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1 Introduction

Models such as, P -splines (Penalized splines), improve model fit with respect of traditional demo-

graphic models, uses less degrees of freedom and it is particularly flexible for modelling mortality

surface. Nevertheless, demography can build on large samples, and this has implications for the

statistical analysis of demographic data, including mortality studies. As Keyfitz (1966, p. 312)

argues, in demographic studies, the “mere fact that over a period of a year the population is

likely to be fifty or a hundredfold the deaths will result in a higher order of precision”.

The consequences of this peculiarity are relevant in the residual analysis, and in construction

of confidence intervals in a P -spline approach for mortality surface. Specific and uninformative

outcomes are also evident in common goodness-of-fit (gof) measures. However, such measures

are a necessary statistical tool to compare mortality developments and, especially, to assess

different models.

In this paper we will first present the common measure of GoF in the framework of GLMs

(generalized linear models). Extensions and adjustments of the classic R2 are needed in models

for non-Normal distributed data. Section 3 will introduce further extensions of gof measures in

non-parametric settings such as the P -spline approach and effective dimension of the smoother

will be considered when adjusting classic measures for GLMs. The presence of a large counts

in the mortality surface makes simple corrections essentially uninformative, in Section 4 we

will, thus, propose a new effective gof measure in models for mortality data: R2
mort. The basic

idea is to consider a null model which is specifically appropriate for mortality data. Particular

emphasis will be given to the behaviour of this measure in the Lee-Carter model and the P -spline

approach. Simulation studies in one- and two-dimensional settings, and applications for actual

mortality surfaces will be presented in Section 5 and 6.

2 Goodness-of-fit measure for Generalized Linear Models

The goodness-of-fit (gof) measures examine how well a statistical model fits a set of observations.

Measures of gof typically summarize the discrepancy between observed values and the values

expected under the model in question. Such measures can be used in statistical hypothesis

testing, or when investigating whether outcomes follow from a specified distribution.

In classic linear models the most frequently used measure to express how well the model
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summaries feature of the data is the well-known R2. It is also called the “coefficient of determi-

nation” or the “percentage of variance explained”. Its range is 0 ≤ R2 ≤ 1, with values closer to

1 indicating a better fit. It was developed to measure gof for linear regression models with ho-

moscedastic errors. The concept of explained variation was generalized to heteroscedastic errors

(Buse, 1973) and for logit, probit and tobit models (Veall and Zimmermann, 1996; Windmeijer,

1995).

One of the first studies on measuring explained variation in a GLM setting was undertaken

by Cameron and Windmeijer (1997). They proposed an R2-measure of goodness of fit for the

exponential family. As a starting point they defined a measure that took into account the

proportional reduction in uncertainty due to the inclusion of regressors. Since in GLMs we have

generalized the Normal distribution, the coefficient of determination should be interpreted as

the fraction of uncertainty explained and no longer as a percentage of variance explained.

More specifically Cameron and Windmeijer (1997) defined the R2 for an exponential family

regression model based on the Kullback-Leibler (KL) divergence (Kullback, 1959). A standard

measure of the information from observations in a density f(Y ) is the expected information

E[log(f(Y ))] with the KL divergence measuring the discrepancy between two densities. Let

fµ1(y) and fµ2(y) be two densities differing in mean µ only. The KL divergence is defined as

K(µ1, µ2) ≡ 2Eµ1 log
[
fµ1(y)
fµ2(y)

]
,

where the factor 2 is multiplied for convenience and Eµ1 denotes that the expectation is taken

with respect to the density fµ1(y). The KL measures how close µ1 is to µ2 and K(µ1, µ2) ≥ 0

with equality iff fµ1(y) ≡ fµ2(y).

If we define fy(y) the density for which the mean is set to the realized y, the deviation of y

from the mean µ is given by

K(y, µ) ≡ 2Ey log
[
fy(y)
fµ(y)

]
= 2

∫
fy(y) log

[
fy(y)
fµ(y)

]
dy . (2.1)

Hastie (1987) and Vos (1991) proved that if fy(y) is within the exponential family equation (2.1)

is reduced to

K(y, µ) = 2 log
[
fy(y)
fµ(y)

]
.

In an estimated regression model, with n individual estimated means µ̂i = µ(x′iβ̂), the KL
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divergence between vectors y and µ is equal to twice the difference between the maximum

log-likelihood achievable, l(y,y), and the log-likelihood achieved by the fitted model l(µ̂,y)

K(y, µ̂) = 2
n∑

i=1

[log fyi(yi)− log fµ̂i
(yi)] = 2 [l(y,y)− l(µ̂,y)] (2.2)

A particular case would be the constant only model where the fitted mean would be a n–vector

µ̂0 and the KL divergence, K(y, µ̂0), can be interpreted as the information in the sample data

on y potentially recoverable by inclusion of expectation with respect to the observed values y.

Using the mentioned attributes of the KL divergence, Cameron and Windmeijer (1997)

proposed an R2 for the class of exponential family regression models

R2
KL = 1− K(y, µ̂)

K(y, µ̂0)
(2.3)

given that K(y, µ̂0) is minimized when µ̂0 is the maximum likelihood estimate. Furthermore,

R2
KL is proved to satisfy all the above mentioned criteria.

Since the expression for K(y, µ̂) in (2.2) is equivalent to the definition of the deviance

(McCullagh and Nelder, 1989, p. 33), R2
KL can be interpreted as being based on deviance

residuals. Therefore, R2
KL is related to the analysis of deviance in the same way as the classic

R2 is related to the analysis of variance. We can re-write the R2
KL as

R2
KL =

K(µ̂, µ̂0)
K(y, µ̂0)

, (2.4)

which reveals another interesting aspect of this measure: using the canonical link in exponen-

tial family models, R2
KL measures the fraction of uncertainty explained by the fitted model, if

uncertainty is quantified by the deviance.

As we have seen, standard tools to quantify the discrepancy between observed and fitted

values for Poisson models are deviance and the Pearson statistics. These concepts can be used

to define different R2 measures. One idea is to compare the sum of squared Pearson residuals for

two different models: the fitted model and the most restricted model in which only an intercept

is included, which is estimated by ȳ. Cameron and Windmeijer (1996) proposed

R2
PEA = 1−

∑n
i (yi − µ̂i)2/µ̂i∑n
i (yi − ȳ)2/ȳ

(2.5)
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The choice of ȳ as weight in the denominator is a generalization for the Poisson case of the

weighted R2 propose by Buse (1973).

Instead of using Pearson residuals, we alternatively can construct an R2-measure based on

Deviance Residuals. Let ȳ be the predicted mean for a Poisson model with just an intercept,

then, the deviance is Dev(y, ȳ) = 2
∑n

i yi log(yi/ȳ). From this formulation, the deviance-R2 for

the Poisson model is

R2
DEV = 1−

∑n
i {yi log(yi/µ̂i)− (yi − µ̂i)}∑n

i yi log(yi/ȳ)
. (2.6)

For the canonical link, the term
∑

i(yi − µ̂i) reduces to 0. Though equation (2.6) is equivalent

to the R2 based on the KL divergence in (2.3), we opt for a different subscript to emphasize

that deviance residuals are the basic quantities in (2.6).

2.1 Adjustments according to the number of parameters

The R2-measures we presented so far do not consider the number of covariates used in the

regression models. Some studies underline this aspect in situations with small sample sizes

relative to the number of covariates in the model (Mittlböck and Waldhör, 2000; Waldhör et al.,

1998). In these cases R2-measures may be seriously inflated and may need to be adjusted. As

we have seen, in a non-parametric setting effective dimensions are an equivalent concept to the

number of covariates. Hence gof measures for non-parametric models should take into account

the effective dimensions of the fitted model.

In a GLM context Waldhör et al. (1998) proposed to correct both the deviance and Pearson

R2 in the following way:

R2
PEA,adj = 1−

(n− p− 1)−1
∑n

i (yi − µ̂i)2/µ̂i

(n− 1)−1
∑n

i (yi − ȳ)2/ȳ

R2
DEV,adj = 1−

(n− p− 1)−1
∑n

i {yi log(yi/µ̂i)− (yi − µ̂i)}
(n− 1)−1

∑n
i yi log(yi/ȳ)

where p is the number of estimated covariates additional to the intercept. This type of ad-

justment stems from the normal linear model and is appropriate when using sum-of-squares

approach to quantify deviation. In Poisson regression models, this adjustment would be just an

approximation.

Two adjusted R2-measures for Poisson regression models based on deviance residuals are
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presented in Mittlböck and Waldhör (2000):

R2
DEV,adj1 = 1− l(y)− [l(µ̂)− p/2]

l(y)− l(ȳ)

= 1− l(y)− l(µ̂) + p/2
l(y)− l(ȳ)

R2
DEV,adj2 = 1− l(y)− [l(µ̂)− (p + 1)/2]

l(y)− [l(ȳ)− 1/2]

= 1− l(y)− l(µ̂) + (p + 1)/2
l(y)− l(ȳ) + 1/2

(2.7)

It is easy to see how R2
DEV,adj2 is always closer to zero than R2

DEV,adj1.

Mittlböck and Waldhör (2000) compared these two measures by simulation with different

population values. They showed that R2
DEV,adj1 performs remarkably well where the Poisson

regression is based on a small sample and/or many covariates. Moreover, while the equations

in (2.7) work well in a GLM setting, further extensions are needed in the case of smoothing

models, these are presented in the next section.

3 Extending R2-measures for smoothers

In the previous section we presented R2-measures for GLM. Although the usage of likelihood

ratio statistics in a smoothing context needs particular care (Ruppert et al., 2003), we follow the

same arguments and construct R2-measures for Poisson distributed mortality data fitted with

P -splines.

Deaths counts are Poisson distributed data and, therefore, we use a measure based on de-

viance residuals since Pierce and Schafer (1986) illustrated that deviance residuals are more

suitable for this type of data. We replace in equations (2.7) the number of covariates p by the

effective dimension ED:

R2
DEV,SMO,1 = 1−

∑n
i=1{yi log(yi/µ̂i)− (yi − µ̂i)}+ ED−1

2∑n
i=1{yi log(yi/ȳ)}

(3.1)
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and

R2
DEV,SMO,2 = 1−

∑n
i=1{yi log(yi/µ̂i)− (yi − µ̂i)}+ ED

2∑n
i=1{yi log(yi/ȳ)}+ 1

2

(3.2)

where ED is estimated. Equations (3.1) and (3.2) can be naturally computed in both unidi-

mensional and two-dimensional contexts. Distinct smoothing techniques can be compared using

these measures as long as they allow an easy computation of the used effective dimension of the

model.

As a first example, the two R2-measure are computed for Danish mortality data to which

a surface is fitted with two-dimensional P -splines. R2
DEV,SMO,1 and R2

DEV,SMO,2 are equal to

0.995722 and 0.995721, respectively. The difference between these values is minimal and it

seems that the fraction of uncertainty explained by the model is close to 100%. Table 1 presents

values of the R2-measure given in (3.2) for different period and age ranges. For comparison

results of the R2-measure from the Lee-Carter (LC) model are also given. All the values in

Table 1 are in the range [0.989038, 0.995721] with marginally smaller values for the LC model.

Of course the similarity between these outcomes do not reveal the important differences in

explaining variation between P -spline and LC model. For a specific Danish mortality surface,

such differences between the two approaches are evident from the fitted values and from the

residual pattern.

Danish Data P -splines Lee-Carter
females 1930–2006 10-100 0.995721 0.992671
males 1930–2006 10-100 0.995166 0.992583
females 1930–2006 50-100 0.993654 0.989038
males 1930–2006 50-100 0.993951 0.990885
females 1950–2006 50-100 0.994261 0.991518
males 1950–2006 50-100 0.994089 0.991426

Table 1: R2
DEV,SMO,2 values for the Danish population by different period and age ranges as

well as models.

The presence of a large number of death counts in the mortality surface leads to rather

small deviance residuals which are the basic elements of these R2-measures. Consequently,

equations (3.1) and (3.2) will always generate figures significantly close to 1, which are essentially

uninformative. An explanation for this drawback of equations (3.1) and (3.2) refers directly

to the null model in the denominators of these measures. The model in the denominators

incorporates only the intercept, and is a reasonable null model in a GLM framework. A different
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and peculiar null model is needed in models for mortality data. Specifically, it is appropriate

to compare different mortality models to a “limit” model, which is nested in all the selected

models, and which is more complex that a simple constant plane. For instance, the mortality

surface for the Danish population is a 91 × 77 matrix. It is pleonastic and uninformative to

check whether a P -spline model explains the variation in the data more than the overall mean

of the matrix.

4 Alternative R2-measures for mortality models

An alternative strategy for constructing gof measure for mortality data is to choose, as null

model, the linear and bilinear models for unidimensional and two-dimensional models, respec-

tively. That is we consider a model where age and time and possibly their interaction. This

approach is appealing since both P -splines and the Lee-Carter can be seen as extensions of this

proposed null model. This will allow comparison of different models relative to the linear or

bilinear null model.

In the next sections we will show that a linear model is nested within a P -spline model or

a Lee-Carter model, and therefore it is natural to use it as a null model. In Section 4.3 we will

demonstrate that this decomposition can be used for the alternative R2-measure.

4.1 P -splines with a transformed basis

In a P -splines setting, one can extract a linear component from the fitted trend, and fit the

remaining variation by fitting a smooth curve with a penalty that penalized departures from

zero. An early reference about this topic can be found in Green (1985). Verbyla et al. (1999)

and Currie et al. (2006) discussed this idea, too.

We can write a P -splines model is the following way:

y = Ba + ε, ε ∼ N (0, σ2I) (4.1)

where B = B(x), n × k is the regression matrix of the B-splines and an additional difference

penalty P on the coefficients a is used to enforce smoothness. Given these components, the
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smoothed function is found by minimizing

S∗ = ‖y −Ba‖2 + P .

where P = λD′
dDd and Dd is the difference matrix acting on the coefficients a.

A linear or bilinear model can be seen as a nested model in the more general P -spline

framework, and in the following we will demonstrate explicitly this association. Specifically, we

will present how a P -spline model can be decomposed in two unique and distinct components,

one of which is the linear model.

In particular, we will show how to represent equation (4.1) in the following alternative way:

y = Xβ + Zα + ε, α ∼ N (0,G), ε ∼ N (0, σ2I) (4.2)

where G is a covariance matrix which depends on λ and in the following we will assume the

simple structure G = σ2
αI, with unknown variance σ2

α. In this way we separated the fixed part,

which does not depend on the smoothing parameter, and the remaining variation which will be

smoothed via P -splines. We will show how the fixed part can be a simple linear (bilinear) model

in a unidimensional (two-dimensional) setting.

It is worth pointing out that this is the common representation of P -splines as mixed models

(Currie and Durban, 2002; Currie et al., 2006; Durban et al., 2006) and that the fixed-effects

model-matrix X is nested in the full model-matrix B.

We assume that a second order penalty is used, i.e. d = 2. The aim is to find the unique

matrix T such that

BT ≡ [X : Z] ⇒ Ba = Xβ + Zα (4.3)

The idea is to use the Singular Value Decomposition (SVD, Good, 1969) of the penalty P to

partition the difference penalty into a null penalty (for the fixed part) and a diagonal penalty

(for the random part).

The SVD of the square matrix D′D can be written as

D′D = V ΛV ′ ,

where V can be decomposed into two matrices: Vn and Vs. The former is the part of the matrix
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V corresponding to the zero eigenvalues of D′D (fixed part). Since we are using a second order

penalty we will have only two zero eigenvalues. The matrix Vs is corresponding to the nonzero

eigenvalues (random part). Therefore the fixed part would be:

X = B Vn (4.4)

For the random part we consider the diagonal matrix Λ where we remove the elements corre-

sponding to the fixed part X:

Λ =

 Σ̃

02×2


The new diagonal matrix Σ̃ contains the non-zero eigenvalue, therefore the random-effects part

can be written as:

Z = B Vs Σ̃− 1
2 (4.5)

The mentioned matrix T will then be:

T =
[
Vn : Vs Σ̃− 1

2

]

and consequently TB = [X : Z] giving the parameterization in equation (4.3) where

β = V ′
na and α = [VsΣ̃

1
2 ]a.

and the penalty term is given by

a′D′Da → α′α

In this way quadratic and cubic fixed-effects can be chosen with d = 3 and d = 4, respectively

(Verbyla et al., 1999, p. 308). This representation can be generalized in a Poisson case in a

straightforward manner with the additional weight matrix and link function. In a one-dimension

setting, the fixed part for mortality data which can be used as null model for constructing gof
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measure will be a simple linear term such that

η = Xβ =



1 x1

1 x2

1 x3

...
...

1 xn


·

 β1

β2

 (4.6)

where the second column of X will be either the age or year values.

In a two dimensional setting the previous considerations can be easily generalized as in the

P -spline approach. We now have B = By ⊗Ba with penalty P given by

P = λaIcy ⊗D′
aDa + λyD

′
yDy ⊗ Ica . (4.7)

Taking the SVD of D′
aDa we obtain VaΣaV

′
a and partitioning the matrix

Va = [Vas : Van]

where Vas corresponds to the non-zero eigenvalues and Van to the zero eigenvalues.

Assuming a second order penalty in both dimensions, Σa has two zero eigenvalues and Van

has two columns. Let Σas contains the positive eigenvalues of Σa. In the same way we decompose

D′
yDy obtaining Vy = [Vys : Vyn] and Σys.

Then we have the fixed part:

X = B(Vyn ⊗ Van)

= ByVyn ⊗BaVan

= Xy ⊗Xa. (4.8)

And the random part is given by

Z = B(Vys ⊗ Vas)Σ̃−1/2

= (ByVys ⊗BaVas)Σ̃−1/2 (4.9)
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where the diagonal matrix Σ̃ is a block-diagonal containing the non-zero eigenvalues in both

dimensions.

The new basis T is given by the combination of equations (4.8) and (4.9):

T = [Vyn ⊗ Van : Vys ⊗ Van : Vyn ⊗ Vas : Vys ⊗ Vas]

We can prove that T is orthogonal so we can represent for the two-dimensional case in (4.3)

where

β = (Vyn ⊗ Van)′a

α = (Vys ⊗ Van : Vyn ⊗ Vas : Vys ⊗ Vas)′a.

The penalty is then given by

a′Pa = ω′T ′PTω

where ω′ = [β′ : α′].

The fixed part for our null model in a two-dimensional case for mortality surfaces is then
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given by

η = Xβ =



1 a1 y1 a1 · y1

1 a2 y1 a2 · y1

...
...

...
...

1 am y1 am · y1

1 a1 y2 a1 · y2

1 a2 y2 a2 · y2

...
...

...
...

1 am y2 am · y2

1 a1 y3 a1 · y3

1 a2 y3 a2 · y3

...
...

...
...

1 am y3 am · y3

...
...

...
...

1 a1 yn a1 · yn

1 a2 yn a2 · yn

...
...

...
...

1 am yn am · yn



·



β1

β2

β3

β4


, (4.10)

where ai, i = 1, . . . ,m and yj , j = 1, . . . , n are age and year values, respectively. In this way we

have as fixed part, and, consequently as null model, a bilinear surface in which age and time

interact. The dimension of the model is equal to four, i.e. the number of columns of X. The

linear model can be easily fitted using a two-dimensional P -spline framework by choosing large

smoothing parameters for both age and year. In the example we considered λa = λy = 108

worked well and lead to effective dimension of about four.

4.2 The Lee-Carter as a simple bilinear model

In a two-dimensional setting the Lee-Carter (LC) model is widely used in modelling mortality

surface and it is a commonly used model for mortality developments. Therefore, it is useful to

also apply alternative gof measures for mortality data to this model. In this section we will show

how the basic bilinear structure is nested in the LC model, too.
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The LC model is given by:

Yij ∼ Poisson (Eij · exp(αi + βi · γj))

where αi, βi and γj are vectors of parameters that have to be estimated. Using the canonical

link function for Poisson distributed data, the linear predictor of the LC model is given by

ηij = αi + βi · γj . (4.11)

It can be proved that equation (4.11) is a general case of the fixed part of the model in (4.3)

in the two dimensional case, where the linear predictor is given in equation (4.10). We let the

Lee-Carter vectors of parameters, αi, βi and γj , vary linearly over ages and years, that is

αi = θ1 + θ2 · ai

βi = θ3 + θ4 · ai

γj = θ5 + θ6 · yj . (4.12)

The linear predictor in (4.11) then becomes:

ηij = θ1 + θ2ai + (θ3 + θ4ai)(θ5 + θ6yj)

= (θ1 + θ3θ5) + (θ2 + θ4θ5)ai + θ3θ6yj + θ4θ6aiyj ,

which is equivalent to linear part of the mixed model representation of P -splines models in

equation (4.10) if

β1 = θ1 + θ3θ5

β2 = θ2 + θ4θ5

β3 = θ3θ6

β3 = θ4θ6.
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4.3 R2
mort: a goodness-of-fit measure for mortality data

In Sections 4.1 and 4.1 we showed that both the two-dimensional P -spline model and the Lee-

Carter model can be seen as extensions of a bilinear surface, where age and year interact. Such

parsimonious surface can be used as a null model to compare the explained variability from

more sophisticated models in an appropriate way. That is, we replace the constant surface as a

null model in the denominator in (3.2), by either an estimated linear or bilinear model as given

in (4.6) and (4.10).

We define by µ̂1
i and µ̂0

i the estimated values by the fitted model and the null model, re-

spectively. In a similar fashion, ED1 and ED0 denote the effective dimension of the two models.

Recalling explicitly equation (3.2), we propose as appropriated gof measure for mortality models

the following equation:

R2
mort = 1−

∑n
i=1{yi log(yi/µ̂1

i )− (yi − µ̂1
i )}+ ED1

2∑n
i=1{yi log(yi/µ̂0

i )− (yi − µ̂0
i )}+ ED0

2

(4.13)

where n denotes the total number of measurement values in the data. As mentioned, the null

model is defined by the linear predictor in (4.10) or (4.6). The variation explained by the fitted

model is now compared to the bilinear model.

Equation (4.13) can be alternatively written as

R2
mort = 1−

Dev1(y;a1, λ) + ED1(a1,λ)
2

Dev0(y;a0) + ED0(a0)
2

(4.14)

where a are the coefficients of the model and λ is the smoothing parameter, for smoothing

models. Again the superscripts 0 and 1 denote quantities computed from the null and fitted

model, respectively.

As in the other R2-measures (see Section 2), values of (4.14) closer to 1 indicate a better fits

compared to the bilinear null model. Moreover, ED0(a0)
2 is equal to 1 and 2 in unidimensional

and two-dimensional setting, respectively, and it does not depend to the smoothing parameter

λ in a smoothing setting.

4.3.1 Relations between R2
mort and information criteria

Actual associations between our R2
mort and information criteria for smoother can shed additional

light the meaning and implications of the proposed R2-measure. We already presented several
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information criteria for selection of smoothing parameters for different data. Here we focus on

the commonly used criteria in case of Poisson data: Akaike Information Criterion and Bayesian

Information Criterion. Let recall their formulas:

AIC(λ) = Dev(y;a, λ) + 2 · ED(a, λ)

BIC(λ) = Dev(y;a, λ) + ln(n) · ED(a, λ) ,

and, consequently, the deviance can be written equivalently as:

Dev(y;a, λ) = AIC(λ)− 2 · ED(a, λ)

Dev(y;a, λ) = BIC(λ)− ln(n) · ED(a, λ) . (4.15)

One can show that AIC and BIC are linked with R2
mort. Substituting the first equation of

(4.15) in the measure presented in (4.14), we obtain:

R2
mort = 1−

AIC1 − 2 · ED1 + ED1

2

Dev0 + ED0

2

= 1 +
3
2 · ED1 + AIC1

Dev0 + ED0

2

=

[
1 +

3
2 · ED1

Dev0 + ED0

2

]
−

[
1

Dev0 + ED0

2

]
·AIC1 (4.16)

which shows the relation between R2
mort and AIC. In a similar fashion, substituting the second

equation of (4.15) in (4.14), we obtain the relationship between R2
mort and BIC:

R2
mort = 1−

BIC1 − ln(n) · ED1 + ED1

2

Dev0 + ED0

2

= 1 +

[
ln(n)− 1

2

]
· ED1 + BIC1

Dev0 + ED0

2

= 1 +

[
ln(n)− ln

(
e

1
2

)]
· ED1 + BIC1

Dev0 + ED0

2

=

1 +
ln

(
n√
e

)
· ED1

Dev0 + ED0

2

− [
1

Dev0 + ED0

2

]
· BIC1 (4.17)

16



For simplicity of notation, on the right side of (4.16) and (4.17) we have dropped the argu-

ments in the brackets.

From equations (4.16) and (4.17), the R2
mort is a linear transformation of both AIC and BIC.

It is noteworthy that the slope of this transformation depends merely on the null model. As con-

sequence, if we would use R2
mort as a critrion for smoothing parameter selection, i.e. maximizing

R2
mort, we would obtain an optimal value that is different from the one obtained by minimizing

the AIC and BIC.

The important point to note here is the presence of the deviance of the null model, Dev0, in

the second terms of the intercepts in equations (4.16) and (4.17). Especially in a two-dimensional

setting and with mortality data, Dev0 can be substantially higher than any quantity in the

numerator, leading to intercept close to 1. Therefore, in presence of larger Dev0 , the profiles

R2
mort and AIC (or BIC) will be more and more similar over a grid of smoothing parameters,

that only differ in sign.

Furthermore, fitted values picked by minimizing AIC will always result in a larger R2
mort

with respect to those picked by minimizing BIC, especially for large mortality surface.

5 Simulation studies

In this section we will present different simulation studies which demonstrate the performance of

the proposed R2
mort. Its features will be considered in both unidimensional and two-dimensional

context. Simulation settings are chosen such that they resemble mortality data, based on Poisson

data and different sample sizes.

5.1 The unidimensional case

Though the proposed measure R2
mort reveals its capability to identify how well a mortality model

fits in a two-dimensional setting, in this section we will illustrate the performances of R2
mort over

a single variable only. A univariate P -spline model is fit based on a smoothing parameters

selected by BIC.

The R2
mort measure is constructed from a given fitted model and a null model. In a unidi-

mensional setting, the latter is represented in equation (4.6). Equation (4.6) is a simple linear

predictor where the time axis is the only covariate. As mentioned above, we will fit this null
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model just applying a P -spline approach with sufficiently large smoothing parameter. Conse-

quently ED0 will be always equal to 2.

αj

years (j)

α j

1940 1960 1980 2000

2e−05

4e−05

6e−05

8e−05

βj

years (j)

β j
1940 1960 1980 2000

0.088

0.090

0.092

0.094

0.096

0.098

0.100

0.102

Figure 1: Gompertz parameters, αj and βj , over time j used in the simulation setting, cf. equa-
tions (5.1) and (5.2)

Death counts were simulated from a Poisson distribution with rates following a Gompertz

distribution. In particular, we simulated a mortality surfaces from the following setting

Yij ∼ Poisson (Eij · exp(ηij)) i = 30, . . . , 100

j = 1930, . . . , 2006 , (5.1)

where the linear predictor varies over time j:

ηij = ln(αj) + βj · i (5.2)

and i are the ages, 30, . . . 100. The values of the parameters αj and βj over year j are shown in

Figure 1 and they are chosen to mimic a realistic scenario.

In order to understand the role of the sample size in the outcomes of R2
mort, we simply modify

the values into the matrix of exposures Eij . Specifically, we designed two different matrices in

which Eij = 5, 000 and Eij = 25, 000 for all i = 30, . . . , 100 and j = 1930, . . . , 2006. In this way

we can generate two different mortality surfaces in which the true model is the same, whereas

the variability is different.
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We will pick two particular ages only (i = 40 and i = 80) and analyse the performance of

R2
mort over time, j = 1930, . . . , 2006. We have 4 series of death rates (2 ages and 2 exposures)

which will be smoothed using P -spline methodology with 18 cubic B-spline bases. The proposed

R2
mort is then computed for each fitted model.

We repeated the procedure 1,000 times. Figure 2 shows the outcomes of a single simulation

at the given ages i = 40 and i = 80 for the different exposure matrices. Both true, fitted and

null models are plotted. Values for R2
mort and R2

DEV,SMO,2 are also presented.
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Figure 2: True, simulated and fitted deaths rates (with 95% conf. int.) along with the null
model at age 40 and 80 over years j = 1930, . . . , 2006, logarithmic scale. P -spline approach is
used to fit the data, and BIC for selecting the smoothing parameters.

Table 2 presents the median values for R2
mort and R2

DEV,SMO,2 as well as median values for
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deviance, effective dimensions and selected smoothing parameter from the 1,000 simulations by

different exposures and ages. An overview of the distributions of these parameters is given in

Figure 3.

Median value of:
Simulated data R2

mort R2
DEV,SMO,2 Dev(y;a, λ) ED(a, λ) λ

i = 40, Eij = 25, 000 0.325 0.822 74.338 4.441 1000.000
i = 40, Eij = 5, 000 0.061 0.477 77.424 2.778 3162.278
i = 80, Eij = 25, 000 0.860 0.991 68.655 9.633 630.957
i = 80, Eij = 5, 000 0.545 0.957 72.280 7.280 630.957

Table 2: Median values of R2
mort, R2

DEV,SMO,2, Dev(y;a, λ), ED(a, λ) and λ from the 1,000
simulations at age 40 and 80 over years j = 1930, . . . , 2006. Different exposure matrices are
used, cf. equations (5.1) and (5.2).

As expected, R2
mort always is smaller than R2

DEV,SMO,2. R2
mort measures how much more

variation is captured by the model relative to the null linear model. The outcomes of R2
DEV,SMO,2

are close to 1, especially at age 80 due to the large number of deaths at this age (0.991 and

0.956).

Moreover, Figure 3 shows that R2
mort differs more strongly between the setting than R2

DEV,SMO,2.

In particular results from R2
DEV,SMO,2 at age i = 80 are all very close to 1, i.e. all models capture

almost 100% of the variation.

The smoothing parameter at age 40 with Eij = 5, 000 is on average considerably larger,

leading to fitted values often similar to the linear null model. This might be also due to the

fact that the variability in the data is larger for smaller exposure. In these cases the R2
mort will

generally be close to 0, i.e. the fitted model does not capture more variability than the linear

null model.

It is a easy to see that the values of R2
mort are mainly influenced by the different of effective

dimensions in the fitted models. On the other hand, the deviance does not show substantial

differences between the four settings (see Figure 3, bottom-left panel).

In conclusion, we consider it is often more meaningful and appealing to perceive how much

our fitted model improves with respect to a known model, instead that to the overall mean.

5.2 The two-dimensional case

In this section we will present results from both R2
mort and R2

DEV,SMO,2 in a simulated two-

dimensional setting. As explained in Sections 4.1 and 4.2 both the Lee-Carter model and the
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Figure 3: Summary of 1,000 simulations. Box-plots of R2
mort, R2

DEV,SMO,2, Dev(y;a, λ) and
ED(a, λ) for ages i = 40 and i = 80 and different exposure matrices, cf. equations (5.1) and (5.2).
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two-dimensional regression P -splines can be considered as extension of the simple bilinear model

over age and time a specified in equation (4.10). Such a bilinear model will be used in this

simulation setting as null model for the R2
mort measure.

Our study in a two-dimensional case employs equations (5.1) and (5.2) for simulating 1,000

mortality surfaces which follow Gompertz distribution with parameters αj and βj varying over

time as display in Figure 1. Figure 4 presents an example of such simulation in which the true

mortality surface is along with possible simulated surfaces with different exposure matrices.

These mortality surfaces are then fitted by two-dimensional regression P -splines and the LC

model. In particular, we selected the smoothing parameters by BIC in the P -spline approach

and we followed the Poisson likelihood approach given by Brouhns et al. (2002) for fitting the

LC model. Finally both R2
mort and R2

DEV,SMO,2 are computed for each of the 1,000 simulations.

Table 3 shows the median values from the 1,000 simulations of both R2
mort and R2

DEV,SMO,2

as well as the median deviances from both the P -spline and LC approach. Two-dimensional

regression P -splines allows distinct smoothing parameters for each surface and consequently dif-

ferent effective dimensions (Table 3 presents also the median values of the effective dimensions).

Note that the LC model employ always 2 ·m+n−2 = 215 parameters, this will have a important

impact on R2
mort and R2

DEV,SMO,2.

R2
mort is substantially higher for the two-dimensional P -spline approach than for the LC

model (0.931 vs. 0.750 and 0.734 vs. 0.591 for the two simulation settings). We might conclude

that the LC model performs much worse than two-dimension P -spline regression on the given

simulation setting. This difference is more evident than looking directly at R2
DEV,SMO,2 in which

all the values are close to 1.

Simulation setting
median values of Eij = 25, 000 Eij = 5, 000

P -splines R2
mort 0.931 0.734

R2
DEV,SMO,2 0.999 0.999

Dev(y;a, λ) 5406.800 5443.667
ED(a, λ) 23.224 21.366

Lee-Carter R2
mort 0.750 0.591

R2
DEV,SMO,2 0.999 0.998

Dev(y;α,β,γ) 19656.059 8133.536
ED(α,β,γ) 215.000 215.000

Table 3: Median values of R2
mort, R2

DEV,SMO,2, deviance and effective dimensions/parameters
from the 1,000 simulations fitted with P -splines approach and LC. Different exposure matrices
are used, cf. equations (5.1) and (5.2).
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Figure 4: True and simulated death rates over age and years with different exposure matrices.
Bilinear model from the simulation setting is also plotted.
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Regarding models’ comparison, one could check the differences in the deviances between the

two approaches (5407 vs. 19656 and 5444 vs. 8134). Again in this case the discrepancy between

simulated and fitted values is much larger in the LC model. This is due to the comparatively rigid

structure of the LC model. Though the effective dimensions in the LC model is substantially

larger as compare to the P -spline model, the LC model is not capable of capturing variability

in the data better.

It is worth pointing out that R2
mort combines both deviance and effective dimensions of a

fitted model in a single value, which reveals straightforwardly the gof of the model. Also in this

measure, the sample size plays an important role in the results.
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Figure 5: True, simulated and fitted deaths rates with P -splines and LC model along with the
null model, logarithmic scale. Age 40 and 80 over years j = 1930, . . . , 2006.
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The differences between the LC model and the P -spline approach are even clearer in Figure 5

where two particular ages from the two different simulated mortality surfaces are portrayed. The

LC model clearly misfit the data and, additionally, it produces under-smoothed fitted values.

6 Applications to the Danish data

In this section we study the performance of R2
mort for the Danish female population.

It was already clear from the residual analysis, that the P -spline approach outperformed the

LC model, even though the former employs fewer effective dimension. Nevertheless in Table 1

modified R2-measures for smoothers did not reveal remarkable differences in gof between these

two approaches.

The proposed R2
mort aims to overcome this issue. Figure 6 shows shaded contour maps of

the actual Danish female death rates along with the fitted values and the null model. Figure 7

illustrates, for selected ages, the actual death rates and fitted values from the LC model and

P -spline approach together with the fitted values from the null model. P -splines follow the

mortality development over years more closely than the LC model and the LC model clearly

under-smoothed the actual death rates.

R2
mort values are 0.8279138 and 0.7052449 for the P -spline approach and LC model, respec-

tively. The difference is here more perceptible and informative than with R2
DEV,SMO,2.

Finally, Table 4 presents different outcomes from (4.14) for the Danish population taking

into consideration different period and age ranges. The different values between P -splines and

LC model is clear in all the fitted mortality surfaces from which we conclude that P -splines give

a better fit to these data in all scenarios. In contrast to Table 1, the range of the outcomes in

Table 4 is [0.454684,0.827914].

Danish Data P -splines Lee-Carter
females 1930–2006 10-100 0.827914 0.705245
males 1930–2006 10-100 0.822210 0.727210
females 1930–2006 50-100 0.702440 0.486016
males 1930–2006 50-100 0.638110 0.454684
females 1950–2006 50-100 0.720131 0.586349
males 1950–2006 50-100 0.684898 0.542944

Table 4: R2
mort values for the Danish population by different period and age ranges.
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null model. Age 40 and 80 over years j = 1930, . . . , 2006.
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Figure 7: Actual and fitted death rates at selected ages over years, logarithmic scale. 2D smooth-
ing with P -splines and LC model used for the estimation. Null model given in equation (4.10).
Denmark, females.
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6.1 R2
mort and information criteria

In Section 4.3.1 we presented the relations between R2
mort and the information criteria for se-

lecting smoothing parameters in a smoothing context, that is, AIC and BIC. For the Danish

female population Figure 8 shows the contour plots of AIC, BIC and R2
mort over the same grid

of λa and λy.

BIC is more convenient to select smoothing parameters in a mortality setting, i.e. death

counts are so large that effective dimension of the model needs to be penalized more. Smoothing

parameters selected by AIC and R2
mort (Fig. 8) are smaller than the smoothing parameters picked

by BIC.

As explained in equations (4.16) and (4.17), outcomes from R2
mort are closer to the AIC

than the BIC. Consequently, R2
mort will always be slightly higher for a fitted mortality surface

in which λa and λy are selected by AIC. In this case R2
mort is equal to 0.835897 when AIC is

used, in contrast with 0.827914 of the fitted mortality surface selected by BIC.

7 Conclusions

In this paper we proposed a new gof measure for mortality data, R2
mort, an important tool for

comparing models and data in this specific setting. First, we noticed that classic measures are

essentially uninformative in the mortality context due to two specific reasons. On one hand,

mortality data present often large number of death counts. On the other hand, classic gof

measure aim to compare fitted model with a null model which is a simple overall mean of the

data. Consequently, commonly used R2 measures give outcomes always close to zero, regardless

of the used model and of the actual data.

We also presented various generalization of the R2 for normal data which are suitable for

non-normal data. Further corrections are also needed to account the number of parameters

in the fitted model. Moreover, working with smoothing techniques, effective dimension of the

model have to be included in a gof measures. Nevertheless, none of these adjustments is enough

to allow informative comparison of explained variability of different models in mortality data.

The proposed measure is based on an alternative null model, specifically designed for mor-

tality data, that is a linear or bilinear model for unidimensional or two-dimensional models,

respectively. The equation (4.14) is a particular variant of commonly used gof measures in
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Figure 8: BIC, AIC and R2
mort over a two-dimensional grid of λa and λy.
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which we incorporate the effective dimension (number of parameters) used by the fitted model

and an original denominator which includes deviance and effective dimension of a linear model.

The attractive feature of this new measure lies in the fact that the selected null model is

nested in widely used demographic and smoothing models for analysis of mortality development.

Specifically, both the Lee-Carter model and the two-dimensional regression P -splines can be

viewed as extensions of the bilinear model over age and time.

Whereas differences in the classic gof measures, even after several adjustments, are hardly

perceptible, R2
mort can be easily used to select and assess models and mortality data. In par-

ticular, we showed that, though the Lee-Carter model employs a considerable large number of

parameters, P -spline methodology can capture much better changes in mortality. For instance,

for Danish females for the years 1930–2006 and for ages 10–100, the LC model explains 70%

more variability present in the actual data than the bilinear model, while two-dimensional P -

splines improves the bilinear null model by 83%. This difference in the outcomes summarizes

remarkably well what can be seen in the residual analysis and was not evident in common gof

measures.
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