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1. INTRODUCTION 

In his survey on demand analysis, Deaton (1986) has placed the expenditure function 
as the centerpiece of consumption theory. Indeed, the expenditure function is a very 
convenient tool to address questions of welfare and efficiency. Moreover, it is generally 
possible to obtain good estimates of expenditure functions from real data sets, and then 
derive the underlying (regularized) preference structures. 

It is well known that under some assumptions on preferences, an expenditure function 
must satisfy certain properties [e.g., see Diewert (1982)]. It seems to be unknown, how­
ever, what are the defining properties of this function: A set of necessary and sufficient 
conditions to establish that a function must be the expenditure function of some specified 
preference structure. This question is of some relevance since it is usually easier to observe 
or estimate the expenditure function of a consumer (or the cost function of a producer) 
than the underlying preferences. [See Blundell (1988) and Deaton (1986) for excellent 
surveys on the field.] 

In this paper we present complete characterizations of the expenditure function for 
both utility representations and preference structures. Moreover, in the case of preference 
structures such characterization applies to non-complete preference orderings. Building 
upon these results, we also establish under minimal assumptions duality theorems for 
expenditure functions and utility representations, and for expenditure functions and pref­
erence structures. These duality theorems generalize previous work in this area [e.g., 
Diewert (1982), Jacobsen (1970), McFadden (1978), Shephard (1970) and Uzawa (1962)]. 
Furthermore, our duality theorems hold under conditions other than those required for 
the duality of direct and indirect preferences [cf., Martinez-Legaz and Santos (1993)]. 

Previous research on this topic [see Diewert (1982) for an extensive survey] has been 
essentially concerned with sufficient, rather than necessary, conditions for the existence 
of expenditure functions and duality. As already suggested, necessary conditions are 
a useful line of inquiry, since duality arguments entail that expenditure functions are 
primitive objects of consumption theory. 

In contrast to previous work, our results extend to infinite-dimensional spaces and 
to non-complete preference orderings, and are not based upon particular topological and 
boundary conditions. Although continuity and boundary conditions are essential prop­
erties in a wide range of economic applications, they b~come artificial for the analytical 
issues under consideration. 

The paper is structured as follows. Section 2 is concerned with expenditure functions 
and utility representations, and Section 3 is concerned with the more general setting of 
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expenditure functions and preferences. Both sections present under minimal assumptions 
a characterization of the expenditure function, and duality results for expenditure func­
tions and preferences. For utility functions the conditions characteristic of an expenditure 
function are weaker than those required for the duality of expenditure functions and util­
ities. Finally, Section 4 reports on additional properties of expenditure functions. With 
obvious changes in notation and terminology, our analysis can be recast in an environment 
of technologies and production. For convenience, however, we sha.l.1 focus on the standard 
consumer framework. 

2. EXPENDITURE AND UTILITY FUNCTIONS 

2.1. Notation and Preliminary Definitions 

Assume that X is a locally convex, topological vector space, with topological dual X'". 
Let J( be a closed convex cone in X such that K is always different from the zero element, 
i.e. J( ::f. {O}. Let ~ be the canonical ordering on K : x ~ x' if and only if x - x' E 1<, 
for all vectors x,x' in](. Let K'" = {p E X'" I p . x ~ 0 for all x in K}. Say 
that p ~ p' if and only if p - p' E K'", for all vectors p, p' in ]('". Observe that . 
J{ = {x I p . x ~ 0 for all p E ]('"}. 

Let t be a preference ordering on ](. Assume that t can be represented by a utility 
function, u : ]( - R [i.e., a real valued function such that for all vectors x,x' in K, x t x' 
if and only if u(x) ~ u(x')]. Define the expenditure function e,,: 1<'" x R - R+ U{+oo}, 
by 

e,,(p, >.) = inf {p . x I u(x) ~ >'} 

Sometimes, for convenience, subscript u in this definition will be dropped. Also, for a 
given function, u, let S>'(u) stand for the upper-contour set, S>'(u) = {x I u(x) ~ >.}. 

For a function, e : K'" x R - R+ U{+00}, where, for fixed >., e(·, >') : K* .- R+ U{+00} 
is a concave mapping with e(O, >') =0, define the "regularized" utility function, U e : K ­

RU{+oo}, by 
ue(x) = sup {>. E R I x E 8e(', >')(O)} 

Here 8e(·, >')(0) connotes the superdifferential of the mapping e(·,>.) at p = 0, that is, 
8e(·, >')(0) = {x E X I p . x ~ e(p, >') for all p E K*}. 

Finally, for a set A, let co(A) stand for the closed convex hull, and for two sets, A,B, 

let B \ A = {x E B I x 't A}. 
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2.2. A Characterization of the Expenditure Function 

In our proof of the set of necessary and sufficient conditions that characterize an expen­
diture function, we shall make use of the following technical result. 

LEMMA 2.1: Let A and B be two closed convex subsets ofK such that A C B, A :F B, 
and B has at least two (hence, infinitely many) points. Let A e R. Then there exists a 
function!>. : B \ A -+ (-00, A) such that 

B \ A C neosIJ (!>,) 
IJ<>' 

PROOF: Assume first that A is non-empty. Pick x e A. Since each point in B \ A 
belongs exactly to a ray r emanating from x, it suffices to define f>. on each non-empty 
intersection r n(B\A). Such an intersection must be either a right-closed segment (XA' XB] 
with XA e A and XB E B, or an open ray in a given direction, d :F 0, with some end-point, 
XA E A. In the first case, we define !>.(axA +(1- a)xB) = A- 0(1- a) for a E (0,1), 
and!>.(xB) = A-1jinthesecondcase,wedefine!>.(xA+ad) = A-ae-o for a > O. One 
easily checks that the function!>. constructed in this way satisfies the required condition. 

Assume now that A is the empty set. Pick x E B. Let!>. be the function obtained from 
the above construction with the set A replaced by {x}. Since B is closed, convex and has 
at least two elements, we have that B \ {x} c nIJ<>. coSIJ (!>.). Also, B C nll<>. c-oSIl (!>.). 
The lemma is thus established. 

REMARK: Observe that in the preceding proof, we have 

lim� !>.(axA + (1 - a)xB) = lim !>.(axA + (1 - a)xB) ­
or_o+� or-1­

lim !>.(XA +ad) - lim !>.(XA +ad) = A 
or_+ooor-o+ 

These are the only properties required for our purposes -besides the fact that!>. takes 
on values in (-00, A). The particular expressions, A- 0(1 - a) and A- ae-or , are just 
instances of functions satisfying these conditions. 

THEOREM 2.2: Let e : j{* X R -+ R+ U{+oo}. Then e is the expenditure function 
for some utility function, u : j{ -+ R, if and only if the following conditions hold 

(a)� For each A E R, either e(" A) is finite-valued, concave, linearly homogeneous and 
weak* upper-semicontinuous, or it is identically equal to +00. 

(b)� e(p,') is non-decreasing for each fixed p E K*. 
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(c) U>. eR 8e(·,.x)(0) = K. 

PROOF: Assume first that e : K* x R -+ R+ U{ +oo} is the expenditure function of 
u : K -+ R. Observe that each x E K can be regarded as a linear function on X*, 
continuous is the weak* topology. Since e(., >.) is the pointwise infimum of the family of 
linear functions {x 'I u(x) ~ .x}, condition (a) must necessarily hold. Also, condition 
(b) must always be satisfied. Let us prove (c). H >. e R and x e 8e(., >')(0), then 
p . x ~ e(p,.x) ~ 0 for all p E K*. Hence x E K, and so we have proved one direction 
of the inclusion in (c). Moreover, the simple fact that x E 8e(·,u(x))(O), for all x E K, 
establishes the equality in (c). 

Conversely, suppose that e: K* x R -+ R+ U{ +oo} satisfies (a) - (c). Define X:K -+ 

RU{+oo} by 

~(x) = sup PER I x E 8e(', .x)(0)} 

Condition (c) implies that ~(x) > -00. For convenience of notation, let 8e(·, +00)(0) = 4>. 
By condition (b), the sets 8e(·, .x)(0) are non-increasing in.x. For each.x E RU{+oo}, let 
M>. = (n~<>.8e(-,Jl)(0))\8e(·,.x)(0). Observe that, for every x in K,eitherx E 8e(.,~(x)) 

or x E M>.(x)' If M>. is non-empty, define a function f>. : M>. -+ (-oo,.x) such that 
M>. C n~<>. c-oS~U>.). The existence of such a function follows from Lemma 2.1, since 
M>. =/: 4> implies that n~<>. 8e(', Jl)(O) is never a singleton. Indeed, for every such .x we 
have 

[n8e(·, Jl)(O)] +K = n8e(', Jl)(O) 
~<>' ~<>' 

Let us now define u : K -+ R by 

if x E 8e(.)(x))(0)u(x) = {� ~(x) 
h(x)(x) if x E M>.(x) 

One readily checks from this definition that S>'(u) c 8e(., >')(0), for all " in R. Hence 
coS>'(u) c 8e(·, .x)(0). Let us prove that the converse inclusion also holds. Let x E 

8e(., .x)(0). Then ~(x) ~ .x. If x E 8e(., ~(x))(O), then u(x) = X(x) ~ .x. Hence, 
x E S>'(u). If x ~ 8e(')(x))(0), then x E M>.(x)' Moreover, given that x E 8e(·,.x)(0), 

we must have.x < ~(x). In this case, we get from our previous lemma that x E M>.(x) C 
coS>'U>'(x») = coS>' (u 1Mi(s)' where u IMi(s) means u restricted to M>.(x)' We have 
thus proved that 8e(·, .x)(0) c coS>'(u), and so coS>'(u) = 8e(·,>.)(0) for all >. E R. 
Furthermore, it is a consequence of condition (a) that 

e(p,.x) = inf {p . x I x E 8e(·, >')(O)} 
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Therefore, 

e(p, A)� - inf{p· x I x E coS"(u)} = 
- inf {p . x I x E S" (u)} ­

- inf {p . x I u(x) ~ A} 

where the first equality comes from our previous result, and the second equality from 
the fact that the infimum of a linear function over a set remains unchanged if this set is 
replaced by its closed convex hull. This shows that e is the expenditure function of the 
function u. The proof is complete. 

REMARKS: (1) Condition (a) implies that, for each A E R, the mapping e(',A) : 
K* -+ R+ U{ +oo} is non-decreasing. Indeed, as in the preceding proof, one easily shows 
that 8e(·, A)(O) C K. Moreover, if PllP2 E K*, with PI ~ P2, we have 

e(PI, A) - inf {PI' x x E 8e(',A)(0)} 

~ inf {P2 . x x E 8e(" A)(O)} = e(p2' A) 

(2) If X is a finite-dimensional space and the cone K* is locally simplicial (e.g., 
K = R~, the non-negative orthant of Euclidean space Rn), then every concave function 
is lower-semicontinuous [Rockafellar (1970, Th. 10.2)]. Hence, in this case the upper­
semicontinuity referred to in property (a) amounts to the usual continuity. 

(3) In the (pathological) case, K = {O}, ruled out in Sect. 2.1, conditions (a) - (c) 
are still necessary for e to be an expenditure function. These conditions, however, are no 
longer sufficient. Indeed, in this case an expenditure function takes the form 

if A < >.
e(p,A)� = { 0

+00 if A > >. 

with ~ E R. But any other function obtained from this expression by replacing the first 
weak inequality, ~, by the strict inequality, <, and the second strict inequality, >, by 
the weak one, ~, also satisfies (a) - (c), even though such function is not an expenditure 
function. 

2.3. Duality between Expenditure Functions and Utility Representations 

In this section, we present under minimal assumptions a duality theorem for expenditure 
and utility functions in an infinite-dimensional framework. This theorem is a generaliza­
tion of previous results in duality theory [see Shephard (1970), and especially Diewert 
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(1982) for an account of this theory]. Unlike previous results on finite-dimensional spaces, 
lower-semicontinuity of the mapping e(p, >.) on >. is no longer a necessary condition to 
establish duality. 

Our duality theorem is a consequence of two basic results which are proved indepen­
dently. We first explore in Proposition 2.3 the conditions under which the regularized 
utility function, U e.. , is equal to the original utility function, u, on K. Then we explore 
in Proposition 2.4 the conditions under which the derived expenditure function, e

Ue 
, is 

equal to the original expenditure function e. 

In order to guarantee that the regularized utility function, Ue , is always finite-valued, 
we shall introduce the following condition 

(d) n" ER 8e(·,>.)(O) = </> 

PROPOSITION 2.3: Let U : K -+ R. Then Ue.. = U if and only if U is quasiconcave, 
non-decreasing, and upper·semicontinuous. Besides, under these properties eu satisfies 
condition (d). 

PROOF: Let e : K* x R -+ R+ U{+oo} be an expenditure function. By Theorem 
2.2, the function e satisfies (a) - (c). Moreover, by the definition of U e one can easily 
check that S"(u e ) = n~<" 8e(·,j.t)(O) for all >. E R. Since these level sets are convex, 
closed, and satisfy S"(ue ) +J( = S"(ue ) for every non-empty S"(ue ), the function U e is 
quasiconcave, non-decreasing, and upper-semicontinuous. 

Conversely, assume that U : K -+ R satisfies these properties. Then one readily shows 
that S"(u) = 8eu (', >')(0) for all >. E R. Hence, for every x E K, 

U(x)� - sup {>' E R I x E S"(u)} = 

- sup {>' E R I x E 8eu (-, >')(O)} - ue.. (x) 

Moreover, as S"(u) = 8eu(-,>')(O), and n"ERS"(u) = </>, the expenditure function eu 

satisfies condition (d). The proposition is proved. 

REMARK: According to the preceding proof, for any expenditure function e satisfying 
(cl), U e is finite-valued, quasiconcave, non-decreasing, and upper·semicontinuous. Hence, 

ue"e is equal to U e • 

e
PROPOSITION 2.4: Let e : K* x R -+ R+ U{+oo} satisfy conditions (a) - (d). Then 

Ue 
= e if and only if e satisfies condition 

(e) n~<" 8e(·,j.t)(O) = 8e(·,>.)(O) for all >. E R. 
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In this case, U e is the greatest function U : K -+ R such that eu = e, and the unique 
one that is quasiconcave, non-decreasing, and upper-semicontinuous. 

PROOF: Let e: K* x R -+ R+ U{+oo} satisfy conditions (a) - (d). If eUe = e, then 
from the proof of the preceding proposition it follows that for every>. E R, 

n8e(·,p)(O) = S\ue ) = 8eue (">')(O) = 8e(·,>.)(O). 
IJ<>' 

Hence, condition (e) must be satisfied. 

Conversely, if the function e satisfies conditions (a) - (e), then for every (p, >.) E K* x R 
we have 

e(p, >.) - inf {p . x Ix E 8e(·, >')(O)} = 
- inf {p . x Ix E n8e(·, p)(O)} ­

IJ<>' 

= inf {p . x I x E S>'(ue)} = 

- inf {p . x I ue(x) ~ >'} = eUe(p, >.) 

To prove the remaining part of the proposition, suppose now that U : K -+ R is such 
thateu = e. SinceS>'(u)c8eu(-,>')(O)forall>' E R, andS>'(ue) = nlJ<>.8e(·,p)(O) = 
Be(-, >')(0), we have that U e is the greatest function whose associated expenditure func­
tion is e. Moreover, from the proof of the preceding proposition, it follows that U e is 
quasiconcave, non-decreasing, and upper-semicontinuous. Further, if U : K -+ R is qua­
siconcave, non-decreasing, and upper-semicontinuous, then it again follows from the pre­
ceding proposition that U = U e.. , and so it is the unique function with these properties. 

REMARK: It is an easy exercise to check that in the case K ={O}, conditions (a)-(e) 
are necessary and sufficient to characterize an expenditure function. 

THEOREM 2.5 (Duality between Expenditure and Utility Functions): The mapping 
U -+ eu is a bijectionfrom the set of quasiconcave, non-decreasing and upper-semicontinuous 
utility functions U : ]{ -+ R onto the set of expenditure functions e : K* x R -+ R+ U{ +oo} 
that satisfy (a) - (e). Furthermore, the inverse mapping is e -+ U e • 

PROOF: This is a straightforward consequence of the preceding propositions. 

REMARKS: (1) For functions e : K* x R -+ R+ U{ +oo} satisfying condition (a), 
condition (e) is stronger than conditon (b), since (b) can be restated as 

8e(·,>.)(O) c 8e(·,p)(O) for>. > p 
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(2) If X is finite dimensional, it can be shown that if (a) is satisfied, then condition 
(e) implies lower-semicontinuity of e(p,'x) in ,X for p E int(K"). 

(3) Contrary to what it is commonly believed, the conditions that characterize an� 
expenditure function (Theorem 2.2) are not the same as those that guarantee duality� 
(Theorem 2.5). As one could infer from the construction in the proof of Theorem 2.2, there� 
are certain expenditure functions that cannot be generated by the class of quasiconcave,� 
non-decreasing and upper-semicontinuous utility functions. The following is an illustrative� 
example. 

Assume that u : R.r -+ R.r is given by 

ifD:5x<l 

u(x) = U�if x =2 
otherwise 

The corresponding expenditure function is 

'xp ifD:5'x<l 
e(p,'x) = 2p if ,X = 1 

{ +00 otherwise 

This expenditure function cannot be generated by a non-decreasing utility function, since 
for any such representation if e(p, ,X) = 'xp for D :5 ,X < 1, then necessarily e(p,'x) = p 
for ,X = 1. The example also shows that condition (e) is stronger than (b). 

3. EXPENDITURE FUNCTIONS AND PREFERENCES 

3.1. Notation and Basic Definitions 

'We assume that ~ is a preorder on a convex cone K eX, where X is again a locally 
convex topological vector space, and K" is the dual cone of K, K ::I {D}. 

Given a preorder ~ on K, define the expenditure function et : K" x K -+ R+ by 

et (p, x) = inf {p . x' I x' t x} 

Let S~ represent the upper-contour set {xii x' ~ x}. We observe that even ifpreorder t 
admit~ a (real-valued) utility representation, function et is still useful to address questions 
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of welfare and efficiency. This function is variously known as the "money metric utility 
function," the "minimum income function," and by other forms [e.g., Varian (1992)]. We 
shall simply refer to e!: as the expenditure function. 

Given an expenditure function, e : K* x K -. ~, let >-e be the preorder on K defined 
by Xl te X2 if and only if e(·,xl) ~ e(·,x2)' where ~ here denotes the pointwise ordering 
of functions [e(·,xl) ~ e(·,x2) if and only if e(p,xd ~ e(p,x2) for all p in K*]. Finally, 
for X E K, let 8e(·,x)(0) denote the superdifferential of the mapping e(·,x) at the point 
Oithatis,8e(·,x)(0) = {x' E X I p' x' ~ e(p,x)forallp E K*}. 

3.2. A Characterization of the Expenditure FUnction 

As in the preceding section, we now set forth a set of necessary and sufficient conditions 
that single out the family of expenditure functions. 

THEOREM 3.1: Let e : K* x K -. R+. Then e is an expenditure function for some 
preorder t on K if and only if it satisfies the following conditions 

(a)� For each x E I<, the mapping e(·,x) is concave, linearly homogeneous, and weak­
upper-semicontinuous. 

(b)� For each x E I<, 

co({x' E K I e(·,x') ~ e(·,x)} + I<) = 8e(·,x)(0) 

Moreover, under these conditions e is the expenditure function of te, that is, eb = e. 

PROOF: Pick x E I<. Observe that each x' E 1< can be regarded as a linear function 
on X-, continuous in the weak* topology. Since e(·, x) is defined as the pointwise infimum 
of the family of linear functions {x'}:t/!::t, condition (a) must necessarily hold. 

Let x E K. Assume that x', x" E K with e(·,x') ~ e(·,x). Then p" (x' + x") = 
p·x'+p·x" ~ P'x' ~ e(p,x') ~ e(p,x), for allp E K*. Thus,x'+x" E 8e(·,x)(0). 
Since 8e(·,x)(0) is a closed convex set, we have proved one direction of the inclusion 
in part (b). However, if this inclusion is strict then there exists Xo E 8e(.,x)(0) with 
Xo f. co( {x' E K I e(·, x') ~ e(·, x)} + K). By a classical separation theorem, there 
are p E X* and t E R such that p . Xo < t ~ P . (x' + x") for all x', x" E K with 
e(·,x') ~ e(·,x). Hence, p . x" ~ 0 for all x" E K, Le., p E K*. Now, assume that 
x't x. Then we get e(·,x') ~ e(·,x). Setting x" = 0, we therefore obtain p . x' ~ t. 
Hence, e(p,x) ~ t > p' xo. Also, p' Xo ~ e(p,x) as Xo E 8e(·,x)(0). This contradiction 
shows that (b) must hold with equality. 
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Conversely, assume that e satisfies (a) - (b). It follows from condition (a) that for 
every p in K* and x in X, 

e(p,x)� = inf {p . x' I x' E 8e(·,x)(O)} 

Furthermore, from property (b) and the fact that the infimum of a continuous linear 
function over a set does not change when the set is replaced by its closed convex hull, we 
must have 

e(p,x)� - inf {p . (x' + x") I e(·,x') ~ e(·,x), x" E K} ­

- inf {p . x' I e(·,x') ~ e(·,x)} = 
- inf {p . x' I x' te x} 

where the last equality comes from the definition of te' The theorem is thus established. 

REMARKS: (1) If t is a complete (total) preorder on K, then e = et satisfies 
condition 

(c) The pointwise ordering offunctions, ~, on the set {e(·, x)}z E K is a complete order. 

Moreover, if (c) holds then te is a complete preorder. 

(2) By the same arguments of Theorem 2.2 the mapping e(·,x) is non-decreasing on 
[{- [Remark (1), Th. 2.2]. Also, in the finite-dimensional case if K* is a locally simplicial 
cone, then e(·,x) is also continuous [Remark (2), Th. 2.2]. 

,3.3. Duality between Expenditure Functions and Preferences 

Vv'e now prove two duality theorems between expenditure functions and preferences. In 
contrast to Theorem 2.5, our first duality result exploits specific properties of the function 
e(p, x) and includes a class of preorders with upper-contour sets that are non-necessarily 
closed and convex. Our second duality result applies to the regular class of preorders 
which are non-decreasing, and with closed and convex upper-contour sets. In all these 
results it is not presumed that such preorders, t, satisfy the completeness assumption: 
For any two vectors XI, X2 in K, either Xl t X2 or X2 t Xl· 

THEOREM 3.2: Let t be a preorder on K. Then te~ = t if and only if all the 
upper-contour sets S~ satisfy the following "Hull Cancellation Property": 

(HCP)� For all XI, X2 E K, co(St1 + K) C co(St2 + K) only if St1 c St2 
• 

PROOF: Observe that, for every X E K, one has e~(p,x) =inf{p·x' I x' E co(S~+K)} 

and co(St + K) = 8et(-,x)(O). Also, by the transitivity of t, we have that Xl t X2 if 
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and only if St1 C St2
• Hence, by (HCP) and the definition of e~, Xl ~ X2 if and only 

if e~ (p, Xl) ~ e~ (p, X2) for all p E K*. That is, if and only if Xl tet X2' The theorem 
is proved. 

REMARKS: (1) If t is a complete preorder, then (HCP) can be equivalently written 
as 

(HCP') For all XllX2 E K, ifco(St1 + K) = eo(St2 + K), then St1 = Bt2. 

However, for non-complete preorders, (HCP') is generally weaker than (HCP). 

(2) For any preorder t on K, tet is an extension of t, that is, Xl t X2 implies 

Xl tet X2' 

THEOREM 3.3 (Duality between Expenditure Functions and Preferences): The map­
ping t -. e~ is a bijection from the set of all preorders t on K whose upper-contour 
sets St satisfy (HCP) onto the set of functions e : K* x K -. ~ satisfying (a) and (b). 
Furthermore, the inverse is e -. te . 

PROOF: The proof follows directly from Theorems 3.1 and 3.2.� 

REMARK: It is worth observing the asymmetry of the results in the utility case (Ths.� 
2.2 and 2.5) and those of preferences (Ths. 3.1 and 3.3). In the utility case, there are 
expenditure functions that cannot be obtained from the duality mapping. In the case 
of preferences, however, duality has been established for every expenditure function, as 
(HCP) includes a more general class of preorders. Indeed, (HCP) includes the regular 
class of preorders, t, that are non-decreasing and whose upper-level sets, S:" are closed 
and convex. [t non-decreasing simply means that St + K = St for each x.] If t is 
non-decreasing, closed and convex, then co(St + K) = St' and so (HCP) holds for such 
a regular class. Moreover, in this case the following stronger characterization is available. 

PROPOSITION 3.4: Assume that t is a non-decreasing preorder on K such that for 
every x the set St is closed and convex. Then for all Xli X2 in K the following conditions 
are equivalent 

(l)� Xl t X2 

(2)� e~·(xI) ~ er(X2) for all y E K, where, for every X and y, er(x) - inf,eK. {p . 
X - - e~ (p, y)} 

(3)� Xl E ae~(', X2)(0) 

PROOF: The proof follows from the following steps. 
(1)� is equivalent to (3). This is a consequence of the fact that S~ - eo(St + K) ­
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8e~("x)(0), for every x in K. 
(1) implies (2). Observe first that since e>-(·, y) is linearly homogeneous and K· is a cone, 
er(x) is either 0 or -00. Suppose that e~(x2) = 0 [i.e., p' X2 ~ e>-(p, y) for all p E K·]. 
Then X2 E 8e~(·,y)(0). By virtue of the equivalence of (1) and (3), we have X2 >- y. 
Thus, Xl t y. Invoking again the equivalence of (1) and (3) we have Xl E 8e>-(·,y)(0). 
Therefore, p . Xl ~ edp, y) for all p E K·. Consequently, e1l"'(xl) = O. It follows then 
that e~·(xl) ~ er(X2) for all y E K. 
(2) implies (3). By the equivalence of (1) and (3), we first note that, for all X E K, one 
has X E 8ed"x)(0), or equivalently e~·(x) = O. Thus, if (2) holds, then e~2·(xl) ~ 

e~2·(x2) = O. We have therefore that Xl-E 8e~(-,x2)(0). This completes the pr~of of the 
proposition. 

REMARK: Observe that if either (1) and (2), or (1) and (3), are equivalent, then t is 
non-decreasing with closed, convex upper-contour sets. Indeed, under the equivalence of 
(1) and (2), one has for every X E K that S~ = {x' E K I er(x') ~ er(x) for all y E K}. 
Since the functions eY• are concave, non-decreasing and weak· upper-semicontinuous, 
these sets are closed, convex and satisfy S~ +K C S~. (As already remarked, this latter 
condition means that t is non-decreasing.) Also, under the equivalence of (1) and (3), 
one has St = 8e~(" ~ )(0), and the superdifferential 8et(-, x)(O) is closed, convex and 
8e~(·,x)(O) + J{ C 8e~(-,x)(0),foreachxinK. 

THEOREM 3.5 (Duality between Expenditure Functions and Regular Preferences): 
The mapping t ~ e~ is a bijection from the set of non-decreasing preorders, t, on J{ 

with closed and convex upper-contour sets, Sf, for each x, onto the set of expenditure 
functions, e : J{. x J{ ~ R+, satisfying condition (a) and 

(b' ) For every x E J{, {x' E J{ I e(·,x') ~ e(·,x)} = 8e(-,x)(0). 

Moreover, the inverse mappinge~te is given byx' te x if and only if x' E 8e(·,x)(0). 

PROOF: By Theorem 3.1, the function e~ satisfies condition (a). Moreover, if t is 
a non-decreasing preorder such that S~ is closed and convex for every x· E J{, then it 
follows from Theorem 3.2 that for every x in K 

{x' E K I ed"x') ~ e~(-,x)} = Sf.~ = Sf = co(Sf + K) 

Hence, condition (b') also holds as 8e(·, X )(0) = Co(S~ + K). 

Conversely, assume that e : K· x K ~ R+ satisfies (a) and (b'). From condition (b') 
we have that S~. = 8e(·,x)(0), for every X in K. Moreover, in view of property (a), S~. 

is closed and c;nvex, and Sf. + K C S~ •. Thus, te is a non-decreasing preorder with 
closed and convex upper-contour sets. 
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Finally, it follows then from Corollary 3.3 that the mapping t ..-. e~ is a bijection. 
Furthermore, by condition (b' ) the inverse e ..-. te can be defined by x' te x if and only 
if x' E 8e(·,x)(D). 

4. FURTHER PROPERTIES OF EXPENDITURE FUNC­
TIONS 

Theorem 2.2 illustrates that for fixed p in K- the mapping e,,(p,') : R ..-. ~ U{oo} is 
non-decreasing, but in general this mapping has no further properties. Nonetheless, it is 
well known that certain important economic assumptions, such as continuity, separability, 
concavity and homogeneity of the utility function u, impose further restrictions on e,,(p, .) 
[see, for instance, Blackbory, Primont and Russell (1978)]. However, relatively little is 
known on properties satisfied by the mapping et(p,') : K ..-. ~ [see Jacobsen (1970) for 
some results]. 

Our goal now is to analyze further properties of the functions e" and et. Section 
4.1 focuses on preorders, t, that admit a utility representation, u, and presents certain 
related properties of the functions eu and et in order to gain further insights into the 
representation of preferences via an expenditure function. Section 4.2 is devoted to the 
more general class of preorders, t, which may not admit a utility representation and 
establishes further properties of the mapping et (p, .) on K for fixed p in K-. Finally, 
Section 4.3 extends some classical results on expenditure functions and Hicksian demands. 

4.1. Utility Representations and Expenditure Functions 

\Ve now focus on those preorders t on J( that can be represented by a real-valued function 
'U on J( with I( #- {D}. We first show certain regular properties of expenditure functions 
eu and e~, where such functions are defined as in Sections 2.1 and 3.1, respectively. Then 
we present a characterization of the function et for this class of preorders. 

PROPOSITION 4.1: For all (p, x) in K- x K and all .\ in R, we have the following 

(1)� eu(p,u(x)) = et(p,x) 

(2)� eu(p,.\) = inf {ec(p,x) I u(x) 2:: .\} 

(3)� If the upper-contour set S>'(u) has a minimal (least preferred) element, x>., then 
eu(p,.\) = e~(p,u(x>.)) 
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II' ..~-r----

PROOF: (1) follows from the following equalities involving the definitions of u, e
u 

and 
et. That is, 

eu(p,u(x)) - inf{p. x' I u(x') ~ u(x)} = 
- inf {p . x' I x' ~ x} = edp, x) 

(2) follows similarly from the previous definitions and part (1). More precisely, 

eu(p,,X) - inf {p . x I u(x) ~ ,X} = 
- inf {inf {p . x' I u(x') ~ u(x)} I u(x) ~ ,X} ­

- inf {eu(p,u(x)) I u(x) ~ ,X} = 
- inf {et(p,x) I u(x) ~ ,X} 

(3) is again a simple consequence of the previous definitions and part (1), since 

eu(p,'x) - inf {p . x I u(x) ~ ,X} = 

= inf {p . x I u(x) ~ u(x>,)} ­

- eu(p, u(x>,) = et(p, x>,) 

The proof is complete. 

As in Section 3 we define the order ~ on {e(·, x )}rEK such that for any two elements 
e(·,x) and e(·,x/), we say that e(·,x) ~ e(·,x/) if and only if e(p,x) ~ e(p,x') for all p in 
lC. Also, we shall say that the ordered set {e(., x )}rEK admits a utility representation, 
if there exists a real-valued function it on {e(·,X)}rEK such that u(e(·,x)) ~ u(e(·,x/)) if 
and only if e(·, x) ~ e(·, x') for all x and x/ in K. 

PROPOSITION 4.2: Let e : K* x K --+ R+. Then e is an expenditure function for 
some preorder t on K that admits a real-valued utility representation if and only if e 
satisfies (a) and (b) of Theorem 3.1 and the ordered set {e(., x)}rEK admits a real-valued 
utility representation. Moreover, under these properties ~e is representable by a utility 
function. 

PROOF: Assume that ~ can be represented by some utility function u : K --+ R. 
By Theorem 3.1, e satisfies conditions (a) and (b). Moreover, under these properties e 
is the expenditure function of ~e. Now, let -e be the equivalence relation defined on 
J( by x/ ""e X if e(·,x/) = e(·,x). For every equivalence class r of ""e, choose a point 
Xr E r. Given x in K, denote by r(x) the equivalence class containing x. Then define 
u : {e(·,X)}rEK --+ R by u(e(·,x)) = u(xr(r)' One can see that 11 is well defined, since 
e(·,x/) = e(·,x) implies r(x/) = r(x). Moreover, we claim that u is a utility function 
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on the ordered set {e("x)}zEK. To see this, let us pick two arbitrary points x,x' in K 
and suppose that u(e(·,x')) ~ u(e(·,x)), that is, U(Xr(Z/)) ~ u(xr(z)). As e = et and 
xr(x') t xr(x), we then have e(',x') = e(·,xr(zl)) ~ e(',xr(z)) = e(·,x). In view of the 
definition of uover equivalence classes, this is sufficient to establish our claim. 

Conversely, let e satisfy (a) and (b) and let ube a utility function of the totally ordered 
set {e(·, X)}zEK' By Theorem 3.1, e = et•. Hence, to conclude the proof we only need to 
observe that U : K -+ R, defined by u(x) = u(e(·,x)), is a utility representation for te' 

COROLLARY 4.3: Let t be a preorder on K such that all the upper-contour sets S~ 

satisfy (HCP) of Theorem 3.2. Then t is representable by a utility function if and only 
if the totally ordered set {et (-, x )}zEK is representable by a utility function. 

PROOF: This is a straightforward consequence of the previous proposition and The­
orem 3.3. 

4.2. Some Properties of et(p,·) on K 

We shall now be concerned with complete preorders t on K and present further properties 
of the mapping e(p,·) on K, where p is a fixed vector in K-. We shall assume that 
int(I<) =f:. ~. Also, we shall make use of the following hypotheses. 

(A) t is a non-decreasing preorder. 

(B) For all x in I<, S~ is convex and closed. 

(C) For all x in I<, int(S~) = {x' E K I x' ~ x}. 

Here, ~ denotes the strict preorder, i.e., x' ~ x if and only if x' t x and not x t x'. 
Observe that these assumptions are not sufficient for preorder t to admit a continuous 
utility representation. [See Mas-Colell (1986) for some results on utility representations 
in infinite-dimensional spaces.] 

PROPOSITION 4.4: Under Assumptions (A) to (e), the function e(p,') is non­
decreasing and evenly quasiconcave1 for all p E K-. 

1A function f : K - R is evenly quasiconcave if all upper-contour sets 5>'(1) are evenly convex sets. 
A set is evenly convex if it can be expressed as an intersection of open half-spaces. In other words, an 
evenly convex set is a convex set such that every outside point lies in a closed hyperplane disjoint from 
the given set. Examples (and further references) of evenly convex sets are given in Martinez-Legaz and 
Santos (1993). 
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PROOF: Let p E K*. Assume that X2 ~ Xl for Xl! X2 E K. Then X2 t Xl' 

As x' t X2 implies x' t Xl! we obtain that e(p, X2) ~ e(p, xd. Thus, e(p,.) is non­
decreasing. Let A ~ 0 and define SA (e(p, .)) = {x E K I e(p, x) > A}. Then 
SA(e(p, .)) = r1z',.t'P'Z'<A{X E K I X ~ x'}, an intersection of open convex sets. Hence, 
SA(e(p, .)) is evenly ,quasiconcave. This completes the proof. 

REMARK: If (C) is replaced by the weaker assumption 

(C') For all X in K, the set {x' E K I x' ~ x} is convex, 

then it is readily shown that e(p,') is non-decreasing and quasiconcave. 

PROPOSITION 4.5: Assume that for given pin K* the set {x E Kip, x :5 A} nK 
is compact, for all A ~ O. Then under the conditions of Proposition 4.4, the function 
e(p, .) is non-decreasing, evenly quasiconcave, and continuous on K. 

PROOF: It only remains to prove continuity. Let A > 0 be such that SA(e(p, .)) # 4J 
and Xo f/. SA( e(p, .)). From the compactness assumption there is Xo t Xo with e(p, xo) = 
p . xo. The vector Xo is not maximal for t since, otherwise, for all x E K, we would have 
Xo t x and hence A > e(p,xo) = p . Xo ~ e(p, x), a contradiction to SA(e(p, .)) # 4J. 
Thus, {x E K I x ~ xo} # 4J. Therefore, by Assumption (C) we can choose f > 0 
small and a vector xf ~ Xo with p . xf < A-f. Given that x E SA(e(p,.)), we 
have e(p, x) ~ A > A - f > p . Xf! and so x ~ XC' It follows that the closure, 
cl SA(e(p, .)) C {x E K I x t xc}, as this last set is closed. Since Xc ~ Xo t xo, 
we obtain that Xo f/. cl SA(e(p, .)). This proves that SA(e(p, .)) is closed, i.e., the upper­
semicontinuity of e(p, .). 

'We next show lower-semicontinuity. Consider the set SA(e(p, .)) = {x E K I e(p, x) > 
>.}. If SA (e(p, .)) is not open, then there exist f > 0 and x such that e(p, x) = A+ f and 
for every open neighborhood of x there is some y such that e(p, y) :5 A. Consider now the 
set ]{A = {y E ]{ I p . y :5 A}. By assumption, K A is a compact set and S~ n ]{A = 4J. 
Moreover, by Assumptions (A)-(C) and int(J<) # 4J, we obtain S~ = nz,-<~ S( Hence, 
by the compactness of J<A' there is x' -< x such that S~' nK A = ;j. Also, by As~umption 
(C), x E int(S~'). Therefore, there is an open neighborhood of x such that for every 
z in such neighborhood p . z > A. Thus, for every y in the same neighborhood, 
e(p, y) ~ e(p, x') = min {p . z I z t x'} > A. This contradiction then shows that the 
mapping e(p,') is lower-semicontinuous. The proposition is thus established. 

THEOREM 4.6: Let t satisfy (A)-(B). Assume that int[graph (t)] = graph(~) and 
graph(~) n(int(K))2 # 4J. Then the following statements are equivalent. 

(1) e(p,') is convex for all p E J<*. 
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(2)� graph(t) is the intersection of K2 with a closed half-space. 

(3)� There exists qo E K* and a non-decreasing, linearly homogeneous, weak* upper­
semicontinuous, concave function f : K* -+ R+ such that e(p, x) = f(p )qo . x for 
all (p, x) in K* X K. 

(4)� t admit~ a continuous, linear utility representation. 

PROOF: (1) implies (2). By Proposition 3.4, graph(t) = {(x', x) E K2 I x' E 
oe(', xHO)}, and by (1) this is a convex set. Also, graph(~) = int[graph(t)] is convex. 
By symmetry, graph( -<) is convex as well, and this is the complement of graph(t) in K 2• 

By a separation theorem, there exist q' and q E X* and k E R such that q' . x' + q . x ~ k 
for all (x',x) E graph(t) and q' . x + q . x' ~ k for all (x,x') E graph(-<). Let us 
prove that the second inequality is strict. 

Suppose (x, x') E K2 with q' . x + q . x' = k. Choose (x~, xo) E graph(~) n(int(I<))2. 
Clearly,q',x~+q'xo > k. Thenforallt E [O,I),q'·[(I-t)x~+tx]+q·[(I-t)xo+tx1 = 
(1 - t)(q' . x~ + q . xo) + t(q' . x + q . x') > (1 - t)k + tk = k. Hence, 
(1- t) (xb, xo) + t(x,x') = [(1- t)xb + tx, (1- t)xo + tx1 ft graph(-<) for all t E [0,1). 
Since graph( -<) is open, (x, x') ft graph(-<). This proves the assertion. We then have 

graph(t) = {(x',x) E K 2 Iq'· x' + q. x ~ k} 

(2)� implies (3). Suppose (*) holds. Let p E K* and define ep : R+ -+ R+ by 

ep(>.) = inf {p . x' I x' E K, q' . x' ~ >.} 

Then 

- inf{p· x' I x' E K q' . -
x' 

> I} = , >. ­, 
-� >. inf {p . Ix' 

I x' E K, q' . ~ ~ I} ­

-� >. inf {p . x" I x" E K, q' . x" ~ I} ­

-� >.ep(l) 

On the other hand, ep(O) =O. Therefore, epis linear. Also, from (*), e(p, x) = ep(k-q·x) = 
(k - q . x)ep(I). Hence, we must have e(p, x) = -ep(l)q . x for all (p,x) in K* x I<. 
Moreover, e ::j: 0 (given that graph(~ ) ::j: tP) and so ep( 1) > O. We then get that -q E K* 
It suffices now to define qo = -q and f : K* -+ R+ by f(p) = ep(I). Function f has 
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the same properties as e(., x) for x satisfying qo . x = 1, whose existence is guaranteed 
as e =I- O. 

(3) implies (4). For every x,x' in K we have x' t: x if and only if e(·,x') ~ e(·,x). 
And if and only if (qo . x')f ~ (qo . x)f. As f is non negative and different from zero, 
this is equivalent to qo . x' ~ qo . x. 

(4) implies (2). let qo be a utility function for t: with qo E X*. Then graph(t:) = 
{(x',x) E K 2 I qo . (x' - x) ~ O}. 

(3) implies (1). This step is obvious. 
The theorem is thus established. 

4.3. Extension of Some Classical Results 

We now show some simple generalizations of certain classical results, concluding with a 
derivation of Slutsky's equation as in the pioneering work of McKenzie (1957). In the 
following proposition, t: is an arbitrary (non necessarily complete) preorder on K, and 
we shall always assume that K =I- {O}. 

PROPOSITION 4.7: For given p E K* and x E K, assume that p has a unique 
minimizer x over St. Then x is maximal in the budget set 

{x' E Kip . x' $ edp, x)} 

PROOF: Assume that x' E K is such that p' x' $ e!::(p,x) and x' t: x. As x ESt, 
we also have x' E St. Hence, from the uniqueness of x as a minimizer, it follows that 
x' = X. This proves the maximality of x over the above budget set. 

REMARK: The preceding proposition remains valid even if x is not a unique mini­
mizer, as long as all other minimizers under p on St are either uncomparable with or 
indifferent to X. 

PROPOSITION 4.8: Let t: be a complete preorder on K. For given p E K* and 
x E I<, assume the existence of some minimizer under p on S;. If x is a maximal 
element in the budget set {x' E Kip' x' $ e!::(p, x)} then x is ~ne such minimizer. 

PROOF: Assume that x ~ x. Then, in view of the maximality of x, for every x' E St 
we must have p . x' > e!::(p, x). Since this is a contradiction to the existence of a minimizer 
under p on S;, it follows that x E St. Hence, the inequality p . x < e!:: (p, x) simply states 
that x miniIcizes p on St' and in fact such weak inequality must hold with equality. 

PROPOSITION 4.9: Let t: be a complete preorder on K. Let x E K and p E K*. 
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Then x is the unique maximal element in the budget set {x E Kip, x ::5 p . x} if and 
only if it is the unique minimizer under p on St,. 

PROOF: If x is the unique maximal element in {x E Kip' x ::5 p . x} and x E St, 
is such that p . x ::5 p . x, then x is also maximal in the budget set; moreover, by the 
asserted uniqueness, x = x. This proves that x is the unique minimizer under p on St,. 

Conversely, suppose that x is the unique minimizer under p on SE and let x E K be 
such that p . x ::5 p . x. If x t x, then by the asserted uniqueness of x, one again has 
x = x. This concludes the proof of the proposition. 

REMARK: The first part of the proof of this proposition does not require the com­
pleteness of t . 

In the following result we assume that X = Rn, p E int(K*) and t is a complete 
preorder on K, K =I {D}. Observe that these assumptions imply that, for each ~ in 
R, sets of the form {x E Kip, x ::5 ~} are compact. Let 8e>-(·,x)(p) be the 
superdifferential of the concave mapping et(-,x) : K* -+ R+ at p, i.e., 8et(-,x)(p) = 
{of E . X I e>-- (p', x) - e>--(p, x) ::5 x . (p' - p) for all pi in K*}. 

LEMMA 4.10: Assume that for a given x in K the upper-contour set Sf is closed. 
Then 

8etJ,x)(p) = co{x' E K I x' t x, p . x' = et(p,x)} 

PROOF: One can write 

et(p,x) = inf{p· x'I x' t x, p' x' ::5 p' x} 

Since {x' E J( I x' t x, p . x' ::5 p . x} is a compact set, the lemma is just a consequence 
of the corresponding concave version of Theorem 1.9 in Auslender (1976). 

COROLLARY 4.11: Assume that for a given x in K the upper-contour set Sf is closed 
and convex. Then 

8et;(-,x)(p) = {x' E K I x' t x, p . x' = et(p,x)} 

Let \7et (-, x) (p) denote the derivative or gradient vector of the mapping et (-, x) at p. 

COROLLARY 4.12: Assume that for a given x in K the upper-contour set S~ is closed. 
Then et (', x) is differentiable at p if and only if there is" a unique vector of = -h(p, x) for 
which p attains a minimum on Sf. In this case, 

\7et(-,x)(p) = h(p,x) 
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PROOF: It is well known [e.g., Rockafellar (1970)] that a concave function is differen­
tiable at a given point if and only if the superdifferential at such point consists of a unique 
element. Hence, from the previous lemma, e~J, x) is differentiable at p if and only if the 
set of minimizers {x' E K I x' t x, p . x' = edp, x)} reduces to a singleton, {x}, in 
which case the gradient vector Vet(o,x)(p) = x = h(p,x). 

The implicitely defined function, h(p, x), corresponds in the preference context to the 
so called Hicksian or compensated demand function. As in the utility case, if the mapping 
e>o- (', x) is C2 at p it follows that the matrix of partial derivatives or substitution terms, 
(t(p, x») is symmetric and negative semi-definite. Similarly, we have the following 
version of the Slutsky equation. 

THEOREM 4.13: Let X = Ir. Let t be a non-decreasing complete preorder on K, 
such that all upper-contour sets S; are closed. Assume that, for every p E int(K*) and 
>. > 0, there exists a unique maxi,,;Q/ element m(p, >.) in the budget set {x E Kip, x :5 >.} 
and that the function m : int(K* x R+) ~ Rn is Cl. Then for all i,j = 1, ... ,n and all 
(p, >.) in int(f{* x R+) it must hold that, 

ami ahi ami 
apj (p, >.) = apj (p, m(p, >.» - mj(p, >.) a>. (p, >.) 

PROOF: Let (p, >.) E int(K* x R+), and define x = m(p, >.). Since t is non-decreasing, 
f{ ¥ {O}, and x is uniquely detemined by (p, >'), we must have p . x = >.. Hence, by 
Proposition 4.9, x = h(p, x). Consequently, p . x = e>o-(p, x). Thus, we obtain 

m(p, edp, x» =m(p,p . x) =m(p, >.) = x = h(p, x) 

Moreover, from Corollary 4.12, e>o-("x) is differentiable at p with Ve)o-(·,x)(p) = h(p,x). 
Considering the ith component function in (*) and partially differentiating with respect 

to Pj, we get 

ami ( (_» 8mi ( (-»h ( -) 8hi ( -) .8pj p, et p, x + 8>' p, et p, x j p, x = 8pj p, x 

The desired result is now obtained after rearranging terms and making use of the equalities 

ft(p,X) =P . x = >., hj(p,x) =mj(p, edp, x) =mj(p,>') and x =m(p,>'). 

5. CONCLUDING REMARKS 

In this paper we offered characterizations of the expenditure function for both utility 
representations and preference structures. Also, we have established under minimal con­
ditions duality theorems between expenditure functions and utility representations, and 
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between expenditure functions and preference structures. With respect to previous work, 
our results extend to infinite-dimensional spaces and non-complete preference orders, and 
are free of particular continuity and boundary conditions. These latter conditions are 
foreign to the nature of the analysis. 

For the purposes of microeconomic theory, there are two lessons to be learned from 
these results: 

(a) The conditions that characterize an ezpenditure function are not the same as those 
that guarantee the duality between expenditure functions and utilities. This is a departure 
with respect to indirect utilities, where the conditions that characterize an indirect util­
ity are the same as those that guarantee the duality of direct and indirect utilities [cf. 
Martinez-Legaz and Santos (1993, Th.l)]. For preference structures, the asymmetry has 
already been observed for indirect preferences [op. cit., Th. 2 and Prop. 3], albeit for 
different reasons. As illustrated in an example at the end of Section 2, some utility rep­
resentations may yield expenditure functions that cannot be generated by quasi-concave, 
non-decreasing and upper-semicontinuous utility representations. 

(b) The conditions that guarantee the duality between expenditure functions and utility 

representations are not, the same as those that guarantee the duality between direct and 

indirect utilities. It follows from Theorem 2.5 that, to recover the original utility function 
from the expenditure function, such utility must be quasiconcave, non-decreasing, and 
upper-semicontinuous. However, to recover the original utility function from the indirect 
utility function such function must be evenly quasiconcave, non-decreasing, and satisfy 
certain continuity conditions at the boundary [cf., Martinez-Legaz and Santos (1993, Th. 
1)]. For instance, the utility function u on R+, 

ifx::51 
otherwise 

satisfies the required conditions for the duality of direct and indirect utilities. Such func­
tion, however, fails to be upper-semicontinuous, and hence does not satisfy the required 
conditions for the duality of expenditure and utility functions (Th. 2.5). 
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