi = piRi + (1 - pdbVi for each i E is, B}. 0 
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