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1. Introduction� 

Consider the following problem from public finance: there are m public goods (education, trans­

portation, police, etc.) provided in limited amounts due to budget constraints. Individuals' pref­

erences are unknown, although they might be known to be monotonic, continuous, convex, etc.. 

In this paper it is shown that all the institutions (i.e., decision mechanisms) one can use to make 

decisions have ~ery bad properties: either they are not compatible with individuals incentives, or 

they make decisions based on a single individual's preferences. 

The revelation principle has established that the search for incentive compatible decision mech­

anisms can be restricted to those that make a decision based on individuals' reported preferences. 

A decision mechanism of this class is a mapping which associates a feasible outcome with each 

profile of reported preferences. Individuals might attempt to manipulate these mechanisms by 

reporting preferences different from their true ones. In order for a mechanism to be incentive 

compatible it must be immune to participants' manipulations; i.e., an individual must be best 

off reporting his true preferences, whatever preferences the other individuals report. Decision 

mechanisms with this property are referred to as strategy-proof. 

\iVhether or not a decision mechanisms is strategy-proof depends on the domain of preferences 

on which it must decide, and on the set of outcomes it selects. Any constant decision mechanism 

is (trivially) strategy-proof. If constant mechanisms are ruled out, then one needs to know the set 

of possible (i.e., admissible) preference profiles on which a mechanism is to decide. In many cases, 

individuals' preferences might be known to be monotonic (i.e., such that bundles with more of 

each good are preferred to those with less). This will be the case when, for example, public goods 

are desirable or freely disposable. The purpose of this paper is to determine which strategy-proof 

mechanisms are available when individual preferences are known to be monotonic. 

Gibbard[3] and Satterthwaite[6] independently showed that when all preferences are admissible, 

then only dictatorial decision mechanisms (i.e., those which always select a single individual's best 

outcome) are strategy-proof. Their result was obtained for the case where the set of feasible 

outcomes is finite, and decision mechanisms select at least three different outcomes. Barbera and 

Peleg[2] have established that the Gibbard-Satterthwaite Theorem remains valid when the set of 

feasible outcomes is infinite even if preferences must be continuous. Zhou[7] has shown that when 

preferences are known to be convex as well as continuous, strategy-proof decision mechanisms 

whose range contains a two dimensional set are dictatorial. (Strategy-proof mechanisms for this 

domain of preferences and with a one dimensional range were characterized by Moulin[5] as medium 

voter type mechanisms, among which there are nondictatorial mechanisms. Barbera and Jackson[l] 

.. ,------- ----------------­

1 



2 

have recently generalized this characterization.) 

In this paper it is shown that results similar to those of Barbera-and-Peleg's and Zhou's the­

orems hold even when admissible preferences are further required to be monotonic. It is shown 

that when all the continuous and monotonic preferences are admissible, then every strategy-proof 

mechanism whose range contains three or more (~-maximal) outcomes is (weakly) dictatorial. 

When individuals' preferences are known to be convex as well as continuous and monotonic, then 

every strategy-proof mechanisms whose range is sufficiently large is also dictatorial. 

In contrast with the situations accounted for in Zhou's Theorem, when only monotonic and 

convex preferences are admissible there are strategy-proof nondictatorial mechanisms whose range 

is a two dimensional set. The existence of these mechanisms is related with the fact that there 

are examples of two dimensional sets of outcomes on which monotonic and convex preferences are 

single peak. This possibility disappears when the range of the mechanism is sufficiently large. 

2. The Model 

The set of individuals is N = {I, ... , n}, where n ~ 1. For simplicity, individuals' consumption set 

is taken to be ~+. Individuals' preferences are represented by utility functions (i.e., real-valued 

functions on ~+). The set offeasible outcomes is denoted by X, which is assumed to be a compact 

subset of ~+ . 
As individuals' utility functions might be known to have certain properties, let U denote the 

set of a priori admissible utility functions. The set U with the metric d given for u, u' E U by 

d(u,u') = sup{h'(u(x))-"Y(u'(x'))I, X,X'E~+}, where "Y: ~ -+ (-1,1) is defined by "Y(r) = 
I':lrl' is a metric space.The set of admissible utility profiles is therefore un. Utility profiles are 

denoted by U = (UI' ... , un). The set un with the product metric is a metric space. For U E un and 

S eN, U-s is the profile obtained from u by deleting the utility functions of the members of S. 

A decision ~echanism (or simply a mechanism) is a mapping f : un -+ X. A mechanism f 

IS manipulable by i E N at u E un if there is u' E U such that Uj(J(u_j,u')) > Uj(Jj(u)). A 

mechanism is strategy-proofif it is not manipulable by any i E N at any U E un. A mechanism f is 

dictatorial on on c un if there is an individual i E N such that for each U E on, f(u) maximizes 

Uj on f(on) (Individual i is then referred to as a dictator for f on on). A mechanism is dictatorial 

if it is dictatorial on un, and it is nondictatorial if it is not dictatorial. A mechanism f is weakly 

dictatorial if it is dictatorial on a dense subset on of un with the property that for each U E U, 

U(J(on)) = u(J(Un)). 

Strategy-proof mechanisms are those for which an individual is always best off reporting a utility 



function representing his true preferences. Dictatorial mechanisms always select an outcome from 

the set of maximizers of a single individual's (the dictator's) reported utility function. Weakly 

dictatorial mechanisms almost always select the outcome based a single individual's reported utility 

function. When this is the case, the condition u(f(nn)) = u(f( un)) for each u E U guarantees that 

the (weak) dictator obtains an outcomes that maximizes his utility function on the mechanism's 

range. 

Given a mechanism f, write Xi = f(Un), and Xi= {x E Xi l,lIx' E Xi with x' > x} (i.e., Xi 

is the set of 2::-maximal points of X i). A set A C ~m is said to be plentiful if there are not x,y E A 

such that A is contained in the set {x' E ~m I x' 2:: .xx + (1 - .x)y, .x E [0, I]). Note that if A is 

plentiful then it is at least a two dimensional set, although there are two dimensional sets that are 

not plentiful (see Example 2 below). Also denote by #A the cardinality of A. 

3. The Results 

For economic problems associated with allocating public goods, there are two domains that are 

of particular interest: the set UC of all continuous and increasin!f utility functions, and the set 

UQ of continuous increasing and strictly quasi-concave2 utility functions. Given an arbitrary set 

of utility functions U, write 0 for the set of utility functions in U that are strictly increasing. 

Theorem 1 establishes that even when utility functions are required to be in either of these sets, 

every strategy-proof mechanism whose range is sufficiently large is weakly dictatorial. 

Theorem 1. Let f : un --+ X be a strategy-proof mechanism. If either 

(1.1) UC C U and #Xi 2:: 3, or 

(1.2) UQ C U and Xi is plentiful,� 

then f is dictatorial on On. Moreover, it is weakly dictatorial.� 

Barberii and Peleg[2] and Zhou[7] have established similar results when nonmonotonic pref­

erences are admissible: Barbera and Peleg Theorem establishes that if U contains the set of all 

continuous utility functions (increasing or not) and #Xi 2:: 3, then every strategy proof allocation 

mechanism is dictatorial. Zhou has shown that the same conclusion arises when U contains the 

set of continuous and strictly quasi-concave (and quadratic) utility functions, and Xi is at least 

1A utility function u is increasing if for each x, x' E lRt', x > x' implies u(x) ~ u(x'), and x ~ x' implies 

u(x) > u(x'); it is 'strictly increasing if u(x) > u(x') whenever x > x'. (The convention used for vector notation is 

as follows: For a, bE Rem, write a ~ b (resp. a> b) if ai ~ bi (resp. ai > bi ) for each i =1, ... , m; write a > b if 

a ~ b and a,# b.) 
2A utility function u is quasi-concave if for each each x, x' E lRt', and for each ~ E (0,1) , one has u( ~x + (1 ­

~)x') ~ min {u(x), u(x')} . When this inequality is strict, u is said to be strictly quasi-concave. 

,-----_._-_. 
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a two dimensional set (i.e., the dimension of the smallest affine subspace that contains X I is at 

least two). 

The conclusion of Theorem 1 is weaker than those obtained by either Barbera-and-Peleg or 

Zhou. However, the following example shows that when preferences are monotonic, then there are 

mechanisms satisfying the assumptions of Theorem 1 that are weakly dictatorial, but not (fully) 

dictatorial. For U E U and A C X, denote by argmax(u, A) the set of maximizers of u in A. 

Example 1. There are two individuals and three public goods. The set of feasible outcomes 

is X = {(Xl, X2, X3) E ~t I 2:i Xi ~ I}. Individuals' admissible utility functions are those that 

are continuous and increasing. Let Xl be the set {(1,0,0),(0,1,0),(~,~,0),(0,0,0)}, and let 

U E U be given by U(XI,X2,X3) = X3. Let the mechanism f be given for each (UI,U2) E U2 by 

j(UI,U2) = (0,0,0) if U2 = u; otherwise let f(UI,U2) be some arbitrary point in arg max(ut, XI). 

This is a strategy-proof mechanism satisfying the assumptions of Theorem 1. It is a weakly 

dictatorial mechanism, but it is not a (fully) dictatorial mechanism. 

Also note that conditions (1.1) and (1.2) of Theorem 1 introduce requirements on the set 

X I, while Barbera and Peleg's and Zhou's theorems establish conditions on X I. However, when 

only increasing utility functions are admissible the set of potentially conflicting outcomes is X I. 

Moreover, Zhou's requirement that the set X I be a two dimensional set is replaced here with the 

requirement that the set XI be plentiful. As the following example shows, when only monotonic 

preferences are admissible there are strategy-proof non (weakly) dictatorial mechanisms whose 

range is a two dimensional set. 

Example 2. There are two individuals and two public goods. The set of feasible outcomes is 

X = {(Xl, X2) E ~~ I X~ + x~ ~ I} . Individuals' admissible utility functions are those that are 

continuous, increasing and quasi-concave. Define the mechanismf whose range X I is the set 

{(I, 0), (0, 1), (~, 72)} as follows. Let <jJ : 2Xf -+ Xl be a (selection) function satisfying for each 

A C XI, A =I- 0, <jJ(A) E A, and whenever A \ {(O, I)} =I- 0, then <jJ(A) = <jJ(A U {(O, I)}). Let 

f be given for each (UI,U2) E U2 by f(UI,U2) = <jJ(argmax(UI' XI)), if (0,1) E argmax(u2,XI); 

otherwise let f( UI, U2) = <jJ(arg max(UI, X I) \ {(O, I)} )). 

This is a nondictatorial mechanism, as Individual 2 can veto the outcome (0, 1). It is shown 

that f is a strategy-proof mechanism. Clearly, Individual 1 can never manipulate f. Suppose that 

Individual 2 can manipulate fat (UI,U2) E U; i.e., there is u' E U such that U2(J(UI,U')) > 

U2(J( UI, U2))' Note that since every U E U is quasi-convex and increasing, and since the outcome 

(72' 72) lies above the line passing (1,0) and (0,1), then 
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(*) u(O, 1) ~ u(1,O) ===> u(~, h) > u(l,O), and 

(**) u(l,O) ~ u(O,l) ===> u(~,~) > u(O,l). 

If (0, 1) E ar.g max(U2, X i), then f( Ul, U2) E arg max(Ul, X i). Since f( Ul, U2) =f. (0,1) (because 

otherwise U2(J( Ul, U2)) ~ U2(J( Ul, u')), then by construction (see the definition of cP) f( Ul, U2) = 
f(Ul,U'), which contradicts that U2(J(Ul,U')) > U2(J(Ul,U2)). 

If (0,1) rt. argmax(u2,Xi), then in order for f(Ul,U') =f. f(Ul,U2), it must be that case that 

f(Ul,U') = (0,1). Therefore argmax(ul,Xi) = {(0,1)}. By (*), Ul(~'~) > ul(l,O)i hence 

f(Ul, U2) = (~, ~). Because f is manipulable at (Ul, U2) by assumption, U2(0, 1) > U2(~' ~), 

and as (0,1) rt. arg max(U2, X i), then u2(1, 0) > U2(0, 1) > U2( *, ~), which contradicts (**). 

Therefore f is a strategy-proof nondictatorial mechanism whose range X I is a two dimensional 

set. It should be noticed also that this is a nonwasteful mechanism, and it would be an efficient 

mechanism if X = Xi. (The definitions of nonwasteful and efficient mechanisms are given below.) 

The key feature of these example is that the underlying set of preferences that can be repre­

sented by increasing and quasi-concave utility functions in the domain of f are single peaked on 

the set Xi (i.e., there is some natural order t on Xl such that for each U E UQ there is x* E Xl 

with the property that for each x,y E Xi with x* t x >- y (or y >- x t x*), then u(x) > U(y))3. 

When preferences are single peak, it is well know that there are strategy-proof and non dictatorial 

mechanism (see Moulin[5]). 

In order to prove Theorem 1 a number of preliminary results are first established. Lemma 1 

states a standard unanimity property of strategy-proof mechanisms. 

Lemma 1. If f is a strategy-proof allocation mechanism, then for each U E U f( U, ... , u) E 

arg max( u, X i). 

Proof: Suppose not. Let U E U and x E Xi such that u(x) > u(J(u, ... , u)). Let u E un be such 

that f(u) = x. Successive applications of strategy-proofness yield u(J(u, u-d) ~ u(J(u)) = u(x), 

u(J(u,U,U-{1,2})) ~ u(f(u,u-d) ~ u(x), ... , and u(J(u, ... ,u)) ~ u(f(u, ... ,u,un )) ~ u(x), which 

is a contradiction.D 

The following result is an immediate corollary of Lemma 1. 

Corollary 1. Xl C f(On). 

Proposition 1 establishes that every strategy-proof mechanism satisfying the assumptions of 

Theorem 1 is dictatorial on the set On of profiles whose coordinate utility functions are strictly 

3This fact was pointed out to me by Salvador Barbed!.. 
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increasing. Its proof follows the lines of the proof of the Barbera-and-Peleg 's and Zhou's theorems; 

it is given in the Appendix. 

Proposition 1. Every strategy-proof mechanism satisfying the assumptions of Theorem 1 is dic­

tatorial on On. 

PROOF OF THEOREM 1: Let f be a strategy-proof allocation mechanism satisfying the assump­

tions of the theorem. By Proposition 1 f is dictatorial on On. Moreover, 0 is dense in U, and 

therefore Corollary 1 implies that f is weakly dictatorial.o 

Propositions 2 to 4 establish that under the assumptions of Theorem l, strategy-proof mech­

anisms that are weakly dictatorial but not (fully) dictatorial have other bad properties: they are 

discontinuous (Proposition 2 ), or they produce outcomes that are not Pareto optimal (Proposition 

3), or they are wasteful (Proposition 4). For each u E U and each integer k, let u k E 0 denote the 

utility function defined for x E ~+ by uk (x) = u(x) + k(ll~llllxlI)" 

Proposition 2. Let f be a strategy-proof mechanism satisfying the assumptions of Theorem 1. If 

f is continuous on U, then it is dictatorial. 

Proof: By Proposition 1 f is dictatorial on On. Without loss of generality, assume that 

Individuall is the dictator for f on On. Suppose by way of contradiction that f is not dictatorial; 

i.e., there is (Ull'''' un) E un and x E Xl such that Ul(X) > Ul(f(Ul, ... , un)). We can assume 

(see Lemma A.3) that x E 50. Thus, let u~ E 0 be such that argmax(u~,XI) = {x}. Since 

for each k, uf E 0, one has f(u~,u~, ... ,u~) = x, and since f is continuous f(U~,U2, ... ,Un) = 

limk...... oo f( u~, ut, ... , u~) = x. Hence 

and therefore Individual 1 can manipulate f at (Ul' ... , un). This contradicts the fact that f is 

strategy-proof and establishes Proposition 2.0 

An outcome x E X is said to be Pareto optimal with respect to u = (Ull ... ,un) E un if no 

x' E X exists such that for each i E N, Ui(X' ) ~ Ui(X), and the inequality is strict for some j E N. 

A mechanism f is efficient'i£ for each u E un, f(u) is Pareto optimal with respect to u. 

Proposition 3. Let f be a strategy-proof mechanism satisfying the assumptions of Theorem 1. If 

f is efficient, then it is dictatorial. 

Write U.. for the set of utility function in U with a unique maximizer on X I. Note that for each 

U E U'*, argmax(u,XI) is a member of XI. Before proving Proposition 3, the following lemma is 

established. 



Lemma 2. If f. is a strategy-proof mechanism satisfying the assumptions of Theorem 1, then there 

is i EN such that for each (Ui, U-i) E U· x un-I, f(Ui, U-i) ~ argmax(ui,XJ) 

Proof: W.l.o.g. assume that Individual 1 is the dictator of Proposition 1. It is shown that 

Lemma 2 holds for i = 1. Suppose not; let (Ull U2, ... , un) E U· X Un- I and suppose that it is 

not the case that x = f( Ull U2, ... , un) ~ arg max(Ull X i). Note this implies in particular that 

x =I- argmax(ull XJ ). Let UEO be such that u(x) > u(argmax(ullXJ)). Since x E f(UI X un-I), 

Lemma 1 yields 

U(J(UI,U,,,,,U)) ~ u(x). 

Hence f( Ul, u, ... , u) =I- arg max(Ul, X J). 

Let u~ E 0 be such that argmax( u~, X J) = {argmax(ull X J)} . As (u~, u, ... , u) E On and Indi­

viduall is a dictator for f on [;n, one has f( u~, U, ... , u) = arg max(Ul, Xi). Thus f is manipulable 

by Individual 1 at (u~, U, ... , u), which contradicts the fact that f is strategy-proof and proves the 

lemma.O 

With Lemma 2 in hand, one can easily proof Proposition 3. 

PROOF OF PROPOSITION 3: W.l.o.g. assume that Lemma 2 is satisfied for i = 1. It is shown that 

Individual 1 is a dictator for f. Suppose not; let U E un and x E Xi be such that Ul(X) > Ul(J(U)). 

Let u~ E U· be such that argmax(u~,XJ) = {x}. Then f(u~, U-l) ~ x by Lemma 2, and since f 

is efficient, then f( u~, U-l) = x. Thus Individual 1 can manipulate f at u, contradicting that f is 

strategy-proof. Hence Individual 1 is a dictator for f on un, and therefore f is dictatorial.O 

The conclusion of Proposition 3 holds even when mechanisms are less than efficient, as long as 

they do not waste resources. A mechanism f is nonwasteful if X J eX. Proposition 4 establishes 

that nonwasteful mechanisms satisfying the assumptions of Theorem 1 are dictatorial. The proof 

of Proposition 4 is immediate from Lemma 3; thus it is omitted. 

Proposition 4. Let f be a strategy-proof mechanism satisfying the assumptions of Theorem 1. If 

f is non wasteful, then it is dictatorial. 

Finally, it is of interest to determine whether one can design mechanisms that perform better 

when individuals' preferences are strictly monotonic (i.e., when individuals can claim only strictly 

increasing utility functions). Theorem 2 shows that for continuous mechanisms the answer to this 

question is negative: In this case, only dictatorial mechanisms are strategy-proof. It is unknown 

whether there are discontinuous mechanisms that are non dictatorial and strategy-proof. 

Theorem 2. Let f : On --+ X be a strategy-proof mechanism. If f is continuous and either 

(2.1) 0 = Oc and #XJ ~ 3, or 
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(2.2) 0 = OQ and X f is plentiful, 

then f is dictatorial. 

Proof: Let f be a strategy-proof mechanism satisfying the assumptions of Theorem 2, and 

denote by U the set UC if assumption (2.1) is satisfied and UQ if assumption (2.2) is satisfied. 

Theorem 2 is proved by showing that f can be extended to a strategy-proof mechanism F whose 

domain is U. The mechanism F will therefore be dictatorial on On by Theorem 1. As F coincides 

with f on On (equal to either (OC)n or (OQ)n), then f itself is dictatorial. 

For each u E un, let L(u) denote the set of limit points of the sequence {f (uk) }, where 

uk = (u~, ... , u~). Note that L(u) is never empty as X is compact. Let 4J: 2x -+ X be an arbitrary 

(selection) function that for each A C X, A #- 0, assigns 4J(A) E A. Finally, let the mechanism 

F : un -+ X be given for each u E Un by F(u) = f(u), if u EOn ; otherwise let F(u) =4J(L(u)). 

It is shown that F is strategy-proof. 

Suppose by way of contradiction that F is manipulable by i E N at u E un; i.e., there is u' E U 

such that ui(F(u', U-i)) > ui(F(u)). Since Ui is continuous and X is compact, there are 8 > 0 

sufficiently small and an integer J( sufficiently large that for each k, k' > J( and each x, x' E X 

such that Ilx - F(u)11 < 28, Ilx' - F(u', u-i)11 < 8, one has u7'(x') > uf(x). 

Let k},k2 > J( be such that both IIF(U k1 ) - F(u)11 < 8 and IIF(u~2i,u'k2) - F(U_i,U')11 < 8. 

Since for each k, F(uk) = f(u k) and f is continuous, kt, k2 can be chosen sufficiently large that 

k1 
11 F(u ) - F( U~2) 11 < 8. The triangle inequality implies that IIF(Uk2 ) - F(u) 11 < 28, and therefore 

U72(F(u~2i,U'k2)) > u72(F(U k2 )). 

Note however that F(U k2. u,k2) = f(U k2. u,k2) and F(U k2 ) = f(U k2 ) as both (u k2. u,k2) and uk2 
, , -11 -11' '-11 

k2are members of On. Hence f is manipulable by Individual i at U . This contradicts the fact that 

f is strategy-proof, thereby establishing Theorem 2.0 

The results presented here show that the Gibbard-Satterthwaite result remains valid even when 

it is known that individuals' preferences are monotonic. The conclusions here are not perhaps as 

clean as the ones obtained when satiated preferences are admissible: strategy-proof mechanisms are 

characterized as weakly dictatorial rather than fully dictatorial, and conditions under which this 

result arises require one to measure appropriately the size of the range of a mechanism. However, 

their implications are virtually the same: all strategy-proof mechanisms have very bad properties 

(i.e., they are (weakly) dictatorial). 

When individuals' preferences are convex continuous and monotonic, it has been shown that 

strategy-proof and nondictatorial mechanisms do exists, although their range must be a relatively 



small set (i.e., it must not be plentiful). It will be of interest to characterize this class of mecha­

nisms, and to study in which cases there are mechanisms in this class with interesting properties. 

Appendix: Proof of Proposition 1� 

First, a number of preliminary results are established as lemmas. For lemmas A.I to AA let 

f : U ~ X be a strategy-proof allocation mechanism such that UQ C U. Lemma A.I establishes 

a modified version of the strong positive association property. Its proof is omitted (see Lemma 4.8 

in Barbera and Peleg[2]). 

Lemma A.I (MSPAP). For each u = (Ull'''' un) E un, u E U and i E N such that for every 

x E Xl \ {f(u)}, u(x) ~ u(J(u)) implies Ui(X) > Ui(J(U)), one has f(U-i, u) =f(u). 

Lemma A.2 establishes that the image of any profile whose coordinate utility functions are 

strictly increasing is a member of X I . 

Lemma A.2. Ifu E er, then f(u) E XI. 

Proof: Suppose by way of contradiction that there is u = (U1, ... , Un) E On such that f( u) ~XI. 

Write f(u) =x, and choose a E ~n such that U1(X) + a1 = U2(X) + a2 = ... = Un (x) + an' Consider 

the utility function U E 0 given by u( x) = min {U1 (x) + all ... , un(x) + an}, and note that for 

each x E X \ {x}, whenever u(x) ~ u(x), then Ui(X) ~ Ui(X) for each i E N. Thus, by slightly 

bending the indifference curve of U through x in the direction of the main diagonal, one can obtain 

a utility function u E 0 satisfying for each x E X \ {x}, that u(x) ~ u(x) implies Ui(X) > Ui(X), 

for each i EN. MSPAP (Lemma A.I) yields 

x = f(u) = f(U,U1'''''Un) = ... = f(u,u, ... ,u,un) = f(u,u, ... ,ft). 

Note, however, that x ~XI, and since u is a strictly increasing function, this implies that 

f(u,u, ... ,ft) ~ argmax(u,XI), which contradicts Lemma 1 and establishes Lemma A.2.D 

Lemma A.3 'establishes that the set XI is closed, and that moreover, the limit of any increasing 

sequence in Xl (i.e., any sequence {xd in Xl such that Xt+l ~ Xt) is also a member of XI. For 

each x E X, let I(x) be the set of indexes k E {I, ... , m} such that Xk > O. 

Lemma A.3. The set XI is closed. Moreover, if x is the limit of any increasing sequence in X I, 

then x EXI. 

Proof: Let x be a limit point of XI or the limit of any increasing sequence in X I. It is shown 

that x is a member of XI. Let a E ~m, a ~ 0, be such that fpr each k, k' E I(x), akxk = ak,xk', 

and let U E U be given by u(x) = min {akxk, k E I(xn. If x ~XI, then argmax(u,XI) = 0, and 

therefore f(u, ... ,u) ~ argmax(u,XI), contradicting Lemma 1. Hence x EXI.D 
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For each Un E U, let O(un) = {x E Xi I ::Ju_n E Un- l with f(u-n,u n) = x}. Lemma A.3 im­

plies that O(un) is closed (O(un) = Xi n Xi un , where the mechanism jU.n : Un- l --+ X is given 

by fUn(u_ n) = f(u- n, un)). Lemmas A.4-A.7 establish other properties of these sets. Write U.. 

for the set of utility functions in U with a unique maximizer on Xi. Note that for each U E U.. , 

arg max(u, X i) ·is a member of Xi. 

Lemma AA, If Un E U.. , then argmax(un,Xi) E O(un). 

Proof: Let Un E U.. arbitrary. Choose uE U.. such that arg max(u, X i) = arg max(un, X i). 

Lemma 1 implies that f(u, ... ,u) = argmax(un,Xi). As f is strategy-proof, then f(u, ... ,u,un) = 

arg max(Un, X i). Hence argmax(Un, X i) EXiun , and therefore arg max(un , Xi) E O(un).D 

A genemlized Leontieff utility function is a function of the form u(x) = min {ut (x), ... ,uP(x)} , 

where p is an arbitrary integer, and each ui is a linear utility function. Note the a generalized 

Leontieff utility function is a member of UQ. Given x, y E ~m, let [x, y] denote the (closed) segment 

connecting them. The notation [x,y) == [x,y]\ {y}, (x,y] = [x,y]\ {x}, and (x,y) = [x,y]\ {x,y} 

will be also used. A set A C ~m, is star-shaped (relative to B c ~m) with respect to x E A, if 

for each yEA one has [x, y] n B c A. Lemma A.5 establishes that whenever Un E U.. , the set 

(-function) O(un) depends only of the maximizer of Un' 

Lemma A,5, 'Ifun,u~ E U.. are such that argmax(un,Xi) = argmax(u~,Xi), then O(un) = 

O(u~). 

Proof: Lemma A.5 is proven in two steps. 

STEP 1: First it is shown that O(un) is star-shaped (relative to X i) with respect to arg max(Un, X i). 

Suppose not; let Un E U.. and x,y EXi be such that x E O(un), y E (x, argmax(un , Xi)) , and 

y ~ O(un). Without loss of generality, assume that (x,y] n O(un) = 0, and since O(un) is closed, 

let z E (x, y), and write x" = t(x +z). Now let {uk } be a sequence of generalized Leontieff utility 

functions such that for each k arg max(uk , Xi) = x.. , and such that its indifference curves through 

x" approach the line passing x and y (see Figure 1). 

Since x E O(un), Lemma 1 implies that for each k, uk(J(u\ ... ,uk, un)) '2: uk(x), and since 

O(un) is compact, some subsequence of {f(u\ ... ,uk,un)} converges to x. Let u~ E U.. be such 

that arg max(u~, X i) = y. Then again Lemma 1 implies uk(J(uk, ... , uk, u~)) '2: uk(y) > uk(x), and 

therefore a subsequence of {f(uk, ... ,uk, u~)} converges to some point x' E (x, y]. 

Strategy-proofness of f yields un(J(uk, ... ,uk,Un)) '2: un(J(uk, ... ,u\ u~)) for each k, and there­

fore un(x) '2: u(x' ), which is a contradiction since Un is strictly concave and x' E (x, arg max(un , Xi)). 

This contradiction establishes Step 1. 



STEP 2: Now suppose, by way of contradiction, that Lemma A.5 does not hold; Le., there are 

un,u~ such that argmax(un,Xf) = argmax(u~,Xf) = x, and such that there is y E O(Un)\O(u~). 

By Step 1, there is Z E (y,x] such that [z,x] C O(u~). As in Step 1, let {uk} be a sequence of 

generalized Leontieff utility functions satisfying arg max(uk , X f) = z, and such that its indifference 

curves approach the line passing y and x. By an argument similar to the one in Step 1, y is a 

limit point of the sequence {f(uk, ... ,uk,u~)}. Moreover, f(uk, ... ,uk,un) = z (Lemma 1). Since 

f is strategy-proof, for each k one has un(f(uk, ... ,uk,un)) 2:: un(f(uk, ...,uk,u~)) = un(z). Hence 

un(y) 2:: un(z), which is a contradiction since Un is strictly quasi-concave thereby establishing 

Lemma A.5.D 

For the rem~inder of the proof, let f be a mechanism satisfying the assumptions of Theorem 

1. Lemma A.6 establishes that whenever Individual n reports Un E V"', the set O(Un) is either the� 

entire set Xf, or the maximizer of Un'� 

Lemma A.6. For each Un E V*, either O(un) = Xf or O(un) = argmax(un,Xf).� 

Proof of Lemma A.6 under (1.2): Suppose not; let Un E V* and y, z EX f be such 

that y E O(un) \ argmax(un,Xf), and z ~ O(un). Let u E V (recall VC C V) be such that 

argmax(u,Xf) = y, and argmax(u,Xrn
) = z. 

(A function with these properties can be constructed as follows: Let a 1 , a 2E ~m, a 1 , a 2 ~ 0, 

be such that for j,j' E I(x) and k, k' E I(y), a}zj = a}/zj/, and a~Yk = a~/Yk" and let u\ u2 E V 

be defined, respectively, by u8 (x) = min{ajxj, j E I(z)}, s = 1,2. Then argmax(u2,Xf) = y, 
2 _ 2 

and as y ~ X fUn and X fUn is closed by Lemma A.3; hence there is x E ~+ such that a~xk = a~/xk' 

for k, k' E I(y), and such that for each x E Xfu~, one has u2(x) < u2(x) < u2 (y). Now let {3 > 0 be 

such that u1(z) = {3u 2(x). The function u(x) = max{u1(x),{3u 2(x)} satisfies (1) and (2) above.) 

Lemma 1 yieldsf'"n(u, ... ,u) = f(u, ... ,u,un) = x,andf(u, ... ,u,un) = y.Asy =f argmax(un,Xf) 

assume w.l.o.g. (Lemma A.5) that un(y) > un(x). Then 

un(f(u, ... ,u)) = un(y) > un(x) = un(f(u, ... ,u,un)), 

and therefore f is manipulable by Individual n at (u, ... ,U, un). This contradiction establishes 

Lemma A.6 under (1.2). 

Proof of Lemma A.6 under (2.2): Suppose not; let Un E V* and y, z EX f be such that 

yE O(un), y =f argmax(un,Xf) == x*, and z ~ O(un). Since)(1 is plentiful, choose y,z EXf such 

that there is no A E (0,1) with z 2:: AX* + (1 - A)y· 

Let u E V be such that arg max(u, X f) = z, and such that there is x E [z, y] nO(un) such that 

u(x) > u(x), for each x E [z, x*J nO(un) (see Figure 2). Lemma 1 implies that u(f(u, ... , U, Un)) 2:: 
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U(x) > u(x*); hence f(u, ... ,u,un) =f x*. Let u~ E U be such that argmax(u~,Xf) = x*, and 

such that u~(y) > u~(x) for each x E argmax(un,O(un)). Lemma A.5 yields O(u~) = O(un), 

and therefore by Lemma 1 f(u, ... , U, u~) E argmax(u,O(un)). Finally, let u~ E U be such that 

argmax(u~,Xf) = y. Then y E O(u~) by Lemma AA, and Lemma 1 implies that f(u, ... , u, u~) = 

y. Hence Individual n can manipulate f at (u, ... ,u, u~). 0 

Lemma A.7 establishes that set (-function) O(un) is constant on the set of strictly increasing 

utility functions with a unique maximizer on Xf. 

Lemma A.7. If there is Un E Onu" such that O(un) = argmax(un,Xf), then for each Un E Onu", 

one has O(un) = argmax(un,Xf). 

Proof: Suppose not; let un,u~ E 0 nu" be such O(un) = argmax(un,Xf) and O(u~) =Xf 

(LemmaA.6). Let x E Xf\{argmax(un,Xf),argmax(u~,Xf)} (such point exists by assumption), 

and u E 0 such that argmax(u,Xf) = x. Lemma 1 yields p'~(u, ... , u) = x. Since O(un) = 

argmax(un,Xf) and f(u, ...u,un) E Xf(Lemma A.2), then f(u, ...u,un) = argmax(un,Xf). As 

argmax(un,Xf) =f argmax(u~,Xf) (Lemma A.5), assume w.l.o.g. (again according to Lemma 

A.5) that u~(argmax(un,Xf)) > u~(x). Then f is manipulable at (u, ...,u,u~) by Individual n, 

contradicting that it is strategy-proof, and proving the lemma.O 

PROOF OF PROPOSITION 1: First, it is shown by induction on the number of individuals that f 
is dictatorial on (0 n u,,)n. The case n = 1 is a simple application of Lemma 1. Assuming that f 
is dictatorial on (0 nu,,)n for n ~ k - 1, it remains to be shown that it is dictatorial on (0 nu,,)n 

for n = k. 

By Lemma A.7, either O(un) = argmax(un,Xf) for each Un E (0 nU"), or O(un) = Xf"'n for 

each Un E (0 n U*). If O(un) = argmax(un,Xf) for each Un E (0 nU"), then Lemma A.2 yields 

f(u) = argmax(un,Xf) for each u E (0 n u,,)n, and therefore Individual n is a dictator for f on 

(0 n u,,)n. If O(Un) = X f for each Un E 0 n U", then the induction hypothesis implies that each 

jt'.n is dictatorial on (0 n u,,)n-l. In fact, the dictator of each jt'n on (0 n u,,)n-l must be the 

same. 

Suppose not; w.l.o.g., assume Individual 1 is the dictator for J"n on (0 n u,,)n-l, and Indi­

vidual 2 is the dictator for jt'.~ on (OnU,,)n-l. Let Ul,U2 E (OnU") be such argmax(uI,Xf) =f 
arg max(Un, X f), and arg max(U2, X J) = arg max(Un, X J) (recall that by assumption X J contains 

at least three points). Then for some U-{1,2,n} E (0 n u*)n-3, one has p.n(uI, U2, U-{1,2,n}) ­

f(UI, U2,U-{1,2,n},Un) =f argmax(un,XJ), and fU~(UI,U2,U_{1,2,n}) = f(UI,U2,U-{1,2,n},U~) ­

argmax(un,XJ). Hence f is manipulable at (UI,U2, U-{1,2,n}, un) by Individual n. 



Thus, some Individual i E N is the dictator for each j'J,n on (U n u*)n-l; i.e., for each u E 

(U n u*)n, fUn(u_ n) = f(u) = argmax(uj,Xi). Hence some Individual i is in fact a dictator for 

f on (U n u*)n. 

Finally, it is shown that f is dictatorial on un. Without loss of generality assume that Individual 

1 is the dictator for f on (U n u*)n. Suppose that Individuall is not a dictator for f on un; Le., 

there are u E un, and x E Xi such that Ul(X) > Ul(f(U)). Note that f(u) E Xi by Lemma A.2. 

Let UE (U n U*) be such that argmax(u,Xi) = {f(u)}. Strategy-proofness of f yields 

f(u) = f(u- n,u) = ... = f(Ul, U, ... , u). 

Let u~ E (Unu*) be such that argmax(u~,Xi) = {x}. Since (u~,u, ... ,u) E (Unu*)n and 

Individuall is a dictator for f on (U n u*)n, then f(u~,u, ... ,u) = x. Hence 

and therefore f is manipulable at (Ul'U,,,,,u) by Individuall, contradicting the fact that f is 

strategy-proof. Hence f is dictatorial on Un.o 

13 



14 

Bibliography� 

[1]� S. Barbera, and M. Jackson (1994): "A characterization of strategy-proof voting social choice 

functions for economies with pure public goods," Social Choice and Welfare 11: 241-252. 

[2]� S. Barbera, and B. Peleg (1990): "Strategy-proof voting schemes with continuous preferences," 

Social Choice and Welfare 7: 31-38. 

[3]� A. Gibbard (1973): "Manipulation of voting schemes: a general result," Econometrica 41: 

587-602. 

[4]� D. Moreno (1994): "Nonmanipulable decision mechanisms for economic environments," Social 

Choice and Welfare 11: 225-240. 

[5]� H. Moulin (1980): "On strategy-proofness and single peakedness," Public Choice 35: 437-455. 

[6]� M. Satterthwaite (1975): "Strategy-proofness and Arrow's conditions: existence and corre­

spondence theorems for voting procedures and social welfare functions," Journal of Economic 

Theory 35: 1-18. 

[7]� L. Zhou (1991): "Impossibility of strategy-proof allocation mechanisms in economies with 

public goods," Review of Economic Studies 58: 107-119. 



/ 
/ 

/ 
/ 

/ 

, 

z 

Figure 1 

Figure 2 




